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Abstract. In this paper we show that the tree class of a component of the stable Auslander-Reiten
quiver of a Frobenius-Lusztig kernel is one of the three infinite Dynkin diagrams. For the special
case of the small quantum group we show that the periodic components are homogeneous tubes
and that the non-periodic components have shape Z[A∞] if the component contains a module for
the infinite-dimensional quantum group.

Introduction

In the representation theory of algebras, two cases have served as paradigms, that are group
algebras and hereditary algebras. It was proven by Ringel [Rin78] and Erdmann [Erd95] that in
both cases only one tree class can occur for a component of the stable Auslander-Reiten quiver
in the case of wild representation type. Building on these results the Auslander-Reiten theory of
other classes of wild algebras has been studied (see e.g. [LdlP97], [Erd96], [BE11]).

In 1990, Lusztig [Lus90] defined a finite dimensional quantum group, the small quantum
group, which has several similarities with restricted enveloping algebras although defined in
characteristic zero. In 2009, Drupieski [Dru09] gave a generalization to positive characteris-
tic, that gives also quantum analogues of higher Frobenius kernels, which he called (higher)
Frobenius-Lusztig kernels. Building on results by Feldvoss and Witherspoon in [FW09] in a
recent paper [Kül11], the author has shown that the non-simple blocks of a Frobenius-Lusztig
kernel are of wild representation type in all but two cases. Therefore the class of Frobenius-
Lusztig kernels can also serve as an example for understanding the Auslander-Reiten theory of
wild self-injective algebras.

For self-injective algebras where the modules have finite complexity (which was proven for
the Frobenius-Lusztig kernels in [Dru11]), Kerner and Zacharia provided a version of Webb’s
Theorem, that limits the tree classes of components to Euclidean and infinite Dynkin diagrams.
For Frobenius-Lusztig kernels we are able to boil them down and prove

Main Theorem 1. Let g , sl2 be a finite dimensional complex simple Lie algebra. Then all
non-periodic components of the Frobenius-Lusztig kernel associated to g are of the form Z[A∞],
Z[D∞] or Z[A∞∞]. In the case of the small quantum group, if the component additionally contains
the restriction of a module for the (infinite dimensional) Lusztig form of the quantum group, then
it can only be Z[A∞].
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For the special case where the tree class is the Kronecker quiver we can even give a full classi-
fication of all algebras having such a component. As a corollary we obtain that all such algebras
are special biserial.

In this article, k denotes an algebraically closed field. All vector spaces will be assumed to be
finite dimensional unless otherwise stated. If G is a semisimple algebraic group, the correspond-
ing Lie algebra will be denoted by g, the set of roots will be denoted by Φ, the set of simple roots
is denoted Π, the corresponding set of positive roots is denoted by Φ+, h is the Coxeter number.
For general theory we refer the reader to [Jan03].

For a general introduction to Auslander-Reiten theory we refer the reader to [ARS95], [ASS06]
or [Ben95]. We denote the syzygy functor by Ω and the Auslander-Reiten translation by τ.

Our paper is organized as follows: In Section 1 we recall the basic definitions and results in
the theory of support varieties that are needed in the remainder. Section 2 is devoted to a reca-
pitulation of the definition of Frobenius-Lusztig kernels and their properties. Section 3 recalls
Webb’s Theorem for Frobenius-Lusztig kernels and describes the periodic components in more
detail. Section 4 classifies all algebras having a component of Kronecker tree class in terms of
quivers and relations. In Section 5 we prove statements on graded modules over quantum groups
and Frobenius extensions that we need in the proof of our main result. Section 6 contains the
statement and proof of the main result. In Section 7 we study the case that the tree class is A∞ in
more detail and prove statements about simple modules in such components.

1. Support varieties for (fg)-Hopf algebras

The notion of a support variety was first defined for group algebras and later generalized to
various classes of algebras, whose cohomology satisfies certain finiteness conditions. In our case
the following one is satisfied:

A finite dimensional Hopf algebra A is said to satisfy (fg), if the even cohomology ring
Hev(A, k) is finitely generated and the Hev(A, k)-modules Ext•(M,N) are finitely generated for
all finite dimensional A-modules M and N.

If A is an (fg)-Hopf algebra, then the support variety of a module M is defined as the variety
V(M) associated to the ideal ker ΦM, where ΦM : Hev(A, k)→ Ext•A(M,M) is induced by −⊗M.
In the remainder of this section we will list some properties of these varieties that we will use
in this paper. The proofs for the group algebra case (see e.g. [Ben91]) generalize without much
difficulty. Some of them may be found in [Bro98] or [FW09].

Proposition 1.1. Let A be an (fg)-Hopf algebra. Then:
(i) dimV(M) = cx M = γ(Ext•A(M,M)), where cx M, the complexity of M, is the rate of

growth γ of a minimal projective resolution of M. For a sequence of vector spaces Vn, the
rate of growth γ(V∗) is the smallest number d, such that there exists a constant C > 0 with
dim Vn ≤ Cnd−1.
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(ii) M is projective iff cx M = 0.
(iii) M is Ω-periodic iff cx M = 1. Furthermore if the even cohomology ring is generated in

degree n, then the Ω-period of every periodic module is a divisor of n.
(iv) If M is indecomposable then PV(M), the projectivized support variety for M, is connected.
(v) V(M) = V(N) if M and N belong to the same connected component of the stable Auslander-

Reiten quiver.

The following statement is a generalization of [Far95, Lemma 2.1] and [Far11, Theorem 1.1]:

Theorem 1.2. Let A be an (fg)-Hopf algebra. Let M be a module, such that the commutative
graded subalgebra S := Im ΦM ⊆ Ext•A(M,M) is generated by

⊕
b|a S b for some a ∈ N. Then

cx M ≤ dim Extan
A (M,M) for all n ≥ 1.

Proof. Denote by T(n) the subalgebra of S generated by the subspace S an of homogeneous ele-
ments of degree an. Since S is generated by

⊕
b|a S b as an algebra, it follows that it is generated

as a T(n)-algebra by finitely many integral elements. By [Eis95, Corollary 4.5] it is therefore
finitely generated as a T(n)-module. Since Ext•A(M,M) is finitely generated as an S -module,
we also have that it is finitely generated as a T(n)-module. Hence cx M = γ(Ext•A(M,M)) =

γ(T(n)) ≤ dim S an ≤ dim Extan
A (M,M), where the inequalities follow from the foregoing propo-

sition, as Ext•(M,M) is a finitely generated module over T(n), the fact that equality holds for the
polynomial ring in finitely many variables, and the fact that S an is a subspace of Extan

A (M,M),
respectively. �

2. Frobenius-Lusztig kernels

In this section we recall some basic properties of Frobenius-Lusztig kernels that we use
throughout this paper.

