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Classical Symmetries of Complex Manifolds

Alan Huckleberry & Alexander Isaev

Abstract

We consider complex manifolds that admit actions by holomorphic

transformations of classical simple real Lie groups and classify all such

manifolds in a natural situation. Under our assumptions, which require

the group at hand to be dimension-theoretically large with respect to the

manifold on which it is acting, our classification result states that the man-

ifolds which arise are described precisely as invariant open subsets of cer-

tain complex flag manifolds associated to the complexified groups.

1 Introduction

In this paper we consider complex manifolds that admit “classical symme-
tries”, that is, manifolds X endowed with almost effective actions by holomor-
phic transformations of classical simple real Lie groups G0. Here we say that G0

is a classical simple group if it is connected and its Lie algebra g0 is a classical
simple real Lie algebra, i.e. one of the following mutually exclusive possibil-
ities holds: (a) g0 is a real form of a classical simple complex Lie algebra; (b)
g0 is classical simple complex Lie algebra g̃0 regarded as a real algebra (in this
case we write g0 = g̃R

0 ). Throughout the paper we refer to real Lie algebras of
these two kinds as algebras of types I and II, respectively. Let g be the com-
plexification of g0. For g0 of type I the algebra g is a classical simple complex
Lie algebra, and for g0 of type II it is isomorphic to g̃0 ⊕ g̃0. We will be primar-
ily interested in type I algebras. There are numerous examples of manifolds
with classical symmetries in this case, perhaps the best-known ones being ir-
reducible Hermitian symmetric spaces corresponding to classical Lie algebras
(see [Hel], p. 354). More general examples are given by open G0-invariant sub-
sets of complex flag manifolds G/P, where G is the universal complexification
of G0 and P is a parabolic subgroup of G. Here G0 acts on G/P by means of a
covering map G0 → Ĝ0, where Ĝ0 ⊂ G is a real form of G. For results on the
orbit structure of actions of real forms on complex flag manifolds we refer the
reader to [FHW], [Wo1], [Z], [ACM] and references therein.

We are interested in obtaining, whenever possible, a complete explicit classifi-
cation of manifolds with classical symmetries for any choice of g0. One moti-
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vation for our study is the following “ball characterization theorem” obtained
in [I1] (cf.[BKS]).

Theorem 1.1. Let X be a connected complex manifold of dimension n ≥ 2, and Bn

the unit ball in Cn. Assume that the groups AutO(X) and AutO(Bn) of holomorphic
automorphisms of X and Bn are isomorphic as topological groups endowed with the

compact-open topology. Then X is biholomorphic to either Bn or to the complement

of its closure in P
n. In particular, if in addition X is Stein or hyperbolic, then X is

biholomorphic to Bn.

In this paper we will see that Theorem 1.1 is a corollary of general classification
results for manifolds with classical symmetries. In fact, the conclusion of the
theorem holds true if X admits an almost effective action of the classical simple
group PSUn,1 := SUn,1/(center), which is isomorphic to AutO(Bn). Note that
for G0 = PSUn,1 we have g0 = sun,1 and g = sln+1(C).

Let n := dim X (we assume that n ≥ 2), and define k(g0) for g0 of type I
(resp. type II) to be the dimension of the defining complex representation of g

(resp. g̃0). Observe that if k(g0) ≤ n + 1 there is no reasonable classification of
manifolds X for type I algebras (resp. type II algebras) if g (resp. g̃0) belongs
to the B- or D-series of simple complex Lie algebras (the B-series consists of
sok(C) with k = 2l + 1, l ≥ 2, and the D-series of sok(C) with k = 2l, l ≥ 4).
Indeed, any direct product Qk(g0)−2 × Z, where Qm for any m ≥ 1 denotes the

m-dimensional projective quadric in P
m+1 and Z is any complex manifold of

dimension n − k(g0) + 2, admits an almost effective action of the orthogonal
group SOk(g0)

(C), and hence actions of all its real forms and the real Lie group

SOk(g0)
(C)R. The action is defined as the standard action on the first factor and

the trivial action on the second factor.

For a similar reason, if k(g0) ≤ n one cannot explicitly classify manifolds X

for type I algebras (resp. type II algebras) if g (resp. g̃0) belongs to the A- or
C-series (the A-series consists of slk(C) with k ≥ 2, and the C-series of spk(C)
with k = 2l, l ≥ 3). Indeed, any direct product Pk(g0)−1 × Z, where Z is
an arbitrary complex manifold of dimension n − k(g0) + 1, admits an almost
effective action of the groups SLk(g0)

(C), Spk(g0)
(C), again defined as the stan-

dard action on the first factor and the trivial action on the second factor. Even
for n = 2, g0 = sl2(R) an explicit classification is unlikely to exist. Indeed, in
[I5] (see also [I4]) we determined all hyperbolic 2-dimensional manifolds X, for
which the group AutO(X) of holomorphic automorphisms of X has dimension
3. The list of such manifolds is quite long, and one of the most difficult parts of
the classification corresponds to the case when the Lie algebra of AutO(X) is
isomorphic to sl2(R) (cf. [I3]). It is possible that the results of [I5] can be gen-
eralized to the case when a group G0 with Lie algebra sl2(R) acts on X almost
effectively and properly, but it is unlikely that there exists an explicit classifica-
tion if the assumption of properness is dropped. On the positive side we note,
however, that in [IK2] all manifolds that admit an effective action of SUn were
determined (cf. [U1]), and in [I2] we showed that any hyperbolic manifold X of
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dimension n ≥ 3 with dim AutO(X) = dim sln(C) = n2 − 1 is biholomorphic
to a product Bn−1 × S, where S is a Riemann surface.

Following the above discussion, in this paper we make the following assump-
tion. We say that k(g0) and n satisfy Condition (>) for g0 of type I (resp.
type II), if k(g0) > n when g (resp. g̃0) belongs to the A- or C-series, and
k(g0) > n + 1 when g (resp. g̃0) belongs to the B- or D-series. Note that the
algebra sp4(C) is isomorphic to so5(C) and we include it in the B-series, and
the algebra so6(C) is isomorphic to sl4(C) and we include it in the A-series.

It turns out that Condition (>) implies that k(g0) = n + 1 for the case of the
A- and C-series and k(g0) = n + 2 for the case of the B- and D-series. We
call these relations Condition (=). This condition implies, in particular, that
the maximal dimension of a classical simple complex group that can act on X

non-trivially is a polynomial in n. In contrast, it was shown in [SW] that for
non-semisimple complex groups the dimension can depend exponentially on
n even if X is compact and homogeneous (but not Kähler).

We will now describe the content of the paper starting with algebras of type I.
Our study of G0-orbits in X relies on passing to the universal complexification
G of G0 (for the construction of G see [Ho]). The group G acts on X locally, but
this action may not be globalizable. We overcome this difficulty by means of
fibering every G0-orbit Y in X over a G0-orbit Ŷ in a complex projective space
Pℓ. Such a fibering ϕg0,Y : Y → Ŷ comes from the g0-anticanonical fibration
associated to the orbit Y (we outline the construction and main properties of
this fibration in Section 2). Since AutO(P

ℓ) is a complex Lie group, the univer-
sality property of G implies that G acts on Pℓ globally and Ŷ lies in a G-orbit
Z = G/H. Moreover, the map ϕg0,Y extends to a holomorphic map ψS defined
on the union S of local G-orbits of points in Y, and the set ψS(S) is open in Z

(see Section 2). Therefore, Z is at most n-dimensional, that is, H has codimen-
sion at most n in G (see Remark 2.1). It then follows that H is a proper maximal
parabolic subgroup of maximal dimension in G and thus Z is a complex flag
manifold, on which G0 acts as a real form of G. The parabolicity of H is a conse-
quence of a general result on dimension-theoretically maximal complex closed
subgroups of complex Lie groups that we obtain in Proposition 3.1 in Section
3. The proof of Proposition 3.1 utilizes Tits’ normalizer fibration for complex
groups. Note that for a complex group the corresponding anticanonical fibra-
tion coincides with the normalizer fibration (see [HO], p. 65).

In fact, Z is biholomorphic to Pn if g belongs to the A- or C-series, and to the
n-dimensional projective quadric Qn if g belongs to the B- or D-series, except
for the case of so5(C), where both P3 and Q3 occur. Under the equivalence
Z ≃ Pn the group G acts on Pn as either PSLn+1(C) or PSpn+1(C) (embedded
in PSLn+1(C) in the standard way), and under the equivalence Z ≃ Qn it acts
on Qn as PSOn+2(C). Further, the map ψS extends to a locally biholomorphic
G0-equivariant surjective map ψ : X → U, where U is an open G0-invariant
subset of Z. In Sections 6–8 we go over all classical simple complex Lie alge-
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bras g and their real forms g0 and show that on all the occasions the map ψ is in
fact a biholomorphism. Thus, our classification of manifolds X for type I alge-
bras g0 consists of all open connected G0-invariant subsets of either Pn or Qn.
The determination of all open G0-invariant subsets is an interesting question
in its own right, especially for the actions of the real forms of PSO8(C) on Q6,
where the triality property plays a role. To establish that ψ is biholomorphic
we analyze the specific orbit structure for the G0-action on Z in each case, so
our proof of the biholomorphicity of ψ is a case-by-case argument interwoven
with the determination of open G0-invariant subsets of Z.

We now summarize the content of the preceding three paragraphs in the fol-
lowing theorem, which is the main result of the paper.

Theorem 1.2. Let X be a connected complex manifold of dimension n ≥ 2 admitting

an almost effective action by holomorphic transformations of a connected simple Lie

group G0. Let g0 be the Lie algebra of G0, and assume that g0 is of type I. Suppose,
furthermore, that k(g0) and n satisfy Condition (>). Then k(g0) and n satisfy Con-

dition (=), and X is biholomorphic to a connected G0-invariant open subset of the flag
manifold Z = G/H, where G is the universal complexification of G0, the subgroup H

is a maximal parabolic subgroup of maximal dimension in G, and G0 acts on Z as a

real form of G.

Theorems 6.2, 6.3, 6.4 give a detailed classification of manifolds X for the case
of the A-series, Theorems 7.2, 7.4 for the case of the C-series, Theorems 8.2, 8.3,
8.5, 8.6, 8.7, 8.8 for the case of the B- and D-series.

The above discussion for type I algebras holds for type II algebras as well,
with the difference that G0 acts on Z as either PSLn+1(C)R or PSpn+1(C)R if
Z is biholomorphic to P

n, and as PSOn+2(C)R if Z is biholomorphic to Qn.
All these actions are transitive on Z. This makes the case of type II algebras
significantly easier than that of type I algebras and leads to the following result.

Theorem 1.3. Let X be a connected complex manifold of dimension n ≥ 2 admit-

ting an almost effective action by holomorphic transformations of a connected simple
Lie group G0. Let g0 be the Lie algebra of G0, and assume that g0 is of type II. Sup-

pose, furthermore, that k(g0) and n satisfy Condition (>). Then k(g0) and n satisfy

Condition (=), and X is biholomorphic to a flag manifold Z = G/H, where G is the
universal complexification of G0, and H is a maximal parabolic subgroup of maximal

dimension in G.

Theorem 1.3 is proved in Section 4, where a detailed version of this theorem is
also stated (see Theorem 4.1).

It should be stressed here that we utilize the g0-anticanonical fibration in the
proofs of Theorems 1.2, 1.3 because the local action of G on X is not known to
be globalizable a priori. If G acted on X globally, then using the anticanonical
fibration would only be required in the proof of Proposition 3.1 for complex
groups acting transitively.
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Before proceeding we note that smooth actions of various classical groups on
special real manifolds of specific dimensions (that are often assumed to be odd)
have been extensively studied. We refer the reader, for instance, to [U1]–[U3],
[UK], [T] and references therein for details.

