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FINITE SYMMETRY GROUPS IN COMPLEX GEOMETRY

by

Kristina Frantzen and Alan Huckleberry

Introduction. — On June 5, 2007 the second author delivered a talk at the Journées de l’Institut
Élie Cartan entitled Finite symmetry groups in complex geometry. This paper begins with an expanded
version of that talk which, in the spirit of the Journées, is intended for a wide audience. The later
paragraphs are devoted both to the exposition of basic methods, in particular an equivariant minimal
model program for surfaces, as well as an outline of recent work of the authors on the classification of
K3-surfaces with special symmetry.

1. Riemann surfaces

Throughout this introductory section X denotes a Riemann surface, namely a connected, compact
complex manifold of dimension one. If it is regarded as a real surface, then its genus g = g(X), which
can be defined by 2g being the rank of the first homology group H1(X, Z), is its only topological
invariant. This means that two such surfaces are homeomorphic if and only if they are diffeomorphic
and this holds if and only if they have the same genus. Starting with the case g = 0, we consider
Riemann surfaces from the point of view of biholomorphic symmetry, i.e., we are interested in actions
on X of subgroups of the group Aut(X) of its holomorphic automorphisms.

1.1. The Riemann sphere. — If g(X) = 0, then it can be shown that X is biholomorphically equiv-
alent to the Riemann sphere. As the name indicates, this is the 2-dimensional sphere which often is
regarded as the compactification of the complex plane by adding the point at infinity. If z is the stan-
dard linear coordinate in a neighborhood of 0 in the complex plane, then ζ := 1

z is a coordinate of the
corresponding neighborhood of ∞.

Here we regard the Riemann sphere as the space P1(C) of 1-dimensional linear subspaces (lines) of
C2. Every point (z0, z1) ∈ C2 \ {(0, 0)} is contained in a unique such line which is denoted by [z0 : z1].
It follows that [z0 : z1] = [w0 : w1] if and only if there exists λ ∈ C∗ with (w0, w1) = λ(z0, z1). Thus
P1 = P1(C) can be regarded as the quotient of C2 \ {(0, 0)} by scalar multiplication equipped with
the quotient topology. The sets Ui := {[z0 : z1] ∈ P1 | zi 6= 0} are open. On U0, U1 respectively, we
define the coordinate z by [z0 : z1] 7→ z1

z0
=: z, respectively [z0 : z1] 7→ z0

z1
=: ζ. Setting 0 = [1 : 0] and

∞ = [0 : 1], the description of the Riemann sphere as the set of lines in C2 is seen to coincide with the
compactified complex plane.

A linear map T ∈ GL2(C) takes lines to lines and therefore induces a map P(T) : P1 → P1. One
checks that P(T) is holomorphic and that the homomorphism P : GL2(C) → Aut(X) is surjective.

First author’s research supported by grants from the Studienstiftung des deutschen Volkes and the Deutsche Forschungsge-
meinschaft.
Second author’s research partially supported by grants from the Deutsche Forschungsgemeinschaft.

http://arxiv.org/abs/0901.2442v2


2 KRISTINA FRANTZEN AND ALAN HUCKLEBERRY

The kernel of P is the group C
∗ = C

∗ · Id. Consequently, if we restrict P to SL2(C), it is still surjective
and yields the exact sequence

0 → {±Id} → SL2(C) → Aut(P1) → 0 .

The subgroup {±Id} is the center of SL2(C) and the quotient SL2(C)/{±Id} =: PSL2(C) ∼= Aut(P1)
is the associated projective linear group.

As a subgroup of SL2(C) the special unitary group SU2 defined by the standard Hermitian structure
on C

2 acts on P1. Since it contains the center {±Id} which acts trivially, this defines an action of the
quotient SU2/{±Id}, which can be identified with the group SO3(R) of orientation preserving linear
isometries of R3.

Guided by our interest in finite symmetry groups we consider finite subgroups of Aut(P1). For
the moment we simplify the discussion and only consider finite subgroups of SL2(C). Note that if G
is such a subgroup, then we may average the standard Hermitian structure to obtain a G-invariant
Hermitian form and consequently G is conjugate in SL2(C) to a subgroup of SU2. If we perform
this conjugation, which changes nothing essential, and project G to Aut(P1), we may regard it as a
group of Euclidean isometries of S2. Conversely, paying the price of the 2:1 central extension, we may
consider the preimage of a group of Euclidean motions in SU2 and regard it as acting by holomorphic
transformations on P1.

If X is a Riemann surface and G ⊂ Aut(X) is a finite group, then the quotient X/G carries a unique
structure of a Riemann surface with the property that the quotient map X → X/G is holomorphic.
Following ideas of Felix Klein, we begin with a finite group G of rigid motions of the sphere, lift it to
a group of holomorphic transformations of X = P1 in SU2 and consider such a quotient. Since there
is no nonconstant holomorphic map from P1 to some other Riemann surface, it follows that X/G is
likewise P1. Using this fact and looking closely at the ramified covering map X → X/G, Klein listed
all possible finite subgroups of Aut(P1). Other than the cyclic and dihedral groups, these are the
isometry groups of the tetrahedron, the octahedron and the icosahedron of order 12, 24 and 60.

The cyclic group Cn of order n can be realized as a group of diagonal matrices (rotations) in SU2.
The dihedral group D2n is a semidirect product C2 ⋉ Cn. If Cn is a group of diagonal matrices in SU2,
then conjugation with

w =

(
0 −1
1 0

)

acts on Cn by x → x−1 and 〈w〉⋉ Cn is a realization of D2n in SU2/{±Id}.
It is a rather simple matter to place the corner points of a regular tetrahedron and of a regular

octahedron on P1 and then to write down the matrices in SU2 which realize their isometry groups as
subgroups of PSU2. The same can be done for the iscosahedron, but this is a much more difficult task.
The group of isometries of the icosahedron is isomorphic to the alternating group A5. It should be
emphasized that the preimage in SU2 of a group of rigid motions of a regular polyhedron is a nontrivial
central extension. Particularly in the case of A5, it is an interesting exercise to find the 2-dimensional
representation of this group!

1.2. Tori. — In order to identify a Riemann surface X of genus zero with P1, one constructs a mero-
morphic function on X which has only one pole and that being of order one. Analogously, one would
like to identify a Riemann surfaces of genus one with a complex torus. In order to do this, one must
prove the existence of a nowhere vanishing holomorphic 1-form, i.e., a 1-form which in local coordi-
nates is given by f dz for a nowhere vanishing holomorphic function f . Integrating this form provides
a biholomorphic map α : X → C/Γ, where the lattice Γ is the additive subgroup of (C, +) defined by
integrating the given 1-form over the closed curves in X.

Unlike the case of P1, there is a 1-dimensional family of holomorphically inequivalent Riemann
surfaces of genus one. One way of realizing this family is to choose a basis of the periods so that Γ =
〈1, τ〉, where τ is in the upper-halfplane H+. Then the 1-dimensional family is given by H+/SL2(Z) ∼=
C.
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A torus T = C/Γ is a group and acts on itself by group multiplication. This defines an embedding
T →֒ Aut(T). Given any holomorphic automorphism ϕ ∈ Aut(T) we lift it to a biholomorphic map
ϕ̂ : C → C of the universal cover of T. Since ϕ̂ is an affine map of the form ϕ̂(z) = az + b and we are
free to conjugate it with a translation, we may assume that it is either a linear map, i.e., z 7→ az, or a
translation. The translations correspond to the action of T on itself mentioned above.

Every torus possesses the holomorphic automorphism σ defined by t 7→ −t, which is also a group
automorphism. Except for two special tori, the full automorphism of T is just T ⋊ 〈σ〉. These special
tori are defined by the lattices 〈1, i〉 and 〈1, ei π

6 〉. In the former case Aut(T) = T ⋊ C4, where the
linear part C4 is generated by a rotation by π

2 , and in the latter case Aut(T) = T ⋊ C6, where the C6 is
generated by rotation through 60 degrees.

In summary, in all cases Aut(T) = T ⋊ L for a linear group L of rotations. Hence, given a finite
subgroup G ⊂ Aut(T), we can decompose it into its translation and linear parts.

1.3. Riemann surfaces of general type. — For the remaining Riemann surfaces, i.e., for most, we
have the following observation.

Theorem 1.1. — The automorphism group of a Riemann surface of genus at least two is finite.

To prove this theorem one needs basic results on the existence of certain globally defined holomor-
phic tensors. For example, one knows that the space Ω(X) of holomorphic 1-forms is g-dimensional.
Note that if X posseses a nowhere vanishing holomorphic 1-form ω0, then every other holomorphic
1-form ω is a multiple ω = f ω0 where f is a globally defined holomorphic function and therefore
constant. Thus Ω(X) = Cω0 and g(X) = 1. Conversely, if g(X) > 1 then every holomorphic 1-form
vanishes at at least one point of X. It can be shown that, counting multiplicities, every ω ∈ Ω(X) has
exactly 2g(X)− 2 zeros.

Another basic fact which is useful for the proof of the above theorem is that the group of holomor-
phic automorphisms of a compact complex manifold, in this case a Riemann surface, is a complex Lie
group acting holomorphically on X. This means that Aut(X) is itself a (paracompact) complex mani-
fold having the property that the group operations and the action map Aut(X)× X → X, (g, x) 7→ gx,
are holomorphic. Note that if Aut(X) is positive-dimensional and {gt} is a holomorphic 1-parameter
subgroup, then differentiation with respect to this group defines a holomorphic vector field on X.
Conversely, holomorphic vector fields on compact complex manifolds can be integrated to define 1-
parameter groups.

If ω ∈ Ω(X)\{0} and ξ is a holomorphic vector field which is not identically zero, then ω(ξ) is a
holomorphic function on X which is also not identically zero. Thus, if ω vanished at some point of
X, we would have produced a nonconstant holomorphic function, contrary to X being compact. As a
result we obtain the following weak version of the above theorem.

Proposition 1.2. — The automorphism group of a Riemann surface of genus at least two is discrete.

Proof of Theorem 1.1. — One can show that a Riemann surfaces X of genus at least two possess enough
holomorphic forms, or holomorphic tensors of higher order, locally of the form f (dz)k with f holo-
morphic, to definine a canonical embedding of X in a projective space: If Vk is the vector space of such
k-tensors, then one considers the holomorphic map ϕk : X → P(V∗

k ) which is defined by sending a
point x ∈ X to the hyperplane Hx of tensors in Vk vanishing at x. For k large enough ϕk is a holomorphic
embedding. In fact k = 1 is usually enough and at most k = 3 is required.

The image Zk := ϕk(X) is a complex submanifold of the projective space P(V∗
k ). Applying Chow’s

theorem, it follows that Zk is a algebraic submanifold, i.e., it is defined as the common zero-set of
finitely many homogeneous polynomials.

Since Aut(X) acts as a group of linear transformations on Vk, where the action is given by a repre-
sentation ρ : Aut(X) → GL(V∗

k ), it follows that ϕk is Aut(X)-equivariant. In other words, for every
g ∈ Aut(X), it follows that ϕk(gx) = ρ(g)(ϕk(x)). Thus Aut(X) can be regarded as the stabilizer of
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Zk in the projective linear group PGL(V∗
k ). Since stabilizers of algebraic submanifolds are algebraic

groups and algebraic groups have only finitely many components, it follows that Aut(X) is finite.

Remark 1.3. — In complex geometry the terminology “manifold of general type” refers to a compact
complex manifold (usually algebraic) which has as many holomorphic tensors of a certain kind as
possible. In the higher-dimensional case one considers holomorphic volume forms which are locally
of the form f dz1 ∧ . . . ∧ dzn and higher-order tensors which are described in local coordinates by
f (dz1 ∧ . . . ∧ dzn)k. One cannot quite require that the space Vk defines an embedding as above, but it
does make sense to require that the analogous map ϕk is bimeromorphic onto its image. Such maps
are embeddings outside small sets. This is the origin of our referring to Riemann surfaces of genus at
least two as being of general type.

1.4. The Hurwitz estimate. — As in the previous section, we restrict our considerations to Riemann
surfaces X of genus at least two. Having shown that Aut(X) is finite we would like to outline some
ideas behind the proof of the following beautiful theorem.

Theorem 1.4. — If X is a Riemann surface of general type, then

|Aut(X)| ≤ 84(g − 1) .

Before going into the ideas of the proof, we emphasize the qualitative meaning of this estimate: the
topological Euler number of X is given by e(X) = 2 − 2g(X) and consequently the estimate above is
given by −42e(X). In other words, the bound for |Aut(X)| is a linear function of the topological Euler
number.

The key to the above estimate is the Riemann-Hurwitz formula which in our particular case of
interest gives a precise relationship between the topological Euler numbers of X and X/G, where
G is any finite group of automorphisms. In the figure below we have shown a possible example
where the group G is the cyclic group C6 of order six. The surface X is schematically represented by a
collection of curves which come together at a number of ramification points. The map from upstairs
to downstairs represents the quotient π : X → X/G. The observation that with three exceptions the
preimage of a point downstairs consists of six different points reflects the following general fact: If G
is a finite group in Aut(X), then there is a finite subset R such that G acts freely on the complement
X \ R.

FIGURE 1. A ramified covering of Riemann surfaces

At a ramification point x ∈ R the isotropy group Gx = {g ∈ G | g.x = x} consists of more than just
the identity. We note that the natural representation of Gx on the holomorphic tangent space TxX is
faithful, and, since GL(TxX) ∼= C∗, it follows that Gx is cyclic. Let π(R) =: B denote the branch set of
the covering and note that for every point b ∈ B we have the canonically defined numerical invariant
n(b) := |Gx|, where x is any point in the preimage π−1(b). In the figure B consists of three points, two
of which have n(b) = 2 and one of which has n(b) = 3.
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Let us compare the topological Euler numbers of X and X/G by triangulating Y := X/G so that set
B of branch points is contained in the set of vertices of the triangles and let us lift this triangulation to
X. We compute the Euler number as v − e + f , where v is the total number of vertices, e is the number
of edges and f is the number of faces in the triangulation. In general,

e(X) = |G| · e(Y) − εR ,

where εR is a correction caused by ramification. In the case of the figure above, every face and every
edge of the triangulation Y lifts to 6 faces and 6 edges in the triangulation of X. This is also true for
the vertices which are not contained in B. In each of the two cases where n(b) = 2 we must subtract
a correction term 3 = 3(2 − 1) = |G.x| · (n(b) − 1). In the case of n(b) = 3 this correction equals
4 = 2(3 − 1) and the precise formula for the figure is e(X) = 6e(X/G) − 4 − 3 − 3. In general, the
Riemann-Hurwitz formula reads

2 − 2g(X) = |G| · (2 − 2g(Y))− ∑
b∈B

|G|
n(b)

(n(b) − 1)

= |G| ·
(

(2 − 2g(Y))− ∑
b∈B

(1 − 1
n(b)

)
)

The Hurwitz estimate for the maximal order of G, i.e., for the order of the full automorphism group
G = Aut(X) follows from experiments with the numbers n(b). (see e.g. [Kob72], Theorem III.2.5)

1.5. Plane curves. — One important class of Riemann surfaces consists of those which can be re-
alized as submanifolds of 2-dimensional projective space. These are often simply referred to as
(complex) curves. Being 1-codimensional, a curve C can be described as the zero-set of a homo-
geneous polynomial which is unique up to a scalar factor and vanishes along C of order one. If
C = {[z0 : z1 : z2] | Pd(z0, z1, z2) = 0} where Pd is of degree d, then C is said to be of degree d.
Remarkably, the genus of C can be directly computed from its degree:

g(C) =
(d − 1)(d − 2)

2
.

