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Abstract

We address the question of when cluster-tilted algebras of Dynkin type E are derived equivalent
and as main result obtain a complete derived equivalence classification. It turns out that two cluster-
tilted algebras of type E are derived equivalent if and only if their Cartan matrices represent equivalent
bilinear forms over the integers. For type Fs all details are given in the paper, for types E7 and Es
we present the results in a concise form from which our findings should easily be verifiable.

1 Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky around 2000 and have enjoyed a remark-
able success story in recent years. They attractively link various areas of mathematics, like combinatorics,
algebraic Lie theory, representation theory, algebraic geometry and integrable systems and have applica-
tions to mathematical physics. In an attempt to 'categorify’ cluster algebras (without coefficients), cluster
categories have been introduced by Buan, Marsh, Reiten, Reineke, Todorov [5]. More precisely, these are
orbit categories of the form Cq = DY(KQ)/7~![1] where Q is a quiver without oriented cycles, D*(KQ)
is the bounded derived category of the path algebra K@ (over an algebraically closed field K) and 7 and
[1] are the Auslander-Reiten translation and shift functor on D*(KQ), respectively. Remarkably, these
cluster categories are again triangulated categories by a result of Keller [13].

Quivers of Dynkin types ADFE play a special role in the theory of cluster algebras since they parametrize
cluster-finite cluster algebras, by a seminal result of Fomin and Zelevinsky [10]. The corresponding cluster
categories Cg where @ is a Dynkin quiver are triangulated categories with finitely many indecomposable
objects and their structure is well understood by work of Amiot [I].

Important objects in cluster categories are the cluster-tilting objects. A cluster-tilted algebra of type
Q is by definition the endomorphism algebra of a cluster-tilting object in the cluster category Cqg. The
corresponding cluster-tilted algebras of Dynkin types A, D or E are of finite representation type and they
can be constructed explicitly by quivers and relations. Namely, the quivers of the cluster-tilted algebras
of Dynkin type @) are precisely the ones obtained from ) by performing finitely many quiver mutations.
Moreover, in the Dynkin case, the quiver of a cluster-tilted algebra uniquely determines the relations [8];
we shall review the corresponding algorithm in Section 2 below.

In this paper we address the question of when two cluster-tilted algebras of Dynkin type Eg, E7 or
Es have equivalent derived categories.

The analogous question has been settled for cluster-tilted algebras of type A, by Buan and Vatne [9]
(see also work of Murphy on the more general case of m-cluster tilted algebras of type A, [17]) and by
Bastian [3] for type A. Note that the cluster-tilted algebras in these cases are gentle algebras [2].

It turns out that two cluster-tilted algebras of type A, are derived equivalent if and only if their
quivers have the same number of 3-cycles. For distinguishing such algebras up to derived equivalence one
uses the determinants of the Cartan matrices; these have been determined explicitly for arbitrary gentle
algebras by the second author in [12].
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A derived equivalence classification of cluster-tilted algebras of other Dynkin types D and E has been
open. In this paper we settle this question for type E, i.e. we obtain a complete derived equivalence
classification for cluster-tilted algebras of types Eg, Fr and Eg. More precisely, our main result is the
following.

Theorem 1.1. Two cluster-tilted algebras of Dynkin type E are derived equivalent if and only if their
Cartan matrices represent equivalent bilinear forms over Z. This in turn happens if and only if the
Cartan matrices of the algebras have the same determinant and the same characteristic polynomial of
their asymmetry matrices.

For the proof, we first need the possible quivers of the cluster-tilted algebras, i.e. the mutation class of
a Dynkin quiver of type E; note that these mutation classes are finite. This will be achieved conveniently
using Keller’s software [14]. It suffices to get a list of representatives of the quivers modulo sink/source
equivalence, since sink/source equivalent algebras will be derived equivalent. As the quivers determine
the relations for cluster-tilted algebras of Dynkin type, we can compute the Cartan matrix of each of the
cluster-tilted algebras of type E.

A natural strategy is first to divide these algebras into equivalence classes according to some invariants
of derived equivalence, so that algebras belonging to different classes are not derived equivalent, and then
to construct explicit tilting complexes for enough pairs within each class, thus proving that the algebras
belonging to the same class are indeed derived equivalent.

The invariant of derived equivalence we use is the integer equivalence class of the bilinear form
represented by the Cartan matrix of an algebra A. As this invariant is sometimes arithmetically subtle
to compute directly, we instead compute the determinant of the Cartan matrix C'4 and the characteristic
polynomial of its asymmetry matrix S4 = Cxy C;T, defined whenever Cy4 is invertible over Q, and encode
them conveniently in a single polynomial that we call the polynomial associated to C4. This quantity is
generally a weaker invariant of derived equivalence, but in our case it will turn out to be enough for the
classification. Note that unlike as in type A, the determinant itself is not sufficient for distinguishing the
algebras up to derived equivalence.

We stress that the asymmetry matrix and its characteristic polynomial are well defined whenever the
Cartan matrix is invertible over Q, even without having any categorical meaning, as follows from [16]
Section 3.3]. In the special case when A has finite global dimension, the asymmetry matrix Sy4, or better
minus its transpose —CXICZ;, is related to the Coxeter transformation which does carry categorical
meaning, and its characteristic polynomial is known as the Coxeter polynomial of the algebra.

For those algebras having the same Cartan determinant and the same characteristic polynomial of
the asymmetry matrix we then construct explicit tilting complexes in order to prove them to be derived
equivalent. This forms the main body of the technical work involved to achieve the derived equivalence
classification.

Let us briefly describe the above main result in some more detail. For precise definitions of the
cluster-tilted algebras involved we refer to Sections 3 (type Eg), A/B (type E7), and C/D (type Es)
below.

For type Eg there are 21 cluster-tilted algebras, up to sink/source equivalence. They turn out to
fall into six derived equivalence classes. These six classes are characterized by the following Cartan
determinants and characteristic polynomial of the asymmetry matrix, respectively.

Derived equivalence classes for type Fg

det C'4 | characteristic polynomial of S4 || det C'y4 | characteristic polynomial of S4
20—+ x4l 3 20+ a3 +1
2 — 4223 — 2% +1 4 2042t 422 +1
20 — 224 + 423 — 222 + 1 4 20+ a® -2t +22% -2+ +1

For type F7 the mutation class consists of 112 quivers up to sink/source equivalence. The derived
equivalence classes of the cluster-tilted algebras are again characterized by the Cartan determinant and
the characteristic polynomial of the asymmetry matrix; there are 14 classes in total, given as follows.



Derived equivalence classes for type E7
det Cy characteristic polynomial of S 4 det Cy characteristic polynomial of S4

2’ —ab+xt - -1 2T+ 28 — 225 + 224 — 223 4+ 222 —x -1
2’ —x® 422 — 223 + 22— 1 24—zt -2 -1
2l —ab 4t -2t 4% -1 2l +a® =22 4223 — 2?2 -1
27 — 225 4 dat — 423 + 222 — 1 T4+ -t 2?1
z7 —1 2T a2 —at a2 -1
'+t -+t -t —1 2’ 42— -1

2Tl - —t 4t —1 b —t 4t -2 —ax—1
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For type Eg we get 391 algebras, up to sink/source equivalence. They turn out to fall into 15 different
derived equivalence classes which are characterized as follows.

Derived equivalence classes for type Eg
det Cy characteristic polynomial of S4 det Cy characteristic polynomial of S 4

BT+t - 41 28+ a8 —ad 42t — ¥ 2?41
28 — 20 + 225 — 204 4+ 223 — 22 4+ 1 28 + 28 — 225 + 42t — 223 4+ 22 4+ 1
2 —ab 42’ 32241 2B+l +at 42241
x® — 220 + 425 — 42t + 423 — 222 + 1 B+ S a2 41
8+t +1 PB4z’ 2t +1
2 —ab b4 2?41 284+ 227 + 22 + 220+ 1
2+’ —ab 2t — 2?4 +1 2242+ 2t P +1
2+ 2T =228 + 225 + 223 — 222+ x4+ 1
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The paper is organized as follows. In Section 2 we collect some background material; in particular
we recall the fundamental notion of quiver mutation, describe the results of Buan, Marsh and Reiten on
cluster-tilted algebras of finite representation type, review the fundamental results on derived equivalences
and then discuss invariants of derived equivalence such as the equivalence class of the Euler form, in
particular leading to the determinant of the Cartan matrix and the characteristic polynomial of its
asymmetry matrix as derived invariants.

In Section 3 we discuss derived equivalences for cluster-tilted algebras of Dynkin type Fg in detail.
We first list the mutation class of an Eg quiver, up to sink/source equivalence; this list has been produced
using Keller’s software and comprises 21 algebras. We also give the corresponding Cartan matrices and
compute their determinants and the characteristic polynomials of their asymmetry matrices. The main
result of this section is Theorem [B.I] which proves the main Theorem [[T] for type Eg. For this we have
to find explicit tilting complexes for the cluster-tilted algebras of type Fg and we have to determine their
endomorphism rings. The necessary calculations are carried out and described in detail.

For types E7 and Eg we have followed a different strategy of presentation since the number of algebras
involved becomes very large. We first list the algebras but without drawing the quivers; again, the quivers
have been found using Keller’s software. We then present the results on derived equivalences for cluster-
tilted algebras of types E7 and Fgs in a very concise form which is explained at the beginning of the
respective sections. For each group of algebras with the same Cartan determinant and characteristic
polynomial of the asymmetry matrix we then provide tilting complexes and list their endomorphism
rings, but without giving any details on the calculations. However, we hope that we have provided
enough information so that interested readers should easily be able to check our findings.
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2 Preliminaries

2.1 Quiver mutations

A quiver is a finite directed graph @), consisting of a finite set of vertices Qy and a finite set of arrows
@1 between them. A fundamental concept in the theory of Fomin and Zelevinsky’s cluster algebras is
mutation; for quivers this takes the following shape.

Definition 2.1. Let @ be a quiver without loops and oriented 2-cycles. For vertices i, j, let a;; denote
the number of arrows from ¢ to j, where a;; < 0 means that there are —a;; arrows from j to i.
The mutation of Q at the vertex k yields a new quiver Q' obtained from @ by the following procedure:

1. Add a new vertex k*.

2. For all vertices 7 # j, different from k, such that a;; > 0, set the number of arrows a’ij from i to j
in Q' as follows:

if a;; > 0 and ag; > 0, then a’ij = Qi + QikGL;;

if a;; <0 and ag; <0, then a’ij = Qi — QikQky-

3. For any vertex i, replace all arrows from ¢ to k with arrows from k* to ¢, and replace all arrows
from £ to ¢ with arrows from ¢ to k*.

4. Remove the vertex k.

Two quivers are called mutation-equivalent if one can be obtained from the other by a finite sequence
of mutations. The mutation class of a quiver @ is the class of all quivers mutation-equivalent to Q. It is
known from the seminal results of Fomin and Zelevinsky [10] that the mutation class of a Dynkin quiver
Q is finite.

2.2 Cluster-tilted algebras of finite representation type

Cluster-tilted algebras arise as endomorphism algebras of cluster-tilting objects in a cluster category,
see [6]. For the special case of Dynkin quivers the cluster-tilted algebras are known to be of finite
representation type. Moreover, by a result of Buan and Reiten [8] they can be described as quivers with
relations by a simple combinatorial recipe to be recalled below. As a consequence, a cluster-tilted algebra
of Dynkin type is uniquely determined by its quiver.

Let @ be a quiver and throughout this paper let K be an algebraically closed field. We can form the
path algebra K@, where the basis of K@ is given by all paths in @, including trivial paths e; of length
zero at each vertex i of ). Multiplication in K@ is defined by concatenation of paths. Our convention is
to compose paths from right to left. For any path « in @ let s(a) denote its start vertex and ¢(«) its end
vertex. Then the product of two paths o and 3 is defined to be the concatenated path af if s(a) = t(5).
The unit element of K@ is the sum of all trivial paths, i.e., 1xg = Y e;.

1€Qo

We recall some background from [§]. An oriented cycle in a quiver is called full if it does not contain
any repeated vertices and if the subquiver generated by the cycle contains no other arrows. If there is
an arrow ¢ — j in a quiver () then a path from j to i is called shortest path if the induced subquiver is a
full cycle.

We now describe cluster-tilted algebras of Dynkin type by a quiver with relations, i.e. in the form
KQ/I where @ is a finite quiver and I is some admissible ideal in the path algebra K@. Recall that
the quivers associated with cluster-tilted algebras of Dynkin type are precisely the quivers in the the
mutation class of the corresponding Dynkin quiver.

Relations are linear combinations kiwy + - -+ + kpwa, of paths w; in @, all starting in the same vertex
and ending in the same vertex, and with each k; non-zero in K. If m = 1, we call the relation a zero-
relation. If m =2 and k1 = 1, ko = —1, and we call it a commutativity-relation (and say that the paths
w1 and wo commute). It will turn out that for cluster-tilted algebras of Dynkin type the ideal I can be
generated by only using zero-relations and commutativity relations. Finally, a relation p is called minimal
if whenever p = ). 8; o p; 0 ;, where p; is a relation for every ¢, then there is an index j such that both
B; and ~; are scalars.



Proposition 2.2 (Buan and Reiten [8]). A cluster-tilted algebra A of finite representation type is of
the form A = KQ/I, where Q is mutation equivalent to a Dynkin quiver and where the ideal I can be
described as follows. Let i and j be vertices in Q.

1. The ideal I is generated by minimal zero-relations and minimal commutativity-relations.
2. Assume there is an arrow i — j. Then there are at most two shortest paths from j to i.

i) If there is exactly one, then this is a minimal zero-relation.

1) If there are two, w and u, then w and p are not zero in A and there is a minimal relation
w — [

3. Up to multiplication by non-zero elements of K there are no other minimal zero-relations or
commutativity-relations than the ones coming from 2.

Example 2.3. We consider the following quiver @ of type Fs
6

If we mutate at vertex 2, we get the following quiver Q’

2 6

as Q2
Qg

« o4
1 g Ty T

The corresponding cluster-tilted algebra is of the form A = KQ'/I where I is generated by the zero-
relations ajas3, asa; and asas (and there are no commutativity-relations).
Mutating the latter quiver at the vertex 3 leads to the quiver Q"

6 s 2
g 1.
Q2 Qg
aq Qs ar
1 3 4 )

Here, the ideal of relations of the corresponding cluster-tilted algebra is generated by the zero-relations
o0y, a5y, agas and agag and the commutativity-relation agas = agas.

2.3 Tilting complexes and derived equivalences

In this section we briefly review the fundamental results on derived equivalences. All algebras are assumed
to be finite-dimensional K-algebras.

For a K-algebra A the bounded derived category of A-modules is denoted by D’(A). Recall that two
algebras A, B are called derived equivalent if D®(A) and D®(B) are equivalent as triangulated categories.
By a famous theorem of Rickard [I8] derived equivalences can be found using the concept of tilting
complexes.

Definition 2.4. A tilting complex T over A is a bounded complex of finitely generated projective A-
modules satisfying the following conditions:



i) Hompy(a)(T,Ti]) = 0 for all i # 0, where [1] denotes the shift functor in D(A);

ii) the category add(T") (i.e. the full subcategory consisting of direct summands of direct sums of T')
generates the homotopy category K°(Pa) of projective A-modules as a triangulated category.

We can now formulate Rickard’s seminal result.

Theorem 2.5 (Rickard [I8]). Two algebras A and B are derived equivalent if and only if there exists a
tilting complex T' for A such that the endomorphism algebra Endpy4)(T) = B.

2.4 The equivalence class of the Euler form as derived invariant

Let A be a finite-dimensional algebra over a field K and let Py, ..., P, be a complete collection of non-
isomorphic indecomposable projective A-modules (finite-dimensional over K). The Cartan matriz of A
is then the n x n matrix Cy4 defined by (Ca)i; = dimgx Hom(P;, ;).

Denote by per A the triangulated category of perfect complexes of A-modules inside the derived
category of A, that is, complexes (quasi-isomorphic) to finite complexes of finitely generated projective
A-modules. The Grothendieck group Ko(per A) is a free abelian group on the generators [Pi], ..., [Py],
and the expression

(X,Y) = (~1)" dimg Homper 4 (X, Y [r])
rEZ

is well defined for any X,Y € per A and induces a bilinear form on Ky(per A), known as the Euler form,
whose matrix with respect to the basis of projectives is C%.

The following proposition is well known. For the convenience of the reader, we give the short proof,
see also the proof of Proposition 1.5 in [4].

Proposition 2.6. Let A and B be two finite-dimensional, derived equivalent algebras. Let n denote by
number of their non-isomorphic indecomposable projectives. Then the matrices Cy and Cp represent
equivalent bilinear forms over 7, that is, there exists P € GL,(Z) such that PCAPT = C5.

Proof. Indeed, by [18], if A and B are derived equivalent, then per A and per B are equivalent as triangu-
lated categories. Now any triangulated functor F : per A — per B induces a linear map from Ky(per A)
to Ko(per B). When F is also an equivalence, this map is an isomorphism of the Grothendieck groups
preserving the Euler forms. Thus, if [F] denotes the matrix of this map with respect to the bases of
indecomposable projectives, then [F|TCg[F] = Cj. O

In general, to decide whether two integral bilinear forms are equivalent is a very subtle arithmetical
problem. Therefore, it is useful to introduce somewhat weaker invariants that are computationally easier
to handle. In order to do this, assume further that C4 is invertible over Q. In this case one can consider
the rational matrix S4 = CAC;T (here C’;T denotes the inverse of the transpose of Cy4), known in the
theory of non-symmetric bilinear forms as the asymmetry of C4.

Proposition 2.7. Let A and B be two finite-dimensional, derived equivalent algebras with invertible
(over Q) Cartan matrices. Then we have the following assertions, each implied by the preceding one:

1. There exists P € GL,,(Z) such that PCaPT = Cp.
2. There exists P € GL,,(Z) such that PSAP~! = Sp.
3. There exists P € GL,,(Q) such that PSaP~! = Sp.
4. The matrices S5 and Sp have the same characteristic polynomial.

For proofs and discussion, see for example [16, Section 3.3]. Since the determinant of an integral
bilinear form is invariant under equivalence, we can combine it with the characteristic polynomial pg , ()
of the asymmetry matrix S4 to obtain a discrete invariant of derived equivalence, namely (det C4)-ps, ().
We call this invariant the polynomial associated with C4.



Remark 2.8. The matrix S4 = C4C;” (or better, minus its transpose —C;'C7) is related to the
Coxeter transformation which has been widely studied in the case when A has finite global dimension
(so that C4 is invertible over Z). It is the K-theoretic shadow of the Serre functor and the related
Auslander-Reiten translation in the derived category. The characteristic polynomial is then known as the
Coxeter polynomial of the algebra.

Remark 2.9. In general, S4 might have non-integral entries. However, when the algebra A is Gorenstein,
the matrix S, is integral, which is an incarnation of the fact that the injective modules have finite
projective resolutions. By a result of Keller and Reiten [I5], this is the case for the cluster-tilted algebras
in question.

2.5 Computations of Cartan matrices

Let A = KQ/I be an algebra given by a quiver Q = (Qp, Q1) with relations. Since Zing e; is the unit
element in A we get a decomposition A = A-1 = P, Ae;, hence the (left) A-modules P; := Ae; are
the indecomposable projective A-modules, and the Cartan matrix C4 = (¢;;) of A is the n-by-n matrix
whose entries are ¢;; = dimg Homa(P;, P;), where n = |Qo|. Any homomorphism ¢ : Ae; — Ae; of
left A-modules is uniquely determined by ¢(e;) € e;Ae;, the K-vector space generated by all paths in @
from vertex 7 to vertex j that are nonzero in A. In particular, we have ¢;; = dimg ejAe;, i.e., computing
entries of the Cartan matrix for A reduces to counting paths in Q.

For cluster-tilted algebras of Dynkin type the entries of the Cartan matrix can only be 0 or 1, as the
following result shows.

Proposition 2.10 (Buan, Marsh, Reiten [7]). Let A be a cluster-tilted algebra of finite representation
type. Then dimg Homa(P;, P;) < 1 for any two indecomposable projective A-modules P; and P;.

Example 2.11. We have a look at the quivers in Example 23] again, and compute the Cartan matrices
of the corresponding cluster-tilted algebras.
For the Dynkin quiver @ of type Eg with the above orientation we get the following Cartan matrix

since there are no zero- or commutativity-relations.

el
OO0 OO
HOOOOO

[=NeNoNeNel
[eNeNoNe
O EFOOO

For the quiver Q' obtained by mutation from @Q at vertex 2, the corresponding Cartan matrix C’ has

101 0 0 0
1100 0 0

thefom ' = | 0 1 1 0 o 0 | for KQ/I since the paths from vertex 1 to 2, from 2 to 3 and from
o1 1 1 1 0
01 1 0 0 1

3 to 1 are zero.