Acknowledgements. This work was initiated while the first author was visit-
ing the Australian National University. The research is supported by the Aus-
tralian Research Council.

2 g0-Anticanonical Fibration

In this section we introduce a tool that will be frequently used throughout the
paper. More details on this subject can be found in [HO], [Huck].

Let X be a connected complex manifold and G0 a connected real Lie group
acting on X almost effectively by holomorphic transformations. Denote by
K−1 the anti-canonical line bundle over X, and let Γ(X, K−1) be the complex
vector space of holomorphic sections of K−1. Clearly, G0 acts on Γ(X, K−1)
by complex-linear transformations. Let V be a complex G0-stable finite-
dimensional subspace of Γ(X, K−1). Consider the meromorphic map

ϕV : X → P(V∗), ϕV(x) := [ fx], with fx(σ) := σ(x), x ∈ X, σ ∈ V,
(2.1)

where P(V∗) is the projectivization of the dual space V∗ of V, and [a] ∈ P(V∗)
denotes the equivalence class of a ∈ V∗ \ {0}. The indeterminacy set of ϕV co-
incides with the set of points x for which fx ≡ 0. Note that in the above formula
the value σ(x), if it is non-zero, is only well-defined for a particular choice of
coordinates near x and is multiplied by a constant independent of σ when one
passes to another coordinate system (this explains the need to consider P(V∗)
instead of V∗ in the definition of ϕV). Next, the action of G0 on V induces an
action of G0 on V∗ by complex-linear transformations, and hence an action on
P(V∗). The map ϕV is G0-equivariant with respect to this induced action.

One can also define ϕV by assigning to every point x ∈ X the set Hx := {σ ∈
V : σ(x) = 0}, where the hypersurface Hx is regarded as an element of P(V∗).

Assume now that G0 acts on X transitively. In this case one can make a partic-
ular choice of V for which ϕV is holomorphic on all of X. Let ΓO(X, TX) be the
space of vector fields on X which are holomorphic, i.e., Z ∈ ΓO(X, TX) if and
only if

ZC :=
1

2
(Z − i JZ)

is a holomorphic (1, 0)-field on X, where J is the operator of almost complex
structure on X. Denote by g0 the Lie algebra of G0 and for v ∈ g0 let Xv ∈
ΓO(X, TX) be the corresponding complete holomorphic vector field on X, that
is,

Xv(x) :=
d

dt
[exp(−tv)x] |t=0, x ∈ X.
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Since the action of G0 on X is almost effective, the map ι : v 7→ Xv is a
Lie algebra isomorphism onto its image. Next, consider the Lie subalgebra
ĝ0 := ι(g0) + Jι(g0) ⊂ ΓO(X, TX). Clearly, ĝ0 is a complex Lie algebra with the
operator of complex structure induced by J. By the complexification Z 7→ ZC

we realize ĝ0 as the algebra of holomorphic (1, 0)-fields of the form X C
v1

+ iX C
v2

for v1, v2 ∈ g0.

Let n := dim X. Set Vg0 :=
∧n ĝ0. Clearly, Vg0 is a finite-dimensional linear

subspace of Γ(X, K−1) and is spanned by sections of Γ(X, K−1) of the form
σ = Z1 ∧ · · · ∧ Zn, Zj ∈ ĝ0. For every such σ and every g ∈ G0 the action of g

on σ is given by gσ = (gZ1) ∧ · · · ∧ (gZn), where for Z = X C
v1

+ iX C
v2

we have

gZ := X C

Adg(v1)
+ iX C

Adg(v2)
.

Since gZ lies in ĝ0, it follows that Vg0 is G0-stable. Therefore, we can consider
the corresponding map ϕg0 := ϕVg0

(see (2.1)). Since for every x ∈ X there
exists σ = Z1 ∧ · · · ∧ Zn with σ(x) 6= 0, the map ϕg0 is holomorphic on X.

In coordinates the map ϕg0 and its equivariance property can be described as
follows. We let m + 1 be the dimension of Vg0 , and fix a basis σ0, . . . , σm in
Vg0 . Then for x ∈ X we have ϕg0(x) = [σ0(x) : · · · : σm(x)] in homogeneous
coordinates in Pm. Further, for g ∈ G0 let Ag ∈ GLm+1(C) be the linear trans-
formation by which g acts on Vg0 , written in coordinates with respect to the
basis σ0, . . . , σm. Identifying Vg0 and Cm+1 by means of these coordinates, we
define an action of G0 on Cm+1 as g 7→ (A−1

g )T. This action induces an ac-
tion on Pm, and it is straightforward to verify that ϕg0(gx) = gϕg0(x) for all
x ∈ X and g ∈ G0, i.e., ϕg0 is G0-equivariant. Therefore, ϕg0(X) is a G0-orbit in
Pm. Let H0 and J0 be the isotropy subgroups of a point x0 ∈ X and the point
ϕg0(x0) ∈ Pm, respectively. Clearly, J0 contains H0, and the corresponding
fibration

G0/H0 → G0/J0,

is called the g0-anticanonical fibration. One can show that J0 lies in the normal-
izer NG0

(H◦
0 ) of the identity component H◦

0 of H0 in G0 (see [HO], pp. 61-62).
An important property of the g0-anticanonical fibration is that it is a holomor-
phic fiber bundle with fiber (J0/H◦

0 )/(H0/H◦
0 ), where J0/H◦

0 is a complex Lie
group (see [HO], p. 64).

We now drop the assumption of the transitivity of the G0-action on X. Let Y ⊂
X be the G0-orbit of a point x0 ∈ X. For every y ∈ Y the tangent space Ty(Y) to
Y at y is spanned by the vectors Xv(y) with v ∈ g0. Let T̂y(Y) be the complex
subspace in Ty(X) spanned by the values of vector fields from ĝ0 = ι(g0) +
Jι(g0) at the point y. Since G0 acts on X by holomorphic transformations, the
dimension of the maximal complex subspace of Ty(Y) is independent of y ∈ Y.
Hence the dimension of T̂y(Y) is independent of y as well, and we denote it by
µ.

Suppose that µ ≥ 1. Let g := g0 ⊕ ig0 be the complexification of g0, and let G
be any connected complex Lie group with Lie algebra g. The algebra g acts on
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X via the homomorphism τ : g → ĝ0, τ(v1 + iv2) := Xv1 + JXv2 . The map τ

induces a local holomorphic action of G on X, and for y ∈ Y we denote by Oy

the local G-orbit of y. Clearly, Oy is a complex µ-dimensional submanifold of
X, and T̂y(Y) is the tangent space to Oy at y. Let S := ∪y∈YOy. The set S is a
(possibly non-injectively) immersed complex submanifold of X of dimension
µ containing Y.

As before, we realize ĝ0 as the finite-dimensional complex Lie algebra of holo-
morphic (1, 0)-fields on X of the form X C

v1
+ iX C

v2
for v1, v2 ∈ g0. Set VS :=

∧µ ĝ0.

Clearly, VS is a finite-dimensional linear subspace of Γ(X, K−1) and is spanned
by sections of Γ(X, K−1) of the form Z1 ∧ · · · ∧ Zµ, Zj ∈ ĝ0. We let ℓ + 1 be the
dimension of VS and fix a basis σ0, . . . , σℓ in VS. Now for x ∈ S we set

ψS(x) := [σ0(x) : · · · : σℓ(x)] ∈ P
ℓ.

Clearly, ψS is well-defined and holomorphic on S. As before, the G0-action on
VS induces an action of G0 on Cℓ+1 by complex-linear transformations, and
hence an action on Pℓ. It is straightforward to verify that ψS(gy) = gψS(y)
for all y ∈ Y and g ∈ G0, that is, the map ϕg0,Y := ψS|Y is G0-equivariant.
Furthermore, the map ψS is equivariant with respect to the local G0-action on
S. It follows that ϕg0,Y(Y) is a G0-orbit in Pℓ. Let H0 and J0 be the isotropy
subgroups of the points x0 and p0 := ϕg0,Y(x0) ∈ Pℓ, respectively. We have
H0 ⊂ J0, and the corresponding fibration

G0/H0 → G0/J0,

is called the g0-anticanonical fibration associated to the orbit Y. Arguing as in
the proof of Proposition 1 on pp. 61-62 of [HO], we see that J0 lies in NG0

(H◦
0 ).

We now assume that the complexification g of g0 is semisimple, and let G :=
GC

0 be the universal complexification of G0 (see [Ho]). The group G0 is mapped
into G by means of a homomorphism γ such that γ(G0) is a closed real form of
G. Since the center of any connected complex semisimple Lie group is finite, it
follows that γ is locally injective, hence the Lie algebra of G is isomorphic to g.
Further, as we have seen, the action of G0 on VS induces an action of G0 on Pℓ,
that is, a homomorphism ρ : G0 → AutO(Pℓ) ≃ PSLℓ+1(C). Since PSLℓ+1(C)
is a complex Lie group, the universality property of G implies that there exists
a complex Lie group homomorphism ρC : G → PSLℓ+1(C) such that

ρ = ρC ◦ γ. (2.2)

In fact, since ρ = π ◦ ρ̃, where ρ̃ : G0 → SLℓ+1(C) is a linear representation
and π : SLℓ+1(C) → PSLℓ+1(C) is the natural factorization map, there exists a
linear representation ρ̃C : G → SLℓ+1(C) such that ρ̃ = ρ̃C ◦γ and ρC = π ◦ ρ̃C .

Thus, the group G holomorphically acts on Pℓ by way of ρC, and we have the
inclusion of orbits G0.p0 ⊂ G.p0. Note that if G is a simple group, either it acts
on the orbit G.p0 almost effectively, or G.p0 = {p0}. In the latter case J0 = G0,
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hence H◦
0 is normal in G0. Since G0 is simple, it follows that either H0 = G0, or

H0 is discrete.

Let γC : U → G be a continuation of γ to a local complex Lie group homo-
morphism defined in a neighborhood U of e ∈ G such that deγ

C(v1 + iv2) =
deγ(v1) +J deγ(v2) for all v1, v1 ∈ g0, where de denotes the differential at e and
J is the operator of complex structure in the Lie algebra of G. Clearly, γC maps
U onto a neighborhood of the identity in G. Then the local G0-equivariance of
ψS and property (2.2) imply that for every x ∈ S we have

ψS(gx) = γC(g)ψS(x), (2.3)

where g ∈ G is sufficiently close to e. In particular, ψS(S) is an open subset of
the orbit G.p0. Since dim S = µ ≤ n, it follows that dim G.p0 ≤ n.

Remark 2.1. Let H be the isotropy subgroup of p0 with respect to the G-action.
Since dim G.p0 ≤ n, the codimension of H in G is at most n. This observation
will be important for our future applications. In fact, in all situations consid-
ered below H will turn out to be a proper dimension-theoretically maximal
subgroup of G. Such subgroups are studied in the next section.

Clearly, the above construction of the g0-anticanonical fibration requires the
dimension µ of S to be positive and does not apply in the case when x0 is a
fixed point of the G0-action on X. We will now state a simple lemma that will
be useful for ruling out fixed points later in the paper.

Lemma 2.2. Let G0 be a connected simple real Lie group acting almost effectively by

holomorphic transformations on an n-dimensional complex manifold X. Assume that
G0 fixes a point in X and has a positive-dimensional compact subgroup. Then the

complexification g of the Lie algebra g0 of G0 has a non-trivial complex n-dimensional

representation.

