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Abstract. We give two new criteria for a basic algebra to be biserial. The first one states that an
algebra is biserial iff all subalgebras of the form eAe where e is supported by at most 4 vertices
are biserial. The second one gives some condition on modules that must not exist for a biserial
algebra. These modules have properties similar to the module with dimension vector (1, 1, 1, 1)
for the path algebra of the quiver D4.
Both criteria generalize criteria for an algebra to be Nakayama. They rely on the description of
a basic biserial algebra in terms of quiver and relations given by R. Vila-Freyer and W. Crawley-
Boevey [CBVF98].

1. Introduction

Throughout this paper let k be an algebraically closed field, denote by A a finite dimensional
k-algebra, its (Jacobson) radical by rad(A) and by mod A the category of all finitely generated left
modules. For M ∈ mod A we denote by radi M the i-th radical of M, by soci M the i-th socle of
M (cf. [Ben95] definition 1.2.1) and by Q = (Q0,Q1, s, t) a quiver with set of vertices Q0, set of
arrows Q1 and starting (resp. terminal) point functions s (resp. t). For every point i ∈ Q0 of the
quiver there exists a zero path, denoted by ei, the ideal of the path algebra kQ generated by the
arrows will be denoted by kQ+. For basic facts on radical, socle and quivers, that we use without
further reference, we refer to [ASS06].
In 1979 K. Fuller ([Ful79]) defined biserial algebras as algebras whose indecomposable pro-
jective left and right modules have uniserial submodules which intersect zero or simple and
which sum to the unique maximal submodule (Tachikawa mentioned this condition before, but
didn’t give these algebras a name [Tac61] proposition 2.7). These natural generalizations of
Nakayama algebras are a class of tame algebras as W. Crawley-Boevey showed in [CB95]. Ex-
amples of these algebras are blocks of group algebras with cyclic or dihedral defect group (see
e.g. [Rin75], [Erd87]), the algebras appearing in the Gel’fand-Ponomarev classification of the
singular Harish-Chandra modules over the Lorentz group ([GP68]) as well as special biserial
algebras, which were recently used to test certain conjectures ([EHIS04], [LM04], [Š10]).
As one looks at Nakayama algebras (cf. [ASS06] Section V.3) there are at least three ways to de-
scribe them: First via the projective left and right modules, i.e. they are uniserial, second via the
(ordinary) quiver (and its relations), i.e. the quiver of A is a linearly oriented (extended) Dynkin
diagram of type An or Ãn for some n ≥ 1, and third via certain “small” modules in the module
category (cf. Lemma 4.3), i.e. there exists no local module M of Loewy length two, such that
l(rad(M)) = 2 and no colocal module M of Loewy length two, such that l(M/ soc M) = 2 (we
could call this property non-linearly oriented A3-freeness).
For biserial algebras aside from the original definition a description of basic biserial algebras in
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terms of quivers and relations is due to R. Vila-Freyer and W. Crawley-Boevey ([CBVF98]). We
use this description to obtain one in terms of certain “small” modules analogous to the descrip-
tion for Nakayama algebras given above.
A basic algebra A will be called D4-free iff there is no A-module with similar properties to the
one with dimension vector (1, 1, 1, 1) for the path algebra of the quiver D4. Our result will then
be the following:

Theorem 1.1. A basic algebra A is biserial iff it is D4-free.

Furthermore, from the description of the quiver of A we can see that it is necessary and suffi-
cient that all subalgebras of the form eAe with support of one vertex and its neighbouring vertices
are Nakayama. We could call these subalgebras of type A3. Our second main result generalizes
this for biserial algebras and states

Theorem 1.2. An algebra A is biserial iff all subalgebras eAe of type D4, that is, with support of
a vertex and at most three of its neighbouring vertices, are biserial.

Our paper is organized as follows. In Section 2, we recall the results of [VF94] and [CBVF98]
giving a description of a basic biserial algebra in terms of its quiver and relations. Section 3 then
gives the precise statement of Theorem 1.2 and its proof. The precise definition of D4-free and
the proof of Theorem 1.1 is then presented in Section 4.

2. Biserial algebras

Definition 2.1 ([Ful79]). An algebra A is called biserial if for every projective left or right mod-
ule P there exist uniserial submodules U and V of P satisfying rad(P) = U + V (not necessarily
a direct sum), such that U ∩ V is zero or simple.