Finally, for the quiver Q" obtained from @’ by mutating at vertex 3, the cluster-tilted algebra has
1 0 0 0 0 0
1 1 1 0 0 0
Cartan matrix C" = (1) i é i 8 é . Note that the two paths from vertex 3 to vertex 2 (over 4
01 0 1 1 0
01 0 0 0 1

or 6) are the same since we have the commutativity-relation asas = agas.

For calculating the endomorphism ring Endps(4)(T') of a tilting complex T' over the algebra A, we
can use the following statement which explicitly gives the Cartan matrix of the endomorphism ring in
terms of the tilting complex and the Cartan matrix of A.

Proposition 2.12. Let T be a tilting complex over A with endomorphism algebra B = Endps(a)(T'), and
let Ty, ..., T, be the indecomposable direct summands of T.

Then the Cartan matriz Cp of B is given by Cp = PC4PT, where P = (plvj)?’j:l is the matriz
defined by

[Ti] = sz‘j (7]



(that is, its i-th row is the class of the summand T; in Ko(per A) written in the basis [P1], ..., [Pn]).

Example 2.13. Continuing Example 2111 let T'=T; @ - - - ® Tg be the complex over the cluster-tilted
algebra corresponding to @’ defined by

T P, ifi+#3
PP ePeP ifi=S3,

where the P; are in degree 0 for ¢ # 3 and Ps is in degree —1.
Then T is a tilting complex and the corresponding matrix P is given by

coor~o~
cococoro
coo/l oo
co~roo
oc~ococoo
—ocor~oo

so that C" = PC'PT. In fact, End T is isomorphic to the cluster-tilted algebra corresponding to Q”, see
Section B.3.11

It is sometimes convenient to use the following alternating sum formula, arising from the fact that for
a bounded complex X = (X") of projective modules, we have [X] = >"(—1)"[X"] in Ko(per A).

Proposition 2.14 (Happel [11]). For an algebra A let X = (X")rez and Y = (Y¥)sez be bounded
complezes of projective A-modules. Then

> (=1)" dim Homygs(p,y (X, Y[i]) = > (—1)""* dim Hom4 (X", Y*).
In particular, if X and Y are direct summands of the same tilting complex, then

dim Homg (p,) (X,Y) = > (—1)""* dim Hom (X", Y*).

T8

3 Derived equivalences of cluster-tilted algebras of type FEj

For the mutation class of Eg we start with the following quiver

6

1 2 3 4 5)

and compute all quivers which can be obtained from it by a finite number of mutations. For this, we used
the software of B. Keller [I4]. The class we get consists (up to sink/source equivalence) of 21 different
algebras. We can divide these algebras into 6 groups by computing the polynomials associated with their
Cartan matrices. Recall that these are obtained by multiplying the determinant of the Cartan matrix by
the characteristic polynomial of its asymmetry matrix.

We list, for each of the 21 cluster-tilted algebras A; of type Fg (up to sink/source equivalence), its
quiver, its Cartan matrix C'4, and the associated polynomial.
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no quiver Q Cartan matrix polynomial
3 1.0 1 0 1 0
1 1 0 0 0 O
1 1 1 1 1 1 6 4 2
17 1 0 1 1 0 1 4(z® 4+ z* + 2% + 1)
o 0 o0 o0 1 1
4 o 1 1 0 0 1
2 1 11 0 1 1
> o 1 1 1 1 1
00 1 0 0 1 6 a4 2
18 1 111 0 0 4(z® 4+ z* + 2% + 1)
1 1 0 1 1 1
5 0O 1 0 0 0 1
6
1 1 1 1 0 O
5 001 1 1 0 0
/ 000 1 1 1 0 6, 3
19 - 01 0 1 1 0 3(z° +2° +1)
o 1 1 1 1 1
o 0 o0 1 0 1
2
3
1 1 1 1 0 1
9 01 1 1 0 1
/ 000 1 1 0 0 6., 3
20 - 01 0 1 0 0 3(x® + 2 +1)
0O 1 1 0 1 0
_ 01 0 1 1 1
5
6
1 1 0 O 1 O
9 01 0 0 1 0
o 1 1 1 1 0 6 3
21 00 0 1 1 1 3(x® + 2 +1)
o 1 1 0 1 1
O 1 0 0 0 1
3

The associated cluster-tilted algebras are denoted by Anumber-

The following theorem is the main result of this section.

Theorem 3.1. Two cluster-tilted algebras of type Eg are derived equivalent if and only if their Cartan

matrices represent equivalent bilinear forms over Z.

For proving the theorem we now have to show that the cluster-tilted algebras with the same Cartan
determinant and the same characteristic polynomial are indeed derived equivalent. To this end, we shall
explicitly construct suitable tilting complexes and determine their endomorphism algebras. Note that
the class of cluster-tilted algebras is not closed under derived equivalences, so one carefully has to choose
suitable tilting complexes in order to get another cluster-tilted algebras as endomorphism algebra.

3.1 Derived equivalences for polynomial 4(2% + 2% + 22 + 1)

Since we deal with left modules and read paths from right to left, a nonzero path from vertex i to j gives
a homomorphism P; — F; by right multiplication. Thus, two arrows a: 4 — j and 3 : j — k give a path

Ba from ¢ to k and a homomorphism af : P, — P;.
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3.1.1 A5 is derived equivalent to Ag
First consider As with the following quiver

1 2 3

a7 Qg | Q5 a3

4 5 6

Let T = @?:1 T; be the following bounded complex of projective As-modules, where T; : 0 — P; —
0, i € {1,2,4,5,6}, are complexes concentrated in degree zero and T3 : 0 — P3 ~2 P, — 0 is a complex
in degrees —1 and 0.

Now we want to show that T is a tilting complex. Property i) of Definition [Z4] is clear for |i| > 2
since T is concentrated in two degrees.
We begin with possible maps T5 — T3[1] and T5 — T3[—1],

0 — P ﬂ>Pg—>0

lOéz
0 — P =2 P, - 0
10
0 — P ®.P - 0

Here as is a basis of the space of homomorphisms between P; and Ps.
But the homomorphism s is homotopic to zero and in the second case there is no non-zero homomorphism
P, — P5 (as we can see in the Cartan matrix of As).

Now let ¢ = —1 and consider possible maps T5 — T;[—1], j # 3. These maps are given by a map of
complexes as follows
0 — P 2% P — 0
!
0o — Q@ — 0

where @) could be either Py, Ps, Py, P5 or direct sums of these.

Note that there is no non-zero homomorphism P; — Py since this is a zero-relation in the quiver of As.
There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every path
from vertex ¢ € {1,2,4,5} to vertex 3 ends with ay. Hence, every homomorphism from P3 to Py, Pa, Py
or Pj starts with as, up to scalars and thus, every homomorphism P; — @ can be factored through the
map ag : P3 — Ps.

Directly from the definition we see that Hom(7', T;[—1]) = 0 for j € {1,2,4,5,6} and thus we have shown
that Hom(T, T[—1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — T3[1] for j # 3. These are given as follows

0 - Q@ — 0
!

0 - P, 2 P — 0

where ) can be either Ps, Pg or direct sums of these.
Note that Hom(P;, P3) =0 for j =1, 2 and j = 4.
But no non-zero map can be zero when composed with asy since the path ayjasas = agag # 0. So the
only homomorphism of complexes T; — T3[1], j # 3, is the zero map.

It follows that Homps(p, (T, T[i]) = 0 in the homotopy category.

Secondly we have to show that add(T") generates K®(Pa) as a triangulated category. It suffices to show
that the projective indecomposable modules P, ..., Ps, viewed as stalk complexes, can be generated by

12



add(T"). We denote by Py[n] the complex with P, concentrated in degree n. Since Py, k € {1,2,4,5, 6},
occur as summands of T', P[0] is in add(T) for all k € {1,2,4,5,6} and thus Py[n] is in the triangulated
category generated by add(T") for all k € {1,2,4,5,6} and for all n. Thus, we have to check that Ps[n]
can be generated by add(T).

There exists a homomorphism of complexes f from P,[0] to the complex T : 0 — P3 2 Py — 0 given
by idp, in degree zero. Then the stalk complex Ps[1] can be shown to be homotopy equivalent (i.e.,

isomorphic in K?(P4)) to the mapping cone M(f): 0 — P, @ P3 (id.az) P, — 0 of f. Thus, we have a
distinguished triangle

Rl L 1 =P — P .
N—— S~~~ N——
€add(T) €add(T) €add(T)

By definition, add(T") is triangulated, so it follows that the stalk complex Ps[1] € add(7T') and thus also
Ps[n] is in the triangulated category generated by add(T) for all n which proves 7).

Hence, T is indeed a tilting complex for As.
By Rickard’s theorem, E := Endps(p, )(T) is derived equivalent to As. And thus AP = Agg is

derived equivalent to E°P. We want to show that F is isomorphic to Ag.

If we use the alternating sum formula of Happel’s Proposition we can compute the Cartan matrix of E
1

to be which coincides with this one of Ag.

OO OOF
e

—oor~oO
QO HKFERFEO
HHR=ORO
HOoOOoOOoOrKF

Now we have to define homomorphisms of complexes between the summands of T" which correspond to
the reversed arrows of the quiver of Ag and show that these homomorphisms satisfy the defining relations
of Ag, up to homotopy.

First we have the embedding id : T, — T3 (in degree zero). Moreover, we have the homomorphisms
agag : Tg — T and agas @ Ts — Tg. Finally, we also have homomorphisms o, oy, a5, ag, a7 and ag as
before. Note that the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms o g, agaz,

asag, asagas and asasagas are zero since they were zero in As. As we can see, the two paths from
vertex 4 to vertex 2 and the two paths from vertex 2 to vertex 5 are the same, since we have the same
commutativity relations in As. It is easy to see that the two paths from vertex 6 to vertex 2 are also the
same. The last zero-relation asas between vertex 6 and 3 is given by the homomorphism from T3 to T5
in degree zero. This is indeed a zero-relation since the homomorphism asag is homotopic to zero.

Thus, we defined homomorphisms between the summands of T' corresponding to the reversed arrows of
the quiver of Ag. We have shown that they satisfy the defining relations of Ag and that the Cartan
matrices of £ and Ag coincide. From this we can conclude that £ = Ag and thus, A9 and As are derived
equivalent. Since Ay7 is the opposite algebra of Ag, A7 is derived equivalent to A = Ajs.

3.1.2 A;; is derived equivalent to A5 and A;g

Next consider A;5 with the following quiver

13



Qs
Qg

(67 4

a3

(051 (8%
1 2 3

which is derived equivalent to AJY since their quivers only differ at a sink/source.
Since there are arrows 1 — 2 and 6 — 2 we have homomorphisms P, —% P; and P, —% Pgs. Let
T= @?:1 T; be the following bounded complex of projective Ajs-modules, where T; : 0 — P, — 0, i €

{1,3,4,5,6}, are complexes concentrated in degree zero. Moreover, let Ty : 0 — P (a2,000) PeF —0

in degrees —1 and 0.

Now we want to show that T is a tilting complex. Since we can show like in subsection B.I.T] that
the second condition is always fulfilled for such two-term complexes we need, it suffices to prove the first
one. We begin with possible maps To — T»[1] and Tp — To[—1],

0 — P (el pap, — 0
L
0 - p, 2% pap 0
10
0 N C00) pap 0

where p € Hom(P,, Py @ FPs) and («a1,0), (0, ) is a basis of this two-dimensional space.
The first homomorphism is homotopic to zero (as we can easily see). In the second case there is no
non-zero homomorphism P; & Ps — P, (as we can see in the Cartan matrix of A;s).

Now let ¢ = —1 and consider possible maps T — T;[—1], j # 2. These maps are given by a map of
complexes as follows
0 - P ‘% pop - 0
l
0 — Q — 0

where @ could be either Py, Py, Ps, Ps or direct sums of these. Note that there is no non-zero homomor-
phism P, — P5 since this is a zero-relation in the quiver of Ajs.

There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every path
from vertex i € {1,4,5,6} to vertex 2 ends with oy or ag. Thus, every homomorphism from P to
Py, Py, Ps or Py starts with a; or ag, up to scalars. Hence, every homomorphism P, — @ can be factored
through the map (a1, ) : Po — P @ Fs.

Directly from the definition we see that Hom(7T', T;[—1]) = 0 for j € {1, 3,4, 5,6} and thus we have shown
that Hom(T, T[—1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — T5[1] for j # 2. These are given as follows

0 — @ — 0
!
0 - P, % pap - 0

where @ can be either Ps, Py, P5 or direct sums of these.
Note that Hom(P;, P,) =0 for j =1 and j = 6.
But no non-zero map can be zero when composed with both a7 and ag since the path asa; is not a
zero-relation. So the only homomorphism of complexes T; — T[1], j # 2, is the zero map.

It follows that Homps(
complex for Ajs.
Hence, T is indeed a tilting complex for A;s.

y(T,T[i]) = 0 in the homotopy category and that T" is indeed a tilting

Pays
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By Rickard’s theorem, E := Endps(p A15)(T) is derived equivalent to A;5. And thus A is derived
equivalent to E°P. We want to show that F is isomorphic to As.
Using the alternating sum formula of the Proposition by Happel we can compute the Cartan matrix of

1 0 1 1 1 0
11 1 1 0
001 1 1 1 1

Etobe | o o ¢ 1 1 1
000 1 0 1 1
000 1 1 0 1

Considering the different labeling of the vertices, this is the Cartan matrix of As.

Now we have to define homomorphisms of complexes between the summands of T" which correspond to
the arrows of the quiver of As (in the converse direction) and show that these homomorphisms satisfy
the defining relations of As, up to homotopy.

3
19 Qs

« QX2 Qy

(6%
o B 5 P 5

First we have the embeddings o := (id,0) : Ty — T and 5 := (0,id) : T — T» (in degree zero). Then
we define v : T, — T3 by the map (0, asaqas) : Py & Ps — Ps in degree 0. This is a homomorphism
of complexes since asagasas = 0 in Ay5. Moreover, we have the homomorphisms ajas : T3 — T}
and agag @ T3 — Tg. Finally, we also have homomorphisms a3, ay and a5 as before. Note that the
homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms agasasay,
aqasagas and asagasas in the 4-cycle are zero since they were zero in Aj5. As we can see, the two
paths from vertex 3 to vertex 6 are the same, i.e., we here have the right commutativity relation. There
is also another commutativity relation aa;as = Bagas between vertex 2 and 3 which is given by the two
homomorphisms from T3 to the first and second summand of 75. These are indeed the same paths since
the homomorphism (a2a1,0) is homotopic to (0, azas)

00— »P3—» ()

(&5}
[e5Ye %) [e7:{e%)

04>P24> Pl@PG —» 0
(o1, )

Because asazaqas = 0 the paths from vertex 6 to vertex 2 and from vertex 1 to 2 are zero in E. The
last zero-relation is given by the concatenation of a and .

Thus, we defined homomorphisms between the summands of T' corresponding to the reversed arrows of
the quiver of As. We have shown that they satisfy the defining relations of A5 and that the Cartan
matrices of E and As coincide. From this we can conclude that E = A5 and thus, A5 and Ay are derived
equivalent. Since A;g is the opposite algebra of Az, A;g is derived equivalent to AP and since Ajs is
derived equivalent to AY we get derived equivalences between As, A5 and Ajg. With the above result,
we have derived equivalences between As, Ag, Ais, A17 and Ajg.

3.1.3 A3 is derived equivalent to As

The following quiver corresponds to A;3
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1 2 3
a1 [0%4
(6%} [6%) jaﬁ
o T«
4 0 5 7 6

Let T = @?:1 T; be the following bounded complex of projective As-modules, where T; : 0 — P; —

0, i € {1,2,3,5,6}, are complexes concentrated in degree zero. Moreover, let Ty : 0 — P4 X, P; —0in
degrees —1 and 0.

Now we want to show that T is a tilting complex. We begin with possible maps Ty — Ty[1] and
Ty — T4[—1],
0 — Py 23, Ps — 0

| as
0 - P 2 p - 0
10

0 - P &P5—>0

Here a3 is a basis of the space of homomorphisms between P, and Ps.
The first homomorphism is homotopic to zero (as we can easily see). In the second case there is no
non-zero homomorphism P; — Py (as we can see in Cartan matrix of Aj3).

Now let ¢ = —1 and consider possible maps Ty — T;[—1], j # 4. These maps are given by a map of
complexes as follows
0 — P N Ps — 0
!
0o - Q@ — 0

where @) could be either P, P3, Ps or direct sums of these.

Note that there is no non-zero homomorphism P, — P; and P, — Py since these are zero-relation in the
quiver of Ajs.

There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every
homomorphism from P, to P, P3 or P5 starts with a3, up to scalars. Thus, every homomorphism
Py — @ can be factored through the map as : Py — Ps.

Hence, Hom(T,T;[—1]) = 0 for j € {1,2,3,5,6} and thus we have shown that Hom(T, T[-1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — Ty[1] for j # 4. These are given as follows

0o - Q@ — 0
!

0—>P4£>P5—>0

where @) can be either Py, P or direct sums of these since Hom(P;, Py) =0 for j =3, 5 and j = 6.
But no non-zero map can be zero when composed with ag since the path ajasas = aragas # 0. So the
only homomorphism of complexes T; — T4[1], j # 4, is the zero map.

It follows that Homps(p, ) (7T, T'[i]) = 0 in the homotopy category.
Hence, T is indeed a tilting complex for Ajs.

By Rickard’s theorem, E := Endps(p, ,)(T') is derived equivalent to A;3. And thus AR = Ayg s
derived equivalent to E°P.
We claim that F is isomorphic to As and we use the alternating sum formula of the Proposition by

11 0 1 1 1
01 0 0 1
Happel for computing the Cartan matrix of £ which is given as follows (1) (1) 1 (1) 1 (1)
11 1 0 1 1
01 1 0 0 1
Considering the different labeling of the vertices, this is the Cartan matrix of As.
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Now we define homomorphisms of complexes between the summands of T° which correspond to the
reversed arrows of the quiver of As.

4 id 5 o 6
Q1002 271 a9 Qg

¢ = o ®

1 2 T3

First we have the embedding id : T5 — T4 (in degree zero). Moreover, we have the homomorphisms
arag Ty — Tp and agay @ T1 — T5. Finally, we also have homomorphisms o, as, a5, as and oz as
before. Note that the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy.

Clearly, the homomorphisms agaras, arasas, asasag, qoasoy, asaga; and thus asagaias are zero
since they were zero in Aj3. As we can see, the two paths asagar and asaga; from vertex 5 to vertex
2 are the same since we have the same commutativity relation in A;3. It is easy to see, that the two
path from vertex 1 to vertex 5 are also the same. The last zero-relation azay between vertex 4 and 1
is given by the homomorphism from 77 to Ty in degree zero. This is indeed a zero-relation since the
homomorphism agzay is homotopic to zero.

Thus, we have shown that the defined homomorphisms between the summands of T correspond to the
reversed arrows of the quiver of As. From this we can conclude that £ = A and thus, A3 and As are
derived equivalent. Hence, we get derived equivalences between As, Ag, A13, A15, A17 and Ajs.

Moreover, we have shown that all cluster-tilted algebras with the polynomial 4(x6 + 2 + 22 + 1)
associated to their Cartan matrix are derived equivalent.

3.2 Derived equivalences for determinant 3
3.2.1 A3 and Ay are derived equivalent to Ay

First consider A3 with the following quiver

5 6

Let T = @?:1 T; be the following bounded complex of projective Az-modules, where T; : 0 — P; —
0, i € {1,2,3,4,6}, are complexes concentrated in degree zero and Ty : 0 — P5 —> P, — 0 is a complex
concentrated in degrees —1 and O.

Now we want to show that T is a tilting complex.
Since condition ¢) is obvious for all |i] > 2 we begin with possible maps T5 — T5[1] and T5 — T5[—1],

as

0 — P — P, = 0

las
0 - P = p - 0
10
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where aj is a basis of the space of homomorphisms between Ps and Ps.
The homomorphism a5 is homotopic to zero and in the second case there is no non-zero homomorphism
P, — P5 (as we can see in the Cartan matrix of As).

Now let ¢ = —1 and consider possible maps T5 — T;[—1], j # 5. These are given by maps of complexes

as follows
0 - P = P — 0

!
0o - Q@ — 0

where @ could be either Py, P5, P4 or direct sums of these.

Note that there are no non-zero homomorphisms P; — P35 and Ps — Fj since these are zero-relations in
the quiver of As.

There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every
homomorphism from Ps; to P;, P> or Py starts with a scalar multiple of as. Thus, every homomorphism
P5; — @ can be factored through the map as : Ps — Ps.

Directly from the definition we see that Hom(7T', T;[—1]) = 0 for j € {1,2, 3,4, 6} and thus we have shown
that Hom(7', T'[-1]) = 0.

Finally, let ¢ = 1. We have to consider maps T — T5[1] for j # 5. These are given as follows

0o - Q@ — 0
!

0—>P5&>P2—>0

where @) can be either Py, Ps or direct sums of these since Hom(P;, Ps) =0 for j = 1,2 and j = 3.
But no non-zero map can be zero when composed with as since the path ayagas = agas # 0. So the
only homomorphism of complexes T; — T5[1], j # 5, is the zero map.