Proof. Let x0 be a fixed point of the G0-action. Consider the isotropy represen-
tation of G0 at x0

αx0 : G0 → GL(Tx0(X), C), g 7→ dx0 g,

where GL(Tx0(X), C) ≃ GLn(C) is the group of non-degenerate complex-
linear transformations of the tangent space Tx0(X), and dx0 g denotes the differ-
ential at x0 of the holomorphic automorphism by which an element g ∈ G0 acts
on X. Let G be the universal complexification of G0. Since G is semisimple, its
Lie algebra coincides with g. The universality property of G implies that there
exists a linear representation αC

x0
: G → GLn(C) such that αx0 = αC

x0
◦ γ, where

γ : G0 → G is a locally injective homomorphism such that γ(G0) is a closed
real form of G.

Let K0 be a maximal compact subgroup of G0. The action of K0 on X is almost
effective and can be linearized near x0, which implies that the representation
α|K0

is almost faithful. Since K0 is positive-dimensional and G0 is simple, it
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follows that α is almost faithful, and therefore αC
x0
|γ(G0)

is almost faithful. Since

γ(G0) is positive-dimensional, we see that ker αC
x0

6= G, and thus g has a non-
trivial complex n-dimensional representation as required.

Remark 2.3. Observe that in Lemma 2.2 the group G is simple if g0 is of type
I, and G is a locally direct product G = G1 · G2, where each Gj is a closed
subgroup of G with Lie algebra g̃0, if g0 is of type II. Hence for g0 of type I the
representation αC

x0
is almost faithful and thus the induced representation of g

is faithful. If g0 is of type II and the kernel of the representation of g = g̃0 ⊕ g̃0

is non-trivial, then this kernel coincides with one of the simple factors. We
also remark that the statement of Lemma 2.2 holds true if G0 is not necessarily
semisimple, but is assumed instead to have no positive-dimensional normal
closed subgroup L such that the intersection L ∩ K0 is discrete. In this case α is
almost faithful, and the proof given above applies.

3 Dimension-Theoretically Maximal Subgroups of

Complex Lie Groups

Our arguments in the forthcoming sections rely on the fact that a proper
dimension-theoretically maximal subgroup of a connected complex semisim-
ple Lie group is parabolic. This result is obtained in the present section. In
fact, we prove the following more general proposition, which – at least in the
semisimple case – is well-known to specialists (cf. [Wi], p. 46, Lemma 1).

Proposition 3.1. Let G be a complex connected Lie group and H ⊂ G a proper closed
complex subgroup. Assume that H is dimension-theoretically maximal, that is, there

exists no proper closed complex subgroup of G of dimension greater than dim H. Then

one of the following holds:

(i) G′ ⊂ H, and the Abelian group G/H either has dimension 1, or is a compact torus

without non-trivial proper subtori;

(ii) G/H is biholomorphic to Cp for p ≥ 1;

(iii) H contains the radical R of G and H/R is a maximal parabolic subgroup of G/R

of maximal dimension.

If, furthermore, G is semisimple, then H is a maximal parabolic subgroup of G of

maximal dimension.

Proof. Let N := NG(H◦) be the normalizer of the identity component H◦ of H

in G. Since H is dimension-theoretically maximal, we have either N = G, or
N◦ = H◦. We will consider these two cases separately.

Case 1. Suppose first that N = G and let G1 := G/H◦. Since H is dimension-
theoretically maximal, G1 has no positive-dimensional proper closed complex
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subgroups. Let G1 = R1 · S1 be the Levi-Malcev decomposition of G, where R1

is the radical and S1 is a semisimple Levi subgroup of G1, respectively. Since
R1 is closed and connected, it either coincides with G1 or is trivial. In the latter
case G1 is semisimple and hence contains a closed copy of SL2(C), which in
turn contains a closed copy of C∗. This contradiction implies that G1 = R1 is
solvable. Since G1 is solvable, there exists a positive-dimensional (not necessar-
ily closed) complex Abelian subgroup A in G1. Let CG1

(A) be the centralizer
of A in G1. Since CG1

(A) is a closed complex subgroup of G1 containing A,
we have CG1

(A) = G1. Hence A is contained in the center Z(G1) of G1, and
therefore Z(G1) is positive-dimensional. Since Z(G1) is a closed complex sub-
group of G1, we have Z(G1) = G1, that is, G1 is Abelian. Therefore, we obtain
that G′ ⊂ H◦, and hence G2 := G/H is a complex Abelian group that has no
positive-dimensional proper closed complex subgroups.

By Theorem 3.2 of [Morim], any complex Abelian group is isomorphic to a
direct product Q × Cm × (C∗)k, where Q is a complex Cousin group (i.e. Q

does not admit any non-constant holomorphic functions). It then follows that
G2 is either a Cousin group or 1-dimensional.

Lemma 3.2. A Cousin group that has no positive-dimensional proper closed complex

subgroups is isomorphic to a compact torus.

Proof. Let Q be a Cousin group satisfying the assumptions of the lemma. We
write it as Q = Cℓ/Γ for some ℓ, where Γ is a non-trivial discrete subgroup
in Cℓ. Let V be the real subspace of Cℓ spanned by Γ. Then K := V/Γ is
the maximal compact subgroup of Q. Assuming that Q is non-compact, we
see that V is a positive-dimensional proper real subspace of Cℓ. Since Q has
no positive-dimensional proper closed complex subgroups, V is not a complex
subspace. Let W be a complement to V ∩ iV in V, such that the real Abelian
group W/W ∩ Γ is compact (and hence is isomorphic to (S1)s for some s >

0). Then (W + iW)/W ∩ Γ is a complex closed subgroup of Q isomorphic to
(C∗)s. Since Q has no positive-dimensional proper closed complex subgroups,
it follows that Q is isomorphic to (C

∗)s, which contradicts the assumption that
Q is a Cousin group. Thus, we have shown that Q is compact as required.
Lemma 3.2 yields that the group G2 either has dimension 1, or is a compact
torus without non-trivial proper subtori. This is option (i) of the proposition.

Case 2. Assume now that N◦ = H◦ and consider the normalizer fibration
G/H → G/N with finite fiber N/H. This fibration coincides with the g-
anticanonical fibration, where g is the Lie algebra of G (see [HO], p. 65). In
particular, there is a homomorphism ρ : G → PSLr+1(C) = AutO(Pr) such
that N = ρ−1(N ), where N consists of all elements of ρ(G) that fix some point
x0 in Pr. The homomorphism ρ is the composition of a linear representation of
G in GLr+1(C) and the natural factorization map GLr+1(C) → PSLr+1(C). By
a result due to Chevalley [C] (see also [HO], p. 31), the commutator subgroup
ρ(G)′ = ρ(G′) is an algebraic subgroup of PSLr+1(C). Hence the orbit ρ(G)′.x0

is closed in ρ(G).x0, and thus the subgroup P := ρ−1(ρ(G)′)N is closed in G.
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The dimension-theoretic maximality of H now implies that either P◦ = N◦, or
P = G.

If P◦ = N◦, then G′ ⊂ H◦, which is again option (i) of the proposition. Let
P = G. Then ρ(G) = ρ(G)′N , that is, ρ(G).x0 = ρ(G)′.x0. Let Ĝ be the Zariski
closure of ρ(G) in PSLr+1(C). Since Ĝ′ = ρ(G)′, it follows that the orbit ρ(G)x0

is Zariski-closed in Ĝ.x0, and therefore ρ(G).x0 = Ĝ.x0. Let N̂ be the isotropy
subgroup of x0 under the Ĝ-action. As a general remark, we now note that
if T is a closed connected normal subgroup of Ĝ such that T.x0 is closed in
Ĝ.x0, then TN̂ is a closed subgroup of Ĝ, and thus PT := ρ−1(TN̂ ∩ ρ(G))
is a closed subgroup of G containing N. The dimension-theoretic maximality
of H now implies that either PT = G, or dim PT = dim N. If PT = G, then
T.x0 = ρ(G).x0 = Ĝ.x0, i.e., T acts on ρ(G).x0 transitively. If dim PT = dim N,
then T acts on ρ(G).x0 trivially, in particular T ⊂ N̂ .

We decompose Ĝ as Ĝ = Ru ⋊ (Z · S), where Ru is the unipotent radical, S

is a semisimple Levi subgroup, and Z ≃ (C∗)q for some q ≥ 0. The radical
R̂ of Ĝ is then the subgroup Ru ⋊ Z. Since R̂ is a connected normal algebraic
subgroup of Ĝ, the orbit R̂.x0 is closed in Ĝ.x0. Then we have either PR̂ = G, or
dim PR̂ = dim N. We will now consider each of these two cases.

Case 2.1. Suppose first that PR̂ = G. Since Ru is a normal algebraic subgroup
of Ĝ, we have either PRu = G, or dim PRu = dim N. Assuming that PRu = G,
we obtain G/N = Ru/(Ru ∩ N̂ ). Since Ru is a simply-connected nilpotent
algebraic group acting on Pr algebraically, it follows that Ru ∩ N̂ has finitely
many connected components and therefore is in fact connected. Thus G/N ≃
Cp for some p ≥ 1, which is option (ii) of the proposition.

Assume now that dim PRu = dim N. In this case Ru acts on ρ(G).x0 trivially,
thus Ĝ acts on this orbit as the group Z · S. Since we assumed that R̂ acts on
ρ(G).x0 transitively, it follows that Z acts on the orbit transitively (in particu-
lar, q > 0). This implies (e.g. for topological reasons) that S acts on ρ(G).x0

trivially, and therefore G/N is biholomorphic to (C∗)s for some s ≥ 1. Observe
that each 1-dimensional factor of Z acts on ρ(G).x0 either transitively or triv-
ially, hence there is a factor acting transitively, which implies that G/N is in
fact biholomorphic to C∗. Further, since both Ru and S lie in N̂ and the prod-
uct Ru ⋊ S contains the subgroup Ĝ′ = ρ(G)′ = ρ(G′), we have ρ(G′) ⊂ N . It
then follows that G′ is contained in H◦, and we are once again led to option (i)
of the proposition.

Case 2.2. Suppose now that dim PR̂ = dim N. In this case R̂ ⊂ N̂ . Let R

be the radical of G. Clearly, ρ(R) ⊂ R̂, and therefore R ⊂ H◦. Instead of the
triple of groups G, H, N, one can now consider the triple G/R, H/R, N/R, and
therefore from now on we assume that G is semisimple. We will show that in
this case H is a maximal parabolic subgroup of maximal dimension in G, and
thus obtain option (iii) of the proposition.

Since all linear representations of a complex reductive group are algebraic, the
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homomorphism ρ : G → PSLr+1(C) arising from the normalizer fibration
G/H → G/N is algebraic. Suppose first that the orbit ρ(G).x0 is closed in Pr.
Then ρ(G).x0 is a projective variety, and therefore N is a parabolic subgroup
of G (in particular, N is connected). Hence H = N is a maximal parabolic
subgroup of G of maximal dimension.

Suppose now that ρ(G).x0 is not closed in Pr, and let Y0 be its closure. Since
ρ(G) is an algebraic subgroup of PSLr+1(C), it follows that ρ(G).x0 is Zariski
open in Y0. In particular, the non-empty Zariski closed set E0 := Y0 \ ρ(G).x0

consists of ρ(G)-orbits of smaller dimensions. The dimension-theoretical max-
imality of H implies that ρ(G) fixes every point in E0.