Let ` ≥ 3 be an odd integer (We also suppose that 3 does not divide ` if the root system men-
tioned in the statements contains a component of type G2). We fix a primitive `-th root of unity ζ
and denote by Uζ(g) the Lusztig form of the quantum group at a root of unity ζ (cf. [Dru09]). For
r ∈ N0 the r-th Frobenius-Lusztig kernel Uζ(Gr) is defined as the subalgebra of Uζ(g) generated
by the set {Eα, E

(pi`)
α , Fα, F

(pi`)
α ,K±1

α |α ∈ Π, 0 ≤ i < r}, where E(n)
α and F(n)

α denote the n-th divided
powers (see e.g. [Jan96]). Note that in the case of characteristic zero only the zeroth Frobenius-
Lusztig kernel exists. The zeroth Frobenius-Lusztig kernel is also called small quantum group.

For a simple algebraic group scheme G, denote its r-th Frobenius kernel by Gr and the corre-
sponding algebra of distributions, i.e. the dual of the coordinate ring of Gr, by Dist(Gr) (see e.g.
[Jan03]). Then Uζ(G0) is a normal Hopf subalgebra of Uζ(Gr) with Hopf quotient isomorphic to
Dist(Gr). Recall that all simple modules for Uζ(G0) are also modules for Uζ(g) and hence for all
Uζ(Gr) and that for every r there exists exactly one simple projective Uζ(Gr)-module denoted by
Stpr`. Furthermore each simple Uζ(Gr)-module is a tensor product of a Dist(Gr)-module (viewed
as a module for Uζ(Gr)) and a Uζ(G0)-module. In [Kül11] we proved that there is another em-
bedding F of mod Dist(Gr) into mod Uζ(Gr), induced by tensoring with St`, whose image is a
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direct sum of (categorical) blocks.

The main result of [Kül11] was the following:

Theorem 2.1. Let g be a finite dimensional complex simple Lie algebra. Let ` > 1 be an odd
integer not divisible by 3 if Φ is of type G2.

(i) The only representation-finite block of Uζ(Gr) is the semisimple block corresponding to
Stpr`.

(ii) Furthermore for char k = 0 assume that ` is good for Φ (i.e. ` ≥ 3 for type Bn, Cn and Dn,
` ≥ 5 for type E6, E7 and G2 and ` ≥ 7 for E8) and that ` > 3 if Φ is of type Bn or Cn. For
char k = p > 0 assume that p is good for Φ and that ` > h. If Uζ(Gr) satisfies (fg), then
Uζ(Gr) is tame iff G = SL2 and r = 0 or r = 1 and the block lies in the image of F.

3. Webb’s Theorem

In [KZ11] Kerner and Zacharia have shown that for self-injective algebras, components of
finite complexity have a very special shape. In our context their theorem reads as follows:

Theorem 3.1. If Θ is a non-periodic component (i.e. there does not exist M ∈ Θ with τmM � M
for some m > 0 or equivalently ΩmM � M since the algebra is symmetric and hence τ � Ω2) of
the stable Auslander-Reiten quiver of Uζ(Gr), then Θ � Z[∆], where ∆ is a Euclidean or infinite
Dynkin diagram (for the Euclidean diagram Ãn one has to take a non-cyclic orientation when
constructing Z[Ãn]).

Proof. In [Dru11, Theorem 6.3.1] it is shown that all modules have finite complexity. Hence the
result is a direct consequence of [KZ11, Main Theorem]. �

The question of periodic components was settled much earlier by Happel, Preiser and Ringel
in [HPR80]. They showed that periodic components are either finite, or infinite tubes, i.e. com-
ponents of the form Z[A∞]/τm. For r = 0 we can boil these possibilities down to only one:

Theorem 3.2. Let Θ be a periodic component of the stable Auslander-Reiten quiver of Uζ(Gr).
Then Θ is an infinite tube. Assume further that r = 0 and for char k = 0 let ` be a good prime for
Φ and ` > 3 for types B and C and ` - n + 1 for type An and ` , 9 for E6, for char k = p > 0 let
p be good for Φ and ` ≥ h. Then Θ is a homogeneous tube, i.e. Θ � Z[A∞]/τ.

Proof. By [HPR80, p. 292, Theorem] Θ is either a finite component or an infinite tube. It cannot
be a finite component since this is equivalent to the block containing Θ being representation-
finite by a classical result of Auslander (cf. [ASS06, Theorem 5.4]). Furthermore for a block
of Uζ(Gr) being of finite representation type is the same as being semi-simple by our previous
results in [Kül11]. For r = 0 even more holds since the even cohomology ring is generated in
degree two by [BNPP11, Theorem 1.2.3] and [Dru11, Theorem 5.1.4]. By Proposition 1.1 this
implies that the Ω-period of every periodic module divides two. Since Uζ(G0) is symmetric, we
have τ � Ω2 and hence the τ-period is one, i.e. the component is a homogenous tube. �

Our goal in the next sections will be to reduce the cases for non-periodic components that can
occur.
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4. Kronecker components

In this section we will classify (up to Morita equivalence) all self-injective algebras having a
component of Kronecker type, i.e. a component isomorphic to Z[Ã12]. To establish this result
we need the following result due to Erdmann in the symmetric case, which generalizes to the
self-injective case without difficulties. Note that a similar theorem due to Brenner and Butler
[BB98, Theorem 1.1] states that this also holds even if the algebra is not self-injective. However
in this case one has to assume that the algebra is tame.

Proposition 4.1 ([Erd90, Theorem IV.3.8.3], [Far99a, Theorem 4.6, Proof]). Let A be a self-
injective algebra. If Θ is a component of the stable Auslander-Reiten quiver isomorphic to
Z[Ã12], then it is attached to a projective indecomposable module of length four. The lengths
of the modules occurring in the non-stable component belonging to Θ are as follows:

. . .
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The projective indecomposable module satisfies ht P � S ⊕ S for some simple module S , where
ht P = rad P/ soc P is the heart of the projective module.

By a more detailed analysis we now get to the classification of all algebras with Kronecker
type components. All of them are special biserial, in particular tame (cf. [WW85]). A special
biserial algebra is the following:

Definition 4.2. An algebra A is called special biserial if A is Morita equivalent to a path algebra
with relations kQ/I, where Q and I satisfy the following:

(SB 1) In any vertex of Q there start at most two arrows.
(SB 1’) In any vertex of Q there end at most two arrows.
(SB 2) If a, b, c are arrows of Q with t(a) = s(b) = s(c), then one has ba ∈ I or ca ∈ I.