It follows that Homps(p, (T, T[i]) = 0 in the homotopy category.

Hence, T is indeed a tilting complex for As.

By Rickard’s theorem, E := Endps(p,,)(T) is derived equivalent to As. And thus AP = Ay is
derived equivalent to E°P. We want to show that E is isomorphic to Agg.
Using the alternating sum formula of the Proposition by Happel we can compute the Cartan matrix of

1 1 1.1 0 1
0o 1 1 1 0 1
0 0 1 1 0 0
Etobe | v 1 o 1 ¢ o
0 1 1 0 1 0
0O 1 0 1 1 1

Considering the different labeling of the vertices, this is the Cartan matrix of Asg.

Now we have to define homomorphisms of complexes between the summands of T" which correspond to
the arrows of the quiver of Agy (in the other direction) and show that these homomorphisms satisfy the
defining relations of Asg, up to homotopy.

a7y

First we have the embedding id : To — T5 (in degree zero). Moreover, we have the homomorphisms
asag : Tg — T5 and aray @ Ts — Tg. Finally, we also have homomorphisms a1, as, a3, ay and a7 as
before. Note that the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy.
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Clearly, the homomorphisms agay, aqas, asasag and asagaray are zero since they were zero in As.
As we can see, the two paths from vertex 6 to vertex 2 are the same, i.e., we here have the right
commutativity relation. There is also another commutativity relation asas = asagar between vertex 2
and 4 since these are the same paths in As. The concatenation of id and asag yields to a zero-relation
since the homomorphism asag is homotopic to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows of
the quiver of Asy. We have shown that they satisfy the defining relations of Agy and that the Cartan
matrices of ' and Asq coincide. From this we can conclude that E = Agg and thus, Az and Ay are derived
equivalent. Since Agg is sink/source-equivalent to its opposite algebra, Agg is also derived equivalent to
AP = Ajp. Hence, we get derived equivalences between As, A9 and As.

3.2.2 Aj is derived equivalent to Ay,

Now we define a second bounded complex for Az by adding another two-term complex.
Let T = @?:1 T; be the complex with T; : 0 — P; — 0, i € {1,2, 3,6}, concentrated in degree zero and
Ty:0— P 2% pya Py — 0and Ty : 0 — Py 2% Py — 0 in degrees —1 and 0.

To show that T is a tilting complex we begin with possible maps Ty — T4[1] and Ty — Ty[—1] since
we’ve shown this for T above.

0 — P @00 poap 0
Ly
0 — P (as—’a;) P; ® Py — 0
10
0 N oo pap, — 0

where 1» € Hom(Py, Ps @ Ps) and (as,0), (0,ar7) is a basis of this two-dimensional space.
The first homomorphism is homotopic to zero (as we can easily see). In the second case there is no
non-zero homomorphism P & Ps — P, (as we can see in the Cartan matrix of Ag).

Next we have a look at possible maps Ty — T5[1], Ty — T5[—1], Ts — Ty[1] and T5 — Ty4[—1]

0 — p Y pap — o0
lg
0 — B i Py — 0
1oy
(as,ar)
0 — P4 i Pg@Pﬁ — 0
0 — Ps LN P, — 0
10
(az,ar)
0 — P4 — Pao Py — 0
lh
0 — P 2P - 0

where g can be seen as asas = asagar since this is a basis of the space of homomorphisms between P,
and P, and h can be seen as (0, aig) since this is a basis of the space of homomorphisms between Ps @& P
and Ps;. Moreover, oy is a basis of the space of homomorphisms between P and P;. As we can see, g
is homotopic to zero and a4 is not a homomorphism of complexes since (asay, aray) = (0, azay) # 0.
With the same argument h is not a homomorphism of complexes between T, and T5[1]. Furthermore,
there is no non-zero homomorphism between P5 and P; & P, as we can see in the Cartan matrix of As.

Because we've already determined maps between Ty and T;[i], j ¢ {4,5}, we consider possible maps
Ty — Tj[—1] and T; — T4[1], j ¢ {4,5}. These are given by maps of complexes as follows

0 — P (az,07) PseP; — 0
!
0 — Q — 0

19



where @) could be either Py, P>, P3, Ps or direct sums of these and

0 — R — 0
!
0 — P, % pap - 0

where R can be P, since Hom(P;, Py) =0 for j = 1,3 and j = 6.

In the first case, there exist non-zero homomorphisms of complexes. But they are all homotopic to zero
since every homomorphism from P, to Py, P>, P3 or Py starts with a scalar multiple of a3 or a7. Thus,
every homomorphism Py — @ can be factored through the map (as,ar) : Py — P3 @ Ps. In the second
case, the only homomorphism of complexes To — Ty[1] is the zero map since ayay # 0.

It follows that Homps p as) (T, T[7]) = 0 in the homotopy category and that T is another tilting complex
for As.
By Rickard’s theorem, E := Endps(p,,)(T) is derived equivalent to As. And thus AP = Ay is

derived equivalent to E°P. We claim that F is isomorphic to Ai4.
Using the alternating sum formula of the Proposition by Happel we can compute the Cartan matrix of

11 1 1 0 1
01 1 1 0 1
FE to be 8 8 } ? 2 2 which coincides with the Cartan matrix of Aq4.
01 1 1 1 1
01 0 0 1 1

Now we define homomorphisms of complexes between the summands of 7" which correspond to the arrows
of the quiver of Ay4 (in the other direction).

70y
id B

(6% a5 (6%
1 g Ty 3

First we have the embeddings id : T» — T5, « := (id,0) : T3 — Ty and 3 := (0,id) : Tg — Ty (in degree
zero). Moreover, we have the homomorphisms asag : Ty — To and aray : Ts — Tg. Finally, we also have
the homomorphism «; as before. Note that the homomorphisms correspond to the reversed arrows.
Now we have to show that these homomorphisms satisfy the defining relations of Ai4, up to homotopy.
Clearly, the homomorphisms azasasas and (0, asagaray) in the 4—cycle are zero since they were zero
in Az. The concatenation of 3, azay and id yields to a zero-relation since the homomorphism (0, azay)
is homotopic to zero. In the same way the concatenation of id, asag and 3 yields to a zero-relation.
Thus, we defined homomorphisms between the summands of T' corresponding to the reversed arrows of
the quiver of A14. From this we can conclude that £ = A4 and thus, A3 and A4 are derived equivalent.
Since Ayy4 is its own opposite algebra, Ay4 is also derived equivalent to A3” = Aqo. Hence, we get derived
equivalences between As, Ajg, A14 and Agp.

3.2.3 Aj is derived equivalent to Ay
The third bounded complex for Ag is given by T' = @?:1 T, withT; : 0 —- P, — 0, i € {1,3,4,5,6} (in

(a1,04)

degree zero) and T5 : 0 — P, ==~ P; & Py — 0 in degrees —1 and 0.
For showing that T is a tilting complex, we begin with possible maps To — T5[1] and Tz — To[—1],

0 - P e pap, 0
L
0 - p, “2% pap 0
Lo
0 N (o) pap, 0
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Here ¢ € Hom(P», P @ Py) and (aq,0), (0,04) is a basis of this two-dimensional space.

But then 1 is homotopic to zero (as we can easily see). In the second case (0, aza3) = (0, asasar) is
a basis of the space of homomorphisms between P; & P, and P,. Hence, ¢ is not a homomorphism of
complexes since ajasag = ayasagar # 0.

Now let ¢ = —1 and consider possible maps T> — T;[—1], j # 2. These are given by maps of complexes
as follows
0 — P (a1_7a>4) PPeP, — 0
l
0 — Q — 0

where @Q could be either Py, Py, Ps or direct sums of these.

Note that there are no non-zero homomorphisms P, — P3 and P, — P5 since these are zero-relations in
the quiver of As.

There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every homo-
morphism from P, to Py, P, or Py starts with a scalar multiple of a; or ay. Thus, every homomorphism
P, — @ can be factored through the map (a1, 4) : P, — P; @ Py.

Hence, Hom(T, T;[—1]) = 0 for j € {1,3,4,5,6} and thus Hom(7T, T[—1]) = 0.

Finally, let ¢ = 1. We have to consider maps T — T5[1] for j # 2. These are given as follows
0 — Q — 0

|
(a1,a4)
0 — P2 — P1®P4 — 0

where @) can be either Ps, Py, Ps, Ps or direct sums of these since Hom(P;, Py) = 0.
But no non-zero map can be zero when composed with both a; and a4 since the paths asa; and asaq
are not zero. So the only homomorphism of complexes T — T5[1], j # 2, is the zero map.

It follows that Homps(p, (T, T[i]) = 0 in the homotopy category.
Hence, T is indeed a tilting complex for As.

By Rickard’s theorem, E := Endps(p,,)(T) is derived equivalent to As. And thus AP = Ay is
derived equivalent to E°P. We want to show that E is isomorphic to A4 and use the alternating sum

formula of Happel’s Proposition for computing the Cartan matrix of E. This Cartan matrix is given as
1 1

follows and it coincides with this one of Ay4.

QOO O R
OO
O = O

HEROOOR

o0 cocoro
Dj»—-»—-»—-»—A»—AH

Then the quiver of E is of the following form

3 2

a1 Qg

a1 (8]
1 s % 6

where a := (id,0) : T1 — T» and § := (0,id) : Ty — T» are the embeddings, v : To — T} is defined
by the map (0,apa7) : PL & Py — P5 and d : To — T3 is defined by (0,a3) : Pr & Py, — P3 (in degree
0). These are a homomorphisms of complexes since agaras = 0 and agsay = 0 in Az. Moreover, we
have the homomorphisms ajaq : T5 — 11, ajas : 15 — 11 and agas @ Ts — T4. Finally, we also have
homomorphisms ag and a7 as before. Note that the homomorphisms correspond to the reversed arrows.
Now we have to check the relations, up to homotopy. Clearly, the homomorphisms ayasag, aragas and
(0, ayaxs g vy) are zero since they were zero in As. As we can see, the two paths from vertex 5 to vertex 4
are the same, i.e., we here have the right commutativity relation. There are also two other commutativity
relations left. First (0, v1asas) = (0, arasasar) between vertex 1 and 2 is one of them since these are
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the same paths in Az. Secondly, the two paths from vertex 2 to vertex 5 are the same since (ajas,0) is
homotopic to (0, asas). It is easy to see that the concatenation of v and « and the concatenation of &
and « are zero-relations. Finally, the path from vertex 2 to vertex 3 is zero since (ajae,0) is homotopic
to zero.

Thus, we can conclude that F = A, and thus, A3 and A4 are derived equivalent. Since Ay = AP, Ay is
also derived equivalent to A3® = Ajo. Hence, we get derived equivalences between As, A4, A1g, A14 and

Ago.
3.2.4 Aj is derived equivalent to Ag

First consider Ag with the following quiver

a9 (0%

Qg
6 5)
Let T = @?:1 T; be the following bounded complex of projective Ag-modules, where T; : 0 — P; —
0, i € {1,2,3,4,6}, are complexes concentrated in degree zero. Moreover, let T5 : 0 — P5 =% Py — 0 in
degrees —1 and 0.
For showing that T is a tilting complex we begin with possible maps T5 — T5[1] and T5 — T5[—1],

as

0—>P5 —>P4—>0

las
0 - B = p - 0
10

0 —- P = P — 0
Here a5 is a basis of the space of homomorphisms between Ps and Pj.

Then a5 is homotopic to zero (as we can easily see). In the second case there is no non-zero homomorphism
P4 — P5.

Now let ¢ = —1 and consider possible maps T5 — T;[—1], j # 5. These are given by maps of complexes

as follows
0 - P = P — 0

!
0 - Q@ — 0

where @) could be either P3, Py or direct sums of these.

Note that there are no non-zero homomorphisms P; — P;, Ps — P, and P; — P since these are zero-
relations in the quiver of Ag.

There exist non-zero homomorphisms of complexes between Ps and P3 or P;. But they are all homotopic
to zero since every homomorphism starts with a scalar multiple of as. Thus, every homomorphism
P5 — @ can be factored through the map a5 : Ps — Pj.

We see that Hom (T, T;[—1]) = 0 for j € {1,2,3,4,6} and thus we have shown that

Hom(7T,T[-1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — T5[1] for j # 5. These are given as follows

0 — P — 0
1 a6
0 — Ps i P, — 0
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since Hom(P;, Ps) =0 for j =1,2,3 and j = 4.
But the composition asag # 0. So the only homomorphism of complexes T; — T5[1], j # 5, is the zero
map.

It follows that Hompsp A6)(T,T[i]) = 0 in the homotopy category and that T is indeed a tilting
complex for Ag.

By Rickard’s theorem, E := Endps(p, )(T) is derived equivalent to Ag. And thus Ag® is derived
equivalent to E°P. We want to show that F is isomorphic to As.

Using the alternating sum formula of the Proposition by Happel we can compute the Cartan matrix of
1

FE to be which coincides with the Cartan matrix of As.

[eNeNoNeNal
OO
QOO ==
= e =
HHROOR R
— OO

1
Now we have to define homomorphisms of complexes between the summands of T" which correspond to

the reversed arrows of the quiver of As.

a2 0%}

aq
Qas id

—_

[0
6 T 5

First we have the embedding id : Ty — T5 (in degree zero). Moreover, we have the homomorphisms
a1, a9, a3, 04,7 and ag as before. Since all the relations are the same as in Ag we have shown that
they satisfy the defining relations of As. From this we can conclude that ' = Az and thus, As and
Ag are derived equivalent. Since Ag’ is sink/source-equivalent to Asq, Ag; is also derived equivalent to
AP = Aqp. Hence, we get derived equivalences between As, A4, Ag, Ao, A14, Ao and Ao;.

3.2.5 A4 is derived equivalent to Ag

Now consider Ajg with the following quiver

6
[0%4 (67
3 4
a3
(6% g4
« «
12 5

Let T = @le T; be the following bounded complex of projective Ajg-modules, where T; : 0 — P; —
0, i € {1,2,3,4,6}, are complexes concentrated in degree zero and T : 0 — P 24, P, — 0 is a complex
concentrated in degrees —1 and 0.
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Now we want to show that T is a tilting complex and we begin with possible maps T5 — T5[1] and
Ts — Ts[-1],
0 — P o4, Pr — 0

Loy
0 — P5 &) P4 — 0
10

0 — P &P4—>0

Here a4 is a basis of the space of homomorphisms between P; and Pj.
The homomorphism a4 is homotopic to zero and in the second case there is no non-zero homomorphism
P, — P5 (as we can see in the Cartan matrix of Aig).

Now let ¢ = —1 and consider possible maps T5 — T;[—1], j # 5. These are given by maps of complexes

as follows
0 — P 2% P — 0

!
0 - Q@ — 0

where @) could be either P3, Py or direct sums of these.

Note that there are no non-zero homomorphisms P; — P;, Ps — P and Ps — P4 since these are zero-
relations in the quiver of Ajg.

There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every
homomorphism from P; to Ps; or P, starts with a scalar multiple of ay. Thus, every homomorphism
P5 — @ can be factored through the map ay : Ps — Pj.

Hence, Hom(T,T;[—1]) = 0 for j € {1,2,3,4,6} and thus we have shown that Hom(T, T[-1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — T5[1] for j # 5. These are given as follows

0 - Q@ — 0
!

0 - P = P — 0

where @) can be either P, P3 or direct sums of these since Hom(P;, Ps) =0 for j = 1,4 and j = 6.
But no non-zero map can be zero when composed with ay4 since the path asasay = arag # 0. So the
only homomorphism of complexes T; — T5[1], j # 5, is the zero map.

It follows that Hompe(p, (T, T[i]) = 0 and that 7' is indeed a tilting complex for Ase.

By Rickard’s theorem, E := Endps(p, (T is derived equivalent to Ais. And thus A7g is derived
equivalent to E°P. Since we want to show that E is isomorphic to Ag, we use the alternating sum formula
11

of Happel’s Proposition and compute the Cartan matrix of E to be

[eNeNoNeNeiy
OO OF
= O
O =
O OO+
=R OOO

Considering the different labeling of the vertices, this is the Cartan matrix of Ag.
Then the quiver of E is of the following form
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where we have the embedding id : Ty — T5 (in degree zero). Moreover, we have the homomorphisms
agag : Ts — To and aygas @ To — T4. Finally, we also have homomorphisms o, as, as, ag and a7 as
before. Note that the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms aras, asag,

aszagas and agasaoas are zero since they were zero in Ajg. As we can see, the two paths from vertex
2 to vertex 4 are the same, i.e., we here have the right commutativity relation. There is also another
commutativity relation agar = aqasas between vertex 4 and 3 since these are the same paths in Asg.
The path from vertex 5 to vertex 2 is the last zero-relation since the homomorphism a4as is homotopic
to zero.

Thus, we defined homomorphisms between the summands of T' corresponding to the reversed arrows of
the quiver of Ag. From this we can conclude that F = Ag and thus, Ag and A;¢ are derived equivalent.
Since A% is sink/source-equivalent to Ajg, Aig is also derived equivalent to AP {5, Aar.

Hence, we get derived equivalences between all cluster-tilted algebras with determinant 3.

3.3 Derived equivalences for polynomial 2(z° — z* 4 223 — 2? + 1)
3.3.1 Ay is derived equivalent to As

Let A% be the following cluster-tilted algebra which is sink/source equivalent to A7 (at the vertex 6).

6 5
Oy
g o
o———Ppo P&
8] (8] (8]
1 2 73 ’ 4

Let T = @?:1 T; be the following bounded complex of projective AZ-modules.

LetT; : 0 — P, — 0, i € {1,2,4,5,6}, be complexes concentrated in degree zero and T3 : 0 — P (@2,2526)
P, ® Ps ® Ps — 0 in degrees —1 and 0.

Now we want to show that T is a tilting complex and we begin with possible maps T5 — T3[1] and
T3 — T3[—].],

0 R (20900 pap@P — 0
1y
0 — P (@2, 05,06 Py® Psd Ps - 0
10
0 — Py (@2, 05,006) PePsadP — 0

where ¢» € Hom(Ps, Py ® Ps @ Pg) and («2,0,0), (0,as5,0), (0,0,a6) is a basis of this three-dimensional
space of homomorphisms.

Then homomorphism v is homotopic to zero and in the second case there is no non-zero homomorphism
Py ® Ps ® Ps — Ps.

Now let ¢ = —1 and consider possible maps T3 — T;[—1], j # 3. These maps are given by a map of
complexes as follows
0 — Py (a2,05,06) PodPsdPs — 0
!
0 — Q — 0

where @ could be either Py, P, Ps, Ps or direct sums of these.

Note that there is no non-zero homomorphism P3 — Py since this is a zero-relation in the quiver of A;.
There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every homo-
morphism from P3 to Py, P», Ps or Py starts with as, as or ag, up to scalars. Thus, every homomorphism
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P3; — @ can be factored through the map (as, as,a6) : P3 — Po @ Ps @ F.
Directly from the definition we see that Hom(7', T;[—1]) = 0 for j € {1,2,4,5,6} and thus we have shown
that Hom(7, T[—1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — T3[1] for j # 3. But these are given as follows

0 — Py — 0
las
(az,a5,006)
0 — P3 I PQ@P5@P6 — 0

since Hom(P;, P3) =0 for j =1,2,5 and j = 6.
But the concatenation of (aq,as,as) and ag is not zero since asag # 0 and agas # 0. So the only
homomorphism of complexes T; — T3[1], j # 3, is the zero map.

It follows that Homp, P, )(T,T[i]) = 0 in the homotopy category and that T is indeed a tilting
7

complex for A%.

By Rickard’s theorem, E := Endps(p,,)(T) is derived equivalent to A7. We want to show that E
7

is isomorphic to the algebra A’ obtained from As by sink/source equivalences at the vertices 1 and 4.
Using the alternating sum formula of the Proposition by Happel we can compute the Cartan matrix of

1 1.0 1 0 0
001 0 1 0 0

E to be 8 (1) } } } (1J which coincides with the Cartan matrix of A% (up to permutation).
000 0 0 1 0
00 0 1 0 1

Now we define homomorphisms of complexes between the summands of T" which correspond to the
reversed arrows of the quiver of Aj.

5 b 3 2 1

First we have the embeddings « := (id, 0,0) : T — T3, 8 := (0,id,0) : T5 — T3 and v := (0,0,id) : Ts —
T5 (in degree zero). Then we define 6 : T5 — Ty by the map (0,a4,0) : P ® Ps & Ps — Py in degree
0. This is a homomorphism of complexes since agas = 0 in A7. Moreover, we have the homomorphisms
asas Ty — T5 and agas : Ty — Tg. Finally, we also have the homomorphism «a; as before. Note that
the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms (0, agasay,0) and
(0, avcxguy, 0) are zero since they were zero in A7. As we can see, the paths from vertex 4 to vertex 2 and
to vertex 6 are zero. There is one commutativity relation left. The two paths from vertex 3 to vertex 4
are the same since (0,0, agag) is homotopic to (agas, 0,0).