Fix x̂0 ∈ E0 and consider the complex line L0 ⊂ C
r+1 defined by x̂0. Recall

that ρ = π ◦ ρ̃, where ρ̃ : G → GLr+1(C) is a linear representation of G, and
π : GLr+1(C) → PSLr+1(C) is the natural projection. Clearly, the line L0 is
ρ̃(G)-invariant. Let L′

0 := Cr+1/L0 and define σ0 : Pr \ {x̂0} → PL′
0 to be

the projectivization of the projection Cr+1 \ L0 → L′
0 \ {0}. Observe that for

every y ∈ PL′
0 the set σ−1

0 (y) ∪ {x̂0} is a projective line in P
r. The map σ0

is ρ(G)-equivariant, hence σ0(ρ(G).x0) = ρ(G).x1 for some x1 ∈ PL′
0. The

dimension-theoretical maximality of H now implies that either dim ρ(G).x1 =
dim ρ(G).x0, or ρ(G).x1 = {x1}. The second case leads to a contradiction since
it follows in this case that ρ(G).x0 is a positive-dimensional non-compact orbit
of a complex semisimple Lie group lying in a projective line. Therefore we
have dim ρ(G).x1 = dim ρ(G).x0. It then follows that the restriction of σ0 to
ρ(G).x0 is a proper finite-to-one map. This implies that ρ(G).x1 is not closed
in PL′

0, and we can repeat the above argument for ρ(G).x1 in place of ρ(G).x0

and PL′
0 in place of Pr . Iterating this argument sufficiently many times we

arrive at a situation when an orbit ρ(G).xk with dim ρ(G).xk = dim ρ(G).x0

lies in a projective subspace PL′
k−1 of dimension less than dim ρ(G).x0. This

contradiction finalizes the proof of the parabolicity of H.

The proof of the proposition is complete.

We apply Proposition 3.1 mainly to simple complex groups G whose Lie alge-
bra g is a classical matrix algebra. In this case the subgroup H is a maximal
parabolic subgroup of maximal dimension in G. Let us now recall the well-
known description of such subgroups for each of the series A, B, C, D. Note
that proper maximal parabolic subgroups of a simple complex Lie group corre-
spond to omitting one node in its Dynkin diagram (see e.g. [FH], pp. 383–395).

Let Ĝ be the classical matrix group (one of SLk(C), Spk(C), SOk(C)) with Lie
algebra g. The group G covers the quotient G/(center), which is also covered
by Ĝ. Accordingly, the parabolic subgroups of G are obtained from those of Ĝ

by taking the direct and inverse images under the respective covering maps.
Therefore, it is sufficient to describe proper maximal parabolic subgroups of
the classical matrix groups.

A-series. Let Ĝ = SLk(C), k ≥ 3. Every maximal parabolic subgroup of Ĝ is
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conjugate to the subgroup that stabilizes the m-dimensional subspace

L1
m,k := {zm+1 = 0, . . . , zk = 0} ⊂ C

k,

for some 1 ≤ m ≤ k − 1. There are exactly two conjugacy classes of maxi-
mal parabolic subgroups of maximal dimension in Ĝ; they correspond to L1

1,k

and L1
k−1,k. The quotient of Ĝ by any of these subgroups is biholomorphic to

Pk−1. Let P be a parabolic subgroup of G arising from either conjugacy class
in Ĝ. Then G/P is biholomorphically equivalent to P

k−1, and, since P contains
the center of G, under this equivalence the group G acts on Pk−1 as the full
automorphism group AutO(Pn) = PSLk(C) := SLk(C)/(center).

C-series. Let Ĝ = Spk(C), k = 2l, l ≥ 3. We realize Ĝ as the group of all
matrices in GLk(C) preserving the skew-symmetric bilinear form

(z, w) :=
l

∑
j=1

(
zjwl+j − zl+jwj

)
, (3.1)

where z := (z1, . . . , zk), w := (w1, . . . , wk) are vectors in C
k. Every maximal

parabolic subgroup of Ĝ is conjugate to the subgroup that stabilizes the m-
dimensional subspace

L2
m,k := {zm+1 = 0, . . . , zk = 0} ⊂ C

k,

for some 1 ≤ m ≤ l. There is only one conjugacy class of maximal parabolic
subgroups of maximal dimension in Ĝ; it corresponds to L2

1,k. The quotient

of Ĝ by any of these subgroups is biholomorphic to Pk−1. For any parabolic
subgroup P of G arising from this conjugacy class in Ĝ, the quotient G/P is
biholomorphically equivalent to Pk−1, and the equivalence can be chosen so
that G acts on Pk−1 as the group PSpk(C) := Spk(C)/(center) embedded into
PSLk(C) in the standard way.

B-series. Let Ĝ = SOk(C), k = 2l + 1, l ≥ 2. We realize Ĝ as the group of
all matrices A ∈ SLk(C) such that A = (AT)−1. Every maximal parabolic
subgroup of Ĝ is conjugate to the subgroup that stabilizes the m-dimensional
subspace

L3
m,l := {(z1, iz1, . . . , zm, izm, 0, . . . , 0) : z1, . . . , zm ∈ C} ⊂ C

k,

for some 1 ≤ m ≤ l. For l ≥ 3 there is only one conjugacy class of maxi-
mal parabolic subgroups of maximal dimension in Ĝ; it corresponds to L3

1,l .

The quotient of Ĝ by any of these subgroups is biholomorphic to the (k − 2)-
dimensional projective quadric

Qk−2 :=
{

ζ ∈ P
k−1 : ζ2

1 + · · ·+ ζ2
k = 0

}
,

where ζ := (ζ1 : · · · : ζk) are homogeneous coordinates in P
k−1. For any

parabolic subgroup P of G arising from this conjugacy class in Ĝ, the quo-
tient G/P is biholomorphically equivalent to Qk−2, and under this equiva-
lence G acts on Qk−2 as the full automorphism group AutO(Qk−2) = SOk(C).



14 Alan Huckleberry and Alexander Isaev

In contrast, for l = 2 there are exactly two conjugacy classes of maximal
parabolic subgroups of maximal dimension in Ĝ. The quotient of Ĝ by any
subgroup corresponding to L3

1,2 is biholomorphically equivalent to Q3, and for
a parabolic subgroup P of G arising from this conjugacy class, under the equiv-
alence G/P ≃ Q3 the group G acts on Q3 as SO5(C). Further, the quotient of
Ĝ by any subgroup corresponding to L3

2,2 is biholomorphic to P3, and for a
parabolic subgroup P of G arising from this conjugacy class, the equivalence
G/P ≃ P3 can be chosen so that G acts on P3 as the group PSp4(C) embedded
into PSL4(C) in the standard way.

D-series. Let Ĝ = SOk(C), k = 2l, l ≥ 4. Again, we realize Ĝ as the group of
all matrices A ∈ SLk(C) such that A = (AT)−1. Every maximal parabolic sub-
group of Ĝ is conjugate to either the subgroup that stabilizes the m-dimensional
subspace

L4
m,l := {(z1, iz1, . . . , zm, izm, 0, . . . , 0) : z1, . . . , zm ∈ C} ⊂ C

k,

for some 1 ≤ m ≤ l, or to the subgroup that stabilizes the l-dimensional sub-
space

L4′

l,l := {(−z1, iz1, z2, iz2, . . . , zl , izl) : z1, . . . , zl ∈ C} ⊂ C
k.

For l ≥ 5 there is only one conjugacy class of maximal parabolic subgroups of
maximal dimension in Ĝ; it corresponds to L4

1,l . The quotient of Ĝ by any of
these subgroups is biholomorphic to Qk−2. For any parabolic subgroup P of G
arising from this conjugacy class in Ĝ, the quotient G/P is biholomorphically
equivalent to Qk−2, and under this equivalence G acts on Qk−2 as the group
PSOk(C) := SOk(C)/(center) = AutO(Qk−2)

◦. In contrast, for l = 4 there
are exactly three conjugacy classes of maximal parabolic subgroups of maxi-

mal dimension in Ĝ; they correspond to L4
1,4, L4

4,4, L4′

4,4. The quotient of Ĝ by
any of these subgroups is biholomorphic to Q6. Let P be a parabolic subgroup
of G arising from any of the three conjugacy classes in Ĝ. Then G/P is biholo-
morphically equivalent to Q6, and under this equivalence G acts on Q6 as the
group PSO8(C).

For more details on parabolic subgroups see, for example, [Z], pp. 93–95.

From now on we adopt the notation introduced in Section 2. In the next section
we deal with the easier case of type II algebras and classify the corresponding
manifolds X.

4 Proof of Theorem 1.3

Since g = g̃0 ⊕ g̃0, the group G is represented as a locally direct product
G = G1 · G2, where Gj is a complex closed normal subgroup of G with Lie
algebra g̃0. Maximal proper parabolic subgroups of maximal dimension in G

are then described as P1 ·G2 and G1 · P2, where Pj is a maximal proper parabolic
subgroup of maximal dimension in Gj, j = 1, 2.
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Suppose first that g̃0 is either slk(C) or spk(C), where in the latter case k = 2l,
l ≥ 3. It follows from the description of parabolic subgroups for the A- and C-
series given at the end of Section 3 that Pj has codimension k − 1 in G. Choose
Y to be any G0-orbit in X. Since by Remark 2.1 we have codim H ≤ n, Propo-
sition 3.1 yields that k = n + 1 and H is a maximal parabolic subgroup of
maximal dimension in G with G/H biholomorphic to Pn. Under the equiva-
lence G/H ≃ Pn the group G acts on G/H as PSLn+1(C) in the case of the
A-series and as PSpn+1(C) embedded in PSLn+1(C) in the standard way in
the case of the C-series. It then follows that G0 acts on G/H ≃ Pn as the group
PSLn+1(C)R in the case of the A-series and as the group PSpn+1(C)R in the
case of the C-series. Since the action of each of PSLn+1(C)R and PSpn+1(C)R

is transitive on Pn, the orbit Y is open in X. Thus, Y = X and ϕg0,Y : X → Pn is
a covering map. Hence X is biholomorphic to Pn.

Suppose next that g̃0 = sok(C), with k ≥ 5, k 6= 6. It follows from the descrip-
tion of parabolic subgroups for the B- and D-series given in Section 3 that Pj has
codimension k − 2 in G. Choose Y to be any G0-orbit in X. Since codim H ≤ n,
Proposition 3.1 yields that k = n + 2 and H is a maximal parabolic subgroup of
maximal dimension in G. Hence G/H is biholomorphic to Qn if k ≥ 7, and to
either P3 or Q3 if k = 5. Under the equivalence G/H ≃ Qn the group G acts on
G/H as PSOn+2(C), and if k = 5 and G/H is equivalent to P3, then under this
equivalence G acts on G/H as PSp4(C) embedded in PSL4(C) in the standard
way. It then follows that for k ≥ 7 the group G0 acts on G/H ≃ Qn as the
group PSOn+2(C)R, and for k = 5 it acts on either G/H ≃ Q3 or G/H ≃ P3 as
either the group SO5(C)R or the group PSp4(C)R, respectively. Since all these
actions are transitive, Y is open in X. Thus, Y = X and ϕg0 ,Y is a covering map.
The proof of Theorem 1.3 is complete.

We will now restate Theorem 1.3 in more detail as follows.

Theorem 4.1. Let X be a connected complex manifold of dimension n ≥ 2 admit-

ting an almost effective action by holomorphic transformations of a connected simple
Lie group G0. Let g0 be the Lie algebra of G0, and assume that g0 is of type II. Sup-

pose, furthermore, that k(g0) and n satisfy Condition (>). Then k(g0) and n satisfy

Condition (=), and the following holds:

(i) if g̃0 is one of sln+1(C), spn+1(C), where in the latter case n is odd, then X is

biholomorphic to P
n;

(ii) if g̃0 = son+2(C) for n ≥ 5, then X is biholomorphic to Qn; if g̃0 = so5(C) (here
n = 3), then X is biholomorphic to either P3 or Q3.