Example 1.5. — Curves of degree three are of genus one, i.e., they can be realized as tori C = C/Γ

which have positive-dimensional automorphism groups. Very few of these automorphisms can be
realized as restrictions of automorphisms of P2 which, in analogy to the case of P1, are induced
by linear transformations of C3. To see this, let S := StabAut(P2)

(C) be the subgroup of elements
T ∈ Aut(P2) with T(C) = C. Since C is defined by a complex polynomial equation, the group S is a
complex subgroup of the complex Lie group Aut(P2) = SL3(C)/C3. Here C3 is realized in SL3 as its
center, i.e, the group of diagonal matrices λ · Id

C3 with λ3 = 1.
Note that no element of S fixes C pointwise, because such a linear transformation would necessarily

pointwise fix the linear subspace of P2 spanned by C, i.e., P2 itself. Since Aut(C) is compact, it follows
that S is likewise compact. Thus the lift Ŝ of S to SL3(C) can be regarded as a compact complex
submanifold of the vector space Mat(2× 2, C) ∼= C4. Consequently, we obtain holomorphic functions
on Ŝ as restrictions of holomorphic functions on C4. Since Ŝ is compact, the maximum principle
implies that these are constant on its components. As these restrictions clearly separate the points of
Ŝ we see that Ŝ is finite. Hence we have proven the following proposition.

Proposition 1.6. — If C is a cubic curve in P2, then the subgroup S of Aut(C) of automorphisms which
extend to automorphisms of P2 is finite.

The case of a curve C of degree four is completely different. In this case g(C) = 3 and the space
V1 of holomorphic 1-forms on C is 3-dimensional. The mapping ϕ1 : C → P(V∗

1 ) is an embedding
and the orginal realization of C as a curve is, after a choice of coordinates, just Im(ϕ1). Consequently,
curves of degree four are equivariantly embedded.
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Proposition 1.7. — If C is a quartic curve, then every automorphism of C extends to a unique automorphism
of P2.

The study curves of genus three from the point of view of symmetry is therefore closely related to
the classification and invariant theory of finite subgroups of SL3(C) ([Bli17], see also [YY93])

Example 1.8. — We consider the quartic curve defined by z0z3
1 + z1z3

2 + z2z3
0 and refer to it as Klein’s

curve CKlein. Although the general theory tells us that every automorphism of CKlein is the restriction
of an automorphism of P2, not all of these automorphisms are immediately visible. In fact, Aut(C) ∼=
PSL2(F7) ∼= GL3(F2). This group, which is often denoted by L2(7), is the unique simple group of
order 168. Note that 168 = 84(3 − 1) and therefore the automorphism group of Klein’s curve attains
the maximal order among Riemann surfaces of genus three allowed by the Hurwitz estimate. One
can show that CKlein is the unique genus three curve for which this upper bound is attained. The
book [Lev99] is dedicated to various interesting aspects concerning the geometry of this curve and its
automorphisms.

2. Manifolds of general type

The title of this work indicates our interest in the role of finite symmetry groups in arbitrary di-
mensions. Nevertheless, after the previous introductory section on Riemann surfaces, mostly all of
our considerations are devoted to the case of compact complex surfaces, i.e., complex 2-dimensional,
connected, compact complex manifolds. Before restricting to that case, we do comment on higher-
dimensional manifolds of general type.

Recall that a Riemann surface X is of general type if it possesses sufficiently many globally defined
holomorphic tensors, which are locally of the form f (dz)k, so that the k-canonical map ϕk : X →
P(V∗

k ) is a biholmorphic embedding for k sufficiently large. In the higher-dimensional case, dimCX =
n, the analogous objects in the case k = 1 are holomorphic n-forms which are locally of the form
f dz1 ∧ . . . ∧ dzn. Here f is a holomorphic function on a coordinate chart with coordinates z1, . . . , zn.
For arbitrary k, its k-tensors are locally of the form f (dz1 ∧ . . .∧ dzn)k. In a less archaic language, these
are sections of the k-th power Kk

X of the canonical line bundle and the space Vk of k-tensors is denoted
by Γ(X,Kk

X).
It turns out to be appropriate to require that for some k the mapping ϕk : X → P(V∗

k ) is a mero-
morphic instead of holomorphic embedding. This condition is more conveniently described by an
invariant of the associated function field: if s and t are two tensors of the same type, i.e., s, t ∈ Vk,
where locally s = f (dz1 ∧ . . . ∧ dzn)k and t = g(dz1 ∧ . . . ∧ dzn)k, then their ratio

m =
s
t

=
f (dz1 ∧ . . . ∧ dzn)k

g(dz1 ∧ . . . ∧ dzn)k
=

f
g

has an interpretation as a globally defined meromorphic function on X.
We let Q(Vk) be the quotient field generated by this procedure. From the theorem of Thimm-Siegel-

Remmert we know that meromorphic functions on a compact complex manifold are analytically de-
pendent if and only if they are algebraically dependent, and consequently the transcendence degree
of Q(Vk) over the field of constant functions, or equivalently, the maximal number of analytically
independent meromorphic functions which can be constructed as quotients of tensors from Vk, is at
most dimC(X). If for some k this number equals the dimension of X, then one says that X is of general
type.

If X is of general type, then for some k, maybe not the one in the definition, the mapping ϕk is
indeed a bimeromorphic embedding. Since ϕk is equivariant with respect to the full automorphism
group, it follows that Aut(X) is represented as the subgroup of Aut(P(V∗

k )) which stabilizes the
image Im(ϕk). Thus, by precisely the same type of argument as in the 1-dimensional case, we have
the following fact.

Proposition 2.1. — The automorphism group of a manifold of general type is finite.
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Even if the field Q(Vk) does not have transcendence degree equal to the dimension of X, it certainly
contains important information. As a very rough first invariant one defines the Kodaira dimension of
X as the maximal transcendence degree attained by some Vk. In other words, the Kodaira dimension
κ(X) is the maximal number of analytically independent meromorphic functions which can be ob-
tained as quotients of k-tensors. If for all k there are no such tensors, i.e., Vk = 0 for all k, then one lets
κ(X) := −∞. It follows that κ(X) ∈ {−∞, 0, 1, . . . , dim(X)}.

For dim(X) > κ(X) ≥ 1 the meromorphic maps ϕk : X → P(V∗
k ) can still be very interesting.

However, it is quite possible that a nontrivial automorphism of X can act trivially on Im(ϕk).

2.1. Surfaces of general type - Quotients by small subgroups. — Inspired by the 1-dimensional case
one wishes to obtain bounds for the order of the automorphism groups of manifolds of general type.
Below we give an outline of a simple method which has been used, for example, to obtain estimates
of Hurwitz type (see [HS90]).

At the present time the following sharp estimate for surfaces of general type requires essentially
more combinatorial work ([Xia94], [Xia95]).

Theorem 2.2. — The order of the automorphism group of a surface of general type is bounded by (42)2K2.

Since the self-intersection number K2 of a canonical divisor is a topological invariant, this is exactly
the desired type of estimate.

Turning to the method mentioned above, given a finite group G we want analyze the possibilities
of it acting on surfaces of general type with given topological invariants, in this case Chern numbers.
We then look for a small subgroup S in G with an interesting normalizer N. The notion of interesting
can vary. For example, this can mean that N is large with respect to G or that N has a rich group
structure. The group S should be small in the sense of size and structure. Clearly, S = C2 or some
other small cyclic group would be a good choice.

The first step is to consider the quotient X → X/S =: Y. Since the normalizer N acts on Y, we
are presented with the new task of understanding Y as an N-variety and X → Y as an N-equivariant
map, e.g. by studying the action of N on the ramification and branch loci. If this can be done, then we
attempt to piece together the G-action on X from knowledge of the S-quotient and the N-action on Y.

Because we have been forced to transfer our consideration to the smaller group N, it might appear
that we have even lost ground. However, there are at least two possible advantages of this approach.
First, without being overly optimistic one can hope that the topological invariants have decreased in
size so that if Y is still of general type, some inductive argument can be carried out. Alternatively, if
Y is not of general type, then we come into a range of Kodaira dimension where new methods are
available.

3. The Enriques Kodaira classification

From now on we restrict our considerations to compact complex surfaces X. Here κ(X) can take on
the values −∞, 0, 1 and 2. One would like to prove a classification theorem similar to that for Riemann
surfaces with one big class consisting of the surfaces of general type and the remaining surfaces with
κ(X) ≤ 1 being precisely described.

This is almost possible with the final result being called the Enriques Kodaira classification. For a
detailed exposition we refer the reader e.g. to [BHPV04]. In the case of algebraic surfaces, i.e., those
compact complex surfaces which can be holomorphically embedded in some projective space, much
of the essential work was carried out by members of the Italian school of algebraic geometry, in par-
ticular by Enriques. It should be noted that a surface is algebraic if and only if it possesses two
analytically independent meromorphic functions.

Minimal models. — One complicating factor in the classification theory is that, given a surface X,
one can blow it up to obtain a new surface X̂ and a holomorphic map X̂ → X which is almost biholo-
morphic. Conversely, given X, one may be able to blow it down, i.e., X is the blow up of some other
surface. Let us briefly explain this process.
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The simplest blow up is constructed as follows. Let X = P2 and choose p := [1 : 0 : 0] as the point
to be blown up. The projection π : P2 → P1, [z0 : z1 : z2] 7→ [z1 : z2] is well-defined and holomorphic
outside of the base point p. So we remove p and consider the restricted map. Its fiber over a point
[a, b] is a copy of the complex plane parameterized by t 7→ [t : a : b]. This continues to a map of the
full projective line given by [t0 : t1] 7→ [t0 : t1a : t1b]. The map π realizes P2 \ {p} as a bundle of lines:
we say that the fibration P2 \ {p} → P1 is a line bundle, a rank one holomorphic vector bundle. Each
of its fibers is naturally isomorphic to C and contains a natural choice of zero, namely [0 : a : b], and a
natural point at infinity [1 : 0 : 0].

The point at infinity is the same for each of the lines. To resolve this problem, we formally add
individual points at infinity to each of the lines, i.e., two different lines receive different points at
infinity. One checks that this construction results in a complex manifold Blp(P2) to which the line
bundle fibration extends as a P1-bundle Blp(P2) → P1. The set E of points at infinity is a copy of P1
which is mapped to the point p by the natural projection Blp(P2) → P2. Outside of E this projection
is biholomorphic.

There are several first observations about this construction. For one, it should be noted that the
construction is local. In other words, for any open neighborhood U of p we can define the blow up
Blp(U) → U. Thus, for any surface X and a point p ∈ X we have Blp(X) → X. One checks that
up to biholomorphic transformations the construction is independent of the coordinate chart which
is used. Secondly, regarding E as a homology class in H2(Blp(X), Z) which is equipped with its
natural intersection pairing, one shows that E · E = −1. Remarkably, the converse statement holds
(see [Gra62]):

Theorem 3.1. — Let X be a complex surface and E be a smooth curve in X which is holomorphically equivalent
to P1. Then there is a holomorphic map X → Y to a complex surface which realizes X as Blp(Y) if and only if
E · E = −1.

As a result of this theorem it is reasonable to classify only those surfaces which are minimal in
the sense that they contain no (-1)-curves, i.e., curves E which are biholomorphic to P1 and satisfy
E · E = −1. We give a rough summary of this classification: Any minimal surfaces belongs to one of
the following classes of surfaces, ordered according to Kodaira dimension.

κ = −∞ Ruled surfaces, P2, and exceptional nonalgebraic surfaces
κ = 0 Tori, K3-, Enriques-, Kodaira-, and bi-elliptic surfaces
κ = 1 Elliptic surfaces
κ = 2 Surfaces of general type

A ruled surface X 6= P1 × P1 admits a canonical locally trivial holomorphic fibration onto a Riemann
surface with generic fiber P1. Elliptic surfaces possess canonically defined fibrations over P1 with the
generic fiber being a 1-dimensional torus. In this situation different fibers can be biholomorphically
different tori. Note that canonically defined fibrations π : X → Y are automatically equivariant, i.e.,
there is an action of Aut(X) on Y so that for every g ∈ Aut(X) it follows that π ◦ g = g ◦ π. Thus
from the point of view of group actions it is particularly advantageous if the surface is either ruled
or elliptic. To exemplify this, we present an detailled discussion of automorphisms of rational ruled
surfaces, the Hirzebruch surfaces.

Hirzebruch surfaces. — The n-th Hirzebruch surface Σn is defined as the compactification of the total
space of the n-th power Hn of the hyperplane bundle over P1. The compactification is constructed
by adding the point at infinity to each fiber. This makes sense because the structure group of a line
bundle is GL1(C) ∼= C∗ whose action on the complex line canonically extends to an action on P1. The
surface Σ0 is the compactification of the trivial bundle and is therefore P1 × P1. We have seen above
that Σ1 is Blp(P2).

By construction the P1-bundle Σn → P1 has a section En at infinity. Let us show that En can be
blown down to a point which, except in the case of Σ1, is singular. For this it is convenient to recall
that Hn is the quotient of H by the cyclic group Cn acting via the principal C∗-action in the fibers of
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H. This extends to Σ1 to give us a diagram

Σ1 //

b1
��

Σn

bn
��

P2 // Conen(P1).

The map b1 blows down the (-1)-curve E1. The horizontal maps are the Cn-quotients and bn is induced
by b1. Regarding P2 as a cone over the line {z0 = 0} at infinity, Conen(P1) is defined as its quotient
by Cn acting on its fibers.

Let us turn now to the automorphism groups of the Hirzebruch surfaces. For this we consider the
standard GL2(C)-action on P2 fixing the point p = [1 : 0 : 0] and stabilizing the hyperplane {z0 = 0}.
By construction, it lifts to the blow up Σ1 = Blp(P2). This action is centralized by the Cn-action
discussed above and therefore there is an holomorphic action of Ln := GL2(C)/Cn on the quotient
Σn = Σ1/Cn.

The remaining automorphisms come from the sections s ∈ Γ(P1, Hn) of Hn. In general if s : X → L
is a section of a holomorphic line bundle π : L → X, then x 7→ x + s(π(x)) defines a holomorphic
automorphism of the bundle space X which extends to the associated P1-bundle. Thus, in the case at
hand we may regard Γ(P1, Hn) as a subgroup of Aut(Σn). Conjugation by elements of Ln stabilizes
Γ(P1, Hn) and the semidirect product Ln ⋉ Γ(P1, Hn) is a subgroup of Aut(Σn). In fact there are no
other automorphisms (see e.g. [HO84]).

Proposition 3.2. — Aut(Σn) = Ln ⋉ Γ(P1, Hn).

Having identified Aut(Σn) we wish to pin down its finite subgroups. First note that the maximal
compact subgroups of a connected Lie group are unique up to conjugation. In the case of Aut(Σn)
we observe that the image of the unitary group U2 is a maximal compact subgroup. If G is a finite
subgroup of Aut(Σn), then we may conjugate it to a subgroup of the image of the unitary group.
Allowing the action to contain the kernel of U2(C) → U2/Cn, we chararacterize the finite group
actions on Σn as being given by finite subgroups of U2.

Let us return the rough classification of minimal surfaces outlined above. Note that bi-elliptic sur-
faces admit a locally trivial elliptic fibration over an elliptic curve. The same holds for a Kodaira
surface itself or an unramified covering. In analogy to our treatment of Hirzebruch surfaces, auto-
morphisms of fibered surfaces can be investigated by using the structure given by the fibration.