From this we can conclude that E = A} and thus, A7 and Ay are derived equivalent.

3.3.2 A, is derived equivalent to Ao

Now we consider A, with the following quiver

6 )

Qg Qg
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Let T = @le T; be the complex with T; : 0 — P; — 0, i € {1,3,4,5,6}, concentrated in degree zero
and 15 : 0 — Py (al—’a>5) P, & Ps — 0 in degrees —1 and 0.
To show that T is a tilting complex we begin with possible maps Ty — T3[1] and To — To[—1]

(1,a5)
—

0 — Py PPoP, — 0
L
0 - P ‘% paepr - 0
Lo
0 — P (o) pap, - 0

Here ¢ € Hom(P», P @ P5) and (aq,0), (0,a5) is a basis of this two-dimensional space.

But then ¢ is homotopic to zero (as we can easily see). In the second case (0, agar) = (0, aarq) is a basis
of the space of homomorphisms between P; & Ps and P». Hence, ¢ is not a homomorphism of complexes
since ajagay = ajasay # 0.

Now let ¢ = —1 and consider possible maps To — T;[—1], j # 2. These are given by maps of complexes
as follows
0 - B %) pap — 0
|
0 — Q — 0

where @) could be either P;, Ps or direct sums of these.

Note that there are no non-zero homomorphisms P, — P53, P, — P4 and P, — P4 since these are zero-
relations in the quiver of A,.

There exist non-zero homomorphisms of complexes. But they are all homotopic to zero since every
homomorphism from P, to P, or Ps starts with a scalar multiple of ai; or a5. Thus, every homomorphism
P, — @ can be factored through the map (a1, a5) : Po — P1 @ Ps.

Hence, Hom(7,T;[—1]) = 0 for j € {1,3,4,5,6} and thus Hom(T, T'[-1]) = 0.

Finally, let ¢ = 1. We have to consider maps T; — T5[1] for j # 2. These are given as follows

0 — @ — 0
!
0 - p, 2% papr - 0

where @ can be either P3, Py, Ps, Ps or direct sums of these since Hom(P;, Py) = 0.
But no non-zero map can be zero when composed with both a7 and as since the paths asa; and agay
are not zero. So the only homomorphism of complexes T; — T5[1], j # 2, is the zero map.

It follows that Home(pA2)(T, T[i]) = 0 in the homotopy category.
Hence, T is a tilting complex for As.

By Rickard’s theorem, E := Endps(p, ) () is derived equivalent to A>. We show that E is isomorphic

to A}, the algebra obtained from A; via sink/source equivalence (at the vertex 6). Using the alternating
1 1 1 1 1 1

11 0 0 0
sum formula of Happel’s Proposition we compute the Cartan matrix of F to be 8 (1) (1) i é 8
00 0 0 1 0
01 0 0 1 1

which coincides with the Cartan matrix of A}, (up to permutation).
Now we have to define homomorphisms of complexes between the summands of T" which correspond
to the arrows of the quiver of A{, (in the other direction).

10

Qg o (0, 7)

«OZ
g 3 aa) B
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First we have the embeddings o := (id,0) : T, — T and 5 := (0,id) : T — T5 (in degree zero). Moreover,
we have the homomorphisms ayag : Ts — Ty, arag : T — 11, (0,a4) : To — T3 and (0, a7) : To — Tg.
Finally, we also have the homomorphism a3 as before. Note that the homomorphisms correspond to the
reversed arrows.

Now we have to show that these homomorphisms satisfy the defining relations of A’,, up to homotopy.
Clearly, the concatenation of (0, a4) and « and the concatenation of (0, a7) and « are zero-relations. It
is easy to see, that the two paths from vertex 1 to vertex 2 are the same since ajagar = ajasay. The
two paths from vertex 2 to vertex 3 and from vertex 2 to vertex 6 are zero since (a1a2,0) and (a1a6,0)
are homotopic to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows of
the quiver of A,. From this we can conclude that E = A}, and thus, As and A;s are derived equivalent.

Hence, we get derived equivalences between Ao, A7 and Ajs.

A Cluster-tilted algebras of type E7

First we list all quivers of the cluster-tilted algebras of type E7. Algebras with the same polynomial
associated with their Cartan matrix are grouped in one table.

Note that a tuple (a,b) stands for an arrow a — b and that the numbering of the algebras in the
tables results from the numbering of the whole list.

m7—m6+m4—m3+m—1

algebra KQ/T | quiver Q
Al [ (1,2),(2,3),(3,4).(4,5),(4,7).(5.6)
2(x” — a® + 22* — 22% + 2% — 1)
algebra KQ/I quiver Q
As (1,2),(2,3),(3,4),(4,5),(4,7),(56), (6,4
Az (1,2),(2,3),(3,4),(4,5),(4,7), (5,3), (5, 6), (6, 4)
Aszo (1,2),(2,3),(3,4),(4,5),(5,3),(5,6),(5,7), (6,4)
2" —a® + a2t —x® + 22— 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Az (2,1),(3,2),(3,4), Ay (2,1),(3,2),(3,4),
(5,3),(5,6),(6,7),(7,5) (3,5),(5,6),(6,3), (7,6)
As (2,1), (3,2),(3,4), A1z (2,1),(2,3),(3,4), (4,2),
(3,7),(4,5),(5,3),(6,4) 4,5),(5,3),(6,4),(7,6)
Ais (1,2),(2,5),(3,2),(3,6), Ass (1,2),(2,3),(3,5),(4,3),
(4,2),(5,3),(5,4),(7,5) (5,4), (5,6),(6,3), (6,7
2(z” — 22° 4 42* — 42® 4 2227 — 1)
algebra KQ/T | quiver Q
Ais [ (1,2),(2,3),(3,4),(4,5),(5,3).(5,6),(6,4), (6, 7)
3(z” —1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ag (1,2),(2,3),(3,4), A7 (1,2),(2,3),(3,4),
(4,5),(4,7),(5,6), (6,3) (4,5), (5,6), (6,3), (6, 7)
As (1,2),(2,3),(3,4), Air (1,2),(2,3),(3,4),(3,7)
(3,7),(4,5),(5,2),(6,4) 4,5),(5,6),(6,3), (7,6)
A (1,2),(2,3),(3,4), (4,5), Ay (1,2),(2,3),(3,4),(3,7),
(5,6),(6,3),(6,7),(7,5) 4,2),(4,5),(5,6), (6,3)
Az (1,2),(2,3),(3,4),(4,5), Az (1,2),(2,3),(3,4),(4,5),
(5,6),(5,7),(6,3),(7.4) 4,7),(5,3),(6,4),(7,2)
Aar (1,2),(2,3),(3,4), (4,2), Ass (1,2),(2,4),(3,2),(4,3),
(4,5),(5,6),(6,3),(6,7) 4,6),(5,2),(6,5), (7,6)
Asg (2,1),(2,3),(3,4), (4,5) Ase (1,2),(2,3),(3,4), (4,5),
(5,2),(5,6),(6,4), (7,6) 4,7),(5,6),(6,3),(7,3)
As7 (2,1),(2,3),(3,4),(3,5), Aso (1,2),(2,3),(3,4), (4,2),
4,2),(5,6),(6,2),(7,3) (4,5),(4,7),(5,6), (6,3)
Aaa (1,2),(2,3),(3,4),(3,7), Aar (2,1),(2,3),(3,4),(3,5)
4,5),(5,3),(5,6),(6,7), (7,5) 4,2),(5,2),(5,6),(6,3), (7,4)
As1 (2,1),(2,3),(2,5), (3,4), As2 1,2),(2,3), (3,4), (3,6)
(4,2),(5,4),(5,6), (6,2), (7, 6) (4,5),(5,3),(6,5),(6,7),(7,3)
Asg (1,2),(2,3),(3,4), (4,2), Ase (1,2),(2,3),(3,5), (4,3),
(4,5),(5,3),(5,6),(5,7),(6,4) (5,4), (5,6),(6,3),(6,7), (7, 5)
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algebra KQ/I quiver Q algebra KQ/I quiver Q

Asg (2,1),(2,3),(3,4),(3,5), Aso (1,2),(2,3),(2,7),(3,1),
(4,2), (5.2), (5,6), (6, 3), (6,7) (3,4), (4,5), (5,2), (5,6), (6,4)

Age 1,2),(2,3), (3,4), (4, 2), A7 1,2),(2,3),(2,6), (3,4),
(47 5)7 (47 7) (57 3) (5 6)v (6v 4) (47 2)7 (47 5)7 (57 S)v (6v 4)v (7v 4)

Aro (2,1),(2,3),(2,6),(3,4) Ars (2,1),(2,3),(2,7),(3,4),
(37 7) (47 2)7 (47 5)7 (57 6)v (6v 4) (47 5)7 (47 6)7 (57 S)v (6v 2)v (7v 6)

Azs (1,2),(2,3),(2,5),(3,4), Asg (1,2),(2,3),(2,7),(3,4),(3,6),
(47 2)7 (57 4)7 (57 6)7 (67 2)v (7v 4) (47 5)7 (57 3)7 (67 2)v (6v 5)v (7v 6)

p. (1,2),(2,3), (3,4), (3,5), (4,6) Aso 1,2),(2,3), (3,4), (4,2), (4,5),
(5,2),(5,6),(6,3),(6,7),(7,4) (5,3),(5,6),(6,4),(6,7),(7,5)

o7 .2),(2,9),3,2), (3,0, %2,
(5.3), (5,4), (6,5), (6, 7), (7,3)

4(2” 4 x® — 2® 4 2

— 2422 —x—1)

algebra KQ/I

quiver Q

algebra KQ/I

quiver Q

(4,2),(5,2),(5,6),(6,7),(7,5)

A1s 2,1),(2,3), (3,4), (4,2), A 2, 1),(2,3), (2,5), (3,4),
(57 2)7 (57 6)7 (67 7) (7 5) (47 2)7 (57 6)v (6v 2)v (7v 6)
Asz (1,2),(2,3), (3,4, (4,2), As; (2,1),(2,3), (2,5), (3,4),
(47 5)7 (47 7) (57 6)7 (67 4) (47 2)7 (57 6)v (6v 7)v (7v 5)
A (2,1),(2,3), (3,4, (3,5), As7 (2,1),(2,3), (2,5), (3,4),

(4,2),(5,4),(5,6),(6,7),(7,5)

4(2” 4 2® — 2® — 2

+a® 42 —ax—1)

algebra KQ/I

quiver @

algebra KQ/I

quiver Q

Ags

(17 2)7 (27 3)7 (37 4)7 (4~, 2)~,
(47 5)7 (47 6)7 (57 3)7 (67 7)7 (7v 4)

Aso

(27 1)v (2v 3)v (3v 4)v (3~, 6)~,
(47 2)7 (47 5)7 (5v 3)v (6v 7)v (7v 3)

4(x”

+ 2® — 225 + 22? — 22% £ 222 — 2 — 1)

algebra KQ/I

quiver @Q

Ass [ 2,1),(2,3),(3,4),4,2),4,5),(5,3),(5,6), (6,7, (7,5
4" +2® —x* + 2% — 22 — 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ag (1,2),(2,3),(3,4), A1o (1,2),(2,3),(3,4),
(4,5),(5,6),(6,7),(7,3) (4,5),(5,6),(6,2),(7,4)
Aso (2,1),(2,4),(3,2), (4,3), Ass (2,1),(2,3),(3,4), (4,5),
(4,5),(5,6),(6,7),(7,2) (5,2),(5,6),(6,7),(7.4)
Aszs (1,2),(2,3),(3,4), (4,5), Aso (2,1),(2,3),(3,4), (4,5),
4,6),(5,2),(6,7),(7,3) (5,6),(5,7),(6,2),(7,4)
Ay (2,1),(2,3),(2,7),(3,4), Aus (1,2),(2,3),(2,7), (3,4),
(47 5)7 (57 6)7 (67 2)7 (7 6) (47 2)7 (47 5)v (5v 6)v (6v 7)v (7v 4)
Ass (2,1),(2,3),(3,4), (3,5), As1 (1,2),(2,3),(3,4), (4,2),
(47 2), (57 6), (57 7), (67 2), (7 3) (47 5), (57 S)v (5, 6)v (6, 7)v (7, 4)
Asg3 (1,2),(2,3),(3,4), (4,5), Aga (1,2),(2,3),(3,4), (4,5),
(4,6), (5,2), (6,3), (6,7), (7,4) 4,7),(5,2), (5,6), (6,4), (7, 6)
Aos 1,2),(2,3),(2,6), (2,7), Aoo 1,2),(2,3), (3,4), (3,6),
(3,1),(3,4), (4,5), (5,2),(6,5) 4, 2) (4,5),(5,3),(6,7),(7,5)
Ao (1, 2), (2,3), (3,4), (3, 7), Az 2,1), (2,3), (2,4), (3,6),
(47 5)7 (47 6)7 (57 2)7 (67 3)7 (7 6) (47 5)7 (57 6)v (6v 2)v (6v 7)v (7v 5)
Aqr (1,2),(1,4),(2,6), (3, 2), Arg (1,2),(2,5),(3,2),(3,7),
(4,5),(5,1),(6,5),(6,7),(7,3) (4,3), (5,6),(6.3),(7,4), (7,6)
Aso (1,2),(2,6),(3,2), (3,4), Ass (1,2),(2,3),(2,4),(3,5), (4,5),
(4,5),(5,6),(6,3),(6,7),(7,2) (5,2),(5,6),(6,4),(6,7),(7,5)
Ass (1,2),(2,3),(3,4), (4,2), (4,5), Ag1 (1,2),(2,3),(3,4),(3,6), (4,2)
4,7),(5,3),(5,6),(6,4),(7,6) (4,5),(5,3),(6,5),(6,7), (7,3)
Aga (1,2),(2,5),(3,2),(3,7),(4,3), Agg (2,1),(2,5),(3,2),(3,4), (4,5),
(5,1),(5,6),(6,3),(7,4), (7, 6) (5,3),(5,6),(5,7),(6,4), (7,2)
Atoo (1,5),(2,1),(2,6), (3,2), (3,4), A1o01 (1,2),(2,3),(2,5), (3,6), (4, 1),
4,7),(5,2),(6,5),(6,7),(7,3) (5,4),(5,6),(6,2),(6,7), (7,3)
Aio3 (1,2),(2,6),(3,2), (3,7), (4,3), Aio9 (1,2),(1,4),(2,3),(2,5), (3,6),
(5,1),(6,3),(6,5),(7,4),(7,6) (4,5),(5,1),(5,6),(6,2),(6,7), (7, 3)
Ai1o (1,4),(2,1),(2,3),(2,5), (3,6), Ai1 (1,2),(2,3),(2,4),(3,5), (4, 1),
4,2),(5,4),(5,6),(6,2),(6,7), (7, 3) 4,5), (5,2), (5,6),(6,3),(6,7), (7, 5)
4(x” + 2® — 22? + 22 — 2% — 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ass (2,1),(2,3),(3,4), (4,5), Aq (2,1),(2,3),(3,4), (4,5),
4,7),(5,6),(6,2), (7,3) (5,6),(6,2),(6,7),(7,5)
A7y (2,1),(2,3),(3,4),(4,5), Ags (1,6),(2,1),(3,2),(3,7), (4,3),
(4,6),(5,3),(6,2),(6,7),(7,4) (5,1),(6,3),(6,5),(7,4), (7,6)
Ags (1,2),(2,3),(2,5),(3,7), (4,3),
(5,1),(5,6),(6,7),(7,2),(7.4)
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5(x” 4+ % —z? 4 2% — 2% —1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
A1 (2,1),(2,3),(3,4), Agz (1,2),(2,3),(3,4), (4, 1)
(4,5),(5,6),(6,7),(7,2) (4,5), (5,6),(6,7),(7,3)
Ags (1,2),(1,7),(2,3), (3, 1), Arg (1,2),(2,3),(3,4), (4,1)
(3,4),(4,5),(5,6),(6,7),(7,3) (4,5),(5,6),(5,7),(6,3),(7,4)
As1 (1,2),(2,3),(3,4),(3,7), Asz (1,2),(2,3),(3,4), (3,7),
(4,1),(4,5),(5,3),(6,5), (7, 6) (4,1), (4,5),(5,6), (6,3), (7,6)
Ags (1,2),(2,3),(3,4),(3,7), Ago (1,2),(2,5),(3,2),(3,6), (4,1),
(4,5),(4,6),(5,1),(6,3),(7,6) (4,7),(5,3),(5,4),(6,5),(7,5)
Aga (2,1),(2,3),(2,6),(3,4), (4,2), Aro2 (1,5),(2,1),(2,3),(3,6), (4,3),
(4,5),(5,6),(6,4),(6,7), (7,2) (4,7),(5,6),(6,2), (6,4), (7,6)
Atos (1,3),(2,1),(2,4),(2,7),(3,2) Aio6 (1,2),(2,3),(3,1),(3,4),(3,5),
(4,5), (5,2),(6,5), (7,3), (7, 6) (4,7),(5,2),(5,6), (6,3), (7,6)
Aro7 (1,3),(2,1),(2,6),(3,2),(3,7) Aios (1,7),(2,1),(2,3),(2,6),(3,4),
(4,3),(5,2),(6,3),(6,5), (7,4), (7,6) (4,2),(4,5),(5,6),(6,4),(6,7),(7,2)
Ar12 (1,2),(1,6),(2,3),(3,1), (3, 4),
(3,5),(4,2),(5,6),(5,7),(6,3), (7, 3)
6(x" +a® —2? 42> —ax—1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Azg (2,1),(2,3),(3,4),(4,5), Asz (2,1),(2,3),(3,4),(3,6),
(5,2),(5,6),(6,7), (7,5) (4,5),(5,2),(6,7),(7,3)
Aug (1,2),(2,3),(3,1),(3,4), Ass (1,2),(2,3),(3,1),(3,4),
(3,6),(4,5),(5,2),(6,7),(7,3) (4,5),(5,6),(6,3),(6,7),(7,5)
Agz (1,2),(2,3),(3,1),(3,4), Azs (1,2),(2,3),(2,4),(3,1),
(4,5),(5,6),(5,7),(6,3), (7,4) (4,5),(4,6),(5,2),(6,7),(7,2)
Asga (1,2),(2,3),(3,1),(3,4), (3,6), Ags (1,5),(2,1),(2,3),(3,5), (4,1),
4,5),(5,3),(5,7),(6,5), (7,6) (5,2),(5,4),(5,7),(6,5), (7, 6)
Ags (1,2),(2,3),(3,1),(3,4), (4,5),
(4,6),(5,3),(6,3),(6,7),(7.4)
6(x” +a® — 22 —1)
algebra KQ/T | quiver Q
A1o4 [ (1,2),(2,3),(2,5),(3,6),(4,1),(5,4), (5,6),(6,2),(6,7), (7, 5)

8" 4+ a® +a® — 2?42 22 —ax—1)
algebra KQ/T | quiver Q
Azs [ (1,2),(2,3),(3,1),(3,4),(45),(56),(6,7),(7,3)

B Derived equivalences for cluster-tilted algebras of type FE7

First we list the opposite algebra for each cluster-tilted algebra. By a result of Rickard [I8, Prop.9.1], if
A is derived equivalent to B, also A°P is derived equivalent to B°P.

After this, we list the cluster-tilted algebra, the corresponding tilting complex, the derived equivalent
cluster-tilted algebra with permutation of the vertices (up to sink/source equivalence) and the resulting
equivalence for the opposite algebras (if necessary).

The tilting complexes are of the following form: If we have a tilting complex T' = 691‘7:1 T; with
T,:0—> P, — 0, i € {1,3,4,5,6,7} (in degree zero) and 75 : 0 — P, — P; & P5; — 0 in degrees —1 and
0 we write (2;1,5) for T, and know that the other summands are just the stalk complexes.

We write the permutation as a product of disjoint cycles. If we have a permutation (135)(67) the
labeling of the vertices changes as follows:
1—-3,3—5,56—1,6—7,7— 6 and the labeling of the other vertices is left unchanged.