5 Preparation for the Proof of Theorem 1.2

In this section we begin the proof of Theorem 1.2 and obtain the following
preliminary result.
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Proposition 5.1. Let X be a connected complex manifold of dimension n ≥ 2 admit-

ting an almost effective action by holomorphic transformations of a connected simple
Lie group G0. Let g0 be the Lie algebra of G0, and assume that g0 is of type I. Sup-

pose, furthermore, that k(g0) and n satisfy Condition (>). Then k(g0) and n satisfy
Condition (=), and for every G0-orbit Y in X the following holds:

(i) H is maximal parabolic subgroup of maximal dimension in G;

(ii) S is open and the map ψS extends to a G0-equivariant locally biholomorphic surjec-

tive map ψ : X → U, where U is an open G0-invariant subset of G.p0 ≃ G/H and
G0 acts on G/H as a real form of G.

Proof. We consider two cases.

Case 1. Assume first that g is either slk(C) or spk(C), where in the latter case
k = 2l, l ≥ 3. We start by observing that the G0-action on X is fixed point
free. Indeed, for n ≥ 2 the group G0 contains a non-trivial compact subgroup.
Hence if G0 has a fixed point in X, by Lemma 2.2 and Remark 2.3 the alge-
bra g has a faithful n-dimensional representation. However, neither of slk(C),
spk(C) has faithful representations in dimensions less than k. This follows, for
example, from Weyl’s dimension formula and the well-known dimensions of
the fundamental representations of simple complex Lie algebras (see e.g. [S],
Table 1). Thus, G0 has no fixed points in X.

Let Y be any G0-orbit in X. Observe that G acts on the corresponding orbit
G.p0 ⊂ Pℓ almost effectively, that is, G.p0 is positive-dimensional. Indeed, if
G.p0 = {p0}, the subgroup H0 is discrete, and therefore dim Y = dim G0 =
k2 − 1 if g = slk(C), and dim Y = dim G0 = 2l2 + l if g = spk(C). Neither of
these identities can hold, however, since dim Y ≤ n.

Further, recall that by Remark 2.1 we have codim H ≤ n. On the other hand,
if P is a maximal parabolic subgroup of G, then codim P ≥ k − 1 (see the end
of Section 3). By Proposition 3.1 we then obtain that k = n + 1 and H is a
maximal parabolic subgroup of maximal dimension in G. It then follows that
G/H is biholomorphic to Pn. Under the equivalence G/H ≃ Pn the group
G acts on G/H as the group PSLn+1(C) if g = sln+1(C), and as the group
PSpn+1(C) embedded in PSLn+1(C) in the standard way if g = spn+1(C).

Next, since ψS(S) is open in the n-dimensional manifold G.p0 ≃ Pn, it follows
that S is open as well. Since this is the case for every G0-orbit in X, the map
ψS extends to a G0-equivariant holomorphic map ψ : X → Pℓ. Clearly, for
any G0-orbit Y′ in X and the corresponding set S′ associated to Y′, we have
ψ|S′ = ψS′ , that is, ψ is a continuation to all of X of every map ϕg0,Y′ . Therefore,
(2.3) implies

ψ(gx) = γC(g)ψ(x) (5.1)

for every x ∈ X, where g ∈ G is sufficiently close to e. Since the group G acts
on X locally transitively, this implies that ψ maps X onto an open G0-invariant
subset U ⊂ G.p0.
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To show that ψ : X → U is locally biholomorphic, assume that ψ is degenerate
at some point in X. Then property (5.1) implies that ψ is degenerate every-
where in X, which contradicts the openness of U = ψ(X) in G.p0. Thus, ψ is
locally biholomorphic.

Case 2. Assume now that g = sok(C) with k ≥ 5, k 6= 6. Observe that the group
G0 contains a non-trivial compact subgroup. Hence if G0 has a fixed point in
X, by Lemma 2.2 and Remark 2.3 the algebra g has a faithful n-dimensional
representation. However, sok(C) for k ≥ 5, k 6= 6 does not have faithful repre-
sentations in dimensions less than k − 1 (see e.g. [S], Table 1). Thus, we have
shown, as in Case 1, that the G0-action on X is fixed point free.

Let Y be any G0-orbit in X. The group G acts on the corresponding orbit G.p0 ⊂
Pℓ almost effectively. Indeed, if G.p0 = {p0}, the subgroup H0 is discrete, and
therefore dim Y = dim G0 = k(k − 1)/2 which is impossible since dim Y ≤ n.

Further, by Remark 2.1 we have codim H ≤ n. On the other hand, if P is a
maximal parabolic subgroup of G, then codim P ≥ k − 2 (see the end of Section
3). By Proposition 3.1 we then obtain that k = n + 2, and H is a maximal
parabolic subgroup of maximal dimension in G. It then follows that G/H is
biholomorphic to Qn if k ≥ 7, and to either P

3 or Q3 if k = 5. Under the
equivalence G/H ≃ Qn the group G acts on G/H as PSOn+2(C), and if k = 5
and G/H is equivalent to P3, then under this equivalence G acts on G/H as
PSp4(C) embedded in PSL4(C) in the standard way.

Local biholomorphicity of ψ is established as in Case 1. The proof of the propo-
sition is complete.

In the following sections we will show that the map ψ arising in Proposition 5.1
is in fact a biholomorphism and thus prove Theorem 1.2. We will go over all
real forms g0 of every classical simple complex algebra g, determine the orbit
structure for the G0-action on G/H in each case, and will use this information
both for proving the injectivity of ψ and for explicitly describing all open con-
nected G0-invariant sets U. Given the detailed nature of this description, it
should be possible to understand basic complex-analytic properties of X, e.g.,
its Levi-convexity, Dolbeault cohomology, etc. We will consider complex alge-
bras of the series A and C first, and those of the series B and D last. Complete
lists of real forms of such algebras are well-known (see e.g. [OV], p. 233).

For future applications we restate Proposition 5.1 in more detail as follows.

Proposition 5.2. Let X be a connected complex manifold of dimension n ≥ 2 admit-

ting an almost effective action by holomorphic transformations of a connected simple
Lie group G0. Let g0 be the Lie algebra of G0, and assume that g0 is of type I. Suppose,

furthermore, that k(g0) and n satisfy Condition (>). Then k(g0) and n satisfy Con-
dition (=), the G0-action on X is fixed point free, and for every G0-orbit Y in X the

following holds:

(i) if g = sln+1(C), then G/H is biholomorphic to Pn, and under this equivalence G



18 Alan Huckleberry and Alexander Isaev

acts on G/H as PSLn+1(C);

(ii) if g = spn+1(C), where n is odd, then G/H is biholomorphic to Pn, and under this

equivalence G acts on G/H as PSpn+1(C) embedded in PSLn+1(C) in the standard

way;

(iii) if g = son+2(C) for n ≥ 5, then G/H is biholomorphic to Qn, and under this

equivalence G acts on G/H as PSOn+2(C);

(iv) if g = so5(C) (here n = 3), then G/H is biholomorphic to either P3 or Q3;
under the equivalence G/H ≃ P3 the group G acts on G/H as PSp4(C) embedded

in PSL4(C) in the standard way; under the equivalence G/H ≃ Q3 the group G acts

on G/H as SO5(C);

(v) S is open and the map ψS extends to a G0-equivariant locally biholomorphic surjec-

tive map ψ : X → U, where U is an open G0-invariant subset of G.p0 ≃ G/H. Here
G0 acts on G/H as a real form of one of PSLn+1(C), PSpn+1(C) if G/H ≃ Pn, and

as a real form of PSOn+2(C) if G/H ≃ Qn.

6 Classification for the A-series

In this section we set g = sln+1(C). Every real form of g is isomorphic to one
of the algebras: sup, q with p + q = n + 1, p ≥ q ≥ 0 (here sun+1, 0 := sun+1);
sln+1(R); sl n+1

2
(H), where H is the algebra of quaternions and in the last case

n is assumed to be odd. We will now separately consider each of the real forms
(everywhere below we assume that n ≥ 2).

6.1

Suppose first that g0 = sup, q with p + q = n + 1, p ≥ q ≥ 0. We start with an
example.

Example 6.1. Let us realize SUp, q as the group of matrices with complex entries
having determinant 1 and preserving the Hermitian form

〈z, z〉p,q :=
p

∑
j=1

|zj|
2 −

n+1

∑
j=p+1

|zj|
2, (6.1)

where z := (z1, . . . , zn+1) is a vector in Cn+1. The algebra sup,q is then realized
as the Lie algebra of SUp, q. The group PSUp, q := SUp,q/(center) acts effectively
by holomorphic transformations on the projective space Pn. The orbits of this
action are given by the simply-connected sets

B+
p, q :=

{
ζ ∈ Pn : 〈ζ, ζ〉p,q > 0

}
,

B
−
p, q :=

{
ζ ∈ P

n : 〈ζ, ζ〉p,q < 0
}

,

Qp, q :=
{

ζ ∈ P
n : 〈ζ, ζ〉p,q = 0

}
,
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where ζ := (ζ1 : · · · : ζn+1) are homogeneous coordinates. The sets B+
p, q and

B
−
p, q give open orbits. Observe that B

+
n+1, 0 = P

n, B
−
n+1, 0 = ∅, Qn+1, 0 = ∅ (i.e.

PSUn+1 = PSUn+1, 0 acts transitively on Pn). For q ≥ 1 we have B−
p, q 6= ∅, and

the Levi non-degenerate hyperquadric Qp, q is a closed orbit. Observe also that
B+

p,p is biholomorphic to B−
p,p for n = 2p − 1, and that B

−
n, 1 = Bn (the unit ball

in C
n).

We remark here for future reference that the simple connectedness of B+
p, q and

B−
p, q is a manifestation of the general fact that an open orbit of a real form G0

of a semisimple complex group G in a complex flag manifold G/P (here P is
a parabolic subgroup of G) is simply-connected (see [Wo1], Theorem 5.4 and
[FHW], Proposition 4.3.5). Observe also that lower-dimensional orbits need
not be simply-connected.

We will now obtain our first classification result.

Theorem 6.2. Let X be a connected complex manifold of dimension n ≥ 2 admitting

an almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra sup, q, where p + q = n + 1, p ≥ q ≥ 0. Then X is biholomorphic to
one of Pn, B+

p, q, B−
p, q.

Proof. Choose Y to be a G0-orbit of the smallest dimension in X. By Proposition
5.2 the quotient G/H is biholomorphic to Pn, and G acts on Pn as the group
PSLn+1(C). Further, any two isomorphic real forms s1, s2 of a complex simple
Lie algebra s are obtained from one another by an inner automorphism of s,
except in the following cases: (i) s = so8(C), and s1, s2 are isomorphic to one
of so5,3, so6,2, so7,1; (ii) s = so4l(C) for l ≥ 3, and s1, s2 are isomorphic to so∗4l
(see e.g. [Dj] and a related result in [Da]). It then follows that G0 acts on Pn as
a subgroup of PSLn+1(C) conjugate to PSUp, q. Without loss of generality, we
assume that G0 acts on Pn as PSUp, q. Since the map ψ is locally biholomorphic,
Y is either an open subset or has real codimension one in X. We will consider
these two cases separately.

Assume first that Y is open in X, i.e. Y = X. In this case U = G0.p0, and
therefore U is either B+

p, q or B−
p, q. Since ψ : X → U is a covering map and U is

simply-connected, it follows that X is biholomorphic to either B+
p, q or B−

p, q.

Assume next that Y has real codimension one in X. In this case q ≥ 1, and U

is a G0-invariant open subset of Pn containing Qp,q. Hence we have U = Pn.
Furthermore, ψ maps every codimension one G0-orbit in X onto Qp,q and every
open G0-orbit in X onto either B+

p, q or B−
p, q. The simply-connectedness of G0-

orbits in Pn now yields that ψ is in fact 1-to-1 on every G0-orbit in X.