Finite subgroups acting on P2 were classified at the turn of the 20th century by Blichfeld ([Bli17],
see also [YY93]). Much later the finite groups acting on 2-dimensional tori were classified by Fujiki
([Fuj88]). Noting that the universal cover of an Enriques surface is a K3-surface, the interest of finite
symmetry groups may be focussed on the remaining case of K3-surfaces.

From the point of view of symmetries the restriction of our considerations to minimal surfaces
is not necessarily natural. This is due to the fact that the reduction from a surface to its minimal
model may not be equivariant. The concept of minimal models therefore needs to be replaced by an
equivariant analogue, namely an equivariant reduction procedure. The following section is dedicated
to a detailed presentation of the equivariant minimal model program for surfaces formulated in the
language of Mori theory.

4. Equivariant Mori reduction

This section is dedicated to a discussion of Example 2.18 in [KM98] (cf. also Section 2.3 in [Mor82])
which introduces a minimal model program for surfaces respecting finite groups of symmetries.

Given a projective algebraic surface X with an action of a finite group G, in analogy to the usual
minimal model program, one obtains from X a G-minimal model XG-min by a finite number of G-
equivariant blow-downs, each contracting a finite number of disjoint (-1)-curves. The surface XG-min
is either a conic bundle over a smooth curve, a Del Pezzo surface or has nef canonical bundle.
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Equivariant Mori reduction and the theory of G-minimal models have applications in various dif-
ferent contexts and can also be generalized to higher dimensions. Initiated by Bayle and Beauville in
[BaBe00], the methods have been employed in the classification of subgroups of the Cremona group
Bir(P2) of the plane for example by Beauville and Blanc [Bea07], [BeBl04], [Bla06], [Bla07], de Fernex
[dF04], Dolgachev and Iskovskikh [DI06], [DI07], and Zhang [Zha01]. These references also provide
certain relevant details regarding Example 2.18 in [KM98] and Section 2.3 in [Mor82]: e.g. the case
G ∼= C2 is discussed in [BaBe00], the case G ∼= Cp for p prime in [dF04], the case of perfect fields is
treated in [DI07].

For the convenience of the reader we here give a detailed exposition of the equivariant minimal
model program for arbitrary finite groups acting on complex projective surfaces (see also Chapter 2
in [Fra08] for further details).

4.1. The cone of curves and the cone theorem. — Throughout this section we let X be a smooth
projective algebraic surface and let Pic(X) denote the group of isomorphism classes of line bundles
on X. Here a curve is an irreducible 1-dimensional subvariety.

Definition 4.1. — A divisor on X is a formal linear combination of curves C = ∑ aiCi with ai ∈ Z.
A 1-cycle on X is a formal linear combination of curves C = ∑ biCi with bi ∈ R. A 1-cycle is effective
if bi ≥ 0 for all i. Extending the pairing Pic(X) × {divisors} → Z, (L, D) 7→ L · D = deg(L|D)

by linearity, we obtain a pairing Pic(X) × {1-cycles} → R. Two 1-cycles C, C′ are called numerically
equivalent if L · C = L · C′ for all L ∈ Pic(X). We write C ≡ C′. The numerical equivalence class of a
1-cycle C is denoted by [C]. The space of 1-cycles modulo numerical equivalence is a real vector space
denoted by N1(X). Note that N1(X) is finite-dimensional. A line bundle L is called nef if L · C ≥ 0 for
all curves C. We set

NE(X) = {∑ ai[Ci] | Ci ⊂ X irreducible curve, 0 ≤ ai ∈ R} ⊂ N1(X).

The closure NE(X) of NE(X) in N1(X) is called Kleiman-Mori cone or cone of curves. For a line bundle
L, we write NE(X)L≥0 = {[C] ∈ N1(X) | L · C ≥ 0} ∩ NE(X). Analogously, we define NE(X)L≤0,
NE(X)L>0, and NE(X)L<0.

Using this notation we phrase Kleiman’s ampleness criterion (cf. Theorem 1.18 in [KM98]) as fol-
lows: A line bundle L on X is ample if and only if NE(X)L>0 = NE(X)\{0}.

Definition 4.2. — A subset N ⊂ V of a finite-dimensional real vector space V is called cone if 0 ∈ N
and N is closed under multiplication by positive real numbers. A subcone M ⊂ N is called extremal
if u, v ∈ N satisfy u, v ∈ M whenever u + v ∈ M. An extremal subcone is also referred to as an
extremal face. A 1-dimensional extremal face is called extremal ray. For subsets A, B ⊂ V we define
A + B := {a + b | a ∈ A, b ∈ B}.

The cone of curves NE(X) is a convex cone in N1(X) and the following cone theorem, stated here
only for surfaces, describes its geometry (cf. Theorem 1.24 in [KM98]).

Theorem 4.3. — Let X be a smooth projective surface and let KX denote the canonical line bundle on X. There
are countably many rational curves Ci ∈ X such that 0 < −KX · Ci ≤ dim(X) + 1 and

NE(X) = NE(X)KX≥0 + ∑
i

R≥0[Ci].

For any ε > 0 and any ample line bundle L

NE(X) = NE(X)(KX+εL)≥0 + ∑
finite

R≥0[Ci].



FINITE SYMMETRY GROUPS IN COMPLEX GEOMETRY 11

4.2. Surfaces with group action and the cone of invariant curves. — Let X be a smooth projective
surface and let G ⊂ Aut(X) be a group of holomorphic transformations of X. For g ∈ G and an
irreducible curve Ci we denote by gCi the image of Ci under g. For a 1-cycle C = ∑ aiCi we define gC =
∑ ai(gCi). This defines a G-action on the space of 1-cycles. Since two 1-cycles C1, C2 are numerically
equivalent if and only if gC1 ≡ gC2 for any g ∈ G, we can define a G-action on N1(X) by setting
g[C] := [gC] and extending by linearity. We write N1(X)G = {[C] ∈ N1(X) | [C] = [gC] for all g ∈ G},
the set of invariant 1-cycles modulo numerical equivalence. This space is a linear subspace of N1(X).
The cone NE(X) is a G-invariant set and so is its closure NE(X). The subset of invariant elements in
NE(X) is denoted by NE(X)G.

Remark 4.4. — NE(X)G = NE(X) ∩ N1(X)G = NE(X) ∩ N1(X)G.

The subcone NE(X)G of NE(X) inherits the geometric properties of NE(X) established by the cone
theorem. Note however that the extremal rays of NE(X)G, which we refer to as G-extremal rays, are in
general neither extremal in NE(X) (cf. Figure 2) nor generated by classes of curves but by classes of
1-cycles.
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KX < 0

KX > 0

(a) The cone of curves
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N1(X)G

G-extremal ray

KX < 0

KX > 0

(b) The cone of curves and the invariant subspace N1(X)G .
Their intersection NE(X)G has a new extremal ray.

FIGURE 2. The extremal rays of NE(X)G are not extremal in NE(X)

Lemma 4.5. — Let G be a finite group and let R be a G-extremal ray with KX · R < 0. Then there exists a
rational curve C0 such that R is generated by the class of the 1-cycle C = ∑g∈G gC0.

Proof. — Consider a G-extremal ray R = R≥0[E]. By the cone theorem (Theorem 4.3) [E] ∈ NE(X)G ⊂
NE(X) can be written as [E] = [∑i aiCi] + [F], where KX · F ≥ 0, ai ≥ 0 and Ci are rational curves.
Let |G| denote the order of G and let [GF] = G[F] = ∑g∈G g[F]. Since g[E] = [E] for all g ∈ G we can
write

|G|[E] = ∑
g∈G

g[E] = ∑
g∈G

([∑
i

aigCi] + g[F]) = ∑
i

aiG[Ci] + G[F].

The element [∑ ai(GCi)] + [GF] of the G-extremal ray R≥0[E] is decomposed as the sum of two ele-
ments in NE(X)G. Since R is extremal in NE(X)G both must lie in R = R≥0[E] . Consider [GF] ∈ R.
Since g∗KX ≡ KX for all g ∈ G, we obtain

KX · (GF) = ∑
g∈G

KX · (gF) = ∑
g∈G

(g∗KX) · F = |G|KX · F ≥ 0.
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As KX · R < 0 by assumption, this implies [F] = 0 and R≥0[E] = R≥0[∑ ai(GCi)]. Again using the
fact that R is extremal in NE(X)G, we conclude that each summand of [∑ ai(GCi)] must be contained
in R = R≥0[E] and the extremal ray R≥0[E] is therefore generated by [GCi] for some Ci chosen such
that [GCi] 6= 0. This completes the proof of the lemma.

4.3. The contraction theorem and minimal models of surfaces. — In this subsection, we state the
contraction theorem for smooth projective surfaces. The proof of this theorem can be found e.g. in
[KM98] and needs to be modified slightly in order to give an equivariant contraction theorem in the
next subsection.

Definition 4.6. — Let X be a smooth projective surface and let F ⊂ NE(X) be an extremal face. A
morphism contF : X → Z is called the contraction of F if

- (contF)∗OX = OZ and
- contF(C) = {point} for an irreducible curve C ⊂ X if and only if [C] ∈ F.

The following result is known as the contraction theorem (cf. Theorem 1.28 in [KM98]).

Theorem 4.7. — Let X be a smooth projective surface and R ⊂ NE(X) an extremal ray such that KX · R < 0.
Then the contraction morphism contR : X → Z exists and is one of the following types:

1. Z is a smooth surface and X is obtained from Z by blowing up a point.
2. Z is a smooth curve and contR : X → Z is a minimal ruled surface over Z.
3. Z is a point and K−1

X is ample.

The contraction theorem leads to a minimal model program for surfaces: Starting from X, if KX is
not nef, i.e, there exists an irreducible curve C such that KX ·C < 0, then NE(X)KX<0 is nonempty and
there exists an extremal ray R which can be contracted. The contraction morphisms either gives a new
surface Z (in case 1) or provides a structure theorem for X which is then either a minimal ruled surface
over a smooth curve (case 2) or isomorphic to P

2 (case 3). Note that the contraction theorem as stated
above only implies K−1

X ample in case 3. It can be shown that X is in fact P2. This is omitted here since
this statement does not transfer to the equivariant setup. In case 1, we can repeat the procedure if KZ
is not nef. Since the Picard number drops with each blow down, this process terminates after a finite
number of steps. The surface obtained from X at the end of this program is called a minimal model of
X.

Remark 4.8. — Let E be a (-1)-curve on X and C be any irreducible curve on X. Then E · C < 0
if and only if C = E. It follows that NE(X) = span(R≥0[E], NE(X)E≥0). Now E2 = −1 implies
E 6∈ NE(X)E≥0 and E is seen to generate an extremal ray in NE(X). By adjunction, KX · E < 0. The
contraction of the extremal ray R = R≥0[E] is precisely the contraction of the (-1)-curve E. Conversely,
each extremal contraction of type 1 above is the contraction of a (-1)-curve generating the extremal ray
R.

4.4. Equivariant contraction theorem and G-minimal models. — In this subsection we prove an
equivariant contraction theorem for smooth projective surfaces with finite groups of symmetries.
Most steps in the proof are carried out in analogy to the proof of the standard contraction theorem.

Definition 4.9. — Let G be a finite group, let X be a smooth projective surface with G-action and let
R ⊂ NE(X)G be G-extremal ray. A morphism contG

R : X → Z is called the G-equivariant contraction of
R if

- contG
R is equivariant with respect to G

- (contG
R)∗OX = OZ and

- contR(C) = {point} for an irreducible curve C ⊂ X if and only if [GC] ∈ R.
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Theorem 4.10. — Let G be a finite group, let X be a smooth projective surface with G-action and let R be a
G-extremal ray with KX · R < 0. Then R can be spanned by the class of C = ∑g∈G gC0 for a rational curve

C0, the equivariant contraction morphism contG
R : X → Z exists and is one of the following three types:

1. C2
< 0 and gC0 are smooth disjoint (-1)-curves. The map contG

R : X → Z is the equivariant blow down
of the disjoint union

⋃

g∈G gC0.

2. C2 = 0 and any connected component of C is either irreducible or the union of two (-1)-curves intersecting
transversally at a single point. The map contG

R : X → Z defines an equivariant conic bundle over a
smooth curve .

3. C2
> 0 , N1(X)G = R and K−1

X is ample, i.e., X is a Del Pezzo surface. The map contG
R : X → Z is

constant, Z is a point.

Proof. — Let R be a G-extremal ray with KX · R < 0. By Lemma 4.5 the ray R can be spanned by a
1-cycle of the form C = GC0 for a rational curve C0. Let n = |GC0| and write C = ∑

n
i=1 Ci where

the Ci correspond to gC0 for some g ∈ G. We distinguish three cases according to the sign of the
self-intersection of C.

The case C2
< 0. — We write 0 > C2 = ∑i C2

i + ∑i 6=j Ci · Cj. Since Ci are effective curves we know
Ci ·Cj ≥ 0 for all i 6= j. Since all curves Ci have the same negative self-intersection and by assumption,
KX · C = ∑i KX · Ci = n(KX · Ci) < 0 the adjunction formula reads 2g(Ci) − 2 = −2 = KX · Ci + C2

i .
Consequently, KX · Ci = −1 and C2

i = −1. It remains to show that all Ci are disjoint. We assume
the contrary and without loss of generality C1 ∩ C2 6= ∅. Now gC1 ∩ gC2 6= ∅ for all g ∈ G and
∑i 6=j Ci · Cj ≥ n. This is however contrary to 0 > C2 = ∑i C2

i + ∑i 6=j Ci · Cj = −n + ∑i 6=j Ci · Cj.
We let contG

R : X → Z be the blow-down of
⋃n

i=1 Ci which is equivariant with respect to the induced
action on Z and fulfills (contG

R)∗OX = OZ. If D is an irreducible curve such that contG
R(D) = {point},

then D = gC0 for some g ∈ G. In particular, GD = GC0 = λC and [GD] ∈ R. Conversely, if [GD] ∈ R
for some irreducible curve D, then [GD] = λ[C] for some λ ∈ R≥0. Now (GD) · C = λC2

< 0. It
follows that D is an irreducible component of C.

The case C2
> 0. — This case is treated in precisely the same way as the corresponding case in the

standard contraction theorem. Our aim is to show that [C] is in the interior of NE(X)G. This is a
consequence of the following lemma (Corollary 1.21 in [KM98]).

Lemma 4.11. — Let X be a projective surface and let L be an ample line bundle on X. Then the set Q =

{[E] ∈ N1(X) | E2
> 0} has two connected components Q+ = {[E] ∈ Q |L · E > 0} and Q− = {[E] ∈

Q |L · E < 0}. Moreover, Q+ ⊂ NE(X).

This lemma follows from the Hodge Index Theorem and the fact that E2
> 0 implies that either E

or −E is effective.
We consider an effective cycle C = ∑ Ci with C2

> 0. By the above lemma, [C] is contained in
Q+ which is an open subset of N1(X) contained in NE(X). In particular, [C] lies in the interior of
NE(X). The G-extremal ray R = R≥0[C] can only lie in the interior if NE(X)G = R. By assumption
KX · R < 0, hence KX is negative on NE(X)G\{0} and therefore on NE(X)\{0}. The anticanonical
bundle K−1

X is ample by Kleiman ampleness criterion and X is a Del Pezzo surface.
We can define a constant map contG

R mapping X to a point Z which is the equivariant contraction
of R = NE(X)G in the sense of Definition 4.9.