(SB 2’) If a, b, c are arrows of Q with s(a) = t(b) = t(c), then one has ab ∈ I or ac ∈ I.

Theorem 4.3. (1) If A is a self-injective connected algebra with a component of the stable
Auslander-Reiten quiver isomorphic to Z[Ã12], then the algebra is Morita equivalent to
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one of the following basic algebras with quiver

2
x1

2 //

x0
2

// . . .
x1

j−2 //

x0
j−2

// j − 1
x1

j−1

  BBBBBBBBB

x0
j−1   BBBBBBBBB

1
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1
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1

AA��������
j
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j~~|||||||||x0

j

~~|||||||||

n
x1

n

]]<<<<<<<<

x0
n

]]<<<<<<<<
. . .

x1
n−1

oo
x0

n−1oo j + 1
x1

j+1

oo
x0

j+1oo

and relations for each j given by either xi
j+1xi

j − λ
i
jx

i+1
j+1xi+1

j and xi
j+1xi+1

j for any i or
by xi+1

j+1xi
j − λ

i
jx

i
j+1xi+1

j and xi
j+1xi

j for any i, where λi
j ∈ k× for all i, j. (Many of these

algebras are of course isomorphic.) Here the indices are added modulo 2 and modulo n
respectively. In particular, all these algebras are special biserial. The Auslander-Reiten
quiver consists of n components isomorphic to Z[Ã12] each containing exactly one simple
module and n P1(k)-families of homogeneous tubes.

(2) If A is weakly-symmetric, then there are at most two simple modules. If there are two of
them the following basic algebras remain:

1 y1 //
x1 //

2x2oo y2oo

with relations: x2y1 = y2x1 = 0 and x2x1−y2y1 = 0 and one of the following possibilities:
a) x1y2 = y1x2 = 0 and x1x2 − λy1y2 = 0, where λ ∈ k×, say A2(λ);
b) x1x2 = y1y2 = 0 and x1y2 − y1x2 = 0, say A2(0).
We have that A2(µ) � A2(µ′) iff µ′ = µ±1.
If there is only one simple module then the following basic algebras remain:

1 yeex 99

with relations xy = yx = 0 and x2 = y2, say A1(0), or x2 = y2 = 0 and xy = λyx, where
λ ∈ k×, say A1(λ). For char k = 2 we have A1(0) � A1(1). For char k , 2 we have
A1(µ) � A1(µ′) iff µ′ = µ±1 or {µ, µ′} = {0, 1}.

(3) The only symmetric algebras among these are A2(1) and A1(0) and A1(1).

Proof. Let P1 be the projective indecomposable module attached to Θ. Set S 1 := top P1, S 3 :=
soc P1 and let S 2 be the simple module, such that ht P1 � S 2 ⊕ S 2. Now define P1, . . . Pn by
induction since ΩiΘ is also a component of Kronecker type attached to the projective cover
of S i+1, that is Pi+1. By general theory the Auslander-Reiten sequence attached to Pi is 0 →
rad Pi → ht Pi ⊕ Pi → Pi/ soc Pi → 0 and Pi was defined in such a way that ht Pi = S i+1 ⊕ S i+1.
Since there are only finitely many simple module, there is l,m such that S l � S m+1. Choose them
such that |l − m| is minimal. Without loss of generality l = 1. Then the modules S 1, . . . , S m

form a complete list of composition factors of all the projective modules attached to the Ω jΘ

for all j. Therefore they form a block. As the algebra is connected, these are all the simple
modules . The quiver of A can now be constructed by choosing a basis of rad(Pi)/ rad2(Pi) for
all i. Lifting this base to Pi the relations can easily be determined. This implies that the algebra
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is special biserial. Thus by [WW85] the Auslander-Reiten quiver of A consists of n components
isomorphic to Z[Ã12] and n P1(k)-families of homogeneous tubes.
If the algebra is weakly symmetric one has S 1 � S 3. Direct construction of isomorphisms yields
the stated quivers and relations. These isomorphisms can be given by sending the arrows to
scalar multiples of themselves (Here we use that the field is algebraically closed.) To show that
they are indeed non-isomorphic in the stated cases we use the fact that the trace of the Nakayama
automorphism provides an invariant for the isomorphism class of an algebra. To construct a
Frobenius homomorphism one can e.g. use [HZ08, Proposition 3.1]. For A2(λ) the trace of
the Nakayama automorphism is 6 + λ + λ−1, for A2(0) this invariant is 4, the result for A1(λ) is
2 + λ + λ−1.
Explicit calculation shows which of the algebras are symmetric. �

Theorem 4.4. Let g be a finite dimensional complex simple Lie algebra. Let ` > 1 be an odd
integer not divisible by 3 if Φ is of type G2. Furthermore for char k = 0 assume that ` is good
for Φ and that ` > 3 if Φ is of type Bn or Cn. For char k = p > 0 assume that p is good for
Φ and that ` > h. If Uζ(Gr) satisfies (fg), then the algebra Uζ(Gr) has Kronecker components
only if g � sl2 and r = 0 or r = 1. For r = 1 they belong to the image of the block embedding
F : mod Dist(SL(2)1)→ mod Uζ(S L(2)1),V 7→ V ⊗ St` (see [Kül11]).

Proof. As a component of Kronecker type belongs to a tame block, Uζ(Gr) has to have a tame
block. This is only possible in the stated cases by [Kül11, Proposition 5.6]. The known repre-
sentation theory of Uζ(SL(2)0) and Dist(SL(2)1) yields the result. �

That there is a classification in the Kronecker case is quite special. However one can prove
partial results also for the case Ã2:

Proposition 4.5. Let A be a self-injective algebra with a component Θ of the stable Auslander-
Reiten quiver isomorphic to Z[Ã2]. Then there is a unique projective module PΘ attached to the
component that satisfies ht PΘ = S Θ ⊕ MΘ with an irreducible map MΘ � S Θ or S Θ ↪→ MΘ.
Furthermore ΩΘ , Θ and if MΘ � S Θ is irreducible, then there is an irreducible map S ΩΘ ↪→
MΩΘ, and if S Θ ↪→ MΘis irreducible, then there is an irreducible map MΩΘ � S ΩΘ.

