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CATEGORIFICATION OF A LINEAR ALGEBRA

IDENTITY AND FACTORIZATION OF SERRE FUNCTORS

SEFI LADKANI

Abstract. We provide a categorical interpretation of a well-known
identity from linear algebra as an isomorphism of certain functors be-
tween triangulated categories arising from finite dimensional algebras.

As a consequence, we deduce that the Serre functor of a finite dimen-
sional triangular algebra A has always a lift, up to shift, to a product of
suitably defined reflection functors in the category of perfect complexes
over the trivial extension algebra of A.

1. Introduction

The general philosophy behind categorification, as explained for example
in [2], is that numbers should be interpreted as sets, sets as categories,
equalities as isomorphisms and so on. When one considers linear operators,
the following suggested interpretation makes sense, see also [15] for a similar
definition.

Given the data of a free Z-module V of finite rank and linear maps
f1, f2, . . . , fn, g : V → V satisfying g = f1f2 . . . fn, a (weak) categorifica-
tion of this data consists of an abelian or triangulated category B whose
Grothendieck group K0(B) is isomorphic to V , together with exact functors
Fi : B → B and G : B → B, such that:

• F1, F2, . . . , Fn, G induce linear maps on K0(B) which, under the iso-
morphism with V , coincide with f1, f2, . . . , fn, g.

• There is an isomorphism of functors between G and the composition
F1 · F2 · . . . · Fn.

When V carries additional structure, such as a bilinear form, it is preferable
that this structure lifts to B as well.

1.1. A linear algebra identity. The following well-known statement con-
cerns products of reflection-like matrices defined by a square matrix.

Proposition 1.1. Let B be any square n × n matrix over a commutative
ring. Then

(1.1) − B−1
+ BT

− = rB
1 rB

2 · · · rB
n ,

where the matrices B+ and B− are the upper and lower triangular parts of
B, defined by

(B+)ij =











Bij if i < j

1 if i = j

0 otherwise

(B−)ij =











Bji if i < j

Bii − 1 if i = j

0 otherwise

1
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(so that B = B+ + BT
−), and for each 1 ≤ i ≤ n, the square matrix rB

i is
obtained from the identity matrix by subtracting the i-th row of B.

This statement originally appeared as an exercise in the book of Bour-
baki [5, Ch. 5, § 6, no. 3], following an argument presented in Coxeter’s
paper [9]. Various specific cases have since then appeared in the literature,
including A’Campo [1] in the bipartite case and Howlett [14] in the symmet-
ric case. The general form is stated and proved in an article by Coleman [8],
and an alternative proof can be found in [16].

As important special case is when B = C + CT is the symmetrization of
an upper triangular square matrix C with ones on its main diagonal. In this
case the matrices rB

i are reflections, and the proposition implies that

(1.2) − C−1CT = rB
1 rB

2 · · · rB
n .

This equality provides us with two points of view on the so-called Coxeter
transformation. First, as known in Lie theory, it is the product of the simple
reflections, as given by the right hand side of (1.2). Second, as follows from
the left hand side, it can also be described as the automorphism Φ satisfying

〈x, y〉C = −〈y,Φx〉C

where 〈·, ·〉C is the bilinear form defined by the matrix C and x, y are vectors,
as known in the representation theory of algebras.

1.2. Categorical interpretation. Our categorical interpretation of equa-
tions (1.1) and (1.2) is achieved by using functors on triangulated categories
arising from finite dimensional algebras. In order to state our result in pre-
cise terms, we need to recall a few notions from the representation theory
of finite dimensional algebras.

For a finite dimensional algebra A over a field k, denote by Db(A) the
bounded derived category of finite dimensional right A-modules, and by
perA its full triangulated subcategory consisting of all complexes quasi-
isomorphic to perfect complexes, that is, bounded complexes whose terms
are finitely generated projective A-modules.

The Grothendieck group K0(per A) is free abelian of finite rank, with a
basis consisting of the classes of the indecomposable projective A-modules.
It is equipped with a bilinear form induced by the Euler form

〈X,Y 〉A =
∑

r∈Z

(−1)r dimk HomDb(A)(X,Y [r]) X,Y ∈ perA.

The algebra A is called triangular if there exist primitive orthogonal idem-
potents e1, . . . , en of A such that eiAej = 0 for any j < i and eiAei ≃ k for
1 ≤ i ≤ n. The modules Pi = eiA then form a complete collection of inde-
composable projectives. Taking their classes a basis for K0(per A), it will
be convenient for us to order them [Pn], . . . , [P1] and to define the Cartan
matrix CA as the matrix of 〈·, ·〉A with respect to that basis, namely

(CA)ij = 〈Pn+1−i, Pn+1−j〉A = dimk HomA(Pn+1−i, Pn+1−j)

= dimk en+1−jAen+1−i,

so that CA is upper triangular with ones on its main diagonal.
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Similarly, for an A-A-bimodule M we can define a matrix CM by

(CM )ij = dimk en+1−jMen+1−i,

and call M triangular if CM is upper triangular, or equivalently, eiMej = 0
for any j < i. We have CT

M = CDM , where DM is the dual of M , defined
as DM = Homk(M,k).