The case C2 = 0. — Our aim is to show that for some m > 0 the linear system |mC| defines a conic
bundle structure on X. The argument is seperated into a number of lemmata. For the convenience
of the reader, we include also the proofs of well-known preparatory lemmata which do not involve
group actions.
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Lemma 4.12. — H2(X,O(mC)) = 0 for m ≫ 0.

Proof. — By Serre’s duality, h2(X,O(mC)) = h0(O(−mC) ⊗KX). Since C is an effective divisor on
X, it follows that h0(O(−mC) ⊗KX) = 0 for m ≫ 0.

Lemma 4.13. — For m ≫ 0 the dimension h0(X,O(mC)) of H0(X,O(mC)) is at least two.

Proof. — Let m be such that h2(X,O(mC)) = 0. For a line bundle L on X we denote by χ(L) =

∑i(−1)ihi(X, L) the Euler characteristic of L. Using the theorem of Riemann-Roch we obtain

h0(X,O(mC)) ≥ h0(X,O(mC))− h1(X,O(mC))

= h0(X,O(mC))− h1(X,O(mC)) + h2(X,O(mC))

= χ(O(mC))

= χ(O) +
1
2
(O(mC)⊗K−1

X ) · (mC)

C2=0
= χ(O) − m

2
KX · C.

Now KXC < 0 implies the desired behaviour of h0(X,O(mC)).

For a divisor D on X we denote by |D| the complete linear system of D, i.e., the space of all effective
divisors linearly equivalent to D. A point p ∈ X is called a base point of |D| if p ∈ support(C) for all
C ∈ |D|.

Lemma 4.14. — There exists m′
> 0 such that the linear system |m′C| is base point free.

Proof. — Let m be chosen such that h0(X,O(mC)) ≥ 2. We denote by B the fixed part of the linear
system |mC|, i.e., the biggest divisor B such that each D ∈ |mC| can be decomposed as D = B + ED for
some effective divisor ED. The support of B is the union of all positive dimensional components of the
set of base points of |mC|. We assume that B is nonempty. The choice of m guarantees that |mC| is not
fixed, i.e., there exists D ∈ |mC| with D 6= B. Since supp(B) ⊂ {s = 0} for all s ∈ Γ(X,O(mC)), each
irreducible component of supp(B) is an irreducible component of C and G-invariance of C implies
G-invariance of the fixed part of |mC|. It follows that B = m0C for some m0 < m. Decomposing
|mC| into the fixed part B = m0C and the remaining free part |(m − m0)C| shows that some multiple
|m′C| for m′

> 0 has no fixed components. The linear system |m′C| has no isolated base points since
these would correspond to isolated points of intersection of divisors linearly equivalent to m′C. Such
intersections are excluded by C2 = 0.

We consider the base point free linear system |m′C| and the associated morphism ϕ = ϕ|m′C| : X →
ϕ(X) ⊂ P(Γ(X,O(m′C))∗). Since C is G-invariant, it follows that ϕ is an equivariant map with respect
to action of G on P(Γ(X,O(m′C))∗) induced by pullback of sections.

Let z be a linear hyperplane in Γ(X,O(m′C)). By definition, ϕ−1(z) =
⋂

s∈z(s)0 where (s)0 denotes
the zero set of the section s. Since (s)0 is linearly equivalent to m′C and C2 = 0, the intersection
⋂

s∈z(s)0 does not consist of isolated points but all (s)0 with s ∈ z have a common component. In
particular, each fiber is one-dimensional. Let f : X → Z be the Stein factorization of ϕ : X → ϕ(X).
The space Z is normal and 1-dimensional, i.e., Z is a Riemann surface. Note that there is a G-action
on Z such that f is equivariant.

Lemma 4.15. — The map f : X → Z defines an equivariant conic bundle, i.e., an equivariant fibration with
general fiber isomorphic to P1.

Proof. — Let F be a smooth fiber of f . By construction, F is a component of (s)0 for some element
s ∈ Γ(X,O(m′C)). We can find an effective 1-cycle D such that (s)0 = F + D. Averaging over the
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group G we obtain ∑g∈G gF + ∑g∈G gD = ∑g∈G g(s)0. Recalling (s)0 ∼ m′C and [C] ∈ NE(X)G we
deduce

[ ∑
g∈G

gF + ∑
g∈G

gD] = [ ∑
g∈G

g(s)0] = m′[ ∑
g∈G

gC] = m|G|[C].

This shows that [∑g∈G gF + ∑g∈G gD] in contained in the G-extremal ray generated by [C]. By the
definition of extremality [∑g∈G gF] = λ[C] ∈ R

>0[C] and therefore KX · (∑g∈G gF) < 0. This implies
KX · F < 0.

In order to determine the self-intersection of F, we first observe (∑g∈G gF)2 = λ2C2 = 0. Since F is
a fiber of a G-equivariant fibration, we know that ∑g∈G gF = kF + kF1 + · · ·+ kFl where F, F1, . . . Fl are
distinct fibers of f and k ∈ N>0. Now 0 = (∑g∈G gF)2 = (l + 1)k2F2 shows F2 = 0. The adjunction
formula implies g(F) = 0 and F is isomorphic to P1.

The map contG
R := f is equivariant and fulfills f∗OX = OZ by Stein’s factorization theorem. Let D

be an irreducible curve in X such that f maps D to a point, i.e., D is contained in a fiber of f . Going
through the same arguments as above one checks that [GD] ∈ R. Conversely, if D is an irreducible
curve in X such that [GD] ∈ R it follows that (GD) ·C = 0. If D is not contracted by f , then f (D) = Z
and D meets every fiber of f . In particular, D · C > 0, a contradiction. It follows that D must be
contracted by f .

This completes the proof of the equivariant contraction theorem.

A conic is a divisor defined by a homogeneous polynomial of degree two in P2. It is therefore either
a smooth curve of degree two and multiplicity one, two projective lines of multiplicity one which
intersect transversally in one point, or a single line of multiplicity two. A smooth conic is isomorphic
to P1. A conic bundle X → Z is, as the name suggests, a “bundle” of conics. Its possible degenerations
correspond precisely to the degenerations of conics.

The singular fibers of the conic bundle in case (2) of the theorem above are characterized by the
following lemma stating that only conic degenerations of the first kind may occur.

Lemma 4.16. — Let R = R
>0[C] be a KX-negative G-extremal ray with C2 = 0. Let contG

R := f : X → Z
be the equivariant contraction of R defining a conic bundle structure on X. Then every singular fiber of f is a
union of two (-1)-curves intersecting transversally.

Proof. — Let F be a singular fiber of f . The same argument as in the previous lemma yields that
KX · F < 0 and F2 = 0. Since F is connected, the arithmetic genus of F is zero and KX · F = −2. The
assumption on F being singular implies that F must be reducible. Let F = ∑ Fi be the decomposition
into irreducible components and note that g(Fi) = 0 for all i.

We apply the same argument as above to the component Fi of F: after averaging over G we deduce
that GFi is in the G-extremal ray R and KX · Fi < 0. Since −2 = KX · F = ∑KX · Fi, we may conclude
that F = F1 + F2 and F2

i = −1. The desired result follows.

It should be remarked that G-equivariant conic bundles with or without singular fibers can be studied
by considering the G-action on the base and the actions of the isotropy groups of points of the base on
the corresponding fibers.

4.5. G-minimal models of surfaces. — Let X be a surface with an action of a finite group G such that
KX is not nef, i.e., NE(X)KX<0 is nonempty.

Lemma 4.17. — There exists a G-extremal ray R such that KX · R < 0.

Proof. — Let [C] ∈ NE(X)KX<0 6= ∅ and consider [GC] ∈ NE(X)G. The G-orbit or G-average of a
KX-negative effective curve is again KX-negative. It follows that NE(X)G

KX<0 is nonempty. Let L be a
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G-invariant ample line bundle on X. By the cone theorem, for any ε > 0

(1) NE(X)G = NE(X)G
(KX+εL)≥0 + ∑

finite
R≥0G[Ci].

with KX · Ci < 0 for all i. Since NE(X)G
KX<0 is nonempty, we may choose ε > 0 such that NE(X)G 6=

NE(X)G
(KX+εL)≥0. If the ray R1 = R≥0G[C1] is not extremal in NE(X)G, then its generator G[C1]

can be decomposed as a sum of elements of NE(X)G not contained in R1. It follows that the ray R1

is superfluous in the formula (1). Since NE(X)G 6= NE(X)G
(KX+εL)≥0 by assumption, we may not

remove all rays Ri from the formula and at least one ray Ri = R≥0G[Ci] is G-extremal.

We apply the equivariant contraction theorem to X: In case (1) we obtain a new surface Z from X by
blowing down a G-orbit of disjoint (-1)-curves. There is a canonically defined holomorphic G-action
on Z such that the blow-down is equivariant. If KZ is not nef, we repeat the procedure which will
stop after a finite number of steps. In case (2) we obtain an equivariant conic bundle structure on X.
In case (3) we conclude that X is a Del Pezzo surface with G-action. We call the G-surface obtained
from X at the end of this procedure a G-minimal model of X.

As a special case, we consider a rational surface X with G-action. Since the canonical bundle KX of
a rational surface X is never nef, a G-minimal model of X is an equivariant conic bundle over a smooth
rational curve Z or a Del Pezzo surface with G-action. This proves the well-known classification of
G-minimal models of rational surfaces (cf. [Man67], [Isk80]).

Although this classification does classically not rely on Mori theory, the proof given above is based
on Mori’s approach. We therefore refer to an equivariant reduction Y → Ymin as an equivariant Mori
reduction.

5. Del Pezzo surfaces

The equivariant minimal model program for surfaces presents us with the task of studying auto-
morphism groups of Del Pezzo surfaces.

A Del Pezzo surfaces is defined as a connected compact complex surface whose anticanonical line
bundle is ample. Using Kleiman’s ampleness criterion we have identified the class of Del Pezzo sur-
faces as a class of G-minimal surfaces. Here we wish to replace this very abstract notion of ampleness
by a definition involving the notions of bundles and sections.

We let X be a connected compact complex surface, TX the holomorphic tangent bundle, T∗
X the con-

tangent bundle, and KX := Λ2T∗
X its top exterior power, the canonical line bundle. The anticanonical

bundle is given by K−1
X = Λ2TX .

In this terminology the space Vk, which we have discussed in a naive fashion up to this point, is
the space of sections Γ(X,Kk

X). The requirement that K−1
X is ample means that some power (K−1

X )k =:
−kKX has many sections. More precisely, one requires that for some k the map X → P(Γ(X,−kKX)∗)
is a holomorphic embedding.

Using wedge-products of holomorphic vector fields one easily shows that the anticanonical bun-
dles of P2 and P1 × P1 are ample. In order to characterize the remaining Del Pezzo surfaces it is
convenient to introduce the degree of a Del Pezzo surface as the self-intersection number d of an anti-
canonical divisor. For P2 it is simple to compute this degree: K−1

P2
is the 3rd power H3 of the hyper-

plane bundle and its sections are homogeneous polynomials of degree three. By Bezout’s theorem,
the intersection of two such cubics consists of nine points counted with multiplicity and the degree d
of the Del Pezzo surface P2 equals d = 9. The possible degrees of Del Pezzo surfaces range from one
to nine.

The following theorem (cf. Theorem 24.4 in [Man74]) gives a classification of Del Pezzo surfaces
according to their degree.
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Theorem 5.1. — Let Z be a Del Pezzo surface of degree d.

- If d = 9, then Z is isomorphic to P2.
- If d = 8, then Z is isomorphic to either P1 × P1 or the blow-up of P2 in one point.
- If 1 ≤ d ≤ 7, then Z is isomorphic to the blow-up of P2 in 9 − d points in general position, i.e., no three

points lie on one line and no six points lie on one conic.

Using the theorem above we may identify a Del Pezzo surface X 6= P1 × P1 with the blow up
X{p1,...,pm} of P2 at each point of {p1, . . . , pm} for m ∈ {0, . . . , 8}. We carry the points p1, . . . , pm in the
notation, because for m ≥ 5 the complex structure really does depend on the points which are blown
up. For example, if m = 4, using automorphisms of P2 we can move the points to a standard location,
e.g., [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]. Of course such a normal form is even easier to achieve
if m < 4. On the other hand, if m > 4, then we put p1, . . . , p4 in this normal form, but p5, . . . , pm are
allowed to vary. As these points vary the complex structure of the Del Pezzo surface varies. So for
m ≥ 5 Del Pezzo surfaces come in families.

5.1. Automorphism groups of Del Pezzo surfaces. — Let us now turn to a study of automorphism
groups of Del Pezzo surfaces. In analogy to the case of surfaces of general type we begin with the
following first remark.

Proposition 5.2. — The automorphism group Aut(X) of a Del Pezzo surface is an algebraic group acting
algebraically on X.

Proof. — For k sufficiently large the map X → P(Γ(X,−kKX)∗) is an Aut(X)-equivariant, holomor-
phic embedding. We denote its image by Z. The group Aut(X) can be realized as the stabilizer of Z
in the automorphism group of the ambient projective space, which is itself an algebraic group. By the
theorem of Chow the space Z is an algebraic subvariety. Since the stabilizer of an algebraic subvariety
is an algebraic group acting algebraically, the result follows.

There are Del Pezzo surfaces with positive-dimensional automorphism groups, e.g., P2 and P1 × P1
are even homogeneous. Since the stabilizer in Aut(P2) of {p1, . . . , pm} has an open orbit for m ≤ 3,
the following shows in particular that the Del Pezzo surfaces of degree at least six are almost homo-
geneous, i.e., their automorphism groups have an open orbit.

Proposition 5.3. — If π : X{p1,...,pm} → P2 is the defining blow up of the Del Pezzo surface X{p1,...,pm}
and g ∈ Aut(P2) stabilizes the set {p1, . . . , pm}, then there exists a uniquely defined automorphism ĝ ∈
Aut(X{p1,...,pm}) so that g ◦ π = π ◦ ĝ.

Proof. — If Ej is the π-preimage of pj, j = 1, . . . , m, then there exists a unique automorphism ĝ of
X{p1,...,pm} \

⋃

j Ej with the desired property. Thus it is a matter of extending ĝ to the full Del Pezzo
surface. It is enough to show that it extends across E = E1. For notational simplicity we may assume
that gp1 = p1 =: p. Since points of E correspond to tangent lines through π(E) = p and gp =

p, it follows that ĝ extends continuously across E. The fact that this extension is holomorphic is
guaranteed by Riemann’s Hebbarkeitssatz. It is an automorphism since g−1 can likewise be lifted to
X{p1,...,pm}.

Furthermore, the considerations in this section will benefit from the following converse of the above
statement.

Proposition 5.4. — The defining projection π : X{p1,...,pm} → P2 is equivariant with respect to the connected
component Aut(X{p1,...,pm})

◦ containing the identity.

Proof. — Let gt be a a 1-parameter subgroup in Aut(X{p1,...,pm}) and let E := Ej be the π-preimage of
p := pj. Given a small neighborhood U of p, if t is sufficiently small, then π(gtE) is contained in U.
Since π is a proper holomorphic map, it follows from Remmert’s mapping theorem that π(gtE) is a
compact analytic subset of U. If U is sufficiently small, its only analytic subsets are discrete. Hence,
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π(gtE) is a single point and gtE = E. As a result every 1-parameter subgroup of Aut(X{p1,...,pm}) sta-
bilizes every Ej and consequently the same is true for the full connected component Aut(X{p1,...,pm})

◦.
Thus every element of Aut(X{p1,...,pm})

◦ defines a map of P2 fixing {p1, . . . , pm} which is holomorphic
outside {p1, . . . , pm} and the desired result follows from Riemann’s Hebbarkeitssatz.