In the remainder of this section we present the results of R. Vila-Freyer and W. Crawley-
Boevey who describe biserial algebras in terms of quivers and relations. For the proofs we refer
to [CBVF98]. The notation has been adjusted to ours.

Definition 2.2 ([CBVF98] Definitions 1-3). (i) A bisection of a quiver Q is a pair (σ, τ) of
functions Q1 → {±1}, such that if a and b are distinct arrows with s(a) = s(b) (respec-
tively t(a) = t(b)), then σ(a) , σ(b) (respectively τ(a) , τ(b)). A quiver, which admits a
bisection, i.e. in each vertex there start and end at most two arrows, is called biserial.

(ii) Let Q be a quiver and (σ, τ) a bisection. We say that a path ar · · · a1 in Q is a good path, or
more precisely is a (σ, τ)-good path, if σ(ai) = τ(ai−1) for all 1 < i ≤ r. Otherwise we say
that it is a bad path, or is a (σ, τ)-bad path. The paths ei (i ∈ Q0) are good.

(iii) By a bisected presentation (Q, σ, τ, p, q) of an algebra A we mean that Q is a quiver with
a bisection (σ, τ) and that p, q : kQ → A are surjective algebra homomorphisms with
p(ei) = q(ei) for all i ∈ Q0, p(a), q(a) ∈ rad(A) for all arrows a ∈ Q1 and q(a)p(x) = 0
whenever a, x ∈ Q1 with ax a bad path.

Theorem 2.3 ([CBVF98] Theorem). Any basic biserial algebra A has a bisected presentation
(Q, σ, τ, p, q) in which Q is the quiver of A. Conversely any algebra with a bisected presentation
is basic and biserial.
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Corollary 2.4 ([CBVF98] Corollary 3). Suppose that Q is a quiver, (σ, τ) is a bisection, elements
dax ∈ kQ are defined for each bad path ax, a, x ∈ Q1, and they satisfy
(C1) Either dax = 0 or dax = ωbt · · · b1 with ω ∈ k×, t ≥ 1 and bt · · · b1x a good path with

t(br) = t(a) and bt , a,
(C2) if dax = φb and dby = ψa with φ, ψ ∈ k× and a, b, x, y ∈ Q1, then φψ , 1.
If I is an admissible ideal in kQ which contains all the elements (a − dax)x, then kQ/I is a basic
biserial algebra. Conversely for every basic biserial algebra A there exist a quiver Q, a bisection
(σ, τ) and for every bad path ax, a, x ∈ Q1, elements dax, which satisfy the above conditions, and
an admissible ideal I, such that A � kQ/I.

Observe that the algebras where dax = 0 for all bad paths ax are precisely the special biserial
algebras which are a lot better understood.

The following technical lemma will be used in the next theorem. Its proof relies on Lemma 1.2
in [CBVF98]. The remaining parts are proved by similar methods, so we omit it here although it
is nowhere published.

Lemma 2.5 ([VF94] Lemma 2.1.3.1). Let A = kQ/I as in Corollary 2.4 and let a, x ∈ Q1 be
arrows, such that ax is a bad path and dax = ωbt · · · b1 with ω ∈ k×, bt, . . . , b1 ∈ Q1. Then for any
arrow d with s(d) = t(a) we have dax and dbt · · · b1x are both elements of I.

3. Subalgebras of type D4

As a first application of the description due to R. Vila-Freyer and W. Crawley-Boevey, the next
theorem tells us that we can restrict ourselves to algebras whose quiver has at most 4 vertices and
one vertex is connected to all the others by at least one arrow.
For an easier statement of our first main result, we introduce here two sets of neighbours of some
given vertex. These sets will correspond via idempotents e to subalgebras eAe of A that one can
use to test the biseriality of A.

Definition 3.1. Let A = kQ/I and let l ∈ Q0.
(i) Then N(l) := { j , l| j is connected to l by at least one arrow in the quiver of A} is called the

set of neighbouring vertices of l.
(ii) If |N(l)| < 4, then define J(l) := N(l) and if N(l) = 4, then call any subset J(l) ⊂ N(l) with
|J(l)| = 3 a set of neighbours of l of type D4.

Theorem 3.2. (i) Let A be a biserial algebra. Then the algebra eAe is biserial for every idem-
potent e ∈ A.