The trivial extension Λ = A⋉DM is the k-algebra which has A⊕DM as
its underlying vector space, with the multiplication defined by (a, µ)(a′, µ′) =
(aa′, aµ′ + µa′). Its indecomposable projectives are in bijective correspon-
dence with those of A, and its Cartan matrix is given by B = CA + CT

M .
Thus, when A and M are triangular, B+ = CA and B− = CM .

Theorem 1.2. Let A be a finite dimensional triangular algebra over a field
k and let AMA be a triangular A-A-bimodule. Let Λ = A⋉DM be the trivial
extension of A with the dual of M and denote by B the Cartan matrix of Λ.

Then there exist, for 1 ≤ i ≤ n = rankK0(per Λ), triangulated functors
Ri : Db(Λ) → Db(Λ) which restrict to Ri : perΛ → perΛ, such that:

(a) Each functor Ri induces a linear map on K0(perΛ), whose matrix
with respect to the basis of indecomposable projective Λ-modules is
rB
n+1−i (cf. Prop. 1.1).

(b) The diagrams of triangulated functors

(1.3) perΛ

−
L

⊗ΛAA
��

R1 // perΛ
R2 // . . . Rn // perΛ

−
L

⊗ΛAA
��

Db(A)
−

L

⊗ADMA[1]
// Db(A)

and

Db(A)

−⊗AAΛ

��

−
L

⊗ADMA[1]
// Db(A)

−⊗AAΛ

��

Db(Λ)
R1 // Db(Λ)

R2 // . . . Rn // Db(Λ)

commute up to a natural isomorphism of functors.

The vertical arrows of (1.3) induce an isomorphism K0(per Λ) → K0(A)
sending projectives to projectives. Thus, by considering the diagram (1.3)
at the level of the Grothendieck groups, we get the following commutative
diagram

K0(per Λ)

In

��

rB
n // K0(per Λ)

rB
n−1 // . . .

rB
1 // K0(per Λ)

In

��

K0(A)
−B−1

+ BT
− // K0(A)

(where In is the n×n identity matrix), which explains why the theorem can
be seen as a categorical interpretation of (1.1).
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1.3. Application to Serre functors. A triangular finite dimensional alge-
bra A has finite global dimension, thus its bounded derived category Db(A)
admits a Serre functor νA in the sense of Bondal and Kapranov [4]. By a
result of Happel [12], it is given by the left derived functor of the Nakayama

functor, νA = −
L

⊗A DA.
By taking in the above theorem the bimodule M to be A, we deduce the

following result on the Serre functor on Db(A).

Corollary 1.3. Let A be a finite dimensional triangular algebra over a field
k and let T (A) = A ⋉ DA be its trivial extension algebra. Denote by B the
symmetrization of the Cartan matrix of A.

Then there exist, for 1 ≤ i ≤ n = rankK0(A), triangulated autoe-
quivalences Ri : Db(T (A)) → Db(T (A)) which restrict to autoequivalences
Ri : perT (A) → perT (A), such that:

(a) Each autoequivalence Ri induces a linear map on K0(per T (A)),
whose matrix with respect to the basis of indecomposable projective
T (A)-modules is given by the reflection rB

n+1−i.
(b) The diagrams of triangulated functors

perT (A)

−
L

⊗T (A)AA
��

R1 // perT (A)
R2 // . . . Rn // perT (A)

−
L

⊗T (A)AA
��

Db(A)
νA[1]

// Db(A)

(1.4)

and

Db(A)

−⊗AAT (A)

��

νA[1]
// Db(A)

−⊗AAT (A)

��

Db(T (A))
R1 // Db(T (A))

R2 // . . . Rn // Db(T (A))

commute up to a natural isomorphism of functors.

Thus, one can lift (a shift of) the Serre functor on Db(A) to a product
of the “reflections” Ri in per T (A). As before, the diagram (1.4) can be
regarded as a categorical interpretation of equation (1.2).

1.4. On the proof. Section 2 is devoted to the proof of the theorem and
its corollaries. A key ingredient in the proof is the proper definition and
analysis of the functors Ri. They are defined, for each 1 ≤ i ≤ n, as the left
derived functors of tensoring with the two-term complex of bimodules

RΛ
i = −

L

⊗Λ

(

Λei ⊗k eiΛ
m
−→ Λ

)

where m denotes the multiplication map and e1, . . . , en are the primitive
orthogonal idempotents.

The functors RΛ
i have already been considered in the works of Rouquier-

Zimmermann [17] on braid group actions on derived categories of Brauer
tree algebras without exceptional vertex, and by Hoshino and Kato [13]
in relation with constructions of two-sided tilting complex for self-injective
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algebras. When the algebra Λ is symmetric and dim eiΛei = 2, the functor
RΛ

i can be viewed as a twist functor in the sense of Seidel and Thomas [18]
with respect to the 0-spherical object eiΛ. Our result shows the importance
of the functors RΛ

i for a wider class of algebras Λ, which are not necessarily
restricted to be self-injective or symmetric.

In the course of the proof we establish the special case of the theorem
where the bimodule M is zero, namely that for any finite-dimensional tri-
angular algebra A, the composition RA

n · . . . · RA
2 · RA

1 is isomorphic to zero
in Db(A), see Section 2.2.