Proof. A component of type Z[Ã2] looks as follows (since it is necessarily attached to a projective
module by [BR87, p. 155], we have drawn that too):
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Here the two bullets are identified (resp. their τ-shifts). The standard almost split sequence at-
tached to P is 0→ rad P→ ht P⊕P→ P/ soc P→ 0. Therefore the irreducible maps originating
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in the predecessor of P are surjective (except for the map rad P→ P) while the irreducible maps
terminating in the successor of P (except for the map P → P/ soc P) are injective. Since an
irreducible map is either injective or surjective, an induction implies that the other meshes do not
contain projective vertices and furthermore the maps ”parallel” to these maps are injective (resp.
surjective).
As Ω−1Θ satisfies the same properties, the component necessarily contains a simple module.
Thus we have that this has to be at a vertex belonging to ht P since in all other vertices there
either end injective irreducible maps or there start surjective irreducible maps. Depending on
whether the simple module belongs to the bullet or to the other vertex we either have M � S or
S ↪→ M. Without loss of generality suppose the first possibility, otherwise dual arguments will
yield the result.
Suppose that ΩΘ = Θ. Then ΩS and ΩM are predecessors of S � Ω(P/ soc P) (since this is the
only simple module in this component). Hence there are two possibilities. Either ΩM � M, a
contradiction since for a Euclidean component ∆, we have that cxZ[∆] = 2 by [KZ11, Proposi-
tion 1.1] or ΩM � rad P, a contradiction, since the two modules have different dimension.
Therefore soc P =: T � S . Since ΩΘ is again a component isomorphic to Z[Ã2] we have that
one of the two predecessors of T , ΩS or ΩM is isomorphic to rad Q, where Q is the projective
module attached to ΩΘ. If ΩS � rad Q, then Q is the projective cover of S . Thus we have the
following part of ΩΘ:

ΩS //

""EEEEEEEEE Q // Q/ rad Q

T

%%JJJJJJJJJJJ

::tttttttttt

ΩM

<<xxxxxxxxx

""FFFFFFFF N

ΩS

99tttttttttt

where N is the other direct summand of ht Q. Thus there is an inclusion T ↪→ N. Otherwise
ΩS � N, i.e. N � rad P(S ), a contradiction to the fact that P(S ) cannot be attached to the
component. �

5. Restriction functors

For α ∈ Φ+ let uζ( fα) be the subalgebra of Uζ(G0) generated by Fα. We start this section by
proving that Uζ(G0) : uζ( fα) is a Frobenius extension. Our approach is similar to the approach
by Farnsteiner and Strade for modular Lie algebras in [FS91] and Bell and Farnsteiner for Lie
superalgebras in [BF93]. We use that the small quantum group is also a quotient of the De
Concini-Kac form of the quantum groupUk(g) (see e.g. [Dru09] for a definition).

Definition 5.1. Let R be a ring, S ⊆ R be a subring of R and γ be an automorphism of S . If M
is an S -module denote by M(γ) the S -module with the new action defined by s ∗ m = γ(s)m. We
say that R is a free γ-Frobenius extension of S if
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(i) R is a finitely generated free S -module, and
(ii) there exists an isomorphism ϕ : R→ HomS (R, S (γ)) of (R, S )-bimodules

For general theory on Frobenius extensions we refer the reader to [NT60] and [BF93]. We use
the following definition:

Definition 5.2. Let R be a ring, S be a subring of R and γ be an automorphism of S .
(i) A γ-associative form from R to S is a biadditive map 〈−,−〉π : R × R→ S , such that:

• 〈sx, y〉π = s〈x, y〉π
• 〈x, ys〉π = 〈x, y〉πγ(s)
• 〈xr, y〉π = 〈x, ry〉π

for all s ∈ S , r, x, y ∈ R.
(ii) Let 〈−,−〉π : R×R→ S be a γ−1-associative form. Two subsets {x1, . . . , xn} and {y1, . . . , yn}

of R are said to form a dual free pair relative to 〈−,−〉π if
• R =

∑n
i=1 S xi =

∑n
i=1 yiS

• 〈xi, y j〉π = δi j for 1 ≤ i, j ≤ n.

Lemma 5.3 ([BF93, Corollary 1.2]). Let S be a subring of R and let γ be an automorphism of
S . Then the following statements are equivalent:
(1) R is a free γ-Frobenius extension of S .
(2) There is a γ−1-associative form 〈−,−〉π from R to S relative to which a dual free pair {x1, . . . , xn},
{y1, . . . , yn} exists.

More precisely if 〈−,−〉π is a γ−1-associative form relative to which a dual free pair exists, then an
isomorphism R→ HomS (R, S (γ)) is given by y 7→ (x 7→ γ(〈x, y〉π)) with inverse f 7→

∑n
i=1 yi f (xi).

Definition 5.4. Let α ∈ Φ+. Define Ok(g, α) to be the subalgebra of Uk(g) generated by Fα and
E`
β, F

`
β′ ,K

`
α′ with β, β′ ∈ Φ+, α′ ∈ Π and β′ , α.

Proposition 5.5. Let α ∈ Π. Then Uk(g) is a free γ-Frobenius extension of Ok(g, α) where γ is
given by Fα 7→ ζ−

∑
α′∈Π(α′,α)Fα.

Proof. We use the equivalent description of Frobenius extension in [BF93, Corollary 1.2]. The
freeness follows from the Poincaré-Birkhoff-Witt theorem for quantum groups. We now con-
struct a γ-associative form: Let Ln ∈ Nn be the vector with Ln

i := ` − 1, LN ∈ NN be the vector
withLN

i := `−1 andLN−1 ∈ NN be the vector withLN−1
i := δi,α(`−1). Let O′ be the complement

of Ok(g, α)FL
N−1

KL
n
EL

N
with respect to the PBW basis, i.e. Uk(g) = O′ ⊕Ok(g, α)FL

N−1
KL

n
EL

N
.

Let π : Uk(g) → Ok(g, α) be the projection onto the second summand. Define 〈x, y〉π := π(xy).
Then we obviously have π(xy) = xπ(y) for all x ∈ Ok(g, α), y ∈ Uk(g). Furthermore we claim that
π(yFα) = ζ

∑
α′∈Π(α′,α)π(y)Fα for all y ∈ Uk(g): It suffices to show this on the basis vectors FaKbEc

for a ∈ {x ∈ NN |xα = 0}, b ∈ Nn and c ∈ NN and for the associated graded algebra grUk(g),
where the reduced expression used to construct the convex ordering is chosen in such a way that
α is a minimal root. This algebra is given by generators and relations in [dCK90, Proposition
1.7]. It follows that FaKbEcFα = ζ−(

∑
bi,α)+(

∑
ai,α)FαFaKbEc in grUk(g). So low-order terms will

not have an influence on Im(π). And

FL
N−1

KL
n
EL

N
Fα = ζ(`−1)(

∑
α,α′∈Φ+ (α′,α)−

∑
α′∈Π(α′,α))FαFL

N−1
KL

n
EL

N
.
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The coefficient is equal to
ζ−(2ρ,α)+(α,α)+

∑
α′∈Π(α′,α) = ζ

∑
α′∈Π(α′,α).