(ii) Let A = kQ/I be a basic algebra with zero paths e1, . . . , en. Then A is biserial iff for all
idempotents e ∈ A of the form e = el +

∑
j∈N(l) e j the algebra eAe is biserial.

(iii) Let A = kQ/I be a basic algebra with zero paths e1, . . . , en. Then A is biserial iff for all
idempotents e ∈ A of the form e = el +

∑
j∈J(l) e j for some set of neighbours of l of type D4

the algebra eAe is biserial.

Proof. We can assume without loss of generality that A is a basic algebra. First assume that A is
biserial. We want to show that for all idempotents e ∈ A the algebra eAe is biserial. Therefore let
e = e1 + · · · + ek be a decomposition of e into primitive orthogonal idempotents and analogously
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1 − e = ek+1 + · · · + en. Then A � kQ/I, where the idempotents e1, . . . , en correspond to the zero
paths and I satisfies the conditions of Corollary 2.4 and eAe � ekQe/eIe.
It is a standard result that one can check quite easily, that {e1, . . . , ek} is a complete set of primi-
tive orthogonal idempotents for eAe. The radical of eAe is e rad(A)e since this is a nilpotent ideal
and one can use Hom-functors of projective modules to get from the sequence 0 → rad(A) →
A → A/ rad(A) → 0 to the sequence 0 → e rad(A)e → eAe → eA/ rad(A)e → 0, which is
therefore short exact and the factor is semisimple. An arrow in the quiver of eAe does there-
fore correspond to an element in rad(eAe)/ rad2(eAe) = e rad(A)e/e rad(A)e rad(A)e. Note that
e rad(A)e rad(A)e ⊆ e rad2(A)e but in general there is no equality. Therefore there can be arrows
in the quiver of eAe that do not come from arrows in the quiver of A, but instead from longer
paths that do not pass through one of the vertices 1, . . . , k. Let us fix some notation: Denote by
˜a1 . . . as the path a1 . . . as as an element of ekQe in case 1 ≤ s(as), t(a1) ≤ k and k + 1 ≤ s(ai) ≤ n

for 1 ≤ i ≤ s − 1. Such a path a1 . . . as will be called irreducible in case ˜a1 · · · as . 0 mod eIe.
We now have a presentation eAe � kQ̃/Ĩ where Q̃0 = {1, . . . , k}, Q̃1 is the set of irreducible paths
and Ĩ := eIe ∩ kQ̃ will be the induced ideal (not necessarily admissible, but (kQ̃+)m ⊆ Ĩ ⊆ kQ̃+).
The same proof as for admissible ideals (cf. [ASS06] Lemma II.2.10) shows that rad(kQ̃/Ĩ) =

kQ̃+/Ĩ. So an arrow in the quiver of eAe corresponds to a basis element of (kQ̃+/Ĩ)/(kQ̃+/Ĩ)2 �
kQ̃+/((kQ̃+)2 + Ĩ). So Q̃ is in general not the quiver of eAe. We now want to show, that the quiver
of eAe is biserial and that we can choose Q′1 ⊆ Q̃1 a base of kQ̃+/(Ĩ + (kQ̃+)2) in such a way, that
Q′ inherits a bisection from Q (Taking a base guarantees, that Q′ will be the quiver of eAe): In
any point of Q there start at most two arrows. The presence of more than two irreducible paths
from a vertex i to a vertex j, both in {1, . . . , k} leads to two irreducible paths from i to j of the
form qasx1 p and q′b1x1 p for some paths p, q, q′ and arrows as, x1, b1 ∈ Q1, as , b1.

i1

x1

��
i2

as

��>>>>>>>>
b1

����������

i3 i4

According to Corollary 2.4 at any such crossing there has to be a relation, either of the form asx1

or of the form (as − ωbt · · · b1)x1 for some ω ∈ k×, t ≥ 1 and bt, . . . , b2 ∈ Q1. In the former case
the path qasx1 p belongs to eIe, a contradiction. In the latter case, either j lies on the longer path
bt · · · b1, then qasx1 p ∈ kQ̃2 + Ĩ, a contradiction, otherwise at most one of the paths would lead
to an arrow in Q′ as asx1 ≡ ωbt · · · b1x1 mod I. This shows that the quiver of eAe is biserial.
We now want to choose Q′1 ⊆ Q̃1 as described above, such that Q′ inherits a bisection from Q.
Assume there are more than two arrows from i to j in Q̃. Suppose two of them start with the
same arrow. Then the above arguments show that they have to be linearly dependent modulo Ĩ.
So for every choice Q′1 ⊆ Q̃1 of a base of kQ̃+/((kQ̃+)2 + Ĩ) only one of them will appear, so if we
define σ′( ˜a1 · · · as) := σ(as) that will consistently define one part of a bisection. If on the other
hand we have two paths starting with different arrows but ending with the same path a′, i.e. we
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have the following picture
i3