Plugging in the definition of RA
i in this statement, we obtain a projective

resolution of the triangular algebra A as a bimodule over itself. A similar
construction, with relation to Hochschild cohomology computations, was
presented by Cibils in [7].

1.5. Previous work. Another categorical interpretation of (1.2), in the
realm of representation theory of quivers, is given by a result of Gabriel [10],
correcting previous paper by Brenner and Butler [6].

For a quiver Q without oriented cycles, one can consider two exact au-
toequivalences on the bounded derived category of its path algebra. The
first is the Auslander-Reiten translation, corresponding to the left hand side
of (1.2), and the second is the so-called Coxeter functor, which was defined
by Bernstein, Gelfand and Ponomarev [3] as a product of their reflection
functors, corresponding to the right hand side of (1.2).

In [10], it is shown that for any quiver whose underlying graph is a tree,
or more generally, does not contain a cycle of odd length, the Auslander-
Reiten translation is isomorphic to the Coxeter functor, thus interpreting
the equality in (1.2) as an isomorphism of functors.

In Section 3 we explain this result in more detail and compare it with our
approach.

Acknowledgements. The results in this paper were first presented at the
workshop on Spectral methods in representation theory of algebras and ap-
plications to the study of rings of singularities that was held at Banff in
September 2008. I would like to thank J. A. de la Peña and C. Ringel for
their helpful comments and suggestions.

2. Proof of the theorem

2.1. The building blocks – the functors RΛ
i . Let Λ be a basic finite

dimensional algebra over a field k and let P1, . . . , Pn be a complete collection
of the non-isomorphic indecomposable projectives in mod Λ, the category of
finite dimensional right Λ-modules. Let e1, . . . , en be primitive orthogonal
idempotents in Λ such that Pi = eiΛ for 1 ≤ i ≤ n.

Fix 1 ≤ i ≤ n and consider the following complex of Λ-Λ-bimodules

Ci = Λei ⊗k eiΛ
m
−→ Λ,

where Λ is in degree 0 and m is the multiplication map. Taking the tensor
product − ⊗Λ Ci yields an endofunctor on the category Cb(Λ) of bounded
complexes of finite dimensional right Λ-modules, which induces an endo-
functor on its homotopy category Kb(Λ).
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Since its terms are projective as left Λ-modules, the complex Ci defines a
triangulated functor

−
L

⊗Λ Ci = −⊗Λ Ci : Db(Λ) → Db(Λ).

on the derived category Db(Λ) of mod Λ. Moreover, as the terms are also
projective as right Λ-modules, this functor restricts to a functor

−
L

⊗Λ Ci = −⊗Λ Ci : perΛ → perΛ

on the triangulated subcategory perΛ of complexes quasi-isomorphic to per-
fect ones (that is, bounded complexes of finitely generated projectives).

In the sequel, when no confusion arises, we shall denote all the above
functors by RΛ

i . These functors were considered by Rouquier and Zimmer-
mann [17] in relation with braid group actions on the derived categories
of Brauer tree algebras with no exceptional vertex, and by Hoshino and
Kato [13] in relation with constructions of two-sided tilting complexes for
self-injective algebras.

Lemma 2.1. Let X ∈ mod Λ. Then

RΛ
i (X) = HomΛ(Pi,X) ⊗k Pi

ev
−→ X

where ev is the evaluation map ev : α ⊗ y 7→ α(y).

Proof. Clearly, X ⊗Λ Λei ≃ Xei ≃ HomΛ(eiΛ,X). �

The Grothendieck group K0(perΛ) is a free abelian group on the gen-
erators [P1], . . . , [Pn] equipped with a bilinear form induced by the Euler
form

〈X,Y 〉Λ =
∑

r∈Z

(−1)r dimk HomDb(Λ)(X,Y [r]) X,Y ∈ perΛ.

Corollary 2.2. Let X ∈ perΛ. Then

[RΛ
i (X)] = [X] − 〈Pi,X〉Λ[Pi]

Proof. It is enough to verify this on the basis elements [Pj ]. This follows
directly from Lemma 2.1. �

The next lemma provides an explicit description of compositions of func-
tors RΛ

i , which will be useful in the sequel.

Lemma 2.3. Let s ≥ 1 and let ϕ : {1, . . . , s} → {1, . . . , n} be any function.
Then

RΛ
ϕ(s) · . . . · R

Λ
ϕ(1) = −

L

⊗Λ TΛ
ϕ

for a complex TΛ
ϕ of Λ-Λ-bimodules given by

TΛ
ϕ = · · · → 0 → TΛ,s

ϕ

ds
ϕ

−→ · · · → TΛ,r
ϕ

dr
ϕ

−→ TΛ,r−1
ϕ → . . .

d1
ϕ

−→ TΛ,0
ϕ → 0 → . . .

where

TΛ,0
ϕ = Λ, TΛ,r

ϕ =
⊕

1≤i1<···<ir≤s

Λeϕ(i1) ⊗ eϕ(i1)Λeϕ(i2) ⊗ · · · ⊗ eϕ(ir)Λ(2.1)
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and the differentials dr
ϕ are defined on each summand by

(2.2) dr
ϕ(λ0 ⊗ λ1 ⊗ . . . ⊗ λr) =

r−1
∑

j=0

(−1)jλ0 ⊗ . . . ⊗ λjλj+1 ⊗ . . . ⊗ λr

where λ0 ∈ Λeϕ(i1), λr ∈ eϕ(ir)Λ and λj ∈ eϕ(ij)Λeϕ(ij+1) for 0 < j < r.