The dual free pair will be the PBW basis {FaKbEc} and the set {ζ−c(a,b,c)F`−1−aK`−1−bE`−1−c},
where c(a, b, c) is chosen in such a way that

π(F`−1−a′K`−1−b′E`−1−c′FaKbEc) = ζc(a,b,c)δa,a′δb,b′δc,c′ ,

where c(a, b, c) is some integer depending only on a, b and c. This is possible by a similar
computation as before. �

Proposition 5.6. Let α ∈ Π. Then Uζ(G0) is a free γ-Frobenius extension of uζ( fα) where γ is
given by Fα 7→ ζ−

∑
α′∈Π(α′,α)Fα for each root subalgebra.

Proof. The ideal I = 〈E`
β, F

`
β,K

`
α − 1|β ∈ Φ+, α ∈ Π〉 satisfies the conditions of [Far96, Theorem

2.3] (i.e. Uk(g) : Ok(g, α) being a γ-Frobenius extension and I ⊆ Uk(g) an ideal with π(I) ⊆ I∩S
and γ(I ∩ S ) ⊆ I ∩ S )) since π(I) = 0 and γ is on generators just given by scalar multiplication.
HenceUk(g)/I : Ok(g, α)/Ok(g, α) ∩ I is a γ′-Frobenius extension, where γ′ is induced by γ. �

Theorem 5.7. Uζ(G0) is a free γ-Frobenius extension of uζ( fβ), where β ∈ Φ+ and γ as in the
foregoing proposition.

Proof. Let T be one of Lusztig’s T -automorphisms (see e.g. [Jan96, 8.6]). Then there is an
isomorphism Homuζ ( fα)(Uζ(G0), uζ( fα)(γ)) → Homuζ ( fβ)(Uζ(G0), uζ( fβ)(γ)) given by f 7→ T f T−1.
Induction on the length of β now gives the result. �

The second situation we want to consider in this section is compatibly graded modules, i.e.
modules for Uζ(G0)U0

ζ (g). We show that they are the Zn-compatibly gradable modules among
the modules for Uζ(G0). This allows us to use the following result, which was first obtained in
the case n = 1 by Gordon and Green. The stated generalization to arbitrary n uses a result by
Gabriel.

Theorem 5.8 ([Far09, Corollary 1.3, Proposition 1.4 (2), Theorem 2.3], cf. [Gab62, Corollaire
IV.4.4], cf. [GG82, Theorem 3.5]). Let A be a Zn-graded algebra. Then the category of graded
modules admits almost split sequences and the forgetful functor from finite dimensional graded
modules to finite dimensional modules sends indecomposables to indecomposables, projectives
to projectives and almost split sequences to almost split sequences.

Using this we now proceed to prove statements about modules for the algebra Uζ(G0)U0
ζ (g) in

a similar way as Farnsteiner did for restricted enveloping algebras in [Far05].

Lemma 5.9. (i) The category of finite dimensional modules over Uζ(G0)U0
ζ (g) is a sum of

blocks for the category mod Uζ(G0)#U0
ζ (g).

(ii) The category of finite dimensional Uζ(G0)U0
ζ (g)-modules has almost split sequences.

(iii) The canonical restriction functor mod Uζ(G0)U0
ζ (g)→ mod Uζ(G0) sends indecomposables

to indecomposables and almost split sequences to almost split sequences.
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Proof. The map Uζ(G0)#U0
ζ (g) → Uζ(G0)U0

ζ (g), u#v 7→ uv is surjective and its Hopf kernel
is Uζ(G0) ∩ U0

ζ (g) given by Kα 7→ Kα#K−1
α . The following computation shows that via this

embedding U0
ζ (G0) = Uζ(G0) ∩ U0

ζ (g) lies in the center of Uζ(G0)#U0
ζ (g):

(Kα#K−1
α )(Fβ#u) = KαK−1

α (Fβ)#K−1
α u = KαK−1

α FβKα#uK−1
α

= FβuKαu−1#uK−1
α = (Fβ#u)(Kα#K−1

α ),

where u ∈ U0
ζ (g), similarly for Eβ and Kα. Thus U0

ζ (G0)-weight spaces are Uζ(G0)#U0
ζ (g)-

submodules. So U0
ζ (G0) operates on indecomposable modules by a single character and using

Krull-Remak-Schmidt we get

mod Uζ(G0)#U0
ζ (g) =

⊕
λ∈ch(U0

ζ (G0))

(mod(Uζ(G0)#U0
ζ (g)))λ

with mod Uζ(G0)U0
ζ (g) = (mod Uζ(G0)#U0

ζ (g))0 as U0
ζ (G0) is semisimple. If V , W are finite

dimensional simple modules giving rise to different characters λ , µ, then

Ext1
Uζ (G0)#U0

ζ (g)(V,W) � H1(Uζ(G0)U0
ζ (g),HomU0

ζ (G0)(V,W)) � 0,

by [Jan03, I.4.1 (3)]. Thus they belong to different blocks. This shows (i).
(ii) and (iii) follow from the fact that mod(Uζ(G0)#U0

ζ (g)) coincides with the category of Zn-
graded Uζ(G0)-modules with homomorphisms in degree 0 as the character group of U0

ζ (g) is
Zn . Under this identification the restriction functors mod(Uζ(G0)#U0

ζ (g)) → mod Uζ(G0) and
modZn Uζ(G0)→ mod Uζ(G0) coincide. So these statements follow from Theorem 5.8. �

The following statement was first obtained by Drupieski in [Dru10, Lemma 3.3] by imitating
the proof for the corresponding statement for algebraic groups. For us it is just a corollary of the
foregoing two statements. Recall that a module M is called rational iff it admits a weight space
decomposition, i.e. M =

⊕
λ∈ch(Uζ (g))

Mλ.

Corollary 5.10. Let M be a finite dimensional Uζ(G0)U0
ζ (g)-module. Then the following state-

ments are equivalent:
(1) M is a rationally injective Uζ(G0)U0

ζ (g)-module.
(2) M is an injective Uζ(G0)-module.
(3) M is a projective Uζ(G0)-module.
(4) M is a rationally projective Uζ(G0)U0

ζ (g)-module.

Lemma 5.11. The restriction functor from the last lemma induces a homomorphism

F : Γs(Uζ(G0)U0
ζ (g))→ Γs(Uζ(G0))

of stable translation quivers and components are mapped to components via this functor.