x′ ��>>>>>>>> i4

y′����������

i2

a′

��
i1

with x′, y′ ∈ Q1, σ(a′) , τ(x′), x′ , y′ and the two different paths are a′x′p and a′y′p′ with
p, p′ ∈ kQ. If the length of the path a′, regarded as an element of kQ is greater than one,
then Lemma 2.5 leads to the contradiction that a′x′ ∈ I. If a′ ∈ Q1 then there exist arrows
b′t′ , . . . , b

′
1 ∈ Q1, such that (a′−ω′b′t′ · · · b

′
1)x′ ∈ I, so we can replace a′x′p in a choice of a base by

b′t′ · · · b
′
1x′p and will also get a base of kQ̃+/((kQ̃+)2 + Ĩ). Then we can also define τ′ consistently

by τ′( ˜a1 · · · as) := τ(a1) yielding a bisection of Q′ inherited from Q. If we take I′ := Ĩ ∩ kQ′ then
this is an admissible ideal with kQ′/I′ � kQ̃/Ĩ � eAe.
Now we want to show, that the necessary relations of Corollary 2.4 exist. Therefore let ãx̃ :=
˜a1 · · · as ˜x1 · · · xr be a bad path of length two in Q′ (a1, . . . , as, x1, . . . , xr ∈ Q1). If s = 1, then

either asx1 is in I and therefore ãx̃ ∈ I′ or there exists ω ∈ k×, b1, . . . , bt ∈ Q1, such that
(a1 − ωbt · · · b1)x1 ∈ I and therefore (ã1 − ω ˜bt · · · b1) ˜x1 · · · xr ∈ I′, where ˜bt · · · b1 is the path
corresponding to b1 · · · b1 in ekQ′e. If otherwise s > 1, then by Lemma 2.5, a1 · · · asx1 ∈ I,
therefore ãx̃ ∈ I′. This shows (i).
For the other direction of (ii) let A be an algebra, such that eAe is biserial for all idempotents of
the required form. For any idempotent el, there exists a bisected presentation (Ql, σl, τl, pl, ql).
Set p(el) := q(el) := el and for arrows a starting (resp. ending) at l in eAe, that come from
arrows (and not from longer paths) in A, set σ(a) := σl(a) and q(a) := ql(a) (resp. τ(a) := τl(a)
and p(a) := pl(a)). Taking idempotents of the form el +

∑
j∈N(l) e j assures that we define values

of σ, τ, p, q for any arrow a ∈ Q1 in a compatible way. To show that this defines a bisected
presentation for A it only remains to prove that p and q are surjective. This follows as in the
construction of the quiver of A (cf. [ASS06] Theorem 3.7) since the elements p(a) (resp. q(a))
span A/ rad2(A).
For the other direction of (iii) let A be an algebra, such that eAe is biserial for all idempotents
of the required form. For vertices where there are at most three neighbouring vertices proceed
as in (ii). If there are four neighbouring vertices for l, then there are two arrows x, y ending
in l and two arrows a, b starting at l. Assume without loss of generality s(x) = j1, s(y) = j2,
t(a) = j3, t(b) = j4. Denote the four bisected presentations that we get for this vertex by
(Qi

l, σ
i
l, τ

i
l, p

i
l , q

i
l ) where ji is the vertex that is missing in the corresponding quiver. Contrary to