Proof. By definition,

RΛ
ϕ(s) · . . . · R

Λ
ϕ(2) · R

Λ
ϕ(1) =

(

. . .
((

−
L

⊗Λ Cϕ(1)

)

L

⊗Λ Cϕ(2)

)

. . .
L

⊗Λ Cϕ(s)

)

= −
L

⊗Λ

(

Cϕ(1) ⊗Λ Cϕ(2) ⊗Λ . . . ⊗Λ Cϕ(s)

)

(where we replaced
L

⊗ by ⊗ since the terms of Ci are projective as left (as
well as right) modules), so it is enough to show that

TΛ
ϕ =

(

. . .
(

Cϕ(1) ⊗Λ Cϕ(2)

)

⊗Λ . . . ⊗Λ Cϕ(s)

)

where the right hand side is an iterated tensor product of complexes.
We prove this by induction on s, the case s = 1 being merely the definition

of RΛ
ϕ(1). Now assume the claim for s, consider a function ϕ : {1, . . . , s+1} →

{1, . . . , n} and denote by ϕ′ its restriction to {1, . . . , s}. By the induction
hypothesis, we need to show that TΛ

ϕ = TΛ
ϕ′ ⊗Λ Cϕ(s+1).

Recall that the tensor product of two complexes XΛ and ΛY is defined by

(X ⊗Λ Y )m =
⊕

p+q=m

Xp ⊗Λ Y q

with the differentials d(x⊗y) = d(x)⊗y+(−1)px⊗d(y) for x ∈ Xp, y ∈ Y q.
It follows that for any 0 ≤ r ≤ s+1, the term at degree −r of TΛ

ϕ′ ⊗Λ Cϕ(s+1)

equals

T
Λ,r
ϕ′ ⊕

(

T
Λ,r−1
ϕ′ ⊗Λ

(

Λeϕ(s+1) ⊗ eϕ(s+1)Λ
)

)

where the left summand vanishes for r = s + 1 and the right vanishes for
r = 0. Expanding these summands according to (2.1), we get a sum over all
the r-tuples 1 ≤ i1 < · · · < ir ≤ s + 1, where the left summand corresponds
to the tuples with ir ≤ s while the right to the tuples with ir = s+1. Hence

the term equals T
Λ,r
ϕ .

Concerning the differentials, we have the following picture

T
Λ,r
ϕ = T

Λ,r
ϕ′

dr
ϕ′

��

⊕ T
Λ,r−1
ϕ′ ⊗Λ

(

Λeϕ(s+1) ⊗ eϕ(s+1)Λ
)

dr−1
ϕ′

⊗1

��
(−1)r−1⊗m

uull
l
l
l
l
l
l
l
l
l
l
l
l
l

T
Λ,r−1
ϕ = T

Λ,r−1
ϕ′ ⊕ T

Λ,r−2
ϕ′ ⊗Λ

(

Λeϕ(s+1) ⊗ eϕ(s+1)Λ
)

which shows that they coincide with the dr
ϕ as defined in (2.2). �

As a side application, we show the following commutativity result which
is analogous to the fact that in a Weyl group corresponding to a generalized
Cartan matrix B, the two simple reflections rB

i and rB
j commute when

Bij = 0 = Bji, compare with Proposition 2.12 of [18].

Lemma 2.4. If 〈Pi, Pj〉Λ = 0 = 〈Pj , Pi〉Λ then RΛ
i RΛ

j ≃ RΛ
j RΛ

i .
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Proof. Indeed, RΛ
i RΛ

j and RΛ
j RΛ

i are given by the complexes

Λei ⊗ eiΛej ⊗ ejΛ → (Λei ⊗ eiΛ) ⊕ (Λej ⊗ ejΛ) → Λ

Λej ⊗ ejΛei ⊗ eiΛ → (Λei ⊗ eiΛ) ⊕ (Λej ⊗ ejΛ) → Λ

which are equal since ejΛei = 0 = eiΛej . �

A special role is played by the composition RΛ
n · . . . ·RΛ

2 ·RΛ
1 corresponding

to the identity function on {1, . . . , n}. We thus denote by TΛ = TΛ
id the

corresponding complex of bimodules of Lemma 2.3, so that

(2.3) RΛ
n · . . . · RΛ

2 · RΛ
1 = −

L

⊗Λ TΛ.

2.2. Triangular algebras. In this section we study the complexes TA for
triangular algebras A.

Definition 2.5. A finite dimensional algebra A over a field k, with primitive
orthogonal idempotents e1, . . . , en, is called triangular if eiAej = 0 for all
j < i and eiAei ≃ k for all 1 ≤ i ≤ n.

Triangular algebras have finite global dimension, hence the categories
perA and Db(A) coincide.

Lemma 2.6. Let A be triangular and let 1 ≤ i, j ≤ n. Then

RA
i (Pj) ≃

{

0 if j = i,

Pj if j > i,

in the homotopy category Kb(A).