Corollary 5.5. — If m ≥ 4, then the automorphism group of the Del Pezzo surface X{p1,...,pm} is finite.

Detailed lists of the automorphism groups Del Pezzo surfaces can be found in Dolgachev’s book
([Dol08]). For the convenience of the reader we present a brief road map here.

The projective plane. — The action of SL3(C) on C3 defines a surjective homomorphism SL3(C) →
Aut(P2) and Aut(P2) can be identified with the quotient SL3(C)/C3. Here C3 is embedded as the
center of SL3(C) which consists of matrices of the form λId with λ3 = 1. In general, the action of a
finite group G on P2 is given by a 3-dimensional linear representation of a nontrivial central extension
of G. An interesting example is provided by the Valentiner group defining an action of the alternating
group A6 on P2.

The space P1 ×P1. — The group S := Aut(P1)×Aut(P1) acts on the Del Pezzo surface X = P1 × P1
in an obvious fashion. In addition, Aut(X) contains the holomorphic involution σ which exchanges
the factors. The group S coincides with the subgroup of all h ∈ Aut(X) such that both projections
are h-equivariant. At the level of homology classes Fi of fibers, hFi = Fi for each h ∈ S. In fact S
can be identified with the subgroup of elements of Aut(X) having this property. For an arbitrary
g ∈ Aut(X), since (gFi)

2 = 0, either gFi = Fi for i = 1, 2 or gF1 = F2. So either g ∈ S or σ ◦ g ∈ S and
Aut(P1 × P1) = S ⋊ 〈σ〉.

In the following we denote by Xd a Del Pezzo surface of degree d which arises as the blow up of
P2 in 9 − d points. We have already pointed out that any Del Pezzo surface except P1 × P1 is of this
form.

The simple blow up of P2. — The surface X8 is the simple blow up Blp(P2). Since the exceptional
curve E of this blow up is the unique (-1)-curve in X8, it follows that every automorphism of X8
stabilizes E and Aut(X8) can be identified with the isotropy group at p in Aut(P2)

The blow up of P2 in two points. — Let p1, p2 ∈ P2 be the two points which are blown up to obtain
X7. Note that there exists an automorphism σ of P2, more precisely a holomorphic involution, which
exchanges p1 and p2, and note that by the arguments given above it can be lifted to an automorphism
of X2. Denoting this lift by σ̂, it follows that Aut(X2) can be identified with the semidirect product
T ⋊ 〈σ̂〉 where T is the subgroup of Aut(P2) consisting of transformations fixing both p1 and p2.

The three-point blow up of P2. — Let X6 be the Del Pezzo surface defined by blowing up the three
points p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], and p3 = [0 : 0 : 1]. As we know, the connected component of
the identity in Aut(X6) is the connected component of the stabilizer of {p1, p2, p3}. This is the group
of diagonal matrices in SL3(C) modulo the center of SL3(C) and is therefore isomorphic to (C∗)2. The
full permutation group of {p1, p2, p3} can also be realized in Aut(P2). We see that the subgroup of
automorphisms of X6 which are equivariant with respect to the defining map X6 → P2 is isomorphic
to (C∗)2

⋊ S3.
The proper transform L̂ij in X6 of the projective line Lij joining pi and pj is a (-1)-curve. This is

due to the fact that L2
ij = 1 and Lij contains exactly two points which are blown up. One can show

that the only (-1)-curves in X6 are the exceptional curves Ei obtained from blowing up the points pi

and the “lines” L̂ij. The graph of this configuration of curves is a hexagon H. Restriction yields a
homomorphism R : Aut(X6) → I(H), where I(H) ∼= D12 is the group of rigid motions of the hexagon
and the kernel of R is the connected component Aut(X6)

◦ ∼= (C
∗)2 discussed above.

We have already seen that the permutation group S3 is contained in the image of R and will now
show that there is an additional involution in this image so that in fact R is surjective. In order to
determine this involution it is useful to regard X6 as the blow up of P1 × P1 in the antidiagonal corner
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points c1 = ([1 : 0], [0 : 1]) and c2 = ([0 : 1], [1 : 0]). If one draws P1 × P1 as a square, then the
hexagon H consists of the (-1)-curves arising from blowing up c1 and c2 together with the proper
transforms of the four edges of the square. Using elementary intersection arguments one can show
that by blowing down either of the two configurations of three disjoint curves in this hexagon one
obtains P2 with three points in general position. Hence, this blow up is indeed X6 and the additional
involution discussed above is defined by lifting the involution of P1 ×P1 which exchanges the factors.
Thus we have shown that Aut(X6) is naturally isomorphic to (C∗)2

⋊ I(H) = (C∗)2
⋊ D12.

The Del Pezzo surface of degree five. — We may define X5 by blowing up p4 := [1 : 1 : 1] and p1,
p2, p3 as above. Defining L̂ij as before we obtain a configuration of ten (-1)-curves which in fact is the
entire collection of (-1)-curves in X5. The dual graph of this configuration is known as the Petersen
graph P.

FIGURE 3. The Petersen graph

A point in the graph represents a (-1)-curve and two such curves intersect (transversally) if and only
if the corresponding points in the graph are connected by a line segment. The connected component
of Aut(X5) is trivial and therefore the restriction map R : Aut(X5) → I(P) realizes the automorphism
group of X5 as a subgroup of the graph automorphism group I(P) ∼= S5.

There are various collections of four disjoint curves in P which can be blown down to obtain a copy
of P2 with four distinguished points. By Proposition 5.3 their permutation group S4 can be identified
with a subgroup of Aut(X5). For two configurations of disjoint curves in P which have one curve
in common we observe that the two corresponding copies of S4 do not define the same subgroup of
Aut(X5). Thus together they generate a subgroup of S5 properly containing S4. Since the index of S4
in S5 is prime, it follows that they generate the full group S5. We have shown Aut(X5) ∼= I(P) ∼= S5.

In the remaining cases we use a number of basic general facts about Del Pezzo surfaces. For their
proofs, we refer the reader, e.g., to [Man74] and [Dol08]. Here we present outlines of the arguments
required to identify Aut(Xd) for d ≤ 4.

Five-point blow ups of P2. — We define a surface X4 by blowing up the four points p1, . . . , p4 as
above and in addition a fifth point p5. As p5 moves so does the complex structure of X4. Thus, it is to
be expected that the automorphisms group of X4 depend on the position of p5.

In the following, we strongly use the fact that X4 is embedded by K−1
X in P4 as a surface which is the

transversal intersection of two nondegenerate quadric 3-folds. Choosing coordinates appropriately
we may assume that these quadrics are defined by Q1 := ∑ z2

j and Q2 := ∑ ajz
2
j with ai 6= aj for

i 6= j. Since the embedding in P4 is Aut(X4)-equivariant, the group Aut(X4) can be identified with
the stabilizer S in Aut(P4) of the subspace V := Span(Q1, Q2) in the space of all quadratic forms.
Computing in SL5(C) one sees that S is the normalizer of the group of diagonal matrices T modulo
the center C5 of SL5(C). This is the group T ⋊ S5 where S5 is acting by permuting the coordinate
functions z0, . . . , z4.

The meromorphic map P4 → P(V) defined by Q1, Q2 is S-equivariant and therefore defines a
homomorphism S → S/I →֒ Aut(P1). The kernel I consists of those transformations which act on
Q1 and Q2 by the same character. Since ai 6= aj for i 6= j, it follows that I ∼= C4

2 is generated by the
elements of T of the form Diag(±1, . . . ,±1). Since S5 normalizes this group, we see that S = C4

2 ⋊ S/I,
where S/I is on the one hand a subgroup of S5 and on the other a subgroup of Aut(P1). Using this
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information one can directly compute all possibilities for Aut(X4), namely S/I ∈ {C2, C4, S3, D10}.
(see § 10.2.2 in [Dol08]).

Cubic surfaces. — The case of Del Pezzo surfaces of degree three is conceptually simple, but com-
putationally complicated. In this case K−1

X is still very ample and embeds X3 as a cubic surface in P3,
i.e., as the zero-set of a cubic polynomial P3. Since this embedding is Aut(X3)-equivariant, Aut(X3)
can be identified with the stabilizer in Aut(P3) of the line C · P3 in the space of all cubics. Conse-
quently, the classification of automorphism groups of Del Pezzo surfaces of degree three amounts to
the determination of the invariants of actions of the finite subgroups of SL4(C) on the space of cubic
homogeneous polynomials. This is carried out in [Dol08] where the results are presented in Table
10.3.

Double covers ramified over a quartic. — A Del Pezzo surface X2 of degree two, can be realized as
a 2:1 cover ramified over a smooth curve C of degree four by the anticanonical map ϕK−1

X
: X2 → P2.

Conversely, if X → P2 is a 2:1 cover ramified over a smooth quartic curve, then X is a Del Pezzo
surface of degree two.

A smooth quartic curve C is abstractly a Riemann surface of genus three which is embedded as a
quartic curve in P2 by its canonical bundle. This embedding is equivariant and consequently Aut(C)
is the stabilizer of C in Aut(P2). Furthermore, Aut(C) is acting canonically on the bundle space H of
the hyperplane section bundle because its restriction to C is the canonical line bundle.

The 2:1 cover X2 of P2 ramified along C is constructed in the bundle space H2 where Aut(C)
also acts. So on the one hand, the equivariant covering map X2 → P2 defines a homomorphism of
Aut(X2) onto a subgroup of Aut(C), and on the other hand, Aut(C) lifts to a subgroup of Aut(X2).
Since the kernel of the surjective homomorphism Aut(X2) → Aut(C) is generated by the covering
transformation, it follows that we have a canonical splitting Aut(X2) = Aut(C) × C2. Since C is
equivariantly embedded in P2 and Aut(C) is acting as a subgroup of SL3(C), the classification of the
automorphism groups of Del Pezzo surfaces of degree two results from the classification of the finite
subgroups of SL3(C) ([Bli17, YY93]) and the invariant theory of their representations on the space of
homogeneous polynomials of degree four (see Table 10.4 in [Dol08]).

Del Pezzo surfaces of degree one. — In this case the anticanonical map is a meromorphic map
ϕK−1

X
: X1 → P1 with exactly one point p of indeterminacy, a so-called base point. Thus p is fixed

by Aut(X1) and, since it is a finite group and in particular compact, the linearization of Aut(X1)
on TpX1 is a faithful representation. This already places a strong limitation on the group Aut(X1).
Furthermore, the map X1 → P3 defined by −2KX has no points of indeterminacy and realizes X1 as
a 2:1 ramified cover over a quadric cone. A study of these two maps, both of which are equivariant,
leads to a precise description of all possible automorphism groups of Del Pezzo surface of degree one
(Table 10.5 in [Dol08])

6. K3-surfaces with special symmety

In this section a setting is considered where the equivariant minimal model program has been im-
plemented to prove classification theorems for K3-surfaces with finite symmetry groups. Additional
techniques which aid in simplifying the combinatorial geometry involved in the Mori reduction are
outlined and recent results which appear in [Fra08] are sketched. Details of a concrete situation in-
volving the group A6 are given in next section.

6.1. Maximal groups. — A K3-surface X is a simply-connected compact complex surface admitting
a globally defined nowhere-vanishing holomorphic 2-form ω. A transformation g ∈ Aut(X) is said
to be symplectic if g∗ω = ω and the group of symplectic automorphisms is denoted by Autsym(X). If
χ : Aut(X) → C

∗ denotes the character defined by g∗ω = χ(g)ω, then Autsym(X) = Ker(χ). For a
finite subgroup G ⊂ Aut(X) we have the exact sequence

1 → Gsym → G → Cn → 1 ,
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where the homomorphism G → Cn is the restriction χ|G. The group G can be regarded as a coexten-
sion of Gsym by Cn. Although we restrict here to the case where G is finite, it should be underlined
that the full group Aut(X) may not be finite.

Example 6.1. — Let T1 be the 1-dimensional torus defined by the lattice 〈1, i〉Z and let T = T1 × T1 =

C2/Λ. The group Γ := SL2(Z) is contained in Aut(T) and centralizes the involution σ := −Id. Thus Γ

acts as a group of holomorphic transformations on the quotient Y := T/σ. The set of singular points
in Y consists of 16 ordinary double points. The desingularization Kum(T) → Y blows up each of
these points, replacing them by copies E of P1 with E · E = −2. The group Γ lifts to act as a group of
holomorphic transformations on the Kummer surface Kum(T). The holomorphic 2-form dz ∧ dw on T
is σ-invariant and defines a nowhere vanishing holomorphic 2-form on Kum(T) which is Γ-invariant.
Since X = Kum(T) is simply-connected, it follows that it is a K3-surface with Γ ⊂ Autsym(X).

We are interested in finite subgroups G of Aut(X) where Gsym is either large or possesses interesting
group structure and the following theorem of Mukai ([Muk88]) is of particular relevance (See [Kon98]
for an alternative proof.).

Theorem 6.2. — If Gsym is a finite group of symplectic transformations of a K3-surface X, then it is contained
in one of the groups M listed in the following table.

M |M| Structure

1 L2(7) 168 PSL2(F7) = GL3(F2)

2 A6 360 even permutations

3 S5 120 A6 ⋊ C2

4 M20 960 C4
2 ⋊ A5

5 F384 384 C4
2 ⋊ S4

6 A4,4 288 C4
2 ⋊ A3,3

7 T192 192 (Q8 ∗ Q8) ⋊ S3

8 H192 192 C4
2 ⋊ D12

9 N72 72 C2
3 ⋊ D8

10 M9 72 C2
3 ⋊ Q8

11 T48 48 Q8 ⋊ S3

For brevity we refer to the groups which are listed in this table as Mukai groups. It should be
mentioned that this result is sharp in two senses. First, given two maximal groups M1 and M2 which
are listed in this table, M1 can not be realized as a subgroup of M2 and vice versa. Secondly, given a
group M listed in the table, there exists a K3-surface X with M ⊂ Autsym(X).

6.2. K3-surfaces with antisympletic involutions. — An element σ ∈ Aut(X) of order two with
σ∗ω = −ω is called an antisymplectic involution. For various reasons K3-surfaces equipped with such
involutions are of particular interest, e.g., from the point of view of moduli spaces and associated
automorphic forms (see [Yos04]).

Our study of these surfaces was motivated by an attempt to understand the K3-surfaces which
possess finite groups G of automorphism where Gsym is large, e.g., where Gsym is maximal in the
sense of Mukai’s Theorem. In that setting there are strong restrictions on the group structure of the
coextension 1 → Gsym → G → Cn → 1 and the size of n which show that understanding the case
n = 2 is of particular importance. Thus, as a starting point, we undertook the classification project
in the case where G = Gsym × C2 and where the antisympletic involution σ which generates C2 has a
nonempty set of fixed points.
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Before turning to an outline of the main results of [Fra08] we would like to emphasize that our work
was motivated by a number very interesting works of Keum, Oguiso, Zhang (see [OZ02],[KOZ05,
KOZ07]) and of course depends on the foundational results of Nikulin ([Nik80] and Mukai ([Muk88]).

Simplifying the notation, we are interested in classifying triples (X, G, σ) where X is a K3-surface on
which G is acting as a group of symplectic automorphisms centralized by an antisymplectic involution
σ. We assume that G is acting effectively, i.e., that the only element of G which fixes every point of X is
the identity, and we wish to classify these triples up to equivariant isomorphism. The fixed point set
Fix(σ) is either empty or 1-dimensional and G acts naturally on the quotient Y := Y/σ. If Fix(X) = ∅,
then Y is an Enriques surface.