(ii) it is not guaranteed that the bad paths in the corresponding algebras eAe for the same ver-
tex l but different J(l) coincide, so we have to do the following case-by-case-analysis. Assume
without loss of generality that σ4

l (a) , τ4
l (x), so that q4

l (a)p4
l (x) = 0, otherwise interchange the

rôles of x and y. If σ3
l (b) , τ3

l (y), then define τ(x) := τ4
l (x), τ(y) := τ4

l (y), σ(a) := σ4
l (a),

σ(b) := −σ4
l (a), p(x) := p4

l (x), q(a) := q4
l (a), p(y) := p3

l (y) and q(b) := q3
l (b). Otherwise

we have q3
l (b)p3

l (x) = 0. In that case if σ1
l (b) , τ1

l (y), then take τ(x) := τ4
l (x), τ(y) := τ4

l (y),
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σ(a) := σ4
l (a), σ(b) := −σ4

l (a), p(x) := p4
l (x), q(a) := q4

l (a), p(y) := p1
l (y) and q(b) := q1

l (b).
Otherwise in that case we also have σ1

l (a) , τ1
l (y) and we can then define τ(x) := τ3

l (x) =: σ(a),
τ(y) := τ3

l (y) =: σ(b), p(x) := p3
l (x), q(b) := q3

l (x), p(y) := p1
l (y) and q(a) := q1

l (a). In each case
we get surjective maps p, q , and hence a bisected presentation, with the same argument as for
(ii). �

Remark 3.3. (a) One can get rid of the assumption that the algebra has to be basic by adjusting
the definition of J(l) by taking at least one representative of any isomorphism class [Aei].

(b) Note that for non-biserial algebras with biserial quiver the algebras eAe do in general not
have biserial quiver.

(c) For special biserial algebras, it is possible to go from A to eAe and staying special biserial.
However one cannot go back, as one can see from the example in [SW83] of a biserial algebra
which is not a special biserial algebra. For idempotents as described in the theorem eAe is
always special biserial.

(d) That fewer points than in (iii) are not sufficient for testing biseriality is already appearent for
the path algebra of D4: If we take only two neighbours we get the path algebra of A3, which
is obviously Nakayama, and therefore biserial.

(e) One reason why one can also not get rid of multiple arrows in general is the same as for

assumption (C2) in 2.4, for example take the quiver 1
x //
y

// 2
a //
b

// 3 with relations (a−b)x

and (b − a)y, which is not biserial, but subalgebras with fewer arrows are biserial.

4. D4-free algebras

In this section we present our new description of basic biserial algebras, namely D4-free alge-
bras, and prove that the two defintions coincide. As a corollary we get a description of biseriality
in terms of the subalgebras mentioned in Theorem 3.2.

Definition 4.1. Let A be a basic algebra with a complete set of primitive othogonal idempotents
{e1, . . . , en}. Then A is called D4-free, if there does not exist one of the following modules:
(1) a local module M of Loewy length two with l(rad(M)) = 3,
(2) a colocal module M of Loewy length two with l(M/ soc M) = 3,
(3) a local module M, indices i, j ∈ {1, . . . , n}, ã1 ∈ ei rad(A)e j, ã2, ã3 ∈ rad(A), b0 ∈ M, such

that
(a) ã2ã1b0, ã3ã1b0 are linearly independent
(b) rad2(A)ã1b0 = 0
(c) there do not exist â1, â′1 ∈ ei rad(A)e j, â2, â3 ∈ rad(A) such that

(α) â2, â3 ∈ 〈ã2, ã3〉k/(rad2(A) ∩ 〈ã2, ã3〉k) linearly independent
(β) â1b0 + â′1b0 = ã1b0

(γ) â2â′1b0 = 0 and â3â1b0 = 0.
(4) a local right module M, indices i, j ∈ {1, . . . , n}, ã1 ∈ e j rad(A)ei, ã2, ã3 ∈ rad(A), b0 ∈ M,

such that
(a) b0ã1ã2, b0ã1ã3 are linearly independent
(b) b0ã1 rad2(A) = 0
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(c) there do not exist â1, â′1 ∈ e j rad(A)ei, â2, â3 ∈ rad(A) such that
(α) â2, â3 ∈ 〈ã2, ã3〉A/(rad2(A) ∩ 〈ã2, ã3〉A) linearly independent
(β) b0â1 + b0â′1 = b0ã1

(γ) b0â′1â2 = 0 and b0â1â3 = 0.

Remark 4.2. An algebra A is biserial iff its opposite algebra Aop is biserial. A is also D4-free iff
Aop is.
The reader may have noticed, that (3) and (4) do not necessarily describe “small” modules in the
sense that their length or Loewy length is bounded but instead give some condition on a “small”
part of a possibly “large” module (cf. (b)). This is because of the path algebra of the following
quiver (and similar ones):

1
u //

x
��======= 2

y
���������

u′

��

3
b

��=======
a

���������

4 5
u′′

oo

with relations ax = u′′u′u and by, yu, u′′b. If we want to have a module with similar properties
as in (3) but replacing (b) with rad3(A)M = 0, for example P1/ rad3(A)P1, then this would be a
module over the string algebra with the same quiver and relations ax and by, yu, u′′b.