B.1 Polynomial 2(z7 — 2° + 22* — 223 + 22 — 1)
AP s Ag, ATY s Axo

[ Ais(x)  (43,6,7) qor As (567) = Ao qor 42 |

(%) the direction of some arrow(s) is changed in a sink or source
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B.2 Polynomial 2(z" — 2° + 2% — 2% + 22 — 1)
3 s/s AB; 4 s/s A5; Aoz s/s A25; ATE s7s A16

Ae (21,3,4) d&e A (156)(23) = Aie der 45
Ags  (3;2,4,6) g As  (16247) = A1 dor As
As (4;3,6)  dor A3 (457) = A4 dor A3

B.3 Polynomial 3(z" — 1)

op ~ op ~ op ~ op ~ op ~ op _ op ~

6 5/5 A7, 8 5/5 Ag, A17 s/s Agﬁ, A19 s/s Agg, A21 s/s Agg, A26 s/s Agg, A27 s/s AQQ, A37 = A37, A44 s/s
2 ol o oL S o L A

Ase, Ay sJs Az, ASY s)s Aes, Ao os Asa, Agy sjs Asg, Ay s)s Ars, Agh os Ars, Agg s)s Aoz, Agh s Ase

A6 (3, 2, 6) d;r A51 (17) (264) (35) = A7 dzr A66
Ag(*) (4;3,7) der  Ase (46) = A7 dor Aua
Ag (3;2,6),(5:4)  dor Am (34)(56) = A7 gor A3o
Ag (4;3,6) dor  Aar (17)(2354) = Ag o A
Ag (2; 1, 5) d;r A66 (16)(2435) = Ag dzr A51
As () (3;2,7) dee A7 (167)(24)(35) = As dor Ae7
As(x)  (3:2,7),(54)  der Ass (162437) = Ag dor A26
Az (3;2,6) der  Ase (3456) = A36 der Aor
Az (4;3) der  As2 (47)(56) = Ase der As2
Agg (3;2,6) dor  Agr (345) = A23 dor Aso
A9 (3;2,6),(5:4,7)  dor Aoz (34)(56) = A23 dor A2o
Aoz (655) der  Aag (467) = Ai9 der As6
A3 (6;5),(7;5) der  Arr (576) = A9 der Ase
Aag (5:4),(7;4) der  As7 (1653247) = Ao der Asr
Asg (2;1,4),(5:4)  dor Aeo (152436) = Aol dor A3
Asy (2;1,4) dor  Ars (176425) = As9 der 460

(%) the direction of some arrow(s) is changed in a sink or source

B.4 Polynomial 4(z" +2° — 2% + 2t — 23 + 2> — 2 — 1)
14 s/s A317 15 s/s A22; Aig s7s A57

Az (6:5,7)  qor Az (1735)(246)
Az (5:2,7)  der  Ais (56) = A4 dor A2
Ag(¥)  (2,1,4,5) qor  Am (134) = As7 dor A14

(*) the direction of some arrow(s) is changed in a sink or source

B.5 Polynomial 4(z" +2° —2° — 2 + 2% + 22 — 2 — 1)
ALs = Aso

[ A0 (3:2,5,7) dor Ass (3476) |

B.6 Polynomial 4(z7 4+ 2° — 2* + 23 — 2% — 1)

AO 5/5 AQ; A10 s/s AlO; Ago 575 A43; A33 - A34; A40 575 A4O; A48 575 A807 A58 575 A767 AZIf s7s A69a
Aog s/s Aea, Agh sJs Ass, A%l s)s Ars, A7b = Arr, AE = Agg, Ay sJs Ao1, Agy = Ao, ATh = Aios,
ATbe = A109, ATTo = A1

31



Ay (3;2,7) dor  Aeg
Alo (27 1) 6) d:r A78
Alo (47 3) 7) d:r A63
Ao (2;1,6),(4;3,7)  dor Ain
Aso () (2;1,3,7) dor  Aug
Aso (5;4) dor  Ass
Ass(*) (2;1,5) der  A103
A33 (47 3) 7) d:r A88
Azz(x)  (21,5),(43,7)  dor Aioo
Ass (655) dor  Arsg
Ass (4;3,7),(6;5)  dor A6t
Asy (3;2,7) dor  Ago
Asza (5:4) dor  Aug
A40(*) (27 13 6) d:r A92
Ass (652) der  Aso
Arr (2;1,3) dor  At10
Aqo9 (3;2,7) der  Ae3

(34)(576)
(1724)
(456)
(17)(2536)
(13)
(34)(567)
(1724)(56)
(45)(67)
(164)(2573)
(35)(46)
(45)(67)
(475)
(3567)
(1724)
(176543)
(1743526)
(17456)(23)

Ag dor As1

A1o der A70
A10 der A64
Ao dor Ar10
Ag3 dor Ago
As3 dor A7
Azg der Ato1
Aszy
Aszy
Aszg
Aszyq

d:r A91
dor Ag2
der A70
dor As9
A3z dor Ass
A33 dor Aso
Ago der Ato0
Agg dor Aa3
A7z dor A111

A109 der Asa

S R R R O A

(%) the direction of some arrow(s) is changed in a sink or source

B.7 Polynomial 4(z7 + 2° — 2z* + 223 — 22

op ~ op ~ op __
ASg sjs Aar, A7 s)s Ari, Agy = Aogs

_1)

Ass
Agr (%)

5;4

( 3 A71
(21,

A95

~
der

)
6)

~
der

(15724)

(57) =

=

Ay dor At
Asg dor Agg

(%) the direction of some arrow(s) is changed in a sink or source

B.8 Polynomial 5(z7 4+ 2° — 2* + 23 — 2% — 1)

op op __ op __ op __ op __ op __ op
11 s/s All, A42 - A427 A65 - A83a A79 - A82a Asl - A817 Ago - A1057 A94

op  _ op _
A107 - A108; A112 - A112

~ op _
s/s Aoa, Algy = Auoe,

Aga () (2;1,4,7) dor  A106
Aga (3;2),(5;4),(7;6)  dor  An
Ato6 (1;3) der  Asi
Avos (4;3) dor  A112
Aros (554) der  A1os
Anos (1;2), (5;4) dor  As2
Aros  (3;2),(5:4),(7;1,6)  der A
Ag3 (7;3) dor  Au2
Ass (5:4),(7;3) dor  Arg

(175)(23)
(37)(46)
(12)(4567)
(1574)
(37654)
(1732)(46)
(27)(36)(45)
(16)(27)
(16275)

Aoy deor A102

A102 der As1
A102 dor A112
A107 der Ago
A107 der A7
A107 der A11
Ags dor As2
A5 dor As2

S R

(%) the direction of some arrow(s) is changed in a sink or source

B.9 Polynomial 6(z7 4+ 2% —2* + 23 — 2 — 1)
A3Y s Asa, Ay = Ara, AgE = Ae2, Agh = Ags, Agy = Ags

Az (*) (2;1,5) dor Aoz
Aa(*)  (2;1,5),(43) dor Ass
Agy(*) (2;1,5) dor Ao
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(135)(67)
(1726)(35)
(1726)(345)

= Aoy dor Aoz
= A3 dor A62
= A3 dor Asa



| Ay

(2; 175)7 (473) dzr

Ay

(35)

= Az dor A2 |

(%) the direction of some arrow(s) is changed in a sink or source

C Cluster-tilted algebras of type Eg

ms—w7+m5—w4+m3—w+1

algebra KQ/I |

quiver Q

Ay

[ 4,2),(2,3),(4,3),(,4,(6,5),(7,6),(83)

2(x® — x® 4 225 — 22? 4 22 — 22 4 1)

algebra KQ/I quiver Q
Ay (1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,5), (8,5)
Aro (1.2),(2,3),(3,4), (4,5), (5,6), (6,4), (6,7, (6,8), (7,5)
Azs 1,2),(2,3),(3,4).(4,5),(5,6),(5,8),(6,4), (6, 7), (7,5)
Z(ws—m6+m5+w3—m2+l)
algebra KQ/I quiver Q algebra KQ/I quiver Q
As (1,2),(2,3),(3,4), (4,5), Ay (1,2),(2,3),(4,3),(5,3),
(5,3),(6,4),(7,4),(8,7) (5,6),(6,7),(7,5),(8,7)
As (1,2),(2,3),(4,3),(5,3), Ag (1,2),(2,3),(3,5), (4,3),
(6,5),(6,7),(7,8),(8,6) (5,6),(5,8),(6,3), (7,6)
Az (1,2),(2,3),(4,3), (5,3), A1o (1,2),(2,3),(3,5), (4,3),
(5,6),(6,7),(6,8),(7,5) (5,6),(5,7),(6,3),(7,8)
Aas (1,2),(2,3),(4,3), (4,5), Asz1 (1,2),(3,2),(3,4), (3,6),
4,7),(5,6),(6,4),(7,6),(8,7) 4,5),(5,3),(5,8),(6,5), (7,4)
Ass (1,2),(2,3),(3,4), (4,5), Ase (2,1),(3,2),(3,4),(4,5),
(5,6),(5,7),(6,4),(7,4), (7,8) (4,6),(4,8),(5,3),(6,3),(7,5)

2(x® — 22° 4 42° — 42 + 42% — 222 4 1)

algebra KQ/I |

quiver Q
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Ass [ (1,2),(2,3),(3,4).(4,5),(5,6),(6,4),(6,7),(7,5),(8,7)
3(x® 42?4 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
s 1,2),2,9), 3, 1, (1,5, R 1,2),(2.3), 4 3), (4,5),
(57 6)7 (67 7) (7 4)7 (7 8) (57 6)7 (6v 7)v (7v 4)v (Sv 5)
Aia (1,2),(3,2),(3,4), (4,5), Aqa (2,1),(3,2),(3,4), (4,5),
(5,6), (5,8),(6,3), (7, 4) (5,6), (5,8), (6,3), (7,6)
Arr (2,1),(2,3),(3,4),(4,5), Az (1,2),(2,3),(3,4), (4,5),
(5,2),(5,6),(7,3),(8,4) (5,3),(5,6),(6,7),(6,8),(7,4)
Aso (1,2),(2,3),(4,3),(4,5), Ass (1,2),(2,3),(3,4), (4,5),
(5,6),(6,7),(7,4),(7,8),(8,6) (5,6),(6,7),(6,8),(7,4), (8,5)
Aszs (1,2),(2,3),(3,4),(4,5), Aus (1,2),(2,3),(3,4), (4,5),
(5,3),(5,6),(6,7),(7,4),(8,7) (4,7),(5,6),(6,4),(7,8), (8,6)
Ass (1,2),(2,3),(3,4),(4,5), Az (1,2),(3,2), (3,4), (4,5),
(4,8),(5,3),(5,6),(6,7),(7,4) (5,6), (5,8),(6,3),(6,7),(7,5)
Ass (1,2),(2,3),(3,4),(3,7), Ago (1,2),(2,3),(4,3),(4,5),
(4,5),(5,6),(6,3),(7,6), (8,5) (5,6),(5,8),(6,7),(7,4),(8,4)
Ag1 (2,1),(3,2),(3,4),(4,5), Age (1,2),(2,3),(3,4), (4,5),
(4,6),(5,3),(6,7),(6,8),(7,3) (5,3),(5,6),(5,8),(6,7),(7,4)
Ag7 (1,2),(2,3), (3,4),( 5), Aze (2,1),(2,3),(3,4), (3,6),
(5,6),(5,7),(6,3), (7,4), (8,5) (4,5),(5,2),(6,2),(7,3),(8,7)
Aso 1,2),(2,3), (3,4), (4, 5), Asa (1,2),(2,3), (3,4), (3,8),
(47 7) (57 6) (6 3) (7 3) (8 4) (47 2)7 (47 5)v (5v 6)v (6v 3)v (7v 4)
Aga2 (1,2),(2,3),(3,4),(4,5), (4,8), Aga (1,2),(2,3),(3,4),(4,5), (5,3),
(5,6), (6, 4) (6,7),(7,5),(8,6) (5,6),(6,4),(6,7),(7,5), (8,6)
A0 (1,2),(2,3), (3,4), (4,5), (4,8), A1o2 (1,2),(2,3), (3,4),(4,5), (4,7,
(5-,3)-,(5-,6)-,(6-,4)-,(6-,7)-,(8-,6) (5,3), (5,6),(6,4), (6,8), (8,5)
Aiog (1,2),(2,3),(4,3),(4,5), (5,6), Ao (1,2),(2,3),(3,4), (4,2), (4,5),
(57 7) (67 4)7 (7 4)7 (7 8)7 (87 5) (57 3)7 (57 6)v (6v 4)v (6v 7)v (Sv 5)
A (1,2),(2,3),(2,5),(3,4), (4,2), A3 (1,2),(2,3),(3,4), (4,5), (4,7),
(57 6)7 (67 4)7 (67 7) (7 5)7 (87 7) (57 6)7 (67 4)v (7v 6)v (7v S)v (Sv 4)
Az (1,2),(2,3),(3,4),(3,5), (5,2), A3z (1,2),(2,3),(3,4), (3,5), (5,2),
(5,6), (6,3), (6,7),(7,5), (7,8) (5,6),(6,7),(7,3),(7,8), (8, 6)
Ataa (1,2),(2,3),(3,4), (4,5), (4,6), A1as (2,1),(3,2),(3,4),(4,5),(4,7),
(4,8),(6,3),(6,7),(7,4),(8,7) (5,3), (5,6),(6,4), (7,6), (8,5)
A149 (271)7(273)7(374)7(472)7 (4v 5)~, A154 (172)v(3v2)v(3v4)v(4v 5):(4~, 6)~,
(5,6),(6,3),(6,7),(7,5),(8,4) (4,8),(5,3),(6,3),(6,7),(7,4)
Aie3 (1)2))(2)3))(3)4))(3)8))(47 5)7 Aieo (1 2) (27 )7(37 )7(377)7(47 5)7