Proof. If i < j, then HomA(Pi, Pj) ≃ ejAei = 0, hence by Lemma 2.1,

RA
i (Pj) = Pj (even in Cb(A)).

Similarly, HomA(Pi, Pi) ≃ k, hence RA
i (Pi) equals the null-homotopic

complex Pi → Pi, so it vanishes in Kb(A). �

Proposition 2.7. Let A be triangular. Then:

(a) The functor RA
n · . . . · RA

2 · RA
1 on Db(A) is isomorphic to the zero

functor.
(b) TA ≃ 0 in Db(Aop ⊗ A).
(c) TA is contractible as a complex of right A-modules as well as a com-

plex of left A-modules.

Proof. A repeated application of Lemma 2.6 shows that for 1 ≤ j, s ≤ n,

(RA
s · . . . · RA

1 )(Pj) ≃

{

0 if j ≤ s,

Pj if j > s,

in Kb(A), hence the complex (RA
n · . . . ·RA

1 )(A) is homotopic to zero. Since A

generates Db(A), the first assertion follows. Now the second assertion follows
from (2.3). For the third, observe that all the terms of TA are projective
both as right and as left A-modules (in fact, the above argument shows
directly the contractibility of TA as a complex of right A-modules). �
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Remark 2.8. Since all its terms at negative degrees are also projective as
A-A-bimodules, the complex TA yields a projective resolution of A as an
A-A-bimodule, which can be useful when computing Hochschild cohomol-
ogy. Indeed, a similar resolution is given by Cibils [7], where an explicit
contraction (of k-modules) is also given.

Remark 2.9. Since TA is contractible as a complex of left A-modules, the
tensor product X⊗A TA yields a projective resolution of a right module XA.
Similarly, TA ⊗A Y gives a projective resolution of left module AY .

The statement of Proposition 2.7 is no longer true when the assumption
that A is triangular is removed, even under the condition that A has finite
global dimension. This is demonstrated by the following example.

Example 2.10. Let Λ be the path algebra of the quiver

•1

α
))
•2

β

ii

modulo the ideal generated by the path βα. The algebra Λ is 5-dimensional,
its primitive orthogonal idempotents e1, e2 correspond to the vertices of the
quiver and its global dimension is 2. However, Λ is not triangular as its
Cartan matrix equals

(

2 1
1 1

)

.

Moreover, the complex

TΛ =
(

Λe1 ⊗ e1Λe2 ⊗ e2Λ → (Λe1 ⊗ e1Λ) ⊕ (Λe2 ⊗ e2Λ) → Λ
)

is not acyclic since its Euler characteristic as a complex of vector spaces (that
is, the alternating sum of dimensions) is 5 − 13 + 6 and does not vanish.

For a triangular algebra A, the compositions of RA
i in the reverse order

have a very simple form. This is recorded in the next proposition, which
will not be used in the sequel.

Proposition 2.11. Let A be triangular. Let I ⊆ {1, . . . , n} and enumerate
its elements in decreasing order I = {i1 > i2 > · · · > is}. Then

RA
is · . . . · R

A
i1

= −
L

⊗A

(

⊕

i∈I

Aei ⊗ eiA
m
−→ A

)

Proof. Apply Lemma 2.3 for the function ϕ defined by ϕ(t) = it for 1 ≤ t ≤ s

and observe that all the terms T
A,r
ϕ vanish when r > 1 as eitAeit+1 = 0 for

all 1 ≤ t < s. �

2.3. Triangular bimodules and their trivial extensions. Let A be
a basic finite-dimensional algebra with primitive orthogonal idempotents
e1, . . . , en.

Definition 2.12. An A-A-bimodule M is triangular if eiMej = 0 for all
j < i.
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Let M be a triangular bimodule and let DM = Homk(M,k) be its dual.
Consider the trivial extension Λ = A ⋉ DM , that is, the k-algebra which
has A⊕DM as an underlying vector space, with the multiplication defined
by (a, µ)(a′, µ′) = (aa′, aµ′ + µa′).

The ring homomorphisms A
ι
−→ Λ

π
−→ A given by

ι(a) = (a, 0) π(a, µ) = a

give rise to the bimodules AΛA and ΛAΛ (where a ∈ A acts via multiplication
by ι(a) and λ ∈ Λ acts via multiplication by π(λ)). In particular we have
the exact functors

ι∗ = −⊗Λ ΛA = HomΛ(AΛΛ,−) : mod Λ → mod A

π∗ = −⊗A AΛ = HomA(ΛAA,−) : mod A → mod Λ

which induce functors

Db(Λ)
−⊗ΛΛA−−−−−→ Db(A), Db(A)

−⊗AAΛ−−−−−→ Db(Λ).

The left derived functors of their adjoints

−⊗A ΛΛ : modA → modΛ, −⊗Λ AA : modΛ → modA.

give rise to

Db(A) = perA
−

L

⊗AΛΛ−−−−−→ perΛ, perΛ
−

L

⊗ΛAA−−−−−→ perA = Db(A).

The elements ι(e1), . . . , ι(en) are primitive orthogonal idempotents of Λ.
We shall denote them by e1, . . . , en when there is no risk of confusion.