Proof. Thanks to the foregoing corollary a module is projective for Uζ(G0) if and only if it is ra-
tionally projective for Uζ(G0)U0

ζ (g). The forgetful functor obviously commutes with direct sums
so the homomorphism follows from Lemma 5.9 and the fact that the stable Auslander-Reiten
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quiver can be defined via Auslander-Reiten sequences in the following way: For an Auslander-
Reiten sequence 0→ M →

⊕
Eni

i → N → 0 there are ni arrows M → Ei in Γs(A).
Let Θ be a component of Γs(Uζ(G0)U0

ζ (g)). Since F is a homomorphism of stable translation
quivers, there exists a unique component Ψ ⊆ Γs(Uζ(G0)) with F (Θ) ⊆ Ψ. As F (Θ) is τUζ (G0)-
invariant, we only have to show that each neighbour of an element of F (Θ) also belongs to F (Θ).
To that end, we consider an isomorphism class [M] ∈ Θ as well as the almost split sequence
0 → τUζ (G0)(F (M)) → E → F (M) → 0. We decompose E =

⊕n
i=1 Emi

i into indecompos-
able modules, so that the distinct isomorpism classes [Ei] are the predecessors of [F (M)] ∈ Ψ.
We next consider the almost split sequence 0 → τUζ (G0)U0

ζ (g)(M) → X → M → 0 terminating
in M. Thanks to Lemma 5.9 the almost split sequence terminating in F (M) is isomorphic to
0→ τUζ (G0)(F (M))→ F (X)→ F (M)→ 0. In particular, if X =

⊕m
j=1 Xr j

j is the decomposition
of X into its indecomposable constituents, then E � F (X) �

⊕m
j=1 F (X j)r j is the correspond-

ing decomposition of F (X). Thus the Theorem of Krull-Remak-Schmidt implies that for each
i = 1, . . . , n there exists i j ∈ {1, . . . ,m}, such that [Ei] = [F (Xi j)]. Consequently, each isoclass
[Ei] with Ei non-projective belongs to F (Θ) as desired. Using the bijectivity of τUζ (G0) one proves
the corresponding statement for the successors of vertices belonging to F (Θ). �

6. Components of complexity two

In this section we rule out the case of components of the form Z[∆], where ∆ is a Euclidean
diagram, in Webb’s Theorem and under additional assumptions also that of the infinite Dynkin
tree classes except A∞, i.e. we prove our main theorem. Our approach is similar to the approach
taken for restricted enveloping algebras in [Far99b] and [Far00].

Definition 6.1. Let A be a Frobenius algebra. Then A is said to admit an analogue of Dade’s
Lemma for a subcategoryM of the module category if there is a family of subalgebras B, such
that A : B is a β-Frobenius extension for some automorphism β (possibly depending on B) and
B � k[X]/(Xm) for all B ∈ B and M ∈ M is projective iff M|B is projective for all B ∈ B.

Our basic example of an algebra admitting an analogue of Dade’s Lemma is Uζ(G0) by a result
of Drupieski ([Dru10, Theorem 4.1]).

Theorem 6.2. Let A be a Frobenius algebra admitting an analogue of Dade’s Lemma for a
subcategoryM of the module category closed under kernels of irreducible morphisms. Let Θ ,
Z[A∞] be a non-periodic component of finite complexity of the stable Auslander-Reiten quiver of
A contained inM. Then the component is of complexity two.

Proof. We have already seen that a non-periodic component Θ of finite complexity is of the form
Z[∆], where ∆ is a Euclidean or infinite Dynkin diagram. If ∆ is Euclidean the statement was
proven in [KZ11, Proposition 1.1]. So let ∆ be of infinite Dynkin type, not A∞. Choose [E] ∈ Θ

to have two successors and two predecessors. For each B ∈ B denote the unique simple B-module
by S B and consider the A-module MB := A ⊗B S B. We have Ω2

BS B � S B by the representation
theory of k[X]/Xn. Applying the induction functor to a minimal projective resolution we get
that there exist projective modules P,Q, such that Ω2

AMB ⊕ P � MB � Ω−2
A MB ⊕ Q. As S B is

a factor as well as a submodule of B, we have that MB is a factor as well as a submodule of
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A as tensoring with A is an exact functor since A is a projective B-module (because A : B is a
Frobenius extension). So max{dim MB, dim ΩAMB, dim Ω−1

A MB} ≤ dim A.
Now choose g : E → N to be irreducible, where N is indecomposable. By choice of [E],
g is properly irreducible, i.e. it is not almost split. Any irreducible map is either injective or
surjective. Suppose g is surjective, then M := ker g is not projective, so there is B ∈ B, such that
M|B is not projective. Since A : B is a Frobenius extension, we have that HomA(M,Ω−1MB) �
Ext1

A(M,MB) � Ext1
B(M, S B) by [NT60, Lemma 7]. But this is non-zero since M is not B-

projective. From [Erd95, Proposition 1.5] it follows now that dim E ≤ dim N + dim A. In the
case that g is injective by a dual argument one obtains dim N ≤ dim E + dim A.
By choice of [E], there exists a walk τ(E) → N → E in Θ given by properly irreducible maps.
We therefore have dim Ω2

A(E) = dim τ(E) ≤ dim E + 2 dim A. Repeated application of τ gives
dim Ω2n

A E ≤ dim E + 2n dim A.
As the module ΩE satisfies the same properties as E, since ΩAΘ � Θ, we conclude that there is
some C > 0, such that dim Ωn

AE ≤ Cn for all n ≥ 1. Therefore cx E ≤ 2. �

In our situation this gives:

Proposition 6.3. Let g be simple. Let Θ , Z[A∞] be a nonperiodic component of the stable
Auslander-Reiten quiver of Uζ(G0) containing the restriction of a Uζ(G0)U0

ζ (g)-module. Then
cx Θ = 2.

Proof. In the previous section we have shown that the algebras uζ( fα) satisfy Uζ(G0) : uζ( fα) be-
ing a Frobenius extension. By the same token the subcategoryM of restrictions of Uζ(G0)U0

ζ (g)-
modules is closed under kernels of irreducible maps. Therefore Drupieski’s Theorem [Dru10,
Theorem 4.1]) implies the result. �

For higher r this approach does not seem to work although Drupieski’s Theorem holds more
general for higher r, but the algebras to which one restricts are no longer Nakayama.

Example 6.4. Consider Uζ(NSL(2)1) � k[X,Y]/(Xp,Y`), an algebra to which Drupieski’s Theorem
restricts in the case r = 1. Then this algebra does not admit an analogue of Dade’s Lemma.
Consider the module M indicated by the following picture:

◦

��

//___ ◦

��

//___ . . . //___ ◦

�� ��@
@

@
@ ◦

��

{{x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

◦

��

//___ ◦

��

//___ . . . //___ ◦

��
��<

<
<

< ◦

��
...