algebra KQ/I quiver Q algebra KQ/I quiver Q
(5,3),(5,6),(5,7),(7,8),(8,5) (4,6),(5,3),(6,3),(7,6),(8,4)
Arr1 (2,1),(2,3),(3,4), (4,2), (4,5), A7z (1,2),(2,3),(3,4),(3,5), (3,7),
(5,6), (5,8), (6,3), (6,7), (7,5 (5,2), (5,6), (6,3), (7,6), (8,7)
Arst (1,2),(3,2),(3,4), (4,5), (5,3), A6 (2,1),(2,3),(3,4),(3,6), (3,7),
(57 6), (57 7), (7 4), (7 8), (87 5) (47 2), (47 5)v (5, 3)v (6, 2)v (7, 8)
Azo6 (2,1),(2,3),(2,5), (3,4), (4,2), A21s (2,1),(2,3),(3,4),(3,8),(4,2),
(5,4), (5,6), (6,2), (7,5), (8, 6) (4,5), (4,6), (6,3),(6,7), (7, 4)
Az21 (1,2),(2,3),(2,4), (4, 1), (4,5), Az22 (1,2),(2,3),(3,1),(3,4), (4,5),
(5,6),(6,2),(6,7),(7,5),(8,5) (5,2),(5,6),(5,7),(7,4),(8,3)
A3z 1$,2),(2,3), (3,4), 4,5), (5,3), Aoz 1, 2),(3,2), (3,4), (4,5), (4, 8),
(57 6), (67 4), (67 7, (7 5), (7 8), (8, 6) (57 3), (57 6), (6, 4)v (6, 7)v (, S)v (8, 6)
Aoar 1,2),(2,3), (3,4), 3,7), (4,5), Azrs 1,2), (2,3), (3,4), (4,2), (4,5),
(5,3),(5,6),(6,7),(7,5),(7,8), (8,6) (5,3), (5,6),(6,4),(6,7),(7,5), (8,6)
Aars (2,1),(2,3),(3,4),(3,7), (4,2), Aorr (1,2),(2,3),(3,4), (4,5), (4,6),
(4,5),(5,3),(5,6),(6,7),(7,5), (7,8) (5,3),(6,3),(6,7),(7,4),(7,8), (8,6)
As05 2,1),(2,3), (2,6), (3,4), (4, 2),
(4,5),(5,6), (6,4), (6,7), (7,5), (8,5)
428 42" —a2® a2’ 2 — 224 x41)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ao 1,2),(2.3), (3,4), 4, 5), Aot 1,2),23), 3, 1), &, 2),
(47 7) (57 3)7 (67 4)7 (7 S)v (Sv 4) (57 2)7 (57 6)7 (67 7)v (7v 5)v (Sv 7)
Aos 1,2),(2,3), (3, 1), 4,2), Aoy 2,1), (2, 3), (3,4), (4, 2),
(57 2), (67 5), (67 7), (7 S)v (8, 6) (47 6), (57 4), (67 7)v (7, 4)v (8, 3)
yen @.1),23), 54),4,2), yen @0.2), (2,3), (3. 1), (4,2),
(4,5), (5,7), (6,5), (7, 8), (8,5) (5.3), (5.6, (5.7), (7,8), (8,5)
Azt (1, 2), (2,3), (2,4), (2,5), An 2,1), (3,2), (3,4), (4,5),
(3,1),(6,5),(6,7),(7,8), (8,6) (5,3),(5,7),(6,5),(7,8),(8,5)
Aso (1,2),(2,3),(2,4),(2,5), As2 (1,2),(2,3),(3,1), (4,2),
(3,1),(5,6),(6,7),(6,8), (7,5) (5,4),(5,7),(6,5),(7,8),(8,5)
Asg (2,1),(2,3),(2,5), (3,4), (4,2), Ago (1,2),(2,3),(3,4), (3,5), (4,2),
(5,4),(6,5),(6,7),(7,8),(8,6) (5,6),(6,3),(6,7),(6,8), (7,5)
Aogs (1,2),(2,3),(3,4), (4,2), (4,5), A1os (1,2),(2,3),(2,4), (3,1), (4, 5),
(5,6),(6,4),(6,7),(6,8),(7,5) (5,6),(5,8),(6,4),(6,7), (7,5)
Aioe (2,1),(2,3),(3,4), (3,5), (4,2), A2z (1,2),(2,3),(3,4), (3,5), (4,2),
(5,2),(5,6),(6,7),(7,5),(8,7) (5,2),(5,6),(6,7),(7,8),(8,6)
Ai24 (2,1),(2,3),(2,5),(3,4), (4,2), Avaz (1,2),(2,3),(3,4), (4,2), (4,5),
(57 4), (57 6), (67 7, (7 S)v (8, 6) (57 6), (57 7), (7 4)v (, 8) (8, 5)
4(w8+w7—m6+2w4—w2+m+1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Aoy (1,2),(2,3),(3,5), (4, 3), Aso (1,2),(2,3),(3,5), (4, 3),
(5,6),(6,3),(6,7),(7,8), (8,6) (5,6),(5,7),(6,3),(7,8),(8,5)
Aoz (1,2),(2,3),(3,4), (4,2), (4,5), Aior (1,2),(2,3),(3,4), (4,2), (4,5),
4,6),(5,3),(6,7),(7,8),(8,6) (4,6),(5,3),(6,7),(7,4),(7,8)
A113 (1,2),(2,3),(3,1),(3,4), (4,5), A120 (1,2),(2,3),(3,4), (3,5), (4,2),
(4,6),(4,7),(5,3),(6,3),(8,6) (5,6),(5,7),(6,3),(7,3),(7,8)
Ai21 (1,2),(2,3),(2,4),(3,1), (4,5), Aiz7 (2,1),(2,3),(3,4),(4,2), (4,5),
(5,6), (5,7), (6,4), (7, 4), (7, 8) (5,3), (6,4), (6,7), (7, 8), (8, 6)
A1ae (1;2);(2;3);(3;4)7(47 2), (4,5), A1s2 (1,2),(2,3),(3,1),(3,4),(3,7),
(4,6),(5,3),(6,7),(6,8),(7,4) (4,5),(5,3),(5,6),(7,5), (8,4)
Aiss (1,2),(2,3), (3, 4), (3,6), (4, 2), Aiss (1,2),(2,3),(3,4),(3,6), (4, 2),
(4,5),(5,3),(6,7),(6,8), (8,3) (4,5),(5,3),(6,7),(7,8), (8,6)
4(2® + 27 — 22 + 22° 4+ 22% — 222 L 2+ 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ags (1,2),(2,3),(3,1),(3,4), (4,5), Aoge (1,2),(2,3),(3,4), (3,5), (4,2),
(5,6),(6,4),(6,7),(7,5),(8,7) (5,6),(6,3),(6,7),(7,5), (8 7)
Auie (1.2).(2,3), (3,4), (4,2), (4,5), Ao (2,1),(2,3),(3,4),(4,2), (4,5),
(5,6),(6,4),(6,7),(7,5),(8,7) (5,3),(5,6), (6, 7), (7 8), (8, 6)
4(m8+m6 —m5+2m4—m3+m2+1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
A1y (1,2),(2,3),(3,4), (4,5), Az (1,2),(2,3),(3,4), (4,5),
(5,6),(6,7),(7,8),(8,4) (5,6),(6,7),(7,3),(8,5)
Aie (1,2),(2,3),(3,4), (4,5), Aso (2,1),(2,3),(3,4),(4,5),
(57 6), (67 7), (67 8), (7 3) (57 6), (57 7), (6, 2)v (7, 4)v (8, 7)
Ag2 (1,2),(2,3),(3,4), (4,5), Asa (2,1),(2,3),(3,4),(4,5),
(5,6),(6,3),(6,7),(7,8),(8,5) (4,6),(5,2),(6,7),(7,3), (8,6)
Ass (1,2),(2,3),(3,4),(4,5), Ass (1,2),(273)7(3 4), (3,8),
(5,6),(5,7),(6,3),(7,8),(8,4) (4,2),(4,5),(5,6),(6,7),(7,3)
Arz 1, 2),(2,3), (3,4), (4, 2), Ass (1,2, (2,3), (3,4), (4,5),
(4,5), (4,6), (6,7), (7,8), (8,3) (5,6), (5,8), (6,2), (6,7), (7,5)
Asr 0,2),23), 27, 6,1, ym L.2),(2,9), 5.1, (4,2), (% 5),
(4,5), (5,6), (5,8), (6,2), (7, 6) (5,6),(5,7), (5,8),(6,3),(7,4)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
Aios (1,2),(2,3),(3,4),(4,5), (5,3), Ai04 (1,2),(2,3),(3,4),(3,8),(4,5),
(5,6),(6,4),(6,7),(7,8),(8,5) (5,3),(5,6), (6,7),(7,4), (8,5)
A1z (1,2),(2,3),(3,4), (4,5), (5, 6), A1ze (1,2),(2,3),(3,4), (3,8), (4,2),
(5,7),(6,3),(7,4),(7,8),(8,5) (4,5),(4,6),(6,7),(7,3),(8,7)
Arar (2,1),(2,3),(2,8),(3,4), (4,5), Aras (1,2),(2,3),(3,4),(3,6), (4,5),
(5,6),(5,7),(6,2),(7,4), (8,6) (5,3), (5,8), (6,2), (6,7), (7,5)
A1z (1,2),(2,3),(3,4), (4,5), (5, 6), Auss (1,2),(2,3),(3,4),(4,2), (4,5),
(5,8),(6,3),(6,7),(7,5),(8,7) (5,3),(5,6), (6,7), (6,8), (7,4)
Aisa (1,2),(2,3),(3,4), (4,2), (4,5), Aiss (1,2),(2,3),(3,4), (4,5), (5,6),
(5,6),(6,3),(6,7),(7,8),(8,5) (6,3),(6,7),(7,5),(7,8), (8,6)
A1se (1,2),(2,3),(3,4), (4,5), (4,6), Avas (1,2),(2,3),(3,4),(3,5), (5,2),
(5,3),(6,3),(6,7),(7,8),(8,4) (5,6),(6,7),(6,8),(7,3),(8,5)
Atso (2,1),(2,3),(3,4),(3,6), (4,2), A1 (1,2),(2,3),(2,5),(3,4), (4,2),
(4,5).(5,3). (6,7). (7.5), (8,7) (5,6),(6,7),(6,8),(7,4), (8,5)
A6z (1,2),(2,3),(3,4), (4,5), (4,7), Ai7o (1,2),(2,3),(3,4), (4,5), (4,6),
(5,3), (5,6), (6,4), (7,8), (8,6) (5,2),(6,7),(7,3),(7,8), (8,6)
Airz (2,1),(2,3),(3,4),(3,5), (4,2), Az (2,1),(2,3),(3,4),(4,5), (5,2),
(5,6),(6,7),(7,2),(7,8),(8,6) (5,6),(6,7),(7,4),(7,8), (8,6)
Airg (1,2),(2,3),(3,4),(4,5), (5,2), Avr7 (1,2),(2,3),(3,4),(3,5), (4,2),
(5,6),(6,4), (6,7),(6,8),(7,5) (5,2),(5,6),(6,7),(7,3),(7,8)
Aisz (1,2),(2,3),(3,4),(4,5),(4,7), Aiss (2,1),(2,3),(3,4),(3,5), (4,2),
(5,6),(6,4), (7,6),(7,8), (8,3) (5,6), (6.7), (6,8), (7,2), (8,5)
Aise (1,2),(2,3),(3,4),(3,7), (3, 8), A192 (1,2),(2,3),(3,4),(3,6), (4,2),
(4,2), (4,5), (5,6), (6,3), (7,6) (4,5),(5,3),(6,7),(7,5), (8 6)
Aios (1,2),(2,3),(3,4),(4,2),(4,5), Azor (1,2),(2,3),(3,4),(4,2),(4,5),
(4,6),(6,7),(6,8), (7, 4), (8 3) (5,3),(5,6), (6,7),(7,4),(8,7)
Azos (1,2),(2,3),(3,4),(4,5), (4,6), Aoy (1,2),(2,3),(3,4), (4,5), (5,3),
(5,3),(6,2), (6, 7), (7, 4), (8, 4) (5,6),(5,8),(6,4),(6,7),(7,5),(8,7)
Az2s (1,2),(2,3),(3,4),(3,8), (4, 5), Azz6 (2,1),(2,3),(3,4), (3,5), (3,7),
(5,3), (5,6),(6,4),(6,7),(7,5), (8, 5) (4,2),(5,2),(5,6),(6,3),(7,6),(8,7)
Azar (1,2),(2,3),(3,4), (4,2), 4, 5), Azs1 (1,2),(2,3),(3,4),(4,5), (4,7),
(5,6), (5,8), (6,3),(6,7),(7,5), (8, 7) (5,3),(5,6),(6,4),(7,6),(7,8), (8,4)
Aaa7 (1,2),(2,3),(2,8),(3,4), (4,2), Agss (1,2),(2,3),(2,8),(3,4), (4,2),
(4,5), (5,3),(5,6),(6,4), (6,7), (8, 4) (4,5),(5,6),(6,3),(6,7),(7,5),(8,4)
Aazg (2,1),(3,2),(3,4),(4,5), (4,7), Aza0 (2,1),(2,3),(3,4),(3,5), (4,2),
(4,8),(5,3),(5,6),(6,4),(7,6), (8,3) (5,2),(5,6),(6,7),(7,3),(7,8), (8,6)
Azasz (1,2),(2,3),(3,4),(4,1), (4,5), Azss (1,2),(2,3),(3,4),(4,2), (4,5),
(5,3),(5,6), (6,4),(6,7),(7,5), (8, 7) (5,6),(6,3),(6,7),(7,5),(7,8), (8,6)
Aa7s (1,2),(2,3),(3,4), (4,5), (4,8), Asre (2,1),(2,3),(3,4),(4,5), (4,8),
(5,2), (5,6), (6,4),(6,7),(7,8), (8,6) (5,3), (5,6), (6,4), (6,7),(7,5), (8,2)
Agsz (1,2),(2,3),(2,7),(3,4), (4,2), Aszse (1,2),(2,3),(3,4),(4,2), (4,5),
(4,5),(5,6),(6,7),(7,4),(7,8), (8,6) (5,3),(5,6), (6,4), (6,7),(7,8), (8,5)
Aszoa (2,1),(2,3),(3,4),(3,5), (4,2), A3z (1,2),(2,3),(2,8),(3,4), (4,2),
(5,2), (5,6),(6,7),(6,8),(7,5), (8,3) (4,5), (5,6), (6,4), (6,7),(7,5), (8,6)
Asz2a (2,1),(2,3),(3,4),(3,5), (4,2), A3z (1,2),(2,3),(3,4),(3,6), (4,2), (4,5),
(5,6), (5,7),(6,2),(7,3),(7,8), (8,5) (5,3), (6,5), (6,7), (7,3),(7,8), (8,6)
Assr (1,2),(2,3),(3,4), (4,2), (4,5), (5, 3), Asss (1,2),(2,3),(3,4),(3,7), (4,2), (4,5),
(5,6),(6,4), (6,7),(7,5),(7,8), (8,6) (5,3), (5,6), (6,7), (7,5),(7,8), (8,6)
Agaz (1,2),(2,3),(3,4),(4,2),(4,5), (5,3), A3zas (1,2),(2,3),(2,5),(3,1),(3,4), (4,2),
(5,6),(5,8),(6,7),(7,5),(8,4),(8,7) (5,1), (5,6),(6,2), (6,7),(7,5),(8,7)
Assz (1,2),(2,3),(3,1),(3,4),(4,5), (5,2), Ase1 (1,2),(2,3),(3,4),(3,7),(3,8), (4,2),
(5,6),(6,4),(6,7),(7,5), (7,8), (8,6) (4,5),(5,3),(5,6),(6,7),(7,5), (8,2)
Ases (1)2))(2)3))( )1))(3)4))(4)2))(47 5)7 Ases (2)1))(2)3))(278)7(3 ) (47 2)7(4 5)
(4,8),(5,6),(5,7),(7,4),(8,3), (8, 7) (5,6),(5,8),(6,4), (6,7),(7,5), (8,4)
Asro (1,2),(2,3),(3,1),(3,4),(4,5), (4,8), Asss (1,2),(2,3),(2,4),(3,1), (4,1), (4,5),
(5,2),(5,6),(6,4),(6,7),(7,8), (8,6) (5,2),(5,6), (6,4, (6,7),(7,5),(7,8), (8,6)
4(x® + 2® — 22% 4+ 22 — 22® 4+ 2% + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
s T,2),(2,9), (3, 4), (4, 5); Ao 1,20, (2.9), (3, 0, (4,2),
(4,7),(5,6),(6,2),(7,3),(8,7) (4,5), (5,6), (5,8), (6, 7) (7,3)
Ai1s ( ) ( )3))( )4))(4)5))(47 7)7 Aieo (1)2)7(273)7(374)7(377) ( 2)7
(5 2),(5,6),(6,4),(7,3),(8,7) (4,5), (5,6),(6,3),(7,6), (8 5)
Aze1 (1,2),(2,3),(3,1),(3,4), (4,5), Azrs (1,2),(2, ) (2,8),(3,4),(3,7),
(5,6),(6,2),(6,7),(7,5), (8 4) (4,1),(4,5), (5,3),(5,6),(7,2),(8,7)
Asz02 (1,2),(2,3),(3,4), (4,2), (4,5),
(5,6),(5,7),(6,3), (7,4, (7,8), (8,5)
5(x® 4 2% 42 +2%241)
algebra KQ/I quiver Q algebra KQ/I quiver Q
A (1,2),(2,3),(3,4),(4,5), As1 (2,1),(2,3),(3,4),(4,5),
(5,6), (5,8),(6,7),(7,2) (5,6),(5,8),(6,7),(7,2), (8,4)
Ass (1,2),(2,3),(3,4), (4,5), Ago (2,1),(2,3),(3,4), (4,5),
(4,8),(5,6),(6,7),(7,2),(8,3) (5,6), (6,7), (6,8),(7,2), (8,5)
An (2,1),(2,3),(3,4), (4,5), Arq (1,2),(2,3),(3,4),(3,7),
(5,6),(6,7),(7,2),(7,8),(8,6) (3,8), (4,5),(5,6), (6,1), (7,2)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
Arr (1,2),(2,3),(3,4), (4,5), Ars (1,2),(2,3),(2,8),(3,4),
(4,6),(5,2),(6,7),(7,8),(8,3) (3,7),(4,5),(5,6),(6,1),(7,2)
Ass (1,2),(2,3),(3,4), (4,5), Ase (2,1),(2,3),(3,4),(4,5),
(5,6),(5,7),(6,2),(7,8),(8,4) (5,2),(5,6),(6,7),(7,8),(8,4)
Aias (2,1),(2,3),(3,4), (4,5), (5,6), A140 (1,2),(2,3),(2,8),(3,4),(4,2),
(5,7),(6,2),(6,8),(7,4), (8,5) (4,5),(5,6),(6,7),(7,8),(8,4)
Aisg (1,2),(2,3),(3,4),(4,5),(4,7), Aies (2,1),(2,3),(2,7),(3,4),(4,2),
(5,6), (5,8), (6,2), (7,3),(8,4) (4,5), (5,6),(6,4),(7,8), (8,6)
Aies (2,1),(2,3),(3,4),(3,7),(4,5), Ai7a (2,1),(2,3),(3,4),(3,5), (4,2),
(4,8),(5,6),(6,2),(7,2),(8,3) (5,2), (5,6),(6,7),(7,8),(8,3)
Ai7s (1,2),(2,3),(3,1),(3,4), (4,5), Aig1 (1,2),(2,3),(3,4),(4,5), (4,6),
(5,6),(6,2), (6,7),(7,8),(8,5) (5,2),(6,7),(6,8),(7,4),(8,3)
Alss (1,2),(2,3),(3,4),(4,5), (4,7), Aig9 (1,2),(2,3),(3,4),(3,7), (4,5),
(5,2), (5,6), (6,4), (7, 8), (8,6) (5,6), (6,3),(7,2),(7,8), (8,6)
A200 (1,2),(2,3),(3,4), (4,5), (4,6), A201 (1,2),(2,3),(2,4),(2,8), (4, 1),
(5,2),(6,3),(6,7),(7,8),(8,4) (4,5),(5,6),(6,7),(7,2),(8,7)
A202 (2,1),(2,3),(3,4), (4,5), (4,8), A203 (1,2),(2,3),(3,4), (4,2), (4,5),
(5,2),(5,6),(6,7),(7,4), (8,7) (5,6),(5,7),(6,3),(7,8),(8,4)
A204 (1,2),(2,3),(3,1),(3,4), (4,5), Az12 (1,2),(2,3),(2,8),(3,4), (4,2),
(5,6),(5,7),(6,2),(7,8),(8,4) (4,5), (5.6), (6,7), (7,4), (8, 7)
A213 (1,2),(2,3),(3,4), (3,8), (4,5), Az14 (1,2),(2,3),(3,4), (4,5), (4,8),
(4,6),(5,2),(6,7),(7,3),(8,7) (5,6),(5,7),(6,2),(7,4),(8,7)
A216 (1,2),(2,3),(3,4), (4,5), (5,6), Az19 (1,2),(2,3),(3,4), (4,5), (5,2),
(5,7),(6,2),(7,4),(7,8),(8,5) (5,6),(6,7),(6,8),(7,4),(8,5)
Aaz20 (1,2),(2,3),(3,4), (3,5), (4,2), Asz2s (1,2),(2,3),(3,4), (4,1), (4,5),
(5,6), (5,8),(6,7),(7,3),(8,2) (5,6),(6,3),(6,7),(7,8),(8,5)
Agsa (1,2),(2,3),(3,4),(3,8),(4,5), Aoar (1,2),(1,4),(2,3),(3,1),(4,5),
(5,3),(5,6),(5,7),(7,8),(8,2),(8,5) (5,6), (5,8),(6,3),(6,7),(7,5), (8, 7)
Azao 1,2),(2,3), (2,8), (3,4), (4, 2), Azag (1,2),(2,3),(2,7),(3,1), (3,4),
(4,5),(5,6),(5,7),(6,3),(7,4), (8, 4) (4,5), (5,2),(5,6), (6,4),(7,5), (8,3)
Agsz (1,2),(2,3),(3,4),(3,7),(4,2), Az60 (2,1),(2,3),(3,4),(3,5), (4,2),
(4,5), (5,6), (6,3),(7,6),(7,8), (8,3) (5,6),(5,7),(6,3),(7,2),(7,8), (8,5)
Aze1 (1,2),(2,3),(3,4), (3,8),(4,2), Age2 (1,2),(2,3),(2,4),(2,5),(3,1),
(4,5),(4,6),(6,3),(6,7),(7,4), (8,6) (5,6),(5,7),(6,2),(7,1),(7,8),(8,5)
Ases (1,2),(2,3),(3,4),(4,5),(4,7), Azes (2,1),(2,3),(3,4),(3,5), (3,8),
(5,2), (5,6),(6,4),(7,6),(7,8), (8, 4) (4,2),(5,2),(5,6),(6,7),(7,3),(8,7)
A6 (1,2),(2,3),(3,4),(4,2), (4, 5), Azer (1,2),(1,4),(2,3),(3,1), (4,5),
(4,8),(5,6),(5,7),(6,3),(7,4), (8 7) 4,8),(5,6),(5,7),(6,3),(7,4), (8,7)
Agra (1,2),(2,3),(3,1),(3,4), (4,5), Agro (1,2),(2,3),(3,4),(4,1), (4,5),
(5,6),(5,7),(6,2),(7,4),(7,8),(8,5) (5,3),(5,6),(6,7),(6,8),(7,4), (8,5)
Aazs1 (1,2),(1,8),(2,3),(3,1), (3,4), Aszss (1,2),(2,3),(3,4), (3,6), (4,1),
(4,5),(5,6),(5,7),(6,4),(7,8),(8,3) (4,5),(5,3),(6,5),(6,7),(7,3),(8,7)
Aass (2,1),(2,3),(2,6), (3,4), (4,2), Asz93 (1,2),(2,3),(3,4), (4,5), (4,6),
(4,5),(5,6),(6,4),(6,7),(7,2),(8,7) (4,8),(5,2),(6,7),(7,4),(8,3),(8,7)
A5 (1,2),(2,3),(2,7),(2,8), (3, 1), A296 (1,2),(2,3),(3,4), (4,2), (4,5),
(3,4),(4,5),(5,2), (5,6), (6,4), (8,5) (4,7),(5,3),(5,6), (6,4),(7,8), (8,6)
Aazg7 (1,2),(2,3),(3,4), (4, 1), (4,5), Aszo3 (1,2),(2,3),(3,4),(3,8), (4, 1),
(5,3),(5,6),(6,7),(7,4),(7,8), (8,6) (4,5), (5,3),(5,6), (6,7),(7,5), (8, 7)
Aszo6 (1,2),(2,3),(3,4), (3,8), (4,5), Aszor (1,2),(2,3),(2,4),(3,1),(4,5),
(4,7),(5,1),(5,6),(6,4),(7,3),(8,7) (4,7),(5,6),(6,1),(7,2),(7,8),(8,4)
Asio (1 2) (1 5))(2)3))(3)4))(3)6)7 Asiz (172)7(273)7(374)7( 75)7(377)7
(4,1),(5,4),(6,2),(6,7),(7,8), (8,3) (4,2),(5,2),(5,6), (6,3),(7,8), (8,6)
As1q (1,2),(2,3),(3,4), (3,6), (4, 1), Asis (1,2),(2,3),(3,1), (3,4), (4,2),
(4,5), (5,3),(6,5),(6,7),(7,3), (8,6) (4,5),(5,3),(5,6), (6, 7), (7, 8)’(8’4)
Asis (1,2),(2,3),(3,4), (4,5), (4,6), As21 (2,1),(2,3),(2,7),(3,4),(4,2),
(5,1),(6,3),(6,7),(7,4),(7,8), (8,6) (4,5),(5,6),(5,8),(6,4),(7,6), (8, 4)
Asz2 (1,2),(2,3),(3,4), (4, 1), (4,5), Asze (1,2),(2,3),(3,4),(3,8), (4, 1),
(5,6),(6,3),(6,7),(7,5),(7,8), (8,6) (4,5),(5,3),(5,6),(6,7),(7,8), (8,5)
Azt (1,2),(2,3),(3,4),(3,5), (3, 7), Asos (1,2),(2,3),(3,1),(3,4), (4,2),
(4,2), (5,6),(6,3),(7,6),(7,8), (8,2) (4,5), (5,6),(6,3),(6,7),(7,8), (8,5)
Azss (1,2),(1,4),(2,3),(3,1),(3,6), (4,3), A3za0 (1,2),(2,3),(3,1),(3,4), (3,8), (4,2),
(4,5), (5,6),(6,4), (6,7), (7,3),(8,7) (4,5), (5,3), (5,6), (6,4), (6,7), (8,5)
Azas (1,2),(2,3),(2,6),(3,4), (4,2), (4,5), Azae (1,2),(2,3),(2,7),(3,1),(3,4), (4,2),
(5,6),(5,8),(6,4),(6,7),(7,5),(8,4) (4,5),(5,6),(5,8),(6,7),(7,4), (8, 4)
Asas (1,2),(2,3),(3,4),(3,8), (4,2), (4,5), Aszag (1,2),(2,3),(3,1),(3,4),(4,5), (4,7),
(5,3),(5,6),(6,4),(6,7),(7,5),(8,5) (5,2),(5,6),(6,4),(7,3),(7,8),(8,4)
Asso (1,2),(2,3),(3,1),(3,4), (4,5), (4,8), Ass1 (1,2),(2,3),(2,8),(3,4), (4,2), (4,5),
(5,2),(5,6),(6,4),(6,7),(7,5),(8,3) 4,7),(5,6),(6,4),(7,6),(7,8),(8,4)
Asss (1,2),(2,3),(3,4), (3,5), (3,7), (4,2), Assa (1,2),(2,3),(3,1),(3,4), (4,2), (4,5),
(5,2),(5,6),(6,3),(7,6),(7,8),(8,3) (5,3),(5,6),(6,7),(6,8),(7,4), (8,5)
Asss (2,1),(2,3),(3,4), (3,5), (3,8), (4,2), Asse (1,2),(2,3),(2,6),(3,1),(3,4), (4,2),
(5,2),(5,6),(6,3),(6,7),(7,5),(8,6) (4,5),(4,7),(5,6),(6,4),(7,3),(8,7)
Ass7 (1,2),(2,3),(2,8),(3,1),(3,4), (4,5), Aseo (1,2),(2,3),(3,1),(3,4),(3,8), (4,5),
4,7),(5,2),(5,6),(6,4),(7,6),(8,5) (5,3),(6,2),(6,7),(7,8),(8,5), (8,6)
Asze2 (1,2),(2,3),(3,1),(3,4), (4,5), (4, 7), Aszea (1,2),(2,3),(3,4),(3,7),(3,8), (4,1),
(5,2), (5,6),(6,4),(7,6),(7,8), (8, 4) (4,5), (5,3),(5,6),(6,7),(7,5), (8,2)
Ases (1,2), (2, 3), (3, 1), (3,4),(3,6), (4,2), Aser (1,2),(2,3),(2,5),(3,1),(3,4), (4,2),
(4,5),(5,3),(6,7),(7,5),(7,8), (8,6) (5,4), (5,6),(6,7), (6,8),(7,2), (8,5)
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Ases (1,2),(2,3),(3,4),(3,6),(3,8), (4,2), Aseo (1,2),(1,8),(2,3),(3,1),(3,4), (4,5),
(4,5), (5,3),(6,5),(6,7),(7,3),(8,7) (4,8),(5,6),(6,7),(7,4),(8,3),(8,7)
Asm (1,2),(2,3),(3,1),(3,4), (4,5), (4,6), Agra (1,2),(2,3),(2,5),(2,7),(3,1), (3,4),
(5,2),(6,3),(6,7),(7,4),(7,8), (8,6) (4,2),(5,1),(5,6), (6,2),(7,6), (7,8)
Azzs (1,2),(2,3),(2,4),(3,1),(4,1), (4,5), Asra (1,2),(2,3),(3,4),(3,7),(4,1), (4,5),
(5,6),(6,2),(6,7),(7,5),(7,8), (8,6) (5,3), (5,6),(6,7), (6,8),(7,5), (8,5)
Az7s (1,2),(2,3),(3,1),(3,4),(3,8), (4,2), Asrs (1,2),(2,3),(3,4),(3,7),(4,1), (4,5),
(4,5), (5,3),(5,6),(6,7),(7,5), (8, 7) (5,3),(5,6),(6,7),(7,5),(7,8), (8,6)
Azrg (2,1),(2,3),(2,6),(3,4),(4,2), (4,5), Azso (1,2),(2,3),(2,7),(3,4), (4,2), (4,5),
(5,6),(6,4),(6,7), (6,8),(7,5), (8,2) (5,6),(5,7),(6,4),(7,4),(7,8), (8,2)
Azs1 (1,2),(2,3),(3,1),(3,4), (3,8), (4,2), Azs2 (1,2),(2,3),(2,5), (3,1),(3,4), (4,2),
(4,5), (5,3),(5,6),(6,7), (7,8), (8,5) (5,6),(6,4),(6,7),(7,5),(7,8), (8,6)
Azss (1,2),(2,3),(3,1),(3,4), (4,2), (4,5) Asse (1,2),(2,3),(2,6) (3,1),(3,4),(4, 2),
(5,6), (5,8),(6,3),(6,7),(7,5), (8, 7) (4,5),(5,6), (6,4),(6,7),(7,5),(7,8), (8,6)
Asso (1,2),(2,3),(3,1),(3,4),(3,7), (4,2), Aszoo (1,2),(2,3),(3,1),(3,4), (4,2), (4,5),
(4,5), (5,3),(5,6),(6,7), (6,8), (7,5), (8,5) (5,3), (5,6), (5,8),(6,4),(6,7),(7,5), (8,7)
6(x® +2® +2° + 2% 22 +1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ars (2,1),(2,3),(3,4), (4,5), Ass 1,2),(2,3), (3, 4), (3,5),
(5,6),(6,7),(7,8),(8,2) (4, 1), (5,6),(6,7),(7,8), (8,2)
Atrg (1,2),(2,3),(3,1),(3,4), (4,2), Aisa (1,2),(2,3),(2,8),(3,4),(4,5)
(4,5),(5,6),(6,7),(7,8),(8,3) (5,6),(6,7),(7,2),(8,1),(8,7)
Az05 (1,2),(2,3),(3,4),(4,5), (4,8), A200 (1,2),(2,3),(3,4),(3,5),(4,1)
(5,1),(5,6),(6,7),(7,4),(8,3) (5,2), (5,6),(6,7),(7,8),(8,3)
A2 (1)2))(2)3))(3)4))(4)5))(4)7)7 A21s (172)7(273)7(374)7(37 )7(4 1),
(5,1),(5,6),(6,4),(7,8),(8,3) (4,5),(5,3),(6,7),(7,8), (8,5)
Ages (1,2),(2,3),(3,1),(3,4), (4, 5), Aazro (1,2),(2,3),(3,4), (4,5), (4, 7),
(4,6), (5,3),(6,2),(6,7),(7,8),(8,4) (4,8),(5,1),(5,6),(6,4),(7,6), (8,3)
Aaso (1,2),(1,7),(2,3),(3,1),(3,4), Az90 (1,2),(2,3),(3,4),(3,6), (4, 1),
(4,5),(4,8),(5,6),(6,7), (7,3), (8,3) (4,5),(5,3),(5,7),(6,5),(7,4),(8,7)
A299 (1,2),(2,3),(2,7),(3,1),(3,4), A3zoo (1,2),(2,3),(3,4), (3,6), (3,8),
(4,5),(4,6), (5,2), (6,3), (7,8), (8,5) (4,1),(4,5),(5,3),(6,7),(7,5), (8,2)
Asos (1,2),(2,3),(3,4),(3,6), (4, 1), A3zoo (1,2),(2,3),(3,4),(3,8),(4,5),
(4,5),(5,3),(6,7),(6,8),(7,5), (8,3) (4,6),(5,2),(6,3),(6,7), (7, 4) (8,6)
Aszis (1,2),(2,3),(3,4), (4,5),(4,7), Asi7 (1,2),(2,3),(3,4), (4,5), (4,8),
(5,1),(5,6),(6,4),(7,6),(7,8), (8,4) (5,2),(5,6),(6,4),(6,7),(7,5), (8,6)
Asto 1,2),(2,3), (3,4), (3,8), (4, 5), As20 (1,2),(2,3), (2,8), (3,4), (4,5),
(5,3),(5,6),(6,7),(7,8),(8,2), (8, 5) (5,2),(5,6),(6,7),(7,5),(8,1),(8,7)
Asas (1,2),(2,3),(3,1),(3,4),(3,6), Ajzas (1,2),(2,3),(2,7),(3,4), (4,2),
(4,2),(4,5),(5,3),(6,7),(7,8), (8, 5) (4,5),(5,6),(6,7),(7,4),(7,8),(8,2)
yren 1,2),(2,9), (2,0, (2,8), 3,1), (4, 1), pren (1,2),(1,6),(2.3), (3, 1), (3, 4), (4,5,
(4,5), (5,6),(6,2),(6,7),(7,5), (8,6) (4,8),(5,6),(5,7),(6,3),(7,4), (8,3)
Az (1,2),(2,3),(2,8),(3,1),(3,4), (4,2), Asss (1,2),(2,3),(3,4),(3,7), (4,1), (4,5),
(4,5),(4,6),(5,3),(6,7),(7,8),(8,4) (5,3),(5,6),(6,7),(7,5),(7,8), (8,3)
Azve (1,2),(2,3),(3,4),(3,5), (3,8), (4,2), Agrr (1,2),(2,3),(2,6),(2,8),(3,1), (3,4),
(5,6), (5, 7), (6,3), (7,3),(8,1), (8 7) (4,5),(5,2),(6,5),(6,7),(7,2),(8,7)
Azsa (1,2),(2,3),(2,6),(3,1), (3,4), (4,2), Asss (1,2),(2,3),(3,1),(3,4),(4,2), (4,5),
(4,5),(5,6),(5,8),(6,4),(6,7),(7,5), (8,4) 4,8),(5,3), (5, )7(6 4),(6,7),(7,5),(8,6)
Aszst (1,2),(2,3),(2,7),(3,1),(3,4), (4,2), Asg1 (1,2),(2,3),(2,8),(3,1),(3,4), (4,2),
(4,5),(4,6),(5,3),(6,7),(6,8),(7,4), (8,4) (4,5). (4,7). (5.3), (5.6). (6,4). (7. 6). (8,4)
6(z® + =7 + 22 + 2+ 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Agzs (1,2),(2,3),(3,1),(3,4), Aso (1,2),(2,3),(3,4),(3,5),
(4,5),(5,6),(6,7),(7,4),(7,8) (4,2),(5,6),(6,7),(7,3),(7,8)
Ags (1,2),(2,3),(3,4), (4,5), Aso 2,1),(2,3),(3,4),(3,6),
(5,2),(5,6),(6,7),(7,8), (8,6) (4,5),(5,2),(6,7),(7,3), (8,6)
Ase (2,1),(2,3),(3,4),(4,5), Ast (1,2),(2,3),(3,4),(3,5),
(5,2),(6,5),(6,7),(7,8), (8,6) (4,2),(5,6),(5,8),(6,7),(7,3)
Ag2 ( )2))(2)3))(3)4)7(377)7 Ags (2)1))(273)7(374)7(376)7
(4,5),(5,2),(5,6),(7,8), (8,3) (4,5),(5,2),(6,7),(7,8), (8,6)
Arg (2,1),(2,3),(3,4),(4,5), Ars (2,1),(2,3),(3,4),(4,5),
(5,2),(5,6),(6,7),(7,5), (8,6) (5,2),(5,6),(6,7),(7,5), (8,3)
Agr (1,2),(2,3),(2,4), (3,1), (4,5), A1os (1,2),(2,3),(3,1),(4,2), (4,5),
(5,2),(5,6),(6,7),(6,8), (7, 4) (5,6),(6,7),(7,4),(7,8), (8,6)
A114 (1,2),(2,3),(2,4), (3,1), (4,5), A11s (1,2),(2,3),(3,1),(3,4),(4,5),
(5,6),(6,7),(6,8),(7,5), (8,4) (5,3),(5,6),(6,7),(7,4),(8,7)
At (1,2),(2,3),(3,4), (3,5), (4,2), Aiss (1,2),(2,3),(2,5),(3,4), (4, 1),
(5,6),(6,7),(6,8),(7,3), (8,5) (571)7(6 2),(6,7),(7,8),(8,6)
Ai3g ( ) ( )3))(3)4))(375)7(378)7 Aian ( (2)3)7(274)7(4 5) (4 6)7
(4 2),(5,6),(6,7),(7,3),(8,7) (5 1) (6,2), (6,7),(7,8),(8,6)
Alas (1,2),(2,3),(3,4), (3,5), (4,2), Aar (1,2),(2,3),(3,4), (4,1), (4,5),
(5,1), (5,6),(6,7),(7,5), (7,8) (4,6),(5,3), (6,7),(7,8), (8,6)
Atse (1,2),(2,3),(2,4),(3,1),(4,5), A7 (1,2),(2,3),(2,4),(3,1),(4,5),
(4,6),(5,2),(6,7),(6,8),(7,2) (5,6),(6,7),(7,4),(7,8), (8,6)
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Aiss (1,2),(2,3),(3,4),(4,2),(4,5), A6 (1,2),(2,3),(3,4),(3,5), (3,6),