Lemma 4.3. Let A be an algebra.
(i) There is a local module M of Loewy length two with l(rad(M)) = m iff there is a point in

the quiver of A where m arrows start.
(ii) There is a colocal module M of Loewy length two with l(M/ soc M) = m iff there is a point

in the quiver of A where m arrows end.

Proof. (i) Without loss of generality let A = kQ/I for some quiver Q and an admissible ideal
I, since both conditions hold true iff they hold true for the corresponding basic algebra and
any basic algebra is of that form.

“⇐”: Let i be the point where m arrows start, then M := Aei/ rad2(A)ei is a local module
with l(rad(M)) ≥ m and a factor module of it has the required properties.

“⇒”: Let M be such a module. Let b0 ∈ M, s.t. b0 spans top M. Since M is a local module,
there exists e j, s.t. e jb0 also spans top M. rad(M) = rad(A) ·M and since M is of Loewy
length two and l(rad(M)) = m there exist a1, . . . , am ∈ Q1 with a1e jb0, . . . , ame jb0

linearly independent, as a consequence they all start in the vertex j.
(ii) This is the dual statement to (i).

�

Theorem 4.4. Let A be a basic algebra with complete set of primitive orthogonal idempotents
{e1, . . . , en}. Then A is D4-free iff it is biserial.

Proof. Assume A is biserial, then Lemma 4.3 for m = 3 shows that modules of the form (1) and
(2) do not exist. As (4) is dual to (3) it remains to prove (3).
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Suppose to the contrary that a module of the form (3) with vertices i and j and the required ele-
ments exists. According to Corollary 2.4 we may assume that A = kQ/I satisfies the conditions
stated there. Since Q is a biserial quiver there end at most two arrows a1, a′1 in the vertex i (define
a′1 := 0 if there does not exist a second arrow ending in i) and we can decompose ã1 = a1 p + a′1 p′

with p, p′ ∈ kQ. We may assume without loss of generality that ã2 = µ2a2 + µ3a3 + r and
ã3 = µ′2a2 + µ′3a3 + r′, where a2, a3 ∈ Q1 with s(a2) = s(a3) = i and r, r′ ∈ rad2(A)ei. Otherwise
we can replace ã2 and ã3 by ã2ei and ã3ei and r, r′ by rei and r′ei and get elements with the
same properties. Define â1 := a1 p, â′1 := a′1 p′. One of the paths a2a1 and a3a1 is bad, assume
without loss of generality, that it is a2a1. If â′1b0 = 0, then ã2ã1b0 and ã3ã1b0 are not linearly
independent because the necessary relation (a2 − ωqa3)a1, ω ∈ k, q a path in Q, possibly a zero
path, yields ã2ã1b0, ã3ã1b0 ∈ 〈a3a1 pb0〉k. If both â1b0 and â′1b0 are non-zero, then there are two
necessary relations (a2 −ωqa3)a1 and (a3 − κq′a2)a′1. The elements a2 −ωqa3 and a3 − κq′a2 are
linearly independent modulo rad2(A), either because the ideal is admissible or because of (C2) in
Corollary 2.4, so the elements â1 := a1 p, â′1 := a′1 p′, â2 := a2 −ωqa3 and â3 := a3 − κq′a2 define
elements contradicting condition (c) on the module (3).
For the converse suppose that A is a non-biserial algebra. If the quiver of A is non-biserial, then
according to Lemma 4.3 there does exist a module of the form (1) or (2). So suppose that the
quiver of A is biserial. Then for every quadruple (σ, τ, p, q), where (σ, τ) is a bisection and p, q
are surjective algebra homomorphisms kQ → A with p(ei) = q(ei) and p(a), q(a) ∈ rad(A) for
every arrow a ∈ Q1, there exist arrows a, x ∈ Q1 such that q(a)p(x) , 0. We prove that in this
case there is a module M with properties (a)-(c) by analyzing the local situation at the vertex
s(a) = t(x) and redefining the values of σ and q (resp. τ and p) for the arrows starting (resp.
ending) at this vertex and getting a bisected presentation if there is no such module M. We say
that (Q, σ, τ, p, q) is a bisected presentation at a vertex l if for all bad paths ax of length two with
s(a) = t(x) = l, q(a)p(x) = 0.
There are six possible local situations: One arrow starts at this vertex but none ends, none ends
but one arrow starts, one arrow starts and one arrow ends, two arrows start at this vertex but only
one ends, only one starts but two end, or two arrows start and two end. In the first three instances
we define all paths to be good. Then any surjective algebra homomorphism will give rise to a
bisected presentation.
For the case that two arrows a, b are starting but only the arrow x is ending we can assume
that also q(b)p(x) , 0, otherwise we could interchange σ(a) and σ(b) to get a bisected pre-
sentation at this point. Now look at the module M := Aes(x)/ rad2(A)p(x) and at the elements
b0 := es(x), ã1 := p(x), ã2 := q(a), ã3 := p(a). If q(a)p(x) and q(b)p(x) were linearly dependent,
then without loss of generality q(a)p(x) + λq(b)p(x) = rp(x) with r ∈ rad2(A)p(x) and λ ∈ k. We
can assume that r ∈ et(a)Aes(a). We then redefine q ′(a) := q(a)+λq(b)−r. Leaving everything else
unchanged we get an algebra homomorphism because all elements lie in et(a)Aes(a). Its surjectiv-
ity follows from [Ben95] Proposition 1.2.8 as we have modified by an element in rad2(A). So we
get a bisected presentation at this point. We now have found a module with (a) and (b) satisfied
but we also have to prove that (c) holds. Therefore suppose that there are elements â1, â′1, â2, â3