Since ψ is locally biholomorphic, one can find open G0-orbits O1, O2 such that
T := O1 ∪ O2 ∪ Y is an open connected subset of X. Clearly, ψ is 1-to-1 on T,
and ψ(T) = Pn. Hence T is biholomorphic to Pn, therefore T is closed, which
yields that T = X. Thus, we have shown that X is biholomorphic to Pn, and
the proof is complete.
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Observe that Theorem 6.2 yields Theorem 1.1 stated in the introduction. The
original proof of Theorem 1.1 in [I1] was based on an explicit classification of
complex n-dimensional manifolds admitting an effective action of the unitary
group Un (see [IK1]).

6.2

Suppose next that g0 = sln+1(R). In this case all possibilities for X are given
by the following theorem.

Theorem 6.3. Let X be a connected complex manifold of dimension n ≥ 2 admitting

an almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra sln+1(R). Then X is biholomorphic to either P
n or P

n \ RP
n, where

RPn is the real projective space in Pn.

Proof. As before, let Y be a G0-orbit of the smallest dimension in X. As in the
proof of Theorem 6.2, we see that G0 acts on G/H ≃ Pn as a subgroup of
PSLn+1(C) conjugate to PSLn+1(R), and without loss of generality we assume
that G0 acts as PSLn+1(R). Observe that for n ≥ 2 the group PSLn+1(R) has
exactly two orbits in Pn: the totally real closed orbit RPn and the open orbit
Pn \ RPn (see [Wi], p. 209). Since ψ is locally biholomorphic, Y is either an
open subset or a totally real n-dimensional submanifold in X.

Assume first that Y is open in X. In this case U = G0.p0, and therefore U

coincides with P
n \ RP

n. Using the simple connectedness of U we now see
that X is biholomorphic to Pn \ RPn.

Assume next that Y is totally real in X. In this case U is a G0-invariant open
subset of Pn containing RPn. Hence we have U = Pn. Furthermore, ψ maps
every totally real G0-orbit in X onto RPn and every open G0-orbit in X onto
Pn \ RPn. The map ψ is 1-to-1 on every open G0-orbit in X and is either a 2-to-
1 covering map or a diffeomorphism on every totally real orbit. We will now
show that ψ is in fact 1-to-1 on every totally real orbit. Let Y′ be such an orbit
and assume that for two distinct points x1, x2 ∈ Y′ we have ψ(x1) = ψ(x2).
Choose non-intersecting neighborhoods Vj of xj, such that ψ is 1-to-1 on Vj,
j = 1, 2, and ψ(V1) = ψ(V2) := W. It then follows that there exists an open
G0-orbit O′ in X such that Wj := Vj \ (Vj ∩ Y′) is a connected open set lying
in O′ for each j. Clearly, we have ψ(W1) = ψ(W2) = W \ (W ∩ RPn), which
contradicts the fact that ψ is 1-to-1 on O′. Thus, we have shown that ψ is 1-to-1
on every G0-orbit in X.

Next, one can find an open G0-orbit O such that T := O ∪ Y is an open con-
nected subset of X. Clearly, ψ is 1-to-1 on T, and ψ(T) = Pn. Hence T is
biholomorphic to Pn, therefore T is closed, which implies that T = X. Thus, X

is biholomorphic to Pn, and the proof is complete.
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6.3

Suppose finally that n ≥ 3 is odd and g0 = sl n+1
2

(H). It turns out that in this
case there is only one possibility for X.

Theorem 6.4. Let X be a connected complex manifold of odd dimension n ≥ 3 ad-

mitting an almost effective action by holomorphic transformations of a connected Lie
group G0 with Lie algebra sl n+1

2
(H). Then X is biholomorphic to Pn.

Proof. Choose Y to be any G0-orbit in X. It follows as above that G0 acts on
G/H ≃ Pn as a subgroup of PSLn+1(C) conjugate to PSL n+1

2
(H). Observe

that the group PSL n+1
2

(H) acts transitively on Pn (see [Wi], p. 211 and [Wo2],
Corollary 1.7), and therefore Y is open in X. Thus, Y = X and ψ : X → Pn is a
covering map. Hence X is biholomorphic to Pn.

Theorems 6.2, 6.3, 6.4 complete the proof of Theorem 1.2 in the case when g

belongs to the A-series.

7 Classification for the C-series

In this section we assume that n is odd and set g = spn+1(C) with n + 1 = 2l,
l ≥ 3. Every real form of g is isomorphic to one of the algebras: spp, q with
p + q = l, p ≥ q ≥ 0 (here spl, 0 := spl) ; spn+1(R). We will now separately
consider each of the real forms (everywhere below we assume that n ≥ 5 is
odd).

7.1

Suppose first that g0 = spp, q with p + q = (n + 1)/2, p ≥ q ≥ 0. We start with
an example.

Example 7.1. As before, let us realize Spn+1(C) as the group of matrices with
complex entries preserving the skew-symmetric form given by (3.1) for l =
(n + 1)/2. Next, realize the group Spp,q as the real subgroup of Spn+1(C) that
consists of matrices preserving the Hermitian form

(z, z)p,q :=
p

∑
j=1

|zj|
2 −

l

∑
j=p+1

|zj|
2 +

l+p

∑
j=l+1

|zj|
2 −

n+1

∑
j=l+p+1

|zj|
2,

where z := (z1, . . . , zn+1) is a vector in Cn+1. The algebra spp,q is then realized
as the Lie algebra of Spp,q. The group PSpp, q := Spp, q/(center) acts by holo-
morphic transformations on the projective space Pn. Its orbits are given by the
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simply-connected sets

B̂
+
p, q :=

{
ζ ∈ P

n : (ζ, ζ)p,q > 0
}

,

B̂−
p, q :=

{
ζ ∈ Pn : (ζ, ζ)p,q < 0

}
,

Q̂p, q :=
{

ζ ∈ Pn : (ζ, ζ)p,q = 0
}

,

where ζ := (ζ1 : · · · : ζn+1) are homogeneous coordinates. Clearly, there exists
an automorphism of Pn that maps B̂+

p, q, B̂−
p, q, Q̂p, q onto the sets B

+
2p, 2q, B

−
2p, 2q,

Q2p, 2q, respectively (see Example 6.1). The sets B̂+
p, q and B̂−

p, q give open orbits.

For q ≥ 1 we have B̂−
p, q 6= ∅, and the Levi non-degenerate hyperquadric Q̂p, q

is the closed orbit (see [Wi], p. 221).

The proof of the following theorem is completely analogous to that of Theorem
6.2, and we omit it.

Theorem 7.2. Let X be a connected complex manifold of odd dimension n ≥ 5 ad-

mitting an almost effective action by holomorphic transformations of a connected Lie
group G0 with Lie algebra spp, q, where p + q = (n + 1)/2, p ≥ q ≥ 0. Then X is

biholomorphic to one of Pn, B
+
2p, 2q, B

−
2p, 2q.

7.2

Suppose next that g0 = spn+1(R). We start with an example.

Example 7.3. We realize the group Spn+1(R) as Spn+1(C) ∩ GL2(n+1)(R) and
the algebra spn+1(R) as the Lie algebra of Spn+1(R). The group PSpn+1(R) :=
Spn+1(R)/(center) acts effectively on Pn, and RPn ⊂ Pn is clearly a closed
PSpn+1(R)-orbit. We will now describe the remaining orbits. For a pair of
vectors z, w ∈ Cn+1 consider the skew-symmetric form (z, w) given by (3.1) for
l = (n + 1)/2. Define

D+
n := {ζ ∈ Pn : (Re ζ, Im ζ) > 0} ,

D−
n := {ζ ∈ Pn : (Re ζ, Im ζ) < 0} ,

Σn := {ζ ∈ Pn : (Re ζ, Im ζ) = 0, Re ζ 6= 0, Im ζ 6= 0} ,

where ζ := (ζ1 : · · · : ζn+1) are homogeneous coordinates. The sets D+
n and

D−
n are open simply-connected PSpn+1(R)-orbits, and Σn is a PSpn+1(R)-orbit

of real codimension one (see [Wi], p. 219). Note that there exists a holomor-
phic automorphism of P

n that maps Σn ∪ RP
n onto the hyperquadric Q n+1

2 , n+1
2

introduced in Example 6.1 (see [Wi], p. 220). In particular, each of D+
n , D−

n is
biholomorphic to B

+
n+1

2 , n+1
2

.

The result of this subsection is the following theorem.

Theorem 7.4. Let X be a connected complex manifold of odd dimension n ≥ 5 admit-
ting an almost effective action by holomorphic transformations of a connected Lie group
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G0 with Lie algebra spn+1(R). Then X is biholomorphic to one of Pn, Pn \ RPn,

B
+
n+1

2 , n+1
2

.

Proof. Choose Y to be a G0-orbit of the smallest dimension in X. By Proposition
5.2 the quotient G/H is biholomorphic to P

n, and G acts on P
n as the group

PSpn+1(C) embedded in PSLn+1(C) in the standard way. As in the proof of
Theorem 6.2, we see that G0 acts on Pn as a subgroup of PSpn+1(C) conjugate
to PSpn+1(R). Without loss of generality, we assume that G0 acts on Pn as
PSpn+1(R). Since the map ψ is locally biholomorphic, Y is either (i) an open
subset, or (ii) a real hypersurface, or (iii) a totally real n-dimensional submani-
fold. We will consider these three cases separately.

The case when Y is open is treated as the corresponding case in the proof of
Theorem 6.2, with the result that X is biholomorphic to one of D+

n , D−
n and

hence to B
+
n+1

2 , n+1
2

.

Assume next that Y has real codimension one in X. In this case U is a G0-
invariant open subset in Pn containing Σn and not containing RPn. Hence we
have U = Pn \ RPn. Clearly, ψ maps every open G0-orbit in X biholomorphi-
cally onto one of the two open G0-orbits D+

n , D−
n . Furthermore, every G0-orbit

of codimension one covers Σn by means of ψ. We will now show that ψ is in
fact 1-to-1 on every codimension one orbit. Let Y′ be such an orbit and assume
that for two distinct points x1, x2 ∈ Y′ we have ψ(x1) = ψ(x2). Choose non-
intersecting neighborhoods Vj of xj, such that ψ is 1-to-1 on Vj, j = 1, 2, and
ψ(V1) = ψ(V2) := W. It then follows that there exist open G0-orbits O′ and O′′

in X such that Wj := Vj \ (Vj ∩Y′) is an open set having exactly two connected
components W ′

j , W ′′
j , with W ′

j lying in O′ and W ′′
j lying in O′′ for each j. Clearly,

we have either ψ(W ′
1) = ψ(W ′

2) = W ∩ D+
n and ψ(W ′′

1 ) = ψ(W ′′
2 ) = W ∩ D−

n ,
or ψ(W ′

1) = ψ(W ′
2) = W ∩ D−

n and ψ(W ′′
1 ) = ψ(W ′′

2 ) = W ∩ D+
n . However,

this contradicts the fact that ψ is 1-to-1 on each of O′, O′′. Thus, we have shown
that ψ is 1-to-1 on every G0-orbit in X.

As in the proof of Theorem 6.2, one can find open G0-orbits O1, O2 such that
T := O1 ∪ O2 ∪ Y is an open connected subset of X. Clearly, ψ is 1-to-1 on T

and maps it onto Pn \ RPn. Suppose that T 6= X and consider a point x ∈ ∂T.
Let Y′′ be the G0-orbit of x. Clearly, Y′′ has codimension one. Further, since ψ

is locally biholomorphic and Pn near every point of Σn splits into the disjoint
union of a portion of Σn and two non-empty open subsets lying in the distinct
open orbits D+

n and D−
n , there exists a neighborhood V of x on which ψ is 1-

to-1 and such that V = V1 ∪ V2 ∪ (V ∩ Y′′), where V1 is the intersection of V
with an open orbit O′′′ contained in T (i.e. O′′′ is one of O1, O2), and V2 is the
intersection of V with some other open G0-orbit in X. Since each of Y and Y′′

is mapped by ψ onto Σn, there exists a point z ∈ Y with ψ(z) = ψ(x). Let U
be a neighborhood of z not intersecting V , on which ψ is 1-to-1 and such that
ψ(U ) ⊂ ψ(V). Then ψ(U ∩ O′′′) ⊂ ψ(V1), which implies that ψ is not 1-to-1
on O′′′. This contradiction shows that in fact we have T = X, and thus X is
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biholomorphic to Pn \ RPn.