(5,6),(6,7),(6,8), (7,4), (8,5) (4,1),(6,2), (6,7),(7,8), (8,6)

Arer (1,2),(2,3),(3,4), (4,5), (4, 6), Auso (1,2),(2,3),(3,4),(4,2), (4,5),

(4,8),(5,2),(6,7),(7,4), (8,3) (4,8),(5,6),(6,7),(7,4),(8,7)

Arss (2,1),(2,3),(3,4),(4,2),(4,5), Arso (1,2),(2,3),(3,1), (4,3), (4,5),

(5,6),(6,7),(7,4), (7,8), (8,6) (5,6),(5,7), (6,4),(7,8), (8,4)

A1go (1,2),(2,3),(3,1), (4,3), (4,5), Ao (1,2),(2,3),(2,4),(3,1), (4,5),

(5,6),(6,7),(6,8),(7,4), (8,5) (5,6), (6,2), (6,7),(7,5), (8,5)

Atgs (2,1),(2,3),(2,6), (3,4), (4,5), A1gs (2,1),(2,3),(3,4),(4,2), (4,5),

(4,7),(5,2),(6,5),(7,8), (8,4) (5,6),(5,8), (6,7),(7,4), (8,4)

Arg7 (2,1),(2,3),(3,4),(3,5), (4,2) A1gs (1,2),(2,3),(3,1), (3,4), (4,5),

(5,6),(5,8),(6,7),(7,3), (8,3) (5,6),(5,8),(6,7),(7,4),(8,4)

As1o (2,1),(2,3),(3,4), (3,5), (3,7), Aoi7 (1,2),(2,3),(2,8),(3,4), (4,5),

(4,2),(5,6),(6,2),(7,8),(8,3) (5,2),(5,6),(6,7),(7,5), (8,5)

Agas (1,2),(2,3),(2,4),(3,1), (4, 1), Aazz9 (1,2),(2,3),(3,4),(3,5),(3,8),
(4,5), (5,2), (6,4),(6,7),(7,8), (8,6) (4,2),(5,6),(6,3),(6,7),(7,5), (8,6)

Aaso (1,2),(2,3),(2,6),(3,4), (4,2), Az (2,1),(2,3),(3,4),(3,5), (4,2),
(4,5),(5,6),(5,7),(6,4),(7,8), (8,5) (5,2), (5,6), (6,3), (6,7),(7,8), (8,6)

Aass (1,2),(2,3),(3,1),(3,4), (4,5), Azas (1,2),(2,3),(3,4),(4,2), (4,5),
(4,6),(6,3),(6,7),(7,4),(7,8),(8,6) (4,8),(5,6),(6,4),(6,7),(7,5), (8,6)

Agas (1,2),(2,3),(3,1),(4,2), (4,5), Assi (1,2),(2,3),(3,1),(3,4), (4,2),
(5,6),(5,7),(6,4),(7,4),(7,8), (8,5) (4,5), (5,3), (5,6), (6,7),(7,5), (8,4)

Agss (1,2),(2,3),(2,4),(3,1), (4, 1), Azsa (1,2),(2,3),(3,4),(3,5), (4,2),
(4,5),(4,6),(5,2),(6,7),(7,8), (8,6) (5,6),(5,7),(6,3),(7,3),(7,8), (8,5)

Aszss (1,2),(2,3),(2,4),(3,1), (4,5), Ags7 (1,2),(2,3),(3,4),(3,5),(3,7),
(5,6),(5,8),(6,4), (6, 7), (7,5), (8,4) (4,8),(5,6),(5,7),(6,4),(7,4),(8,7)

Aszs7 (1,2),(2,3),(3,4), (3,5), (3,7), Azea 2,1),(2,3),(3,4),(4,2),(4,5),
(4,2),(5,6),(6,3),(7,6),(7,8),(8,3) (5,6),(5,7),(6,4),(7,4),(7,8), (8,5)

Assa (2,1),(2,3),(2,5), (3,4), (4,2), Aast (1,2),(2,3),(3,1),(4,3), (4,5),
(5,4), (5,6),(6,2), (6, 7), (7, 8), (8,6) (4,7),(5,6),(5,8),(6,4),(7,8), (8,4)

Aaso (2,1),(2,3),(3,4),(3,6),(3,8), Az91 (1,2),(2,3),(3,1),(3,4),(3,5),
(4,2),(4,5),(5,3),(6,7),(7,3),(8,2) (5,2),(5,6),(5,7), (6,3),(7,8), (8,5)

Az92 (1,2),(2,3),(3,4), (4,2), (4,5), Azga (1,2),(2,3),(2,5),(2,6), (3, 1),
(4,7),(5,6),(6,4),(7,6),(7,8),(8,4) (3,4),(4,2),(6,4),(6,7),(7,8), (8,6)

Azos (1,2),(2,3),(2,6), (3,4), (4,2), Aste (1,2),(2,3),(3,1),(3,4), (4,5),
(4,5),(4,7),(5,6),(6,4),(7,8),(8,4) (4,6),(5,3),(6,3),(6,7),(7,4),(8,4)
Asse (1,2),(2,3),(3,1),(3,4), (4,5), (5,3), Asaa (1,2),(2,3),(3,1), (3,4), (4,2), (4,5),
(5,6),(6,4),(6,7),(7,5),(7,8),(8,6) (5,3),(5,6),(5,7),(6,4),(7,8),(8,5)
Azar (1,2),(2,3),(3,1),(3,4), (4,5), (4,8), Asso (1,2),(2,3),(3,1), (3,4), (4,5), (4,6)
(5.3).(5.6). (6,4). (6.7).(7.8). (8.6) (5,3),(6,3),(6,7),(7,4),(7,8), (8,6)

8(x® + 227 4 22* 4+ 22 + 1)
algebra KQ/I quiver Q
Ag1 (1,2),(2,3),(2,5), (3, 1), (4,2), (5,6), (6,2), (6,7), (7, 8), (8,6)
Ao (1,2),(2,3),(2,5),(3,1),(4,2), (5,6), (5,7), (6,2), (7,8), (8,5)
8P +a” +a® +22* 422+ +1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
o 1.2),2.3), (3,9, (3,0), s 12,29, 0,61,
(4,5), (3, 1), (6,7), (7,8), (8, 6) (4,5, (3,6, (6,7), (7,8), (8, 4)
Tos 1,2),2,3), 3,9, (3,5), Ao 1,2),2.3), (3,9, 4,5),
4,2),(5,6),(6,7),(7,8),(8,3) (5,6),(5,7),(6,2),(7,8), (8,5)
Ay ©.1),(2,3), 3,9, ,5), A2 12, 03,04 G,
4,7),(5,6),(6,2),(7,8),(8,4) (475) (5,6), (6,7), (7, 8) (8,4)
A130 (1,2),(2,3),(3,1),(3,4),(4,5), Aies 2),(2,3), (3,4), (4, 1), (4,5),
(5,6),(6,3),(6,7),(7,8),(8,5) (576)7(673)7 (6,7),(7,8),(8,6)
Azse (1,2),(2,3),(2,4), (3,1), (4,5), Azas (1,2),(2,3),(3,4),(4,1), (4,5),
(5,2),(5,6),(6,4),(6,7),(7,8),(8,5) (5,3),(5,6),(5,7),(6,4),(7,8), (8,5)
Azs0 (1,2),(2,3),(3,1), (3,4), (4,5), Azs9 (1,2),(2,3),(2,4),(3,1), (4,5),
(5,6),(5,7),(6,3),(7,4),(7,8), (8,5) (5,6),(5,8),(6,2),(6,7),(7,5), (8, 7)
Azeo (1,2),(1,6),(2,3), (3,1), (3,4), Azt (1,2),(2,3),(3,4),(3,6), (4, 1),
(4,5),(4,7),(5,6),(6,3),(7,8),(8,4) (4,5),(5,3),(5,7),(6,5),(7,8), (8,5)
Aoss (1,2),(2,3),(3,1), (3,4), (4,5), Aso1 (1,2),(2,3),(3,1),(3,4), (4,2),
(4,7),(5,3),(5,6),(6,4),(7,8), (8,6) (4,5),(5,6),(6,3),(6,7),(7,8), (8,6)
Asag (1,2),(2,3),(3,1),(3,4), (3,6), (4,2), Asszo (1,2),(2,3),(3,1),(3,4), (3,6), (4,5),
4,5),(5,3),(6,5),(6,7),(7,8),(8,6) (5,3),(5,7),(6,5),(7,6),(7,8), (8,5)
Asso (1,2),(2,3),(2,4),(2,8),(3,1), (4, 1), Aszza (1,2),(2,3),(2,5), (3,1), (3,4), (4,2),
(4,5), (5,2), (5,6), (6,7), (7,5), (8,5) (5.1),(5.6),(6,2),(6,7). (7.8), (8,6)

D Derived equivalences for cluster-tilted algebras of type FEg

D.1 Polynomial 2(2® — 2% + 22° — 22* + 223

AO s/s A2, A 19 s/S A28

— 2% +1)
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[ Ay (5:4,7,8) dqor Ao (56)(78) = Ay for Ass |

D.2 Polynomial 2(z® — 2% + 2° + 23 — 22 + 1)

op o~ op o~ op o~ op o~ op o~ op o~ op o~
3 s/s A107 4 s/s A77 A5 s/s A5; 6 s/s A6; A23 s/s A357 25 s/s A257 A31 s/s A46

A3 (37 2, 5) dzr Aﬁ (17264358) = A10 er Aﬁ
Az (4;3,6,7) dor Ao (56) = A0 der A3s
As  (3;2,4,6) g As (17)(246) = Ag dor Aue
AP (5:3,6)  dor Az (18)(27)(3465) = A7 q& Awo
AP (6;5,7)  dae A4 (678) = A5 dor A4

D.3 Polynomial 3(z® + 2* + 1)

Agp s7s AQ; ATS s7s A14; A({I’; = A17, A(Q)Ig s7s A347 Agg s7s A337 Azg s7s A607 AZZ s7s A667 AZ}; S7S A67a
ALY = A1, A% o)s Aso, Agy /s Asa, Ags /s Ar09, Agy s/s Aroos ATy = Aras, AJYy = A1z, A7) = Ain,

ng s7s A1237 Acl)gg = A149; ATZ4 s7s A1877 Acfg4 s7s A163a Acl)IgQ = A1967 Acl)l';g s7s A173; Aggﬁ s7s A218a
A3Sy = Asao, Ay sjs Az, ASliy sjs Aarr, Agpy = Aars, Aes = Asos