Proposition 2.13. Let A be a finite-dimensional basic algebra and M be a
triangular bimodule. Then there exist short exact sequences of complexes of
bi-modules

0 → ΛDMA → Λ ⊗A TA → TΛ ⊗Λ A → 0

0 → ADMΛ → TA ⊗A Λ → A ⊗Λ TΛ → 0
(2.4)

Proof. We prove only the exactness of the first sequence, as the proof for
the other is similar.

Let 1 ≤ r ≤ n and consider the terms at degree −r of Λ ⊗A TA and
TΛ ⊗Λ A as direct sums

(

Λ ⊗A TA
)−r

=
⊕

Λei1 ⊗ ei1Aei2 ⊗ . . . ⊗ eir−1Aeir ⊗ eirA

(

TΛ ⊗Λ A
)−r

=
⊕

Λei1 ⊗ ei1Λei2 ⊗ . . . ⊗ eir−1Λeir ⊗ eirA

running over the tuples 1 ≤ i1 < · · · < ir ≤ n.
By our hypothesis that M is a triangular bimodule, ejMei = 0 hence

eiDMej = 0 for all i < j. Therefore we can identify eiAej with eiΛej (via
either ι or π) so that the terms (Λ⊗ATA)−r and (TΛ⊗ΛA)−r are isomorphic
via the map

λ0 ⊗ a1 ⊗ . . . ⊗ ar−1 ⊗ ar 7→ λ0 ⊗ ι(a1) ⊗ . . . ⊗ ι(ar−1) ⊗ ar.

Moreover, by considering the explicit forms of the right A-action on Λ
and the left Λ-action on A,

λ0 · a1 = λ0ι(a1), ar−1ar = ι(ar−1) · ar, ι(ajaj+1) = ι(aj)ι(aj+1)
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for 1 ≤ j < r − 1, we see that these isomorphisms commute with the
differentials as long as r > 1.

Finally, note that (Λ ⊗A TA)0 = Λ, (TΛ ⊗Λ A)0 = A and there is a
commutative diagram

⊕

Λei ⊗ eiA
dA,1

//

≃

��

Λ

π

��
⊕

Λei ⊗ eiA
dΛ,1

// A

with the top and bottom differentials given by

dA,1 : λi ⊗ ai 7→ λiι(ai) ∈ Λ, dΛ,1 : λi ⊗ ai 7→ π(λi)ai ∈ A

respectively.
Summarizing, we get the following commutative diagram of complexes of

A-Λ-bimodules which shows the desired exact sequence.

0

��
DM

��
. . . //

⊕

Λei1
⊗ ei1

Aei2
⊗ . . . ⊗ eir−1

Aeir
⊗ eir

A //

≃

��

. . . //
⊕

Λei ⊗ eiA //

≃

��

Λ
π

��
. . . //

⊕

Λei1
⊗ ei1

Λei2
⊗ . . . ⊗ eir−1

Λeir
⊗ eir

A // . . . //
⊕

Λei ⊗ eiA // A

��
0

�

2.4. Proof of Theorem 1.2. Let A be a triangular algebra with primitive
orthogonal idempotents e1, . . . , en and let M be a triangular A-A-bimodule
(with respect to this ordering of the idempotents). In this case, we can
combine Propositions 2.7 and 2.13 and deduce the following result.

Corollary 2.14. Let Λ = A ⋉ DM . We have

TΛ ⊗Λ A
∼
−→ DM [1] A ⊗Λ TΛ ∼

−→ DM [1]

in Db(Λop ⊗ A) and Db(Aop ⊗ Λ), respectively.

Proof. Since TA is contractible as a complex of left A-modules, the complex
Λ⊗ATA is contractible as a complex of left Λ-modules, hence it is isomorphic
to zero in Db(Λop ⊗A). Now the assertion follows from the first short exact
sequence in (2.4). The proof of the second assertion is similar. �

Part (b) of Theorem 1.2 now follows from Corollary 2.14 by setting Ri =
RΛ

i for 1 ≤ i ≤ n and using (2.3).

Remark 2.15. When M is zero, Λ = A and we recover Proposition 2.7.
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2.5. K-theoretic interpretation. We now prove part (a) of Theorem 1.2
and explain how that theorem can be regarded as a categorification of equa-
tion (1.1). In fact, we will recover this equation through a process known as
decategorification, by looking at the effect of the functors appearing in the
theorem on the corresponding Grothendieck groups.

Indeed, as the functors RΛ
i , −

L

⊗A DMA[1] and −
L

⊗Λ A are triangulated,
they induce linear maps on the corresponding Grothendieck groups, which
we describe explicitly in terms of the so-called Cartan matrices of A and Λ.

For an arbitrary finite dimensional algebra Λ with indecomposable pro-
jectives P1, . . . , Pn, it will be convenient to reorder them in reverse order
and to consider the basis

ε1 = [Pn], ε2 = [Pn−1], . . . , εn = [P1]

of the Grothendieck group K0(per Λ). We denote by CΛ the matrix of the
Euler form 〈·, ·〉Λ with respect to that basis, known as the Cartan matrix of
Λ. In explicit terms,

(CΛ)ij = 〈Pn+1−i, Pn+1−j〉Λ = dimk HomΛ(Pn+1−i, Pn+1−j)

= dimk en+1−jΛen+1−i.