��

//___ ...

��

//___ . . . //___ ...

�� ��<
<

<
<

...

��
◦ //___ ◦ //___ . . . //___ ◦ ◦

The circles represent the basis vectors of the module. The different arrows stand for the ac-
tion of X and Y respectively. It is easy to see that this module is projective for k[X]/(Xp) and
k[Y]/(Y`), but not projective for k[X,Y]/(Xp,Y`), since it has a two-dimensional socle and is
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p`-dimensional. For the other subalgebras B it can also be checked that either A : B is not a
Frobenius extension or M is projective for B.

For the algebra Uζ(G0) the action of the algebraic group G on the support variety of a module
for the ”big” quantum group Uζ(g) can be used to exclude components of complexity two.

Theorem 6.5. Let char k be odd or zero and good for Φ. Assume ` is odd, coprime to three
if Φ has type G2 and ` ≥ h. Let M be a Uζ(g)-module of complexity two. Then the following
statements hold:

(i) There exist normal subgroups K,H ⊂ G such that
(a) G = HK
(b) g = Lie(H) ⊕ Lie(K), and
(c) Lie(K) � sl2.

(ii) If M is indecomposable, then VUζ (G0)(M) = VUζ (K0)(M) and M is projective as a Uζ(H0)-
module.

Proof. By general theory (see e.g. [Spr98, Theorem 8.1.5]) we have G = G1 · · ·Gr, where the
Gi are the minimal non-trivial closed, connected, normal subgroups of G. Since M is a Uζ(g)-
module, the support varietyVUζ (G0)(M) and its projectivization PVUζ (G0)(M) are stable under the
adjoint representation. Owing to Borel’s Fixed Point Theorem (see e.g. [Spr98, Theorem 6.2.6]),
there exists [x0] ∈ PVUζ (G0)(M) that is fixed by a given Borel subgroup B ⊂ G. Consequently the
stabilizer P0 of [x0] is parabolic.
According to the orbit formula we have dim G − dim P0 = dim G · [x0] ≤ 1. Therefore there
are two possibilities for this dimension, either dim G = dim P0, which implies P0 = G, or
dim G − dim P0 = 1.
The assumption P0 = G implies that kx0 ⊆ g is invariant under the adjoint representation. Hence,
kx0 is an abelian ideal of g. As g is semisimple, it follows that x0 = 0, a contradiction. Thus we
have dim P0 = dim G−1. By the arguments of [Bor91, Proposition 13.13] (see also [Far00, Proof
of Proposition 5.1]) we see that the action of G on G/P0 induces a surjective homomorphism
ϕ : G → PGL2 of algebraic groups. As the ϕ(Gi) are normal subgroups of the simple group PGL2,
we have that ϕ(Gi) = PGL2 or Gi ⊆ kerϕ. Since (Gi,G j) = 1, we also have that (ϕGi, ϕG j) =

1, so if there were two indices i, j with ϕ(Gi) = ϕ(G j) = PGL2, then ϕ(G j) ∈ Z(PGL2), a
contradiction. Thus there exists exactly one index i0 ∈ {1, . . . , r} such that ϕ(Gi0) = PGL2,
without loss of generality i0 = 1. Setting K := G1 and H := G2 · · ·Gr we have dim K = 3 and
H ⊆ kerϕ ⊆ P0. Since (Gi,G j) = 1 for i , j we have Lie(H) ⊆ Cg(Lie(K)). Since Lie(K) has
only inner derivations it follows that for x ∈ g the derivation ad x|Lie(K) is inner, i.e. there exists
v ∈ Lie(K), such that x−v ∈ Cg(Lie(K)). Therefore since the center of Lie(K) is trivial, it follows
that g = Lie(K) ⊕Cg(Lie(K)). Moreover, H ∩ K is finite, so that

dim g = dim G = dim H + dim K = dim Lie(H) + dim Lie(K).

This shows that g = Lie(K) ⊕ Lie(H).
Let M now be indecomposable. Since dimVUζ (G0)(M) = 2, we have dim G · [x] ≤ 1 for all
[x] ∈ PVUζ (G0)(M). If dim G · [x] = 0 for some x, then G[x] = [x] as PVUζ (G0) is connected, and
kx , 0 is an abelian ideal of g, a contradiction. Hence all orbits have dimension one, so that each
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of them is closed and thus an irreducible component of PVUζ (G0)(M). Since the orbits do not
intersect and PVUζ (G0)(M) is connected, it follows that PVUζ (G0)(M) is irreducible. In particular
we have

PVUζ (G0)(M) = G · [x0] = K · H · [x0] = K · [x0],
since H ⊆ P0. Since H and K commute, this implies that H operates trivially on PVUζ (G0)(M).
Let x be a nonzero element of VUζ (G0)(M). By the observation above there exists a character
αx : H → k×, such that Ad(h)(x) = αx(h)x for all h ∈ H. Since Gi = (Gi,Gi) for all 2 ≤ i ≤ r
and commutators are mappped to commutators via αx it readily follows that αx(h) = 1 for h ∈ H.
Consequently [Lie(H), x] = 0. Writing x = y + z, where y ∈ Lie(K) and z ∈ Lie(H), we have
[g, z] = [Lie(H), z] = [Lie(H), x] = 0. Hence z ∈ C(g) defines an abelian ideal kz ⊂ g. Since
g is semisimple, we conclude that z = 0. Consequently x = y ∈ Lie(K). As a consequence of
the Künneth formula we now obtain VUζ (G0)(M) = VUζ (G0)(M) ∩ Lie(K) = VUζ (K0)(M). Thus
VUζ (H0)(M) = 0 and hence M is a projective Uζ(H0)-module. �

Theorem 6.6. Let g , sl2 be a simple Lie algebra. Let B be a block of Uζ(Gr). Then there are no
Euclidean components for B. If r = 0, then all components of Uζ(G0) containing Uζ(G)-modules
are isomorphic to Z[A∞], in particular those containing simple modules.

Proof. First suppose that r = 0. By Proposition 6.3 we have that each Euclidean component has
complexity two. But then the foregoing theorem implies g = sl2 as every Euclidean component
contains a simple module and all simple modules are modules for Uζ(g).
Now suppose that r ≥ 1. Let Θ be a component isomorphic to Z[∆], where ∆ is Euclidean. The
component Ω−1Θ � Θ is not regular, i.e. is attached to a projective module P (see e.g. [KZ11,
Main Theorem]). Therefore Θ contains the simple module ΩP/ soc(P). This simple module is
of the form S ⊗ S , where S is a simple module for Dist(Gr), regarded as a module for Uζ(Gr)
and S is a simple Uζ(G0)-module (cf. [Kül11, Lemma 1.1]). Then as a module for Uζ(Gr) it
has complexity two, hence as a module for Uζ(G0), S has complexity less or equal two. By the
foregoing proposition this is not possible for g , sl2. �

7. The component Z[A∞]

We have seen in the previous section that the simple modules are (at least for r = 0) in com-
ponents of type Z[A∞]. Therefore it is worth studying this case in more detail. The approach is
based on the classical case as considered in [FR11].