If Fix(σ) 6= ∅, the quotient Y is a smooth rational surface. Thinking in terms of the method of quo-
tients by small subgroups which was discussed in § 2.1, we have moved to a G-manifold Y of lower
Kodaira-dimension. In this case we apply the equivariant minimal model program to obtain an equiv-
ariant Mori reduction Y → Y1 → . . . → YN = Ymin. It follows that Ymin is either a Del Pezzo surface
or an equivariant conic bundle over P1. Thus, one can understand Ymin as a G-manifold, describe the
combinatorial geometry of the steps in the Mori reduction and then reconstruct the 2:1 cover X → Y.
If G is either large or has sufficiently complicated group structure, then the combinatorial geometry
simplifies and fine classification results can be proved. In this regard we now mention two results
from [Fra08].

Theorem 6.3. — Let X be a K3-surface and G be a finite group of symplectic automorphisms of X which is
centralized by an antisymplectic involution σ with R = Fix(σ) 6= ∅. Then, if |G| > 96, it follows that the
quotient Y = X/σ is a G-minimal Del Pezzo surface and R is a Riemann surface of general type.

Given our detailed knowledge of all of the surfaces Ymin and their automorphism groups, it would
in principle be possible to explicitly determine the K3-surfaces which arise in this theorem.

Although not all Mukai groups are large in the sense of this theorem, those which are not have
a structure which is sufficiently complicated to allow for a precise classification. This result can be
formulated as follows.

Theorem 6.4. — The K3-surfaces which are equipped with an effective and symplectic action of a Mukai group
G centralized by an antisymplectic involution σ with Fix(σ) 6= ∅ are classified up to equivariant equivalence
in the table below.

G |G| K3-surface X

1a L2(7) 168 {x3
1x2 + x3

2x3 + x3
3x1 + x4

4 = 0} ⊂ P3

1b L2(7) 168 Double cover of P2 branched along

{x5
1x2 + x5

3x1 + x5
2x3 − 5x2

1x2
2x2

3 = 0}
2 A6 360 Double cover of P2 branched along

{10x3
1x3

2 + 9x5
1x3 + 9x3

2x3
3 − 45x2

1x2
2x2

3 − 135x1x2x4
3 + 27x6

3 = 0}
3a S5 120 {∑

5
i=1 xi = ∑

6
i=1 x2

1 = ∑
5
i=1 x3

i = 0} ⊂ P5

3b S5 120 Double cover of P2 branched along {FS5 = 0}
9 N72 72 {x3

1 + x3
2 + x3

3 + x3
4 = x1x2 + x3x4 + x2

5 = 0} ⊂ P4

10 M9 72 Double cover of P2 branched along

{x6
1 + x6

2 + x6
3 − 10(x3

1x3
2 + x3

2x3
3 + x3

3x3
1) = 0}

11a T48 48 Double cover of P2 branched along {x1x2(x4
1 − x4

2) + x6
3 = 0}

11b T48 48 Double cover of {x0x1(x4
0 − x4

1) + x3
2 + x2

3 = 0} ⊂ P(1, 1, 2, 3)

branched along {x2 = 0}

Examples 1a, 3a, 9, 10, and 11a appear in [Muk88] whereas the remaining provide additional ex-
amples of K3-surfaces with maximal symplectic symmetry.
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There are several points concerning the above table which need to be clarified. First, the polynomial
FS5 in Example 3b can be written as

FS5 =2(x4yz + xy4z + xyz4) − 2(x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4)

+ 2(x3y3 + x3z3 + y3z3) + x3y2z + x3yz2 + x2yz3 + xy2z3 − 6x2y2z2 .

The curve C := {FS5 = 0} ⊂ P2 is singular at the points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and
[1 : 1 : 1]. The proper transform Ĉ of C inside the Del Pezzo surface X5 obtained by blowing up these
four points is the normalization of C and defined by a section of −2KX5 . The double cover X of X5

branched along Ĉ is the minimal desingularization of the double cover of P2 branched along C and
X is a K3-surface with an action of S5 × C2. As is implied by Theorem 6.3 the Mori reduction with
respect to the full group G = S5 is such that X5 = Y = Ymin. The map Y → P2 is the equivariant Mori
reduction of the Del Pezzo surface Y with respect to the subgroup S4 which acts as the permutation
group of the four points which are blown up.

From the defining equation of Example 1a one can see that this K3-surface is a C4-cover of P2 which
is branched over Klein’s curve C. The preimage Ĉ of C in the K3-surface is the fixed point set of C4.
In this case σ generates the unique copy of C2 in C4 and the quotient X/σ = Y = X2 is a Del Pezzo
surface and minimal with respect to the action of L2(7). The group C4/C2 acts on X2 and realizes
X2 as 2:1 cover of P2 branched over C. Here X2 can also be realized as the blow up b : X2 → P2 at
the seven singular points of the sextic {3x2y2z2 − (x5y + y5z + z5x) = 0}. Its proper transform in X2
coincides with the branch locus of the map X → Y = X2. The map b is the Mori reduction of X2 with
respect to a maximal subgroup C3 ⋉ C7 of L2(7).

The K3-surface in Example 3a is equivariantly embedded in P5 where S5 acts by permuting the
first five variables of C6 and by the character sgn on the sixth. The antisymplectic involution acts by
σ[x1 : . . . : x6] = [x1 : . . . : x5 : −x6]. The quotient X → X/σ = Y = Ymin is defined by the projection
[x1 : . . . : x6] 7→ [x1 : . . . : x5]. Thus Y is the Del Pezzo surface of degree three defined by the equations
∑

5
1 yi = ∑

5
1 y3

i = 0 in P4 known as Clebsch cubic. By a similar construction, Example 9 is seen to be a
double cover of the Fermat cubic.

Finally, Example 2, the A6-covering of P2, deserves special mention. In this case the action of
A6 on P2 is given by its unique central extension by C3, which is its preimage in SL3(C). This was
constructed by Valentiner in the 19th century and remains of interest today (see e.g. [Cra99]).

6.3. Combinatorial geometry. — The simple nature of the classification results outlined above is at
least in part due to the fact that the possibilities for the combinatorial geometry of a Mori reduction
Y → Y1 → . . . → Ymin can be described in explicit ways. An indication of this can be found in the
example in the next section. Here we close this section by listing the key facts which play a role in
handling this combinatorial geometry.

- A basic result of Nikulin ([Nik83]) shows that the branch set B of the covering X → X/σ = Y,
which is the image in Y of the fixed point set of an antisymplectic involution σ, is either empty,
consists of two disjoint linearly equivalent elliptic curves, is a union of rational curves or is
the union of rational curves and a Riemann surface of genus at least one. In the last case it is
possible, and quite often happens, that B consists of only a Riemann surface of genus at least
one and no rational curves.

- By a result due to Zhang ([Zha98]) the number of connected components of B is at most ten.
- We refer to a rational curve E in Y as being a Mori fiber if it is blown down to a point at some

stage Yk → Yk+1 of the reduction to a minimal model. It can be shown that every Mori fiber
intersects the branch set in at most two points.

- If a Mori-fiber E intersects B in two points, then both points of interestion are transversal, i.e.,
E · B = 2.

- If (E · B)p = 2, then E ∩ B = {p}.
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7. The alternating group of degree six

In the previous section we considered K3-surfaces with a symplectic action of a finite group Gsym
centralized by an antisymplectic involution, i.e., all groups under consideration were of the form
G = Gsym × C2.

In this section we wish to discuss more general finite automorphims groups G̃: if G̃ contains an
antisymplectic involution σ with fixed points, then as before, we consider the quotient by σ. However,
if σ does not centralize the group G̃sym inside G̃, the action of G̃sym does not descend to the quotient
surface. We therefore restrict our consideration to the centralizer ZG̃(σ) of σ inside G̃ and study
its action on the quotient surface. If we are able to describe the family of K3-surfaces with ZG̃(σ)-
symmetry, it remains to identify the surfaces with G̃-symmetry inside this family.

We consider a situation where the group G̃ contains the alternating group of degree six. Although,
a precise classification cannot be obtained at present, we achieve an improved understanding of
the equivariant geometry of K3-surfaces with G̃-symmetry and classify families of K3-surfaces with
ZG̃(σ)-symmetry (cf. Theorem 7.24). In this sense, this section, which is an abbreviated version of
Chapter 7 of [Fra08], serves as an outlook on how the method of equivariant Mori reduction allows
generalization to more advanced classification problems.

7.1. The group Ã6. — We let G̃ be any finite group containing the alternating group of degree six
and in the following consider a K3-surface X with an effective action of G̃. This particular situation
is considered by Keum, Oguiso, and Zhang in [KOZ05] and [KOZ07] with special emphasis on the
maximal possible choice of G̃: they consider a group G̃ = Ã6 characterized by the exact sequence

(2) {id} → A6 → Ã6
α→ C4 → {id}.

It follows from the fact that A6 is simple and a Mukai group that the group of symplectic automor-
phisms G̃sym in G̃ coincides with A6. Let N := Inn(Ã6) ⊂ Aut(A6) denote the group of inner au-
tomorphisms of Ã6 and let int : Ã6 → N be the homomorphisms mapping an element g ∈ Ã6 to
conjugation with g. It can be shown that the group Ã6 is a semidirect product A6 ⋊ C4 embedded
in N × C4 by the map (int, α) (Theorem 2.3 in [KOZ07]). By Theorem 4.1 in [KOZ07] the group N is
isomorphic to M10 and the isomorphism class of Ã6 is uniquely determined by (2) and the condition
that it acts on a K3-surface.

In [KOZ05] a lattice-theoretic proof of the following classification result (Theorem 5.1, Theorem 3.1,
Proposition 3.5) is given.

Theorem 7.1 ([KOZ05]). — A K3 surface X with an effective action of Ã6 is isomorphic to the minimal desin-
gularization of the surface in P1 × P2 given by

S2(X3 + Y3 + Z3)− 3(S2 + T2)XYZ = 0.

The existence of an isomorphism from a K3-surface with Ã6-symmetry to the surface defined by
the equation above follows abstractly since both surfaces are shown to have the same transcenden-
tal lattice and the action of Ã6 on the later is hidden. It is therefore desirable to obtain an explicit
realization of X where the action of Ã6 is visible.

We let the generator of the factor C4 in Ã6 = A6 ⋊ C4 be denoted by τ. It is nonsymplectic and
has fixed points, the antisymplectic involution σ := τ2 fulfils FixX(σ) 6= ∅. Since σ is mapped to
the trivial automorphism in Out(A6) = Aut(A6)/int(A6) ∼= C2 × C2 there exists h ∈ A6 such that
int(h) = int(σ) ∈ Aut(A6). The antisymplectic involution hσ centralizes A6 in Ã6.

Remark 7.2. — If FixX(hσ) 6= ∅, the K3-surface X is an A6-equivariant double cover of P2 where A6

acts as Valentiner’s group and the branch locus is given by FA6(x1, x2, x3) = 10x3
1x3

2 + 9x5
1x3 + 9x3

2x3
3 −

45x2
1x2

2x2
3 − 135x1x2x4

3 + 27x6
3 (cf. Theorem 6.4). By construction, there is an evident action of A6 × C2

on this Valentiner surface, it is however not clear whether this surface admits the larger symmetry
group Ã6.
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In the following we assume that hσ acts without fixed points on X as otherwise the remark above
yields an A6-equivariant classification of X.

The centralizer G of σ in Ã6. — We study the quotient π : X → X/σ = Y. As mentioned above,
the action of the centralizer of σ descends to an action on Y. We therefore start by identifying the
centralizer G := ZÃ6

(σ) of σ in Ã6. It follows from direct computation(1) and from the equality
int(σ) = int(h) that the group G equals ZA6(σ) ⋊ C4 and ZA6(σ) = ZA6(h). In the following, we wish
to identify the group ZA6(h). Since int(σ) = int(h) and σ2 = id, it follows that h2 commutes with any
element in A6. As Z(A6) = {id}, we see that h is of order two. There is only one conjugacy class of
elements of order two in A6. We calculate ZA6(h) for one particular choice of h = (13)(24) ∈ A6. Let
c = (1234)(56) and g = (24)(56). Then c2 = h and both c and g centralize h. The group generated
by c and g is seen to be a dihedral group of order eight; 〈g〉 ⋉ 〈c〉 = D8 < ZA6(h). Now direct
computations in S4 < A6 yield 〈g〉⋉ 〈c〉 = D8 = ZA6(h).

Using the assumption that σh acts freely on X and by choosing the appropriate generator of 〈c〉 we
find that the action of τ on ZA6(h) = D8 given by τgτ−1 = c3g and τcτ−1 = c3. Furthermore, note
that the commutator subgroup G′ of G equals G′ = 〈c〉.

The group H = G/〈σ〉. — We consider the quotient Y = X/σ equipped with the action of G/σ =:
H = ZÃ6

(σ)/〈σ〉 = D8 ⋊ C2. The group C2 is generated by [τ]σ. For simplicity, we transfer the above
notation from G to H by writing e.g. τ for [τ]σ. Since τgτ−1 = c3g = gc, it follows that H′ = 〈c〉.

Let K < G be the cyclic group of order eight generated by gτ. We denote the image of K in G/σ by
the same symbol. Since [σc]σ = [c]σ ∈ K it contains H′ = 〈c〉 and we can write H = 〈τ〉⋉ K = D16.

Lemma 7.3. — There is no nontrivial normal subgroup N in H with N ∩ H′ = {id}.

Proof. — If such a group exists, first consider the case N ∩ K = {id}. Then N ∼= C2 and H = K × N
would be Abelian, a contradiction. If N ∩ K 6= {id} then N ∩ K = 〈(gτ)k〉 for some k ∈ {1, 2, 4}. This
implies (gτ)4 = c2 ∈ N and contradicts N ∩ H′ = N ∩ 〈c〉 = ∅.

The following observations strongly rely the assumption that σh acts freely on X.

Lemma 7.4. — The subgroup H′ acts freely on the branch set B = π(FixX(σ)) in Y.

Proof. — If for some b ∈ B the isotropy group H′
b is nontrivial, then c2(b) = h(b) = b and σh fixes the

corresponding point b̃ ∈ X.

Corollary 7.5. — The subgroup H′ acts freely on the set R of rational branch curves of the covering π : X →
Y. In particular, the number of rational branch curves n is a multiple of four.

Corollary 7.6. — The subgroup H′ acts freely on the set of τ-fixed points in Y.

Proof. — We show FixY(τ) ⊂ B. Since σ = τ2 on X, a 〈τ〉-orbit {x, τx, σx, τ3x} in X gives rise to
a τ-fixed point y in the quotient Y = X/σ if and only if σx = τx. Therefore, τ-fixed points in Y
correspond to τ-fixed points in X. By definition FixX(τ) ⊂ FixX(σ) and the claim follows.

7.2. H-minimal models of Y. — Since FixX(σ) 6= ∅, the quotient surface Y is a smooth rational H-
surface to which we apply the equivariant minimal model program. We denote by Ymin an H-minimal
model of Y. It is known that Ymin is either a Del Pezzo surface or an H-equivariant conic bundle over
P1.

Theorem 7.7. — An H-minimal model Ymin does not admit an H-equivariant P1-fibration. In particular,
Ymin is a Del Pezzo surface.

(1)For this and details of other technical arguments which have been omitted here see Chapter 7 of [Fra08]
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In order to prove this statement we begin with the following general fact which follows from the
observation that the action of a cyclic group on a Mori fiber has two fixed points contracting to a single
fixed point.