Lemma 2.16. Let 1 ≤ i ≤ n. Then the matrix of the linear map on

K0(perΛ) induced by RΛ
i is given by rCΛ

n+1−i, that is, the matrix obtained by
subtracting the (n + 1 − i)-th row of CΛ from the n × n identity matrix.

Proof. The j-th column of that matrix is equal to the class of RΛ
i (Pn+1−j),

which, according to Corollary 2.2, equals

[RΛ
i (Pn+1−j)] = [Pn+1−j ] − 〈Pi, Pn+1−j〉Λ [Pi] = εj − (CΛ)n+1−i,jεn+1−i.

�

For an algebra A with primitive orthogonal idempotents e1, . . . , en, the
condition that A is triangular implies that the matrix CA is upper triangular
with ones on its main diagonal. Similarly to the definition of CA, one can
define for any A-A-bimodule X, a Cartan matrix CX by

(CX)ij = dimk en+1−jXen+1−i,

so that X is triangular if and only if CX is upper triangular.

Lemma 2.17. Let A be a triangular algebra and X an A-A-bimodule. Then

the matrix of the linear map on K0(perA) induced by the functor −
L

⊗A X

is given by C−1
A CX .

Proof. Denote that matrix (with respect to the basis ε1, . . . , εn) by x. Since

the functor −
L

⊗A X sends each Pj to Pj ⊗A X ≃ ejX, we have

[en+1−jX] =

n
∑

i=1

xij [Pn+1−i]
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for all 1 ≤ i ≤ n. Now, for any 1 ≤ l ≤ n,

(CX)lj = dimk en+1−jXen+1−l = 〈Pn+1−l, en+1−jX〉A

=

n
∑

i=1

xij 〈Pn+1−l, Pn+1−i〉A =

n
∑

i=1

(CA)lixij ,

hence CX = CAx. �

When A is triangular and M is a triangular bimodule, the Cartan matrix
of the trivial extension Λ = A ⋉ DM equals CΛ = CA + CDM = CA + CT

M .
Hence (CΛ)+ = CA is the upper triangular part of CΛ and (CΛ)− = CM is
its lower triangular part, as defined in Proposition 1.1.

Combining everything together, observing that the functor −
L

⊗Λ A sends
the projective ι(ei)Λ to eiA and thus induces the identity matrix between
the isomorphic groups K0(perΛ) and K0(perA), we conclude the following.

Corollary 2.18. The left diagram of Theorem 1.2 induces a commutative
diagram on the Grothendieck groups

K0(per Λ)

In

��

r
CΛ
n // K0(per Λ)

r
CΛ
n−1 // . . .

r
CΛ
1 // K0(per Λ)

In

��

K0(A)
−(CΛ)−1

+ (CΛ)T
− // K0(A)

(where In is the n × n identity matrix), thus recovering equation (1.1).

2.6. Proof of Corollary 1.3. Let e1, . . . , en be the primitive orthogonal

idempotents of A and set Ri = R
T (A)
i for 1 ≤ i ≤ n.

The algebra T (A) is symmetric and dimk eiT (A)ei = 2 for any 1 ≤ i ≤ n.

Hence by [13, Remark 4.3], the functors R
T (A)
i are autoequivalences, see

also [17, Theorem 4.1].

Since νA = −
L

⊗A DA and A⋉DA = T (A), Corollary 1.3 is just a special
case of Theorem 1.2, where the triangular bimodule M is taken to be A.

Remark 2.19. The Cartan matrix B of T (A) is symmetric with 2 on its
main diagonal, hence the matrices rB

i are reflections. As the action of each

autoequivalence R
T (A)
i on K0(per T (A)) is given by a reflection, one may

interpret this corollary as lifting of the Serre functor (up to a shift by one)
on Db(A) to a product of “reflection” functors on perT (A).

3. Discussion and Comparison

In this section we recall previous work on path algebras of quivers that can
be considered as a categorical interpretation of equation (1.2), and compare
it with our approach.

3.1. A result of Gabriel. Fix an algebraically closed field k. For a quiver
Q without oriented cycles, denote by kQ its path algebra and by Db(Q) the
bounded derived category of finite-dimensional right kQ-modules. Recall
that a vertex s ∈ Q is called a sink if there are no arrows in Q going out
of s. The reflection of Q at s, denoted σsQ, is the quiver obtained from Q
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by inverting all the arrows ending at s while leaving all the others intact, so
that s becomes a source in σsQ.

In [3], Bernstein, Gelfand and Ponomarev defined the reflection functor
from the category of representations of Q to those of σsQ (where s is a sink
in Q). In the language of derived categories (see for example [11, (IV.4,
Exercise 6)]), this functor induces a derived equivalence

Rs : Db(Q)
∼
−→ Db(σsQ).

Order now the vertices of Q in an admissible ordering, that is, enumerate
them in a sequence 1, 2, . . . , n such that there are no arrows j → i in Q

for i < j. In this case, the vertex 1 ≤ i ≤ n is a sink in the quiver
σi+1σi+2 . . . σnQ. Moreover, the quiver σ1 . . . σnQ is equal to Q. Thus, the
composition of the (derived) reflection functors

Db(Q)
Rn−−→ Db(σnQ)

Rn−1
−−−→ Db(σn−1σnQ)

Rn−2
−−−→ . . .