Recall that a module M is said to be quasi-simple if the middle term of the Auslander-Reiten
sequence ending in M is indecomposable.

Theorem 7.1. Let g be a simple Lie algebra. If a simple module for Uζ(Gr) belongs to a compo-
nent of type Z[A∞], then it is quasi-simple.

Proof. Let S be a simple module contained in some component Θ � Z[A∞]. Suppose S is not
quasi-simple. Then since Uζ(Gr) is symmetric, by [Kaw97, Theorem 1.5] there exist simple
modules T0,T1, . . .Tn, such that T0 � S , the projective cover of Ti is uniserial of length n + 2
with top rad P(Ti) � Ti−1. By the same token Ti has multiplicity one in P(Ti) for all i.
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If n ≥ 2, then this yields the contradiction dim Ext1
Uζ (Gr)(T1,T2) = 0 while dim Ext1

Uζ (Gr)(T2,T1) =

1 (cf. [AM11, 3.8]). Therefore n = 1, i.e. P(T1) has length three. By [Dru09, Proposition B.9],
the projective cover of S has a filtration by baby Verma modules. Hence one baby Verma module
has to be simple or projective. But by the same token this implies that it is simple and projective.
Hence S is the Steinberg module for Uζ(Gr), a contradiction. �

Corollary 7.2. Let g be a simple Lie algebra. Let S be a simple non-projective Uζ(Gr)-module
in a component of type Z[A∞]. Then ht(P(S )) is indecomposable.

Proof. Since Uζ(Gr) is symmetric, we have soc P(S ) � S . Hence the following sequence is the
standard almost split sequence originating in rad P(S ):

0→ rad P(S )→ P(S ) ⊕ ht P(S )→ P(S )/S → 0.

The autoequivalence on the stable module category Ω induces an automorphism on the stable
Auslander-Reiten quiver. Hence S and Ω−1S have the same number of non-projective predeces-
sors. By the foregoing theorem we thus have that ht P(S ) is indecomposable. �

Theorem 7.3. Let g be a simple Lie algebra. Let ` > 1 be an odd integer not divisible by 3 if Φ

is of type G2. Furthermore for char k = 0 assume that ` is good for Φ and that ` > 3 if Φ is of
type Bn or Cn. For char k = p > 0 assume that p is good for Φ and that ` > h. Then there is only
one simple Uζ(Gr)-module in each Auslander-Reiten component of type Z[A∞].

Proof. We first prove the case of r = 0 and then combine this result with the classical case to get
the result for all r. If r = 0, suppose there is another simple module T in Θ. Then S and T are both
quasi-simple by the foregoing considerations. Hence they lie in the same τ-orbit, without loss of
generality let Ω2n

Uζ (G0)T � S . Accordingly we have dim Ext2n
Uζ (G0)(T,T ) = dim HomUζ (G0)(S ,T ) =

0. Hence T is projective by Proposition 1.1 and Theorem 1.2. If r , 0, then by the Steinberg
tensor product theorem (see e.g. [Kül11, Lemma 1.1]), simple modules are tensor products of
a simple module for Uζ(G0) and a simple module for Dist(Gr). Let T ⊗ T and S ⊗ S be such
simple modules. Then Ω2n

Uζ (Gr)S ⊗ S � T ⊗ T implies that T dim T � Ω2n
Uζ (G0)S

dim S ⊕ P, where P is
projective. In particular, since Ω2n

Uζ (G0)S is indecomposable we have Ω2n
Uζ (G0)S � T . Hence S � T

is a projective or a periodic module for Uζ(G0), hence it is the Steinberg module for Uζ(G0). But
then the result follows from the classical case considered in [FR11, Theorem 2.6], because these
modules form a block ideal equivalent to mod Dist(Gr) (cf. [Kül11, Proposition 1.3]). �
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sociative Algebras, Volume I: Techniques of Representation Theory. Cambridge University Press, 2006.

[BB98] Sheila Brenner and Michael Charles Richard Butler. Wild subquivers of the Auslander-Reiten quiver of
a tame algebra. In Trends in the representation theory of finite dimensional algebras (Seattle, WA, 1997),
volume 229 of Contemporary Mathematics, pages 29–48. American Mathematical Society, Providence,
RI, 1998.

[BE11] Petter Andreas Bergh and Karin Erdmann. The stable Auslander-Reiten quiver of a quantum complete
intersection. Bulletin of the London Mathematical Society, 43(1):79–90, 2011.

[Ben91] David John Benson. Representations and cohomology, II: Cohomology of groups and modules. Cam-
bridge University Press, 1991.

[Ben95] David John Benson. Representations and cohomology, I: Basic representation theory of finite groups
and associative algebras. Cambridge University Press, 1995.

[BF93] Allen Davis Bell and Rolf Farnsteiner. On the theory of Frobenius extensions and its application to Lie
superalgebras. Transactions of the American Mathematical Society, 335(1):407–424, 1993.

[BNPP11] Christopher Paul Bendel, Daniel Ken Nakano, Brian J. Parshall, and Cornelius Pillen. Cohomology for
quantum groups via the geometry of the nullcone. preprint, February 2011.

[Bor91] Armand Borel. Linear algebraic groups, volume 126 of Graduate Text in Mathematics. Springer-Verlag,
New York, second edition, 1991.

[BR87] Michael Charles Richard Butler and Claus Michael Ringel. Auslander-Reiten sequences with few middle
terms and applications to string algebras. Communications in Algebra, 15(15):145–179, 1987.

[Bro98] Kenneth Alexander Brown. Representation theory of Noetherian Hopf algebras satisfying a polyno-
mial identity. In Trends in the representation theory of finite dimensional algebras. Proceedings of the
AMS-IMS-SIAM joint summer research conference, Seattle, WA, USA, July 20-24, 1997, volume 229 of
Contemp. Math., pages 49–79. American Mathematical Society, Providence, RI, 1998.

[dCK90] Corrado de Concini and Victor G. Kac. Representations of quantum groups at roots of 1. In Operator
algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), volume 92
of Progress in Mathematics, pages 471–506. Birkhäuser Boston, Boston, MA, 1990.
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