Lemma 7.8. — If Y → Ymin is an H-equivariant Mori reduction and A a cyclic subgroup of H, then
|FixY(A)| ≥ |FixYmin(A)|.

Suppose that some Ymin is an H-equivariant conic bundle, i.e., there is an H-equivariant fibration
p : Ymin → P1 with generic fiber P1 and let p∗ : H → Aut(P1) be the associated homomorphism.

Lemma 7.9. — Ker(p∗) ∩ H′ = {id}.

Proof. — The elements of Ker(p∗) fix two points in every generic p-fiber. If h = c2 ∈ H′ = 〈c〉
fixes points in every generic p-fiber, then h acts trivially on a one-dimensional subset C ⊂ Y. Since
h = c2 acts symplectically on X it has only isolated fixed points in X. Therefore, on the preimage
C̃ = π−1(C) ⊂ X, the action of h coincides with the action of σ. But then σh|C̃ = id|C̃ contradicts the
assumption that σh acts freely on X.

Proof of Theorem 7.7. — Since there are no nontrivial normal subgroups in H which have trivial in-
tersection with H′ (Lemma 7.3), it follows from Lemma 7.9 that Ker(p∗) = {id}, i.e., the group H
acts effectively on the base. We regard H as the semidirect product H = 〈τ〉 ⋉ K, where K = C8 is
described above. The automorphism τ exchanges the K-fixed points. We will obtain a contraction by
analyzing the K-actions on the fibers F and τF over its two fixed points. By Lemma 4.16 there are two
situations which we must consider:

1. F is a regular fiber of Ymin → P1.
2. F = F1 ∪ F2 is the union of two (-1)-curves intersecting transversally in one point.

We study the fixed points of c, h = c2 and gτ in Ymin. Note that in X the symplectic transformation
c has precisely four fixed points and h has precisely eight fixed points. This set of eight points is
stabilized by the full centralizer of h, in particular by K. Since hσ acts by assumption freely on X, it
follows that σ acts freely on the set of h-fixed points in X. If hy = y for some y ∈ Y, then the preimage
of y in X consists of two elements x1, σx1 = x2. If these form an 〈h〉-orbit, then both are σh-fixed, a
contradiction. It follows that {x1, x2} ⊂ FixX(h) and the number of h-fixed points in Y is precisely
four. In particular, h acts effectively on any curve in Y.

Let us first consider case (2) where F = F1 ∪ F2 is reducible. Since 〈c〉 is the only subgroup of index
two in K, it follows that 〈c〉 stabilizes Fi and both c and h have three fixed points in F (two on each
irreducible component, one is the point of intersection F1 ∩ F2), i.e., six fixed points on F ∪ τF ⊂ Ymin.
This is contrary to Lemma 7.8 because h has at most four fixed points in Ymin.

If F is regular (case (1)), then the cyclic group K has two fixed points on the rational curve F.
Since h ∈ K, the four K-fixed points on F ∪ τF are contained in the set of h-fixed points on Ymin. As
|FixYmin(h)| ≤ 4, the K-fixed points coincide with the four h-fixed points in Ymin, i.e., FixYmin(h) =

FixYmin(K). In particular, the Mori reduction does not affect the four h-fixed points {y1, . . . y4} in Y.
By equivariance of the reduction, the group K acts trivially on this set of four points. Passing to the
double cover X, we conclude that the action of gτ ∈ K on a preimage {xi, σxi} of yi is either trivial
or coincides with the action of σ. In both cases it follows that (gτ)2 = cσ acts trivially on the set of
h-fixed points in X. As FixX(c) ⊂ FixX(h), this is contrary to the fact that σ acts freely on FixX(h).

In the following we wish to identify the Del Pezzo surface Ymin. For this, we use the Euler character-
istic formulas,

24 = e(X) = 2e(Y)− 2n + 2g − 2
︸ ︷︷ ︸

if Dg is present

,
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where Dg ⊂ B is a branch curve of general type, g = g(Dg) ≥ 2, and e(Y) = e(Ymin) + m. Here m =
|E | denotes the total number of Mori fibers of the reduction Y → Ymin and n denotes the total number
of rational curves in Fix(σ). For convenience we introduce the difference δ = m − n. If a branch curve
Dg of general type is present, then 13 − g − δ = e(Ymin) and if it is not present 12 − δ = e(Ymin). The
inequality e(Ymin) ≤ 3 implies m ≤ n + 9.

Proposition 7.10. — For every Mori fiber E the orbit H.E consists of at least four Mori fibers.

Proof. — A Mori fiber E can either be disjoint from B, contained in B, or intersect B in one or two
points. We denote by |HE| the number of disjoint curves in the orbit HE.

First assume E ∩ B 6= ∅ and E 6⊂ B. Since H′ acts freely on the branch curves and E meets B in at
most two points (cf. Section 6.3), we know |H′E| ≥ 2. If |HE| = 2, then the isotropy group HE is a
normal subgroup of index two which necessarily contains the commutator group H′, a contradiction.

If E ⊂ B, we show that the H′-orbit of E consists of four Mori fibers. If it consisted of less than
four Mori fibers, the stabilizer H′

E 6= {id} of E in H′ would fix two points in E ⊂ B. This contradicts
Lemma 7.4.

All Mori fibers disjoint from B have self-intersection (-2) and meet exactly one Mori fiber of the
previous steps of the reduction in exactly one point. If E ∩ B = ∅ there is a chain of Mori fibers
E1, . . . , Ek = E connecting E and B. The Mori fiber E1 is the only one to have nonempty intersection
with B and is the first curve of this configuration to be blown down in the reduction process. The
H-orbit of this union of Mori fibers consists of at least four copies of this chain. This is due to that
fact that the H-orbit of E1 consists of at least four Mori fibers by Case 1. In particular, the H-orbit of E
consists of at least four copies of E.

Corollary 7.11. — The difference δ is a non-negative multiple 4k of four.

Proof. — Above we have shown that m and n are multiples of four. Therefore δ = 4k. If δ was
negative, i.e., m < n, there is no configuration of Mori fibers meeting the rational branch curves,
which have self-interection -4, such that the corresponding contractions transform them to curves on
a Del Pezzo surface Ymin where the self-intersection of any curve is at least -1. It follows that δ is
non-negative.

Theorem 7.12. — Any H-minimal model Ymin of Y is P1 × P1 .

Proof. — If δ = 0, then n = m = 0 and Y = Ymin. The commutator subgroup H′ ∼= C4 acts freely on
the branch locus B implying e(B) ∈ {0,−8,−16, . . . }. Since the Euler characteristic of the Del Pezzo
surface Y is at least 3 and at most 11, we only need to consider the cases e(Y) ∈ {4, 8}.

If δ 6= 0, then since δ ≥ 4, it follows that e(Ymin) = 13 − g − δ ≤ 7 if a branch curve Dg of general
type is present, and e(Ymin) = 12 − δ ≤ 8 if not.

We go through the list of of Del Pezzo surfaces with e(Ymin) ≤ 8.

- If e(Ymin) = 8, then deg(Ymin) = 4 and Aut(Ymin) = C4
2 ⋊ Γ for Γ ∈ {C2, C4, S3, D10}. If D16 <

C4
2 ⋊ Γ then A := D16 ∩ C4

2 � D16 and A is either trivial or isomorphic to C2. In both cases D16/A
is not a subgroup of Γ in any of the possibilities listed above. Therefore, e(Y) 6= 8.

- If e(Ymin) = 7, then Aut(Ymin) = S5. Since 120 is not divisible by 16, we see that a Del Pezzo
surface of degree five does not admit an effective action of the group H.

- If e(Ymin) = 6, then A := Aut(Ymin) = (C∗)2
⋊ D12. We denote by A◦ ∼= (C∗)2 the connected

component of A and consider q : A → A/A◦. Now q(H′) < q(A)′ ∼= C3 and H′ = C4 < A◦. We
may realize Ymin as P2 blown up at the three corner points and A◦ as the set of diagonal matrices
in SL3(C). Every possible representation of C4 in this group has ineffectivity along one of the
lines joining corner points. But, as we have seen before, the elements of H′, in particular c2 = h,
have only isolated fixed points in Ymin.
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- A Del Pezzo surface obtained by blowing up one or two points in P2 is never H-minimal and
therefore does not occur

- Finally, Ymin 6= P2: If e(Ymin) = 3 then either δ = 9 (if Dg is not present), a contradiction to
δ = 4k, or g + δ = 10. In the later case, δ = 4, 8 forces g = 6, 2. In both cases, the Euler
characteristic 2 − 2g of Dg is not divisible by 4. This contradicts the fact that H′ acts freely on
Dg.

We have hereby excluded all possible Del Pezzo surfaces except P1 × P1 and the proposition follows.

7.3. Branch curves and Mori fibers. — We let M : Y → Ymin = P1 × P1 denote an H-equivariant
Mori reduction of Y.

Lemma 7.13. — The number of Mori fibers in an H-orbit is at least eight.

Proof. — Consider the action of H on P1 ×P1. Both canonical projections are equivariant with respect
to the commutator subgroup H′ = 〈c〉 ∼= C4. Since c2 ∈ H′ does not act trivially on any curve in Y or
Ymin, it follows that H′ has precisely four fixed points in Ymin = P1 × P1. Since h = c2 has precisely
four fixed points in Y and FixY(H′) = FixY(c) ⊂ FixY(c2), we conclude that H′ has precisely four
fixed points in Y and it follows that the Mori fibers do not pass through H′-fixed points. Note that the
H′-fixed points in Y coincide with the h-fixed points.

Suppose there is an H-orbit HE of Mori fibers of length strictly less then eight and let p = M(E).
We obtain an H-orbit Hp in P1 × P1 with |Hp| ≤ 4. Now |Kp| ≤ 4 implies that Kp 6= {id}, in
particular, h = c2 ∈ Kp. It follows that p is an h-fixed point. This contradicts the fact that the Mori
fibers do not pass through fixed points of h.

A total number of 24 or more Mori fibers would require 16 rational curves in B. This contradicts the
fact that the number of connected components of the fixed point set of an antisymplectic involution
on a K3-surface is at most ten (cf. Section 6.3). It therefore follows from the above lemma that the total
number m of Mori fibers equals 0, 8, or 16.

Recalling that the number of rational branch curves is a multiple of four, i.e., n ∈ {0, 4, 8} and using
the fact m ∈ {0, 8, 16} along with m ≤ n + 9, we conclude that the surface Y is of one of the following
types.

1. m = 0
The quotient surface Y is H-minimal. The map X → Y ∼= P1 × P1 is branched along a single
curve B. This curve B is a smooth H-invariant curve of bidegree (4, 4).

2. m = 8 and e(Y) = 12
The surface Y is the blow-up of P1 × P1 in an H-orbit consisting of eight points.

(a) If the branch locus B of X → Y contains no rational curves, then e(B) = 0 and B is either
an elliptic curve or the union of two elliptic curves defining an elliptic fibration on X.

(b) If the branch locus B of X → Y contains rational curves, their number is exactly four (Eight
or more rational branch curves of self-intersection -4 cannot be modified sufficiently and
mapped to curves on a Del Pezzo surface by contracting eight Mori fibers). It follows
that the branch locus is the disjoint union of an invariant curve of higher genus and four
rational curves.

3. m = 16 and e(Y) = 20
The map X → Y is branched along eight disjoint rational curves.

We may simplify the above situation by studying rational curves in B, their intersection with Mori
fibers and their images in P1 × P1.

Proposition 7.14. — If e(Y) = 12, then n = 0.

Proof. — Suppose n 6= 0 and let Ci ⊂ Y be a rational branch curve. Since C2
i = −4 and M(Ci) ⊂ P1 ×

P1 has self-intersection ≥ 0 it must meet the union of Mori fibers
⋃

Ej. All possible configurations
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of Mori fibers yield image curves M(Ci) of self-intersection ≤ 4. Adjunction on P1 × P1 implies that
g(M(Ci)) = 0 and M(Ci) must be nonsingular. Hence each Mori fiber meets Ci in at most one point.
It follows that Ci meets four Mori fibers, each in one point, and (M(Ci))

2 = 0. In particular, M(Ci) are
fibers of the canonical projections P1 × P1 → P1. The curve C1 meets four Mori fibers E1, . . . E4 and
each of these Mori fibers meets some Ci for i 6= 1. After renumbering, we may assume that E1 and E2

meet C2 and therefore M(C1) and M(C2) meet in more than one point, a contradiction. It follows that
e(Y) = 12 implies n = 0

Proposition 7.15. — If e(Y) = 20, then Y is the blow-up of P1 × P1 in sixteen points {p1, . . . p16} =

(
⋃4

i=1 Fi) ∩ (
⋃8

i=5 Fi), where F1, . . . F4 are fibers of the canonical projection π1 and F5, . . . F8 are fibers of π2.
The branch locus is given by the proper transform of

⋃
Fi in Y.

Proof. — We denote the eight rational branch curves by C1, . . . C8. The Mori reduction can have
two steps. A slightly more involved study of possible configurations of Mori fibers shows that
0 ≤ (M(Ci))

2 ≤ 4. As above M(Ci) is seen to be nonsingular and each Mori fiber can meet Ci in at
most one point. Any configuration of curves with this property yields (M(Ci))

2 = 0 and Fi = M(Ci)

is a fiber of a canonical projection P1 × P1 → P1.
If there are Mori fibers disjoint from B these are blown down in the second step of the Mori re-

duction. Let E1, . . . , E8 denote the Mori fibers of the first step and Ẽ1, . . . , Ẽ8 those of the second
step. We label them such that Ẽi meets Ei. Each curve Ei meets two rational branch curves Ci and
Ci+4 and their images Fi = M(Ci) and Fi+4 = M(Ci+4) meet with multiplicity ≥ 2. This is con-
trary to the fact that they are fibers of the canonical projections. It follows that there are no Mori
fibers disjoint from B and all 16 Mori fibers are contrancted simultaniously. There is precisely one
possible configuration of Mori fibers on Y such that all rational brach curves are mapped to fibers of
the canonical projections of P1 × P1: The curves C1, . . . C4 are mapped to fibers of π1 and C5, . . . , C8

are mapped to fibers of π2. The Mori reduction contracts 16 curves to the 16 points of intersection
{p1, . . . p16} = (

⋃4
i=1 Fi) ∩ (

⋃8
i=5 Fi) ⊂ P1 × P1.

Let us now restrict our attention to the case where the branch locus B is the union of two linearly
equivalent elliptic curves and exclude this case.

Two elliptic branch curves. — In this paragraph we prove:

Theorem 7.16. — FixX(σ) is not the union of two elliptic curves.

We assume the contrary, let FixX(σ) = D1 ∪ D2 with Di elliptic and let f : X → P1 denote the
elliptic fibration defined by the curves D1 and D2. Note that σ acts effectively on the base P1 as
otherwise σ would act trivially in a neighbourhood of Di by a linearization argument. It follows that
the group of order four generated by τ acts effectively on P1.

Since the group G does not contain a cyclic group of order 16, it is neither cyclic nor dihedral and
therefore cannot act effectively on P1. It follows that the ineffectivity I of the induced G-action on the
base P1 is nontrivial. We regard G = C4 ⋉ D8 where C4 = 〈τ〉 and D8 is the centralizer of σ in A6
(cf. Section 7.1) and define J := I ∩ D8.

Using explicitly the groups structure of G along with the assumption that σh acts freely on X one
finds that J is nontrivial. In the following, we consider the different possibilities for the order of J and
show that in fact none of these occur.