Ag (4;3,7) der  A100 (45)(678) = Ag dor Aoa
Ag (5;4,8) der  A1og (576) = As dor Ao2
Ag (4;3,7),(6;5)  dor A2 (45)(67) = Ag dor Az
Ag (5:4,8),(7;6)  dor  Aso (57) = Ag dor As3
Agg (4;3,7) dor  Aisa (465) = A4 dor A163
Ay (6;5,7) dor  Args  (18)(275)(46) = A1z der A16o
Agg (4;3,7),(6;5)  dor  Aar (46) = A der A7
Atg (4;3),(6;5,7)  dor  Ae1 (4756) = A dor As3
Aqr (3;2,7) dor  A21g (185236) = A17 dor A206
As1s(*) (4;3,5,7) der  Aioe (37654) = A206 dor A169
Algg(*) (2; 1, 5, 7) er Ago (178) (243) (56) = A169 d:r A76
Aga(*) (4;3,7,8) dor Aoz (567) = A66 der A109
Aro2(*) (4;3,6,7) dor  Auz (567) = Aus dor Aso
Aqo2 (3;2,5) dor  Aizo (35674) = A48 dor A149
Ayza(*) (3;2,4,7) dor  Aoar (1) = A9 dor A277
Agrs(*) (7:3,6,8) dor  A11r (183546)(27) = Aoz dor Aim1
Aqsa(*) (3:2,5,6) dor  Asa (34)(576) = A163 dor Ass
Aq73(*) (3:2,4,6) dor  A21s (34657) = A173 der A206
Asgr(*) (5;4,6,8) dor  Aisa (485) = A dor Ar63
Aq23 (4;3,6,8) der  Aie3 (4587) = A123 dor A154
Aqz1(*) (3:2,4,6) dor  As3 (4756) = A110 dor A61
A3zos (5:4,7,8) dor A2 (1876423) = A305 dor A221
Aga(¥)  (43,7,8),(6;5) dqor  Auas (568) = Ae6 der Aso
Azzo (5:4,7) dor  Aua (48675) = Ao dor Ass
Aoz (4;3,6) dor  Asa (387564) = Az7s dor Asa
Asos (652,5) dor  Aso (18)(24635) = A305 dor A7e
Az (*) (3;2,4,7) dor  As3 (47)(56) = A9 dor A61

(%) the direction of some arrow(s) is changed in a sink or source

D.4 Polynomial 4(2® + 2" — 2%+ 2° + 2% — 22 + 2 + 1)

op o~ op __ op op op __ op o~ op __ op o~ op
AQO s/s A41; A21 = A497 AQQ s/s A527 A27 s/s A277 A29 = A367 A37 s/s A377 Agg = A1227 Ago s/s A142; Agg
~ op A
s/s A106, Alps s/s A124

39



Ao (3:2,5) o Aoz (18765)(23) =  Aar dor Aor
A1 (2,1,4,5) dor Ago  (18)(2647)(35) = Aug der Ara2
Ay (5:2,7)  dor  Agr (178)(24536) =  Aa1 der Aor
Aga (2;1,4,5) dor  Asg (34) = As2 dor A122
Aso (2;1,4)  dor Ase (34) = Az dor A2
Asg (3;2,5)  dar Az (45) = A9 dor A1
A (6:5,7)  d& An (23)(678) = As7 dor Ao
Ag? (25 37 4) 5) dzr A124 (143)(78) = A37 d:;r A105
Ao (6;5,8) g Aios (67) = Agy dor Aog

D.5 Polynomial 4(2% + 27 — 25 + 22* — 22 + x + 1)

op ~ op __ op ~ op ~ op __ op __
Aoy sjs Asa, Ags = Avo1, Alyr s/s Aiss, Alls s/s Aisa, Alsy = Avae, Az = Aiss

A32 (57 3) 8) d:;r A24 (5687)

Asg (3;2,4,6) Jor A1z (18267)(345) = Aoy for A1s2
Az (3:2,5,6)  dor  Aror (13478)(26) = Ais2 dor A1s3
Aiss (6;3,8) for Aizo  (18)(27456) = Aisr dor Aiae
Aoz (654,8)  dar  Aior (67) = A121 der A153
Ao (251,4)  g& Aisz (18)(26547) = Auge der Aoz

D.6 Polynomial 4(2® + 27 — 225 + 22° + 223 — 222 + 2 + 1)

op _ op ~
Agt = Aq1g, Agg s/s A1ie

Ags (3;1,4) dor  Aos  (243)(56) = Aos der A116
Ags  (2:1),(43) dqor Aoz (12)(34) = A6 der A119

D.7 Polynomial 4(2® + 2% — 2% 4+ 22* — 2% + 22 + 1)

W s)s Arr, AL s Ave, ALy sis Ao, ALY o)s Ass, Apy = Asa, ASh s Ara, AgE = Agr, Agy s)s Aiss,
A3 s)s Ave2, AT04 /s A1se, ATla /s A120, ATSg s)s A1as, ATr s)s A1ss, Alss = Aiso, AThy /s A1sa, ATy
s/s A1s2, AThy = Aira, Aoy = Airs, ATng = Airr, Al s/s A193, ATgs sjs A207, ASs s/s Azos, Aoy s/s
Aggr, AShe = Assg, AShs = Aasr, Adbr o)s Aaoss, AgSe = Aoag, AShs oJs Aose, Ashy = Aare, Aok = Asou,
Ag?l = Asou, Aggg = Asss, A§§7 575 Asss, AgZQ 575 Aszys, A§§2 = Asro, Aggl = Ases, Agé’g = Asssg

Aqy (4;3,8) dor  Ale2 (45)(678) = A1 der A103
An (4;3,8),(6;5)  dor A2s1 (45)(68) = A1 dor A2
Ay (3;2,7) der  Aro2 (34)(567) = A6 der A207
Ags (5;4,8) der  A112 (576) = A6 dor A129
Ags (5:4,8),(7;6)  dor Aoos (56)(78) = A6 dor A239
Ay (3;2,7),(5:4,8)  dor  Asss (34)(57) = A6 dor A363
AL (2;1,3) dor  Asss (18)(27)(35) = Aso dor Aoor
AL (2;1,3),(5:6,7)  dor Aoz (18)(27)(3645) = Aao der A224
Ay (3:2,6) dor  Aoaz  (1827)(3645) = Ass dor A2se
Ay (5;4,8) der Az (56)(78) = Ass der A231
AL (6;3,7) dor  Aa3g (48765) = As dor A22s
Asy (6;4,8) dor  Aave (587) = Assq dor A273
Asy (3;2,7) dor  A226 (354)(67) = Asq dor A237
Asy (3;2,7),(6;4,8)  dqor  A2a0 (354)(67) = Asq dor A23s
Asg (*) (3;2,7,8) der  Aioa (4567) = A7 dor A136
Asg (5;4) dor A3 (458) = A7 dor A126
Ajo4 (4;3,7) dor  Ai29 (468) = A136 dor A112
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Ags (*) (5;4,7,8) dor  A17e (56)(78) = Ag7 dor A177
Agr (3;2) der  Agos  (18)(246375) = Ags der A20s
Aq7s (4;3,6) der  Aiss (45) = A177 dor A150
Azog (4;3,7,8) dor  A3zao (4576) = A208 dor A343
Agg (5, 6,7, 8) er A237 (17)(2635) = Agg er A226
Aqar (6;5,8) dor  A126 (15362478) = A1gs dor A143
A%, (2;1,3,8) der  Aass (18)(46) = Ai127 dor A24o
A13q (5;4,8) dor  Aszao (5876) = A134 dor Az43
Ayss (5:4,7) der  A103 (56) = Aig2 der A162
Ayss (3,2,6) dor Aszsz (1845)(2736) = Ais2 dor Aza2

Aq7a(*) (2:1,4,7) dor  Aas2 (134) = A1 dor A304
Adga (7:2,6) der  Az1 (38)(4657) = A304 dor Az24

Asz24(*) (2;1,4,6) der  Asee (134)(687) = A311 der A361
Ar7o (3;2,7) dor  Asel (34)(5867) = A175 dor A366
Ar7o (654,8) dor  Arso (18)(274356) = Airs qor Auss

Aqge(*) (3;2,6,8) dor  A363 (1625)(34) = A193 dor A333
Aszzr (2:1,4) dor  Ass2 (23) = Asss der A370
A3sa (2;1,5) dor  Asss (345) = A370 der A363
Asgg (2;1,5) dor Az (3465) = Asss der A311

(*) the direction of some arrow(s) is changed in a sink or source

D.8 Polynomial 4(z® + 2% — 225 + 42% — 223 + 22 + 1)
a5 /s Az0, AYg ss A1eo, ATer /s Arer, Agrg = Asoe

Aigr (2;1,6)  qor Ao (3456) = A1 dor Ai1s
Aug (554)  der Ans (56) = Az der Aieo
Aro(x)  (5:4,8) dqor Azoz  (576) = Aug dor Aors

(%) the direction of some arrow(s) is changed in a sink or source

D.9 Polynomial 5(z® + 2% + 2* + 22 + 1)

AR = Aug, AV s Ao, Agh = Ari, AJY o)s Ars, AL = Age, AQS s Ass, ALy = Aisg, ANy = Aira,
AR o7 Ates, Alvs = Aooa, ARy = Aone, AlRs /s A200, AThg s/s Aoz, Adby /s A201, ATy s/s Aazo,
ANy o) Aorg, ASVy o) Aote, Adby = Aoas, AR, Js Aosa, AJYy = Aora, Adlg = Ases, AShy = Aseo,
ARy &) Ao, Asey sis Aass, AdBy s)s Aags, Aoty sjs Aoz, Ager = Aosg1, Aoby = Asos, ARy /s Asgs,
Ajgy = Asio, A5gs = Asor, A3y s/s Asia, A3Ys = Asis, A3y = Asor, AS5, = Asas, Ahs = Asze, A3Ss s/
Asse, Ashy = Asas, ASYs = Asss, AShg = Asea, Ashe = Aseo, ASbq = Assr, ASE) o)s Asss, Ask, = Asr,
ASGy = Ases, ASe; = Asrs, Asgs = Asra, ASGy = Asrs, A3hy = Asrs, AShy = Assi, AShy = Asso,
Agsy = Asss, Asgg = Asoo, Agg = Asso

Agg (2;1,7) dor  A216  (18)(274635) = Aig dor A240
As1(*) (2;1,7) dor  Aogi (12)(678) = Ay dor A267
As1(x)  (21,7),(4;3,8)  dor  Aase (18)(27654) = Ago dor A2es

Asy (655) der  Aias (687) = Ago dor A159

A5 (6;5), (8;5) dor  Art (568) = Ap9 dor A5
Azg(*) (3;2,8) dor  Asis (1236)(78) = Ars dor A315

Azy (4;3) der  Az01 (1654)(2783) = Azs dor A201
Azg(¥) (2;1,7,8) der A0 (1834567) = A7 dor A1ma

Az (4;3) der  Aies (16548) = A7 dor Ates

Azs (4:3),(7;3) dor  As1 (17348) = A7 dor Aso
Azg(¥)  (2;1,7,8),(43) dor Aoe (1347) = A7 dor A2es



Aqr (6;4) dor  Ais1 (67) = Age dor A202

Aqr (5:4) dor  A140 (38765) = Age dor A174

Ags (2;1,6) dor  Aszz (1827)(3654) = As3 dor As2s

Ags (655) der  Aa212 (386)(475) = As3 der A220

Ag3 (7:5) dor  A216 (78) = Ag3 dor A214

Ag3 (6:5),(7;5) dor  As21 (378546) = Ag3 dor A327

Ag3 (4;3,8) dor  A203 (48765) = Ag3 dor A263

Ag3 (4;3,8),(6;5)  der  Assi (386)(475) = As3 der A3s3

Ag3 (4;3,8),(7;5)  der  Az00 (465)(78) = As3 der Ais3

Ag3 (2;1,6),(4;3,8) dor  Asso (18267)(35)

Ag3 (2;1,6),(7;5)  dqor Ass2  (23)(456)(78) = As3z dor Ass3
A5 (%) (2;1,6) dor  Asso (17)(264)(35) = Ais9 der Ass7
Ars(¥)  (251,6),(4;3,7)  dor  Asss (12)(47856) =  Ai59 der A3s6

Avso (8;2,7) der  Aiss (5768) = A174 dor A200
Ayes(*) (2;1,4) dor  Aszi (174385)(26) = Aies der A3sa

Aies (7:2) dor Aoz (17)(38)(456) = Aies dur A2e2

Aqrg (2;1,6) dor  A1gg (374856) = A204 dor A203

Aqrg (5;4,8) dor  Ases  (182637)(45) =  Az04 dor Asze2

Aqrg (7;6) dor  Ass1 (16358)(247) = Azos dor Aser

Az (3;2,7) der  Asrg (346758) = A219 dor A3so

Agi3 (8:3) dor  Arr (1) = A219 dor Ass

Azaz (3;2,6) dor  Assi (34)(5876) = A3 dor A4

Azaz (1;4) dor  Aszp (1827)(35)(46) = A223 dor Asz2s
Agza(*) (5;4,6,8) der  Ao2o3 (4685) = Aoss der A263

Aoy (8;5) dor  Ai7s (132) = A7 dor A204

Azsg (4;3,6) der  Aass (13247568) = A260 dor A261
Ao (*) (2;1,4,7) dor  Asas (134)(687) = A249 dor A3ss

Azeo (4;3) dor  Ai2s (34)(67) = A9 der A1s9

Aarg (3;2,5) dor  Aoar (18274536) =  Asz03 der A2ma

Azgs (3;2,5,7) dor  Aze1 (18)(267)(34) = Azg6 dor A2ss

Aggr (1;4) der  Ase2 (18)(2736) = A310 der A36s

A3zo6 (7:4,8) dor  Aes (15437268) = A3o7 dor A1

A3z1a (4;3) dor  Aiss (34) = A314 dor A200

A3zze (8:3,7) dor  Aszg (172846)(35) = A3z dor Az22
Asgo(*) (655,7) der  Aseo (148)(25) = A348 dor A3ag

Aseo (1;3) dor  Asos  (12)(48)(576) = Aszag dor Aso7

A3zge (7:2,6) dor  Ase2 (57) = A3es dor A36s

Aser (4;3,5) dor  Ars (18)(25)(3746) = Aszrs dor A204

Ases (8:3) dor  Aas3 (1827)(46) = As72 der A296

Aseo (5;4) dor  Asse  (132)(46758) = Asrs dor Asgo

Aseo (7;6,8) der Az (17428536) =  Asrs der As7s

A3e9 (4;3,7) dor  Aszsa (16)(287)(35) = Asrg dor A3

(%) the direction of some arrow(s) is changed in a sink or source

D.10 Polynomial 6(2® + 2% + 2° + 2 + 22 + 1)

op ~ op _ op _ op _ op _ o _ op _ op ~
15 s/s A1s, Agg = Agg, Alrg = A1sa, Agps = Ao11, Aggg = Aois, Aggy = Azgg, Agrg = Aogo, Azgg s/s
op __ op ~ op __ op __ op ~ op  __ op __
Asig, Aspo = Azos, Aspg s/s Azir, Agys = Asas, Aghy = Asoo, Aoy s/s Azas, Agy = Assg, Agy; = Asss,
op __ op __ op __
A376 - A3777 A3g4 - A3857 A387 - A391

ATE (2:1,3) dor Asa (28)(37)(46) = Ais der A17o
AT (21,3),(T:8)  dor Asso (12)(378)(46) = Ais dor A27o
A1ga (7:6,8) dor  A21s  (123658)(47) = Ai79 der A209
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Aggo (7, 1, 6)
A308 (5, 4, 7)
Ass (2;1,8)
Ass (2;1,8),(5:3)
A3g4 (4, 3, 6, 8)
A325 (2;1,4,8)
Aglla'Y (57 27 6)
AQll (3, 2, 8)
As05 (4;3,7)
Aszg (6;1,5)
A3g7 (4, 3, 7, 8)
Aggg (5, 4, 8)
Aszg0 (3;2,5)
A320 (7, 6, 8)

~
der
~
der
~
der
~
der
~
der
~
der
~
der
~
der
~
der
~
der
~
der
~
der
~
der

~
der

A3zog
Az
Asza3
Aszrr
A3zoo
Asza3
A3zas
Aszrr
Az
Assg
Aszrr
Aszgi
A3og
Asz19

(4657)
(1234)(67)
(124)(5678)
(17485)(326)
(34)
(1468)(23)(57)
(386547)
(142536)(78)
(16542738)
(476)
(1425786)
(186)(243)
(18)(267)(34)
(14725836)

S O R A A P A

A270 der Az00
A300 der A323
Ags der A313
Ags der A376
A3zgs der A308
A325 der A313
A309 der A3z2s
A205 der Asre
A211 der Asss
A331 dor Aza1
A391 der A3re
Ades der Aszgr
A31g dor As17
A3z20 der A200

D.11 Polynomial 6(2® + 27 + 22* + x + 1)

op _
A38 - A457

op __
A344 - A359

96 s/s A7z, ASD o)s Ast, ASt s)s Ass, Agy = Ars, Agh = An1s, Allg = A11a, AY7 = Aiss,
AR = Aisg, ALy = Aios, ATY o)s Aiea, AV = Auss, ATh, = Aigs, Alby = Aier, Al = Aigo,
14250 = Aigr, 14251 = Ajgu, f4g¥o = Az, 14358 = Ags, 14359 = Agea, 14350 = Aoz, 14355 = Aosa,
Aogsa, APy = Aoss, ALy = Aasr, Aty o) Aaga, A9y /s Aoga, Agkg = Asgs, ASh, = Asie, A = Asar,

Asg
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Ajog
Aty
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Aqis (4
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der
dzr
dzr
d,gr
der
der
dzr
dzr
d,gr
der
der
d:)/r
dzr
dzr
der
der
d:)/r
dzr
dzr
der
der
der
dzr
dzr
der
der
der
d:)/r
dzr

~
der

Aazz
Asy
Asg
Azzs
Azgg
Ay
Azog
Asg
Ays
Aqsg
Aasy
Aogr
Aqgr
Azsy
Aigo
Asy
Azs3
Aazs
Aogy
A3sg
Az
Aggg
Aszyr
Ay
Azzp
Agys
Aqzg
Ars
Ag2
Az
Aogy

(1728)(3645)
(18)(2536)(47)
(18)(27456)
(1537246)
(1524876)
(1845)(2736)
(185)(26)(37)
(123)(578)
(1728)(36)(45)
(134)

(1)
(16347258)
(1432)(687)
(58)(67)
(134)
(57)
(24)(35)
(17)(246358)
(1638257)
(123)(67)
(146532)
(5687)
(123)(45)(687)
(17436)(285)
(1837)(25)(46)
(134)
(67)
(387654)
(35)(46)
(164)(253)
(145632)

S I O 0 | A P A

Ass der A230
Aszg der Aso
Ase der A73
Ag2 der A2s1
A7s der A2gg
At14 der A1ss
A108 der A24g
A108 der Aas
Ag7 dor Ass
A188 der A145
A73 der A2s9
As6 der A2s6
A13g der A1so
A195 der A292
Ai95 der Ar97
A19s der Aso
At64 der A2ss
At64 dor A2s1
Ai98 der A256
A167 der Azaa
A3zs9 der A217
A344 dor A13s
A190 der Az3e
A347 dor Ar6a
A194 dor A233
Aggs dor Aosa
Adpy der A195
Adgy dor As2
A316 dor Ars
A316 der A217
A316 der A204
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(%) the direction of some arrow(s) is changed in a sink or source

D.12 Polynomial 8(a® + 227 + 22* 4+ 2z + 1)

op ~
Ag]_ s/s AlOl

[Aor (6:5,8) dor Aior (5786) |

D.13 Polynomial 8(2% + 27 + 2% + 22* + 22 + 2 + 1)

op __ op __ op __ op __ op __ op __ op __ op  _

A59 - A637 A64 — A827 A79 - A817 A130 - A1687 A236 - A2887 A244 — A2717 A250 — A2597 A269 — A3017
op __ op  _

A329 - A3347 A330 - A332

Asg (653,8) der  Aea (1745628) = A3 dor As2
Ag3 (4;2,8) dor  Asss (123)(45)(678) = Asg dor A2se
Arg (2;1,6) der  Azso (1827)(35)(46) = As1 der A2s9
Aoy (3;2,5) dor  Aosg  (18)(273645) = Aa7i der A250
Aazgg (6;1,5) dor  A236 (1735428) = A301 der A2ss
Aszzo (6;3,7) der  A130 (1) = As32 der A1es
Aszzy (1;3,5) der  Ates (1423) = A329 dor A130
A79 (2;1,6),(4;3) der  Asao (1827)(35) = Agi der As32
Asz  (4:2,8),(6:5) dor  Asza  (18)(2645)(37) = Asg der As29
Aga (2;1,4) dor  As2 (134)
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