as in (c). Then one of the elements â1, â′1 has to span et(x) rad(A)/ rad2(A)es(x), without loss of
generality it is â1, then redefine p′(x) := â1, q ′(a) = â3, q ′(b) = â2 and get a bisected presentation
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at this point.
For the case that only one arrow is starting at this point but two are ending proceed dually. Note
that if (Q, σ, τ, p, q) is a bisected presentation for A, then (Qop, τ, σ, q , p) is a bisected presentation
for Aop.
So suppose that there are two arrows a, b starting and two, x, y, ending at this point. First we
want to achieve that for some combination of two arrows, q(a)p(x) = 0. Look at the module
M := Aes(x)/ rad2(A)p(x) and the elements b0 := es(x), ã1 := p(x), ã2 := q(a), ã3 := q(b). This
module and the elements satisfy (b). Assume it does not satisfy (a), i.e. q(a)p(x) and q(b)p(x)
are linearly dependent. Then without loss of generality q(a)p(x) + λq(b)p(x) = rp(x) otherwise
interchange the rôles of a and b. Then define q ′(a) := q(a) + λq(b)− r and achieve q ′(a)p(x) = 0.
So assume this module does not satisfy (c), then there exist â1, â′1, â2, â3 with the required proper-
ties. Because of (β) â1 or â′1 has to span (sometimes together with p(y)) et(x) rad(A)/ rad2(A)es(x),
assume without loss of generality it is â1. Furthermore we have et(a)â2es(a) , 0 or et(b)â2es(b) , 0
and the other way round for â3, without loss of generality it is the former. Thus we can define
q ′(a) := â3, q ′(b) := â2 and p′(x) := â1 to achieve q ′(a)p′(x) = 0.
So from now on we can assume that q(a)p(x) = 0, otherwise we would have a module of the
form (3). Now look at the right module M := et(b)A/q(b) rad2(A), and the elements analo-
gous to the above arguments. Assume q(b)p(x) and q(b)p(y) are linearly dependent. Then we
have λ1q(b)p(x) + λ2q(b)p(x) = q(b)r′ with r′ ∈ rad2(A). If λ2 , 0, we can define p′(y) :=
λ2p(y) + λ1p(x) − r′ to get a bisected presentation at this point with bad paths ax and by. If
on the other hand λ2 = 0, then we also have to look at the module M′ := Aes(y)/ rad2(A)p(y)
with analogous elements. If q(a)p(y) and q(b)p(y) are linearly dependent in this module, then
µ1q(a)p(y) + µ2q(b)p(y) = r′′p(y) for some r′′ ∈ rad2(A). If µ2 , 0, then we can define
q ′(b) := µ2q(b) + µ1q(a) − r′′ and we have a bisected presentation at this point with bad paths ax
and by. If otherwise µ2 = 0, then we can redefine q ′(a) := µ1q(a) − r′′ and p′(x) := λ1p(x) − r′