Assume finally that Y is totally real in X. In this case U is a G0-invariant open
subset of Pn containing RPn. Hence we have U = Pn. In particular, there
exists a codimension one orbit in X. Clearly, ψ maps every totally real G0-
orbit in X onto RPn. Since ψ is locally biholomorphic, the union of totally real
orbits in X is closed and its complement X′ is connected. Arguing as above,
we obtain that ψ maps X′ biholomorphically onto Pn \ RPn. Fix y ∈ ∂X′ and
consider its G0-orbit Y′′′ (clearly, Y′′′ is totally real). We will now show that
ψ is 1-to-1 on Y′′′. Assume that for two distinct points y1, y2 ∈ Y′′′ we have
ψ(y1) = ψ(y2). Choose non-intersecting neighborhoods Vj of yj, such that
ψ is 1-to-1 on Vj, j = 1, 2, and ψ(V1) = ψ(V2) := W. It then follows that

there exist open G0-orbits Ô and Õ and a codimension one orbit Y0 in X such
that Wj := Vj \ (Vj ∩ (Y′′′ ∪ Y0)) is an open set having exactly two connected

components Ŵj, W̃j, with Ŵj lying in Ô and W̃j lying in Õ for each j. Clearly,

we have either ψ(Ŵ1) = ψ(Ŵ2) = W ∩ D+
n and ψ(W̃1) = ψ(W̃2) = W∩ D−

n ,
or ψ(Ŵ1) = ψ(Ŵ2) = W ∩ D−

n and ψ(W̃1) = ψ(W̃2) = W ∩ D+
n . However,

this contradicts the fact that ψ is 1-to-1 on each of Ô, Õ. Thus, we have shown
that ψ is 1-to-1 on Y′′′ (and in fact on every totally real G0-orbit in X).

Clearly, T := X′ ∪ Y′′′ is a connected open subset of X that ψ maps biholomor-
phically onto Pn. Therefore, T is also closed, which implies that T = X. Thus,
we have shown that X is biholomorphic to P

n. The proof is complete.

Theorems 7.2, 7.4 complete the proof of Theorem 1.2 in the case when g belongs
to the C-series.

8 Classification for the B- and D-series

In this section we set g = son+2(C) and assume that n ≥ 3, n 6= 4. Every
real form of g is isomorphic to one of the algebras: sop, q with p + q = n + 2,
p ≥ q ≥ 0 (here son+2, 0 := son+2(R)); so∗n+2, where in the last case n ≥ 8 is
even (recall that so∗8 is isomorphic to so6,2). We will now separately consider
each of the real forms.

8.1

Suppose first that g0 = sop, q with p + q = n + 2, p ≥ q ≥ 0, and that for n = 6
the algebra g0 is not one of so5, 3, so6, 2, so7, 1. We start with an example.

Example 8.1. Fix p, q and consider the group SOp,q of (n + 2)× (n + 2)-matrices
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with real entries having determinant 1 and preserving the quadratic form

[z, z]p,q :=
p

∑
j=1

z2
j −

n+2

∑
j=p+1

z2
j , (8.1)

where z := (z1, . . . , zn+2) is a vector in Cn+2. Let

Ap,q :=

(
Ip 0
0 iIq

)
,

where for any m we denote by Im the m × m identity matrix. We now realize
the group SOp, q as the subgroup Ap,qSOp,qA−1

p,q of SOn+2(C) and the algebra
sop,q as the Lie algebra of SOp, q. The group PSO◦

p, q := SO◦
p, q/(center) acts by

holomorphic transformations on the projective quadric Qn. The orbits of this
action are described by means of the following sets

Ω+
p,q :=

{
ζ ∈ Qn :

[
Re

(
A−1

p,qζ
)

, Re
(
A−1

p,qζ
)]

p,q
> 0

}
,

Ω−
p,q :=

{
ζ ∈ Qn :

[
Re

(
A−1

p,qζ
)

, Re
(
A−1

p,qζ
)]

p,q
< 0

}
,

Sp,q :=

{
ζ ∈ Qn :

[
Re

(
A−1

p,qζ
)

, Re
(
A−1

p,qζ
)]

p,q
= 0

}
.

The sets Ω+
p,q and Ω−

p,q give open orbits. They are are simply-connected (see

[Wo1], Theorem 5.4 and [FHW], Proposition 4.3.5). Observe that Ω+
n+2,0 = Qn,

Ω−
n+2,0 = ∅, Sn+2,0 = ∅ (i.e. PSO◦

n+2(R) = PSO◦
n+2,0 acts transitively on

Qn). Further, Ω−
n+1,1 = ∅, and Sn+1,1 is a closed totally real n-dimensional

PSO◦
n+1,1-orbit. For q ≥ 2 we have Ω−

p,q 6= ∅, and Sp,q = S1
p,q ∪ S2

p,q, where

S1
p,q is a closed totally real n-dimensional orbit and S2

p,q is an orbit of real codi-

mension one (S1
p,q and S2

p,q are the orbits of the points Ap,q
(
(1 : 0 : · · · : 0 : 1)

)

and Ap,q
(
(1 : i : 0 : · · · : 0 : i : 1)

)
, respectively). For convenience we set

S1
n+1,1 := Sn+1,1 and S2

n+1,1 := ∅. Observe that the closed orbit S1
p,q is diffeo-

morphic to the real projective quadric

{
x ∈ RP

n+1 : [x, x]p,q = 0
}

,

where x := (x1 : · · · : xn+2) are homogeneous coordinates in RPn+1.

The first result of this section is the following theorem.

Theorem 8.2. Let X be a connected complex manifold of dimension n ≥ 5 admitting
an almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra sop, q, where p + q = n + 2, p ≥ q ≥ 0. Assume that for n = 6 we
have p 6= 5, 6, 7. Then X is biholomorphic to one of Qn, Qn \ S1

p,q, Ω+
p, q, Ω−

p, q.
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Proof. Choose Y to be a G0-orbit of the smallest dimension in X. By Proposi-
tion 5.2 the quotient G/H is biholomorphic to Qn, and G acts on Qn as the
group PSOn+2(C). As in the proof of Theorem 6.2, we see that G0 acts on Qn

as a subgroup of PSOn+2(C) conjugate to PSO◦
p,q. Since the map ψ is locally

biholomorphic, Y is either (i) an open subset, or (ii) a real hypersurface, or (iii)
a totally real n-dimensional submanifold.

The case when Y is open is treated as the corresponding case in the proof of
Theorem 6.2, and one obtains that X is biholomorphic to one of Ω+

p, q, Ω−
p, q.

If Y is a real hypersurface in X (here q ≥ 2), we argue as in the corresponding
case in the proof of Theorem 7.4.

If Y is totally real, then q ≥ 1 and two situations are possible. If q = 1, then
X contains no codimension one orbits, and the proof follows as for Theorem
6.3. If q ≥ 2, then X contains a codimension one orbit, and we argue as in the
corresponding case in the proof of Theorem 7.4.

We will now deal with the case n = 3 not covered by Theorem 8.2. Note
that so5(C) is isomorphic to sp4(C), and the real forms of these algebras are
so5, 0 := so5(R) ≃ sp2, 0 := sp2; so4, 1 ≃ sp1, 1; so3, 2 ≃ sp4(R). The group
SO5(C) ≃ PSp4(C) acts on each of P3 and Q3 (see [Wi], pp. 214–224 for a
thorough description of these actions), and our classification result for n = 3 is
a combination of statements of Theorems 7.2, 7.4, 8.2.

Theorem 8.3. Let X be a connected complex manifold of dimension 3 admitting an

almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra sop, q, where p + q = 5, p ≥ q ≥ 0. Then X is biholomorphic to one
of

(i) P3, Q3, if p = 5;

(ii) P3, Q3, B
+
2,2, Ω+

4,1 , if p = 4;

(iii) P3, Q3, P3 \ RP3, Q3 \ S
1
3,2, B

+
2,2, Ω+

3,2, Ω−
3,2, if p = 3.

The proof of Theorem 8.3 is obtained by suitably combining the proofs of The-
orems 7.2, 7.4, 8.2, and we omit it.

8.2

Suppose now that n ≥ 8 is even and g0 = so∗n+2. We start with an example.

Example 8.4. Consider the real subgroup SO∗
n+2 := SOn+2(C) ∩ SL n+2

2
(H) of

SOn+2(C) and realize so∗n+2 as the Lie algebra of SO∗
n+2. Matrices from SO∗

n+2
preserve the skew-symmetric Hermitian form

[z, z] :=

n+2
2

∑
j=1

(
zjz n+2

2 +j − z n+2
2 +jzj

)
.
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The group PSO∗
n+2 := SO∗

n+2/(center) acts effectively on Qn. The orbits of this
action are described as follows. Define

E+
n := {ζ ∈ Qn : i[ζ, ζ] > 0} ,

E−
n := {ζ ∈ Qn : i[ζ, ζ] < 0} ,

Sn := {ζ ∈ Qn : [ζ, ζ] = 0} ,

where ζ := (ζ1 : · · · : ζn+2) are homogeneous coordinates in Pn+1. The sets E+
n

and E−
n are open simply-connected PSO∗

n+2-orbits, and Sn is a closed PSO∗
n+2-

orbit of real codimension one.

Next, for any m consider the m × m-matrix

Rm :=

(
−1 0

0 Im−1

)
. (8.2)

The matrix Rn+2 has determinant −1 and lies in the connected component
of On+2(C) complementary to SOn+2(C). Conjugation by Rn+2 stabilizes

SOn+2(C) and induces an outer automorphism of this group. Define ŜO
∗
n+2

to be the image of SO∗
n+2 under this automorphism, and let ŝo∗n+2 be the Lie

algebra of ŜO
∗
n+2. The subgroups ŜO

∗
n+2 and SO∗

n+2 are conjugate to each
other in SOn+2(C) only if (n + 2)/2 is odd (see e.g. [Dj]). The quotient

PŜO
∗
n+2 := ŜO

∗
n+2/(center) acts effectively on Qn, and the automorphism of

Qn given by the matrix Rn+2 transforms the orbits of PŜO
∗
n+2 into those of

PSO∗
n+2 and vice versa.

We are now ready to prove the following theorem.

Theorem 8.5. Let X be a connected complex manifold of even dimension n ≥ 8
admitting an almost effective action by holomorphic transformations of a connected

Lie group G0 with Lie algebra so∗n+2. Then X is biholomorphic to one of Qn, E+
n , E−

n .

Proof. Choose Y to be a G0-orbit of the smallest dimension in X. By Proposition
5.2 the quotient G/H is biholomorphic to Qn, and G acts on Qn as the group
PSOn+2(C). Then the group G0 acts on Qn as a subgroup of PSOn+2(C) con-

jugate either to PSO∗
n+2 or, if (n + 2)/2 is even, to PŜO

∗
n+2. Since the map ψ is

locally biholomorphic, Y is either open or has codimension one in X.

We now proceed as in the proof of Theorem 6.2 and obtain that X is biholo-
morphic either to one of Qn, E+

n , E−
n , or, if (n + 2)/2 is even, to one of the

open PŜO
∗
n+2-orbits. Since each of the latter is equivalent to one of E+

n , E−
n , the

theorem follows.