R1−−→ Db(σ1 . . . σnQ)

defines an autoequivalence R1R2 . . . Rn of Db(Q), known as the Coxeter
functor.

Another autoequivalence of Db(Q) is given by the Auslander-Reiten trans-

lation τ , which is related to the Serre functor ν = −
L

⊗kQ D(kQ) on Db(Q)
by τ = ν[−1], see [12]. The following result of Gabriel [10] relates it with
the Coxeter functor.

Theorem 3.1 ([10]). If the underlying graph of Q is a tree, or more gener-
ally, does not contain a cycle of an odd length, there is an isomorphism of
functors

(3.1) τ ≃ R1 · R2 · . . . · Rn

in Db(Q).

Similarly to Corollary 2.18, the relation with equation (1.2) is obtained
through decategorification, by considering the Grothendieck group K0(Q)
of the triangulated category Db(Q) together with its Euler form 〈·, ·〉kQ, but
this time using bases of simple modules rather than the indecomposable
projective ones.

Let Si be the simple module corresponding to the vertex 1 ≤ i ≤ n. The
classes [S1], . . . , [Sn] form a basis of K0(Q), and the matrix CQ of 〈·, ·〉kQ

with respect to that basis has an explicit combinatorial description, namely

(CQ)ij =

{

1 i = j,

−
∣

∣{arrows i → j}
∣

∣ i 6= j.

When the vertices are ordered in an admissible order, the matrix CQ is upper
triangular with ones on its main diagonal.

It is well known that the matrix of the linear map on K0(Q) induced by τ

is given by −C−1
Q CT

Q. On the other hand, for a sink s, the reflection functor

Rs induces a linear map K0(Q) → K0(σsQ), whose matrix with respect to

the bases of simples is given by the reflection r
BQ
s , where BQ = CQ + CT

Q

is the symmetrization of CQ, see [3]. Moreover, CσsQ = (r
BQ
s )T CQr

BQ
s and
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BσsQ = BQ, as

(BQ)ij = −
∣

∣{arrows i → j}
∣

∣ −
∣

∣{arrows j → i}
∣

∣ (i 6= j)

is independent on the orientation of the arrows.
Therefore, by looking at the Grothendieck groups, Theorem 3.1 implies

the following commutative diagram

K0(Q)
r

BQ
n //

In

��

K0(σnQ)
r

BQ
n−1 // . . .

r
BQ
1 // K0(σ1 . . . σnQ)

In

��

K0(Q)
−C−1

Q CT
Q

// K0(Q),

recovering equation (1.2) for C = CQ as a K-theoretical consequence of the
isomorphism of the functors τ and R1R2 · · ·Rn.

3.2. Comparison. While Theorem 1.2 and its Corollary 1.3, on the one
hand, and Theorem 3.1, on the other hand, can all be regarded as categorical
interpretations of equations (1.1) and (1.2), there are several differences,
which are outlined below.

3.2.1. Scope. Compared with Theorem 3.1, Theorem 1.2 has broader scope
in two aspects; first, it applies to any finite dimensional triangular algebra
A, and not only to hereditary ones. Second, it applies to any triangular
bimodule M , and not only to M = A, thus providing an interpretation of
equation (1.1) rather than the more specific (1.2).

3.2.2. Lifting vs. factorization. This broader scope carries some price to
be paid, namely that while Theorem 3.1 provides a factorization of the
Auslander-Reiten translation as a composition of the reflection functors,

Theorem 1.2 does not factor −
L

⊗A DM [1], but rather provides only a fac-
torization of a lift to perΛ.

3.2.3. The choice of matrix C. Both Corollary 1.3 and Theorem 3.1 cat-
egorify the same statement, namely equation (1.2), and in both cases the
upper triangular matrix C is the matrix of the Euler form with respect to
some basis. However, in Corollary 1.3 this is the basis of indecomposable
projectives, while in Theorem 3.1 it is the basis of simples.

The use of the basis of simples is a rather special feature of hereditary
algebras. Recall that for a quiver Q and a sink s, one has CσsQ = rT

s CQrs

where rs is the reflection built from the symmetrization of CQ. However,
for a general triangular algebra A whose Euler form is given by an upper
triangular matrix C (with respect to the basis of simples), there may be no
algebra whose Euler form is given by the matrix rT

s Crs (Here s is a sink or
source in the quiver of A and rs is built from the symmetrization of C).

Example 3.2. Let A be the algebra given by the quiver

•1
α // •2

β
// •3
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modulo the relation αβ = 0. The matrix of its Euler form with respect to
the basis of simples {S1, S2, S3} is

C =





1 −1 1
0 1 −1
0 0 1



 .

Let r1, r2, r3 denote the reflections corresponding to the symmetrization
B = C + CT . Then rT

1 Cr1 and rT
3 Cr3 cannot represent Euler forms of

algebras with respect to bases of simples, as their inverses have negative
entries.

3.2.4. The shift. Finally, observe that in both results, the minus sign in
the left hand side of (1.1) and (1.2) is interpreted as a shift applied to
the functor of tensoring with a bimodule. However, in Theorem 1.2 it is a
positive shift, while in Theorem 3.1 it is a negative one. Of course, they are
indistinguishable in the Grothendieck group.
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