to get a bisected presentation at this point with bad paths ay and bx. So M′ satisfies (a) and (b).
Assume it does not satisfy (c), so there exist elements â1, â′1, â2, â3 with the required properties.
As above one of â1, â′1 (sometimes together with p(x)) does span et(y) rad(A)/ rad2(A)es(y), without
loss of generality assume it is â1. Now there are two cases: If et(b)â2es(b) is linearly independent of
q(a) modulo rad2(A), then we can define q ′(b) := â2 and p′(y) := â1 to get a bisected presentation
with bad paths ax and by. If this is not the case, then et(a)â2es(a) is linearly independent of q(b)
modulo rad2(A) and we can define q ′(a) := â2, p′(x) := λ1p(x) − r′, p′(y) := â1 to get a bisected
presentation with bad paths ay and bx.
Now we have shown, that for M the conditions (a) and (b) hold or there exists a module of the
form (3) or (4). So assume M does not satisfy (c). Again we have that one of the elements â1, â′1
(sometimes together with q(a)) spans et(b) rad(A)es(b) modulo rad2(A), without loss of generality
assume again it is â1. Dual to what we have done there are two cases: If et(x)â2es(x) is linearly
independent of p(x) modulo rad2(A), then we can redefine p′(y) := â2 and q ′(b) := â1 to get a
bisected presentation at this point with bad paths ax and by. If this is not the case, then et(y)â2es(y)

is linearly independent of p(y) modulo rad2(A). We can now redefine q ′(b) := â1 and in the fol-
lowing we can either assume that q(a)p(x) = 0 or by redefining q ′(b) := â1 that q(b)p(x) = 0.
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We have to look at one last module, namely M′ := Aes(y)/ rad2(A)p(y). If this module does not
satisfy (a), i.e. κ1q(a)p(y) + κ2q(b)p(y) = r′′′p(y), then we can without loss of generality assume
that κ2 , 0, so that we can redefine q ′(b) := κ2q(b) + κ1q(a) − r′′′ to get a bisected presentation
at this point with bad paths ax and by, otherwise we would use the redefinition as above that
q(b)p(x) = 0 and redefine q(a) to get a bisected presentation at this point with bad paths ay and
bx. So we can assume that M′ satisfies (a) and (b). Assume it does not satisfy (c). Then again we
can assume that we can redefine p′(y) := â1 and either q ′(b) := â2 or q ′(a) := â3 to get a bisected
presentation at this point (bad paths are either ax and by or ay and bx). �

Out of the proof we get the following corollary:

Corollary 4.5. If A = kQ/I is an algebra, where Q is biserial, such that eAe has no oriented
cycles for any idempotent as in theorem 3.2 (iii), then A is biserial iff for all idempotents e as in
theorem 3.2 (iii) there does not exist a local eAe-module M, such that there exists b̃1 ∈ el rad(M)
with l(rad(A)b̃1) ≥ 2 and rad2(A)b̃1 = 0 and there does not exist a colocal eAe-module M, such
that there exists b̃1 ∈ elM \ soc(M) with l(Ab̃1/ soc(Ab̃1)) ≥ 2 and soc2(Ab̃1) = Ab̃1 or eAe is
isomorphic to one of the following string algebras with quiver

1

��????????

��

2 //// 3

1′

??��������

, 1 // // 2 //// 3 or

3

1 // // 2

??��������

��????????

3′

OO

Proof. If A is a biserial algebra such that eAe has no oriented cycles for any e, then the module
M defined in the proof satisfies conditions (a) and (b) and therefore has the properties mentioned
in the corollary with b̃1 := ã1b0. If it does not satisfy (c), then we have defined in the proof above
elements â2 and â3 which span et(a3)Aet(a2), so if we take the isomorphism mapping â2 7→ a2 and
â3 7→ a3, then we obtain one of the exceptional string algebras.
In the reverse direction of the proof the converse is also proven because a module M with proper-
ties (a) and (b) is constructed there and therefore also satisfies the conditions of the corollary. �
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encouragement. I would also like to thank Rolf Farnsteiner for his comments on a previous
version of this paper.

References
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