8.3

Suppose finally that n = 6 and g0 is one of the algebras so5,3, so6,2, so7,1. In
this case there are exactly three ways (up to inner automorphisms of so8(C)) to
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embed g0 into so8(C) as a real form (see e.g. [Dj]). The equivalence classes of
embeddings – with respect to the group Inn (so8(C)) of inner automorphisms
of so8(C) – are described as follows. One equivalence class is represented by
the standard embeddings so0

5,3, so0
6,2, so0

7,1 of so5,3, so6,2, so7,1 into so8(C), re-
spectively. These are the subalgebras of so8(C) corresponding to the subgroups
SO◦

5,3, SO◦
6,2, SO◦

7,1 of SO8(C), respectively, described in Example 8.1. The other

two equivalence classes are represented by so1
5,3 := θ(so0

5,3), so1
6,2 := θ(so0

6,2),

so1
7,1 := θ(so0

7,1) and by so2
5,3 := θ2(so0

5,3), so2
6,2 := θ2(so0

6,2), so2
7,1 := θ2(so0

7,1),
where θ is a certain outer automorphism of so8(C) (a triality automorphism).
The automorphism θ satisfies the condition θ3 ∈ Inn (so8(C)) and has the form
θ = θ0 ◦ ϕ. Here θ0 is an outer automorphism of so8(C) leaving invariant the
equivalence classes of so2

5,3, so2
6,2, so2

7,1 and such that θ2
0 ∈ Inn (so8(C)), and ϕ

is the outer automorphism of so8(C) given by the conjugation by the matrix
R8 ∈ O8(C) \ SO8(C) (see (8.2)). Therefore, the equivalence classes of so2

5,3,

so2
6,2, so2

7,1 are also represented by the algebras ϕ(so1
5,3), ϕ(so1

6,2), ϕ(so1
7,1), re-

spectively. We note that the algebra so4,4 is special in the sense that the equiv-
alence classes of the corresponding subalgebras so1

4,4 and so2
4,4 coincide with

that of the subalgebra so0
4,4.

Below we give explicit formulas for one such automorphism θ. They can be
derived from the formulas given in [BB] (see pp. 655–658). Denote by jrs, with
1 ≤ r < s ≤ 8, the 8× 8-matrix whose (r, s)th entry is 1, the (s, r)th entry is −1,
and all other entries are zero. These matrices form a basis of so8(C), and we
will write θ by means of specifying the images of the basis matrices as follows

j12 7→ (j12 − j34 + j56 − j78)/2, j13 7→ (j13 + j24 + j57 + j68)/2,

j14 7→ −(j14 − j23 − j58 + j67)/2, j15 7→ (j18 − j27 + j36 − j45)/2,

j16 7→ (j17 + j28 + j35 + j46)/2, j17 7→ −(j16 + j25 − j38 − j47)/2,

j18 7→ −(j15 − j26 − j37 + j48)/2, j23 7→ −(j14 − j23 + j58 − j67)/2,

j24 7→ −(j13 + j24 − j57 − j68)/2, j25 7→ (j17 + j28 − j35 − j46)/2,

j26 7→ −(j18 − j27 − j36 + j45)/2, j27 7→ (j15 − j26 + j37 − j48)/2,

j28 7→ −(j16 + j25 + j38 + j47)/2, j34 7→ (j12 − j34 − j56 + j78)/2,

j35 7→ −(j16 − j25 − j38 + j47)/2, j36 7→ −(j15 + j26 − j37 − j48)/2,

j37 7→ −(j18 + j27 + j36 + j45)/2, j38 7→ −(j17 − j28 + j35 − j46)/2,

j45 7→ −(j15 + j26 + j37 + j48)/2, j46 7→ (j16 − j25 + j38 − j47)/2,

j47 7→ (j17 − j28 − j35 + j46)/2, j48 7→ −(j18 + j27 − j36 − j45)/2,

j56 7→ (j12 + j34 − j56 − j78)/2, j57 7→ (j13 − j24 − j57 + j68)/2,

j58 7→ −(j14 + j23 − j58 − j67)/2, j67 7→ (j14 + j23 + j58 + j67)/2,

j68 7→ (j13 − j24 + j57 − j68)/2, j78 7→ −(j12 + j34 + j56 + j78)/2.

(8.3)

For p + q = 8, p ≥ q > 1 we denote by PSO
j
p,q the connected subgroup of



Classical Symmetries of Complex Manifolds 29

PSO8(C) corresponding to the subalgebra so
j
p,q for j = 1, 2. In order to obtain

a classification of manifolds X for g0 = sop,q, one needs to understand the

orbit structure of the action of PSO
j
p,q on Q6. Note that PSO1

p,q and PSO2
p,q are

conjugate in PO8(C), and therefore the orbit structures for these two groups
are equivalent.

8.3.1

Assume first that g0 = so6,2. The main observation in this case is that the
algebra so1

6,2 lies in the same equivalence class as the algebra so∗8 (recall that

so6,2 and so∗8 are isomorphic), hence so2
6,2 lies in the same equivalence class as

ŝo∗8 (see [BB], pp. 655-658), and therefore PSO1
6,2 and PSO2

6,2 are conjugate in

PSO8(C) to PSO∗
8 and P̂SO

∗

8 , respectively (see Example 8.4). The classification
is then given by the following theorem.

Theorem 8.6. Let X be a connected complex manifold of dimension 6 admitting an

almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra so6,2. Then X is biholomorphic to one of Q6, Q6 \ S
1
6,2, Ω+

6, 2, Ω−
6, 2,

E+
6 , E−

6 .

The proof is obtained by suitably combining the proofs of Theorems 8.2 and
8.5.

8.3.2

Assume next that g0 = so7,1. It turns out that each of PSO1
7,1, PSO2

7,1 acts
transitively on Q6 (see [Wo2], Corollary 1.7 for r = 3, and [O], Table 11, p. 270).
This fact yields the following result.

Theorem 8.7. Let X be a connected complex manifold of dimension 6 admitting an

almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra so7, 1. Then X is biholomorphic to one of Q6, Q6 \ S
1
7,1.

8.3.3

Assume finally that g0 = so5,3. We will now determine the orbits of the PSO1
5,3-

action on Q6. Using formulas (8.3) for the triality automorphism θ, one can find
the algebra so1

5,3 explicitly. It consists of skew-symmetric matrices (aml)m,l=1,...,8
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with complex entries satisfying the following conditions

Re (a12 + a34 − a56 − a78) = 0, Re (a14 + a23 − a58 − a67) = 0,

Re (a13 − a24 − a57 + a68) = 0, Re a15 = Re a26 = Re a37 = Re a48,

Re a18 = −Re a27 = Re a36 = −Re a45, Re a16 = −Re a25 = −Re a38 = Re a47,

Re a17 = Re a28 = −Re a35 = −Re a46, Im (a17 + a28 − a35 − a46) = 0,

Im (a18 − a27 + a36 − a45) = 0, Im (a16 − a25 − a38 + a47) = 0,

Im (a15 + a26 + a37 + a48) = 0.

A straightforward (but lengthy) calculation using the above conditions yields
that there are exactly two PSO1

5,3-orbits in Q6: a 9-dimensional closed orbit Γ

and the open orbit Q6 \ Γ. The orbit Γ contains, for example, all points that
are represented in homogeneous coordinates in P7 by vectors (c, id), where
c, d ∈ R4, ||c|| = ||d|| = 1, and all points represented by vectors (c, ic), where

c = (c1, c2, c3, c4) ∈ C4 is such that ||c|| = 1 and Im
(

∑
4
j=1 c2

j

)
= 0.

Arguing as in the proofs of Theorems 6.3, 8.2, we now obtain the following
result.

Theorem 8.8. Let X be a connected complex manifold of dimension 6 admitting an

almost effective action by holomorphic transformations of a connected Lie group G0

with Lie algebra so5, 3. Then X is biholomorphic to one of Q6, Q6 \ S
1
5,3, Ω+

5, 3, Ω−
5, 3,

Q6 \ Γ.

Theorems 8.2, 8.3, 8.5, 8.6, 8.7, 8.8 complete the proof of Theorem 1.2.

Let us conclude our discussion of the case g0 = so5,3 by sketching another

approach to understanding actions of PSO
j
p,q on Q6 for j = 1, 2. This replaces

considerations of triality with the study of actions of PSO◦
p,q on Grassmannians

associated to Q6.

The Dynkin diagram of so8(C) has three outer nodes which are permuted
by triality automorphisms. Each of these nodes corresponds to a PSO8(C)-
homogeneous manifold equivalent to Q6 endowed with one of three actions
of PSO8(C). If the left-most node corresponds to the standard action, then
each of the other two nodes corresponds to an action defined by composing
the standard one with a triality automorphism of PSO8(C). Each of the two
non-standard actions on Q6 is equivalent to the standard action of PSO8(C)
on a family of linearly embedded 3-dimensional projective subspaces in Q6. If
we view Q6 as the space of [·, ·]p,q-isotropic 1-dimensional subspaces of C8 (see
(8.1) for the definition of [·, ·]p,q), then these are the two SO8(C)-homogeneous
families of 4-dimensional [·, ·]p,q-isotropic subspaces. The action of each group

PSO
j
p,q on Q6 has the same orbit structure as the associated action of SO◦

p,q on
one of these families. Let us describe these associated actions in concrete terms
in the case p = 5, q = 3 leaving the other cases to the reader.
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Let W be a given [·, ·]5,3-isotropic 4-plane and note that it contains a 1-
dimensional subspace L which is positive with respect to the Hermitian form
〈·, ·〉5,3 (see (6.1)). By applying an element of SO◦

5,3 we may assume that L is
generated by v := (1, i, 0, . . . , 0). Now write W = L ⊕ P where P is the 〈·, ·〉5,3-
orthogonal complement of L. Observe that since W is [·, ·]5,3-isotropic, it fol-
lows that the 3-plane P is 〈·, ·〉5,3-orthogonal to E := Span {v, v}. Note also
that the stabilizer of E acts as SO◦

3,3 on the orthogonal complement of E in C8.

Thus we must only describe the action of SO◦
3,3 on families of 3-planes in C6

which are isotropic with respect to [·, ·]3,3.

Examples of two such families are those of the 3-planes which are isotropic
with respect to 〈·, ·〉3,3. These define the closed SO◦

5,3-orbits in each of the fam-

ilies of [·, ·]5,3-isotropic 4-planes in C8. If (a, b, c) denotes the Hermitian sig-
nature of a 4-plane W, with a the dimension of a maximal positive subspace,
b the dimension of a maximal negative subspace and c the dimension of the
degeneracy, then we see that this closed orbit is the manifold of 4-planes of sig-
nature (1, 0, 3). An explicit computation at a base point provided by the above
description shows that it is 9-dimensional.

If the 3-plane P arising in the decomposition W = L ⊕ P is not 〈·, ·〉3,3-
isotropic, then the above-described procedure of splitting off standard 2-planes
E shows that P is of signature (1, 1, 1) and can be moved by SO◦

3,3 to a space
spanned by vectors of the form v+ = (1,±i, 0, 0, 0, 0), v0 = (0, 0, 1,±1, 0, 0),
v− = (0, 0, 0, 0, 1,±i). In general, the signs may play a role. For example, this
is the case for the SO◦

4,4-action where there are in fact two orbits of signature
(2, 2, 0) in each family. However, in the present situation we can apply simple
involutions in the maximal compact group SO3(R) × SO3(R), which is natu-
rally embedded in SO◦

3,3, to bring the 3-tuple (v+, v0, v−) to one of two normal
forms. These correspond to orbits of signature (2, 1, 1) in the two families of
isotropic 4-planes. Thus in each family the group SO◦

5,3 has two orbits, an open
orbit of signature (2, 1, 1) and a closed orbit of signature (1, 0, 3). The closed
orbit is the one denoted by Γ above.
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