If |J| = 8 then D8 ⊂ I. Recall that any automorphism group of an elliptic curve splits into an
Abelian part acting freely and a cyclic part fixing a point. Since D8 is not Abelian, any D8-action on
the fibers of f must have points with nontrivial isotropy. This gives rise to a positive-dimensional
fixed point set of some subgroup of D8 on X, contradicting the fact that D8 acts symplectically on X.
It follows that the maximal possible order of J is four.

Lemma 7.17. — The ineffectivity I does not contain 〈c〉.
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Proof. — Assume the contrary and consider the fixed points of c2. If a c2-fixed point lies at a smooth
point of a fiber of f , then the linearization of the c2-action at this fixed point gives rise to a positive-
dimensional fixed point set in X and yields a contradiction. It follows that the fixed points of c2 are
contained in the singular f -fibers. Since 〈τ〉 normalizes 〈c〉 and the 〈τ〉-orbit of a singular fiber consists
of four such fibers, we must only consider two cases:

1. The eight c2-fixed points are contained in four singular fibers (one 〈τ〉-orbit of fibers), each of
these fibers contains two c2-fixed points.

2. The eight c2-fixed points are contained in eight singular fibers (two 〈τ〉-orbits).

Note that 〈c2〉 is normal in I and therefore I acts on the set of 〈c2〉-fixed points. In the second case, all
eight c2-fixed points are also c-fixed. This is contrary to c having only four fixed points and therefore
the second case does not occur.

The first case does not occur for similar reasons: If c2 has exactly two fixed points x1 and x2 in some
fiber F, then 〈c〉 either acts transitively on {x1, x2} or fixes both points. Since FixX(c) ⊂ FixX(c2) and
〈c〉 must have exactly one fixed point on F, this is impossible.

Corollary 7.18. — |J| 6= 4.

Proof. — Assume |J| = 4. Using τ we check that no subgroup of D8 isomorphic to C2 × C2 is normal
in G. It follows that the group 〈c〉 is the only order four subgroup of D8 which is normal in G and
therefore J = 〈c〉. By the lemma above this is however impossible.

It remains to consider the case where |J| = 2. The only normal subgroup of order two in D8 is J = 〈h〉.

Lemma 7.19. — If |J| = 2, then I = 〈σc〉.

Proof. — We first show that |J| = 2 implies |I| = 4: If |I| = 2, then I = 〈h〉 and G/I = C4 ⋉ (C2 ×C2).
Since this group does not act effectively on P1, this is a contradiction. If |I| ≥ 8, then G/I is Abelian
and therefore I contains the commutator subgroup G′ = 〈c〉. This contradicts Lemma 7.17. It follows
that |I| = 4 and either I ∼= C4 or I ∼= C2 ×C2. In the later case, the only possible choice is I = 〈σ〉 × 〈h〉
which contradicts the fact that σ acts effectively on the base. It follows that I = 〈σξ〉, where ξ2 = h
and therefore ξ = c.

Let us now consider the action of G on X with I = 〈σc〉. Recall that the cyclic group 〈τ〉 acts effectively
on the base and has two fixed points there. Since σ = τ2, these are precisely the two σ-fixed points. In
particular, 〈τ〉 stabilizes both σ-fixed point curves D1 and D2 in X. Furthermore, the transformations
σc and c stabilize Di for i = 1, 2. Since the only fixed points of c in P1 are the images of D1 and D2,

FixX(c) ⊂ D1 ∪ D2 = FixX(σ).

On the other hand, we know that FixX(c) ∩ FixX(σ) = ∅. Thus I = 〈σc〉 is not possible and the case
|J| = 2 does not occur.

We have hereby eleminated all possibilities for |J| and completed the proof of Theorem 7.16.

7.4. Rough classification of X. — We summerize the observations of the previous section in the
following classification result.

Theorem 7.20. — Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅.
Then X is one of the following types:

1. a double cover of P1 × P1 branched along a smooth H-invariant curve of bidegree (4,4).
2. a double cover of a blow-up of P1 × P1 in eight points and branched along a smooth elliptic curve B. The

image of B in P1 × P1 has bidegree (4,4) and eight singular points.
3. a double cover of a blow-up Y of P1 × P1 in sixteen points {p1, . . . p16} = (

⋃4
i=1 Fi) ∩ (

⋃8
i=5 Fi), where

F1, . . . F4 are fibers of the canonical projection π1 and F5, . . . F8 are fibers of π2. The branch locus ist given
by the proper transform of

⋃
Fi in Y. The set

⋃
Fi is an H-invariant reducible subvariety of bidegree (4,4).
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Proof. — It remains to consider case (2) and show that the image of B in P1 ×P1 has bidegree (4,4) and
eight singular points. We prove that each Mori fiber E meets the branch locus B either in two points
or once with multiplicity two, i.e., we need to check that E may not meet B transversally in exactly
one point. If this was the case, the image M(B) of the branch curve is a smooth H-invariant curve
of bidegree (2, 2). The double cover X′ of P1 × P1 branched along the smooth curve M(B) = C(2,2)

is a smooth surface. Since X is K3 and therefore minimal the induced birational map X → X′ is an
isomorphism. This is a contradiction since X′ is not a K3-surface.

As each Mori fiber meets B with multiplicity two, the self-intersection number of M(B) is 32 and
M(B) is a curve of bidegree (4,4) with eight singular points. These singularities are either nodes or
cusps depending on the kind of intersection of E and B.

In order to obtain a description of possible branch curves, we study the action of H on P1 × P1 and
its invariants.

7.5. The action of H on P1 × P1 and invariant curves of bidegree (4, 4).— Recall that we consider
the dihedral group H ∼= D16 generated by τg of order eight and τ. The following proposition can be
obtained from direct computations:

Proposition 7.21. — In appropriately chosen coordinates the action of H on P1 × P1 is given by

c([z0 : z1], [w0 : w1]) = ([iz0 : z1], [−iw0 : w1])

τ([z0 : z1], [w0 : w1]) = ([z1 : z0], [iw1 : w0])

g([z0 : z1], [w0 : w1]) = ([w0 : w1], [z0 : z1]).

Given this action of H on P1 ×P1, we wish to study the invariants and semi-invariants of bidegree
(4, 4). The space of (a, b)- bihomogeneous polynomials in [z0 : z1][w0 : w1] is denoted by C(a,b)([z0 :
z1][w0 : w1]).

An invariant curve C is given by a D16-eigenvector f ∈ C(4,4)([z0 : z1][w0 : w1]). The kernel of
the D16-representation on the line C f spanned by f contains the commutator subgroup H′ = 〈c〉 and
f is an appropiate linear combination of c-invariant monomials of bidegree (4, 4). It follows from
the explicit form of the H-action that an H-invariant curve of bidegree (4, 4) in P1 × P1 is one of the
following three types

Ca = {a1 f1 + a2 f2 + a3 f3 = 0},

Cb = {b1g1 + b3g3 + b4g4 = 0},

C0 = {g2 = 0}.

7.6. Refining the classification of X. — Using the above description of invariant curves of bidegree
(4,4) we may refine Theorem 7.20.

Theorem 7.22. — Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅. If
e(X/σ) = 20, then X/σ is equivariantly isomorphic to the blow up of P1 × P1 in the singular points of the
curve C = { f1 − f2 = 0} and X → Y is branched along the proper transform of C in Y.

Proof. — It follows from Theorem 7.20 that X is the double cover of P1 × P1 blown up in sixteen
points. These sixteen points are the points of intersection of eight fibers of P1 × P1, four for each of
fibration. By invariance these fibers lie over the base points [1 : 1], [1 : −1], [1 : i], [1 : −1] and the
configurations of eight fibers is defined by the invariant polynomial f1 − f2. The double cover X → Y
is branched along the proper transform of this configuration of eight rational curves. This proper
transform is a disjoint union of eight rational curves in Y, each with self-intersection (-4).

Theorem 7.23. — Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅. If
X/σ ∼= P1 × P1, then after a change of coordinates the branch locus is Ca for some a1, a2, a3 ∈ C.
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Proof. — The surface X is a double cover of P1 × P1 branched along a smooth H-invariant curve
of bidegree (4,4). The invariant (4,4)-curves Cb and C0 discussed above are seen to be singular at
([1 : 0], [1 : 0]) or ([1 : 0], [0 : 1]).

Note that the general curve Ca is smooth. We obtain a 2-dimensional family {Ca} of smooth branch
curves and a corresponding family of K3-surfaces {XCa}. It remains to consider the case (2) of the
classification. Our aim is to find an example of a K3-surface X such that X/σ = Y has a nontrivial
Mori reduction M : Y → P1 × P1 = Z contracting a single H-orbit of Mori fibers consisting of
precisely 8 curves. In this case the branch locus B ⊂ Y is mapped to a singular (4, 4)-curve C = M(B)
in Z. The curve C is irreducible and has precisely 8 singular points along a single H-orbit in Z.

As we have noted above, many of the curves Ca, Cb, C0 are seen to be singular at ([1 : 0], [1 : 0]) or
([1 : 0], [0 : 1]). Since both points lie in H-orbits of length two, these curves are not candidates for our
construction. This argument excludes the curves Cb, C0 and Ca if a1 = 0 or a2 = 0.

For Ca with a3 = 0 one checks that Ca has singular points if and only if a1 = −a2, i.e., if Ca is
reducible. It therefore remains to consider curves Ca where all coefficients ai 6= 0. By considering the
H-action on the irreducible component of Ca one verifies that in this case Ca must irreducible. We
choose a3 = 1.

One possible choice of an orbit of length eight is given by the orbit through a τ-fixed point pτ =

([1 : 1], [±
√

i : 1]). One checks that pτ ∈ Ca for any choice of ai. However, if we want Ca to be singular
in pτ, then a2 = 0 and therefore Ca is singular at points outside Hpτ. It has more than eight singular
points and is therefore reducible.

All other orbits of length eight are given by orbits through g-fixed points px = ([1 : x], [1 : x]) for
x 6= 0. One can choose coefficients ai(x) such that Ca(x) is singular at px if and only if x8 6= 1. If the
curve Ca(x) is irreducible, then it has precisely eight singular points Hpx of multiplicity 2 (cusps or
nodes) and the double cover of P1 ×P1 branched along Ca(x) is a singular surface Xsing with precisely
eight singular points. Its minimal desingularization X is a K3-surface. We obtain a diagram

Xsing

2:1
��

X

2:1

��

desing.
oo

C(4,4) ⊂ P1 × P1 Y ⊃ B.
M

oo

If px is a node in Ca(x), then the corresponding singularity of Xsing is resolved by a single blow-up.
The (-2)-curve in X obtained from this desingularization is a double cover of a (-1)-curve in Y meeting
B in two points. If px is a cusp in Ca(x), then the corresponding singularity of Xsing is resolved by two
blow-ups. The union of the two intersecting (-2)-curves in X obtained from this desingularization is a
double cover of a (-1)-curve in Y tangent to B in one point. The information determining whether px
is a cusp or a node is encoded in the rank of the Hessian of the equation of Ca(x) at px. The condition
that this rank equals one gives a nontrivial polynomial condition. For a general irreducible member
of the family {Ca(x) | x 6= 0, x8 6= 1} the singularities of Ca(x) are nodes.

We let q be the polynomial in x that vanishes if and only if the rank of the Hessian of Ca(x) at px

is one. It has degree 24, but 16 of its solutions give rise to reducible curves Ca(x). The remaining
eight solution give rise to four different irreducible curves. These are identified by the action of the
normalizer of H in Aut(P1 × P1) and therefore define equivalent K3-surfaces.

We summarize the discussion in the following main classification theorem.
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Theorem 7.24. — Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅.
Then X is an element of one the following families of K3-surfaces:

1. the two-dimensional family {XCa} for Ca smooth,
2. the one-dimensional family of minimal desingularizations of double covers of P1 × P1 branched along

curves in {Ca(x) | x 6= 0, x8 6= 1}. The general curve Ca(x) has precisely eight nodes along an H-orbit.
Up to natural equivalence there is a unique curve Ca(x) with eight cusps along an H-orbit.

3. the trivial family consisting only of the minimal desingularization of the double cover of P1 ×P1 branched
along the curve Ca = { f1 − f2 = 0} where a1 = 1, a2 = −1, a3 = 0.

Corollary 7.25. — Let X be a K3-surface with an effective action of the group Ã6. If FixX(hσ) = ∅, then X
is an element of one the families (1) -(3) above. If FixX(hσ) 6= ∅, then X is A6-equivariantly isomorphic to the
Valentiner surface.

7.7. Summary and outlook. — Our initial goal in this section was the description of K3-surfaces
with Ã6-symmetry. Using the group structure of Ã6 this problem is now divided into two possible
cases corresponding to the question whether FixX(hσ) is empty or not. If it is nonempty, the K3-
surface with Ã6-symmetry is the Valentiner surface (Remark 7.2). If is is empty, our discussion in
the previous sections has reduced the problem to finding the Ã6-surface in the families of surfaces
XCa with D16-symmetry. It is known that a K3-surface with Ã6-symmetry has maximal Picard rank
20. This follows from a criterion due to Mukai ([Muk88]) and is explicitely shown in [KOZ05]. All
surfaces XCa for Ca ⊂ P1 × P1 a (4,4)-curve are elliptic since the natural fibration of P1 × P1 induces
an elliptic fibration on the double cover (or is desingularization).

A possible approach for finding the Ã6-example inside our families is to find those surfaces with
maximal Picard number by studying the elliptic fibration. It would be desirable to apply the following
formula for the Picard rank of an elliptic surface f : X → P1 with a section (cf. [SI77]):

ρ(X) = 2 + rank(MW f ) + ∑
i

(mi − 1),

where the sum is taken over all singular fibers, mi denotes the number of irreducible components of
the singular fiber and rank(MW f ) is the rank of the Mordell-Weil group of sections of f .

First, one has to ensure that the fibration under consideration has a section. One approach to find
sections is to consider the quotient q : P1 × P1 → P2 and the image of the curve Ca inside P2. For
an appropiate bitangent to q(Ca) its preimage in the double cover of P1 × P1 is reducible and both
its components define sections of the elliptic fibration. For the special curve Ca with eight nodes the
existence of a section (two sections) follows from an application of the Plücker formula to the curve
q(Ca) with 3 cusps and its dual curve.

As a next step, one wishes to understand the singular fibers of the elliptic fibrations. Singular
fibers occur whenever the branch curve Ca intersects a fiber F of the P1 × P1 in less than four points.
Depending on the nature of intersection F ∩ Ca one can describe the corresponding singular fiber of
the elliptic fibration. For Ca the curve with eight cusps one finds precisely eight singular fibers of
type I3, i.e., three rational curves forming a closed cycle. In particular, the contribution of all singular
fibers ∑i(mi − 1) in the formula above is 16. In the case where Ca is smooth or has eight nodes, this
contribution is less.

In order to determine the number ρ(XCa) it is neccesary to either understand the Mordell-Weil
group or to find curves giving additional contribution to Pic(XCa) not included in 2 + ∑i(mi − 1).

In conclusion, the method of equivariant Mori reduction applied to quotients X/σ yields an explicit
description of families of K3-surfaces with D16 × 〈σ〉-symmetry and by construction, the K3-surface
with Ã6-symmetry is contained in one of these families. It remains to find criteria to characterize
this particular surface inside these families. The possible approach by understanding the function
a 7→ ρ(XCa) using the elliptic structure of XCa requires a detailed analysis of the Mordell-Weil group.
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