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ZHU’S ALGEBRAS, C2-ALGEBRAS AND ABELIAN

RADICALS

BORIS FEIGIN, EVGENY FEIGIN AND PETER LITTELMANN

Abstract. This paper consists of three parts. In the first part we prove
that Zhu’s and C2-algebras in type A have the same dimensions. In the
second part we compute the graded decomposition of the C2-algebras
in type A, thus proving the Gaberdiel-Gannon’s conjecture. Our main
tool is the theory of abelian radicals, which we develop in the third part.

Introduction

The theory of vertex operator algebras plays a crucial role in the math-
ematical description of the structures arising from the conformal field the-
ories. In particular, the representation theory of VOAs allows one to study
correlation functions, partition functions and fusion coefficients of various
theories (see [BF], [LL], [K2]). The Zhu’s and C2-algebras are powerful tools
in the representation theory of vertex operator algebras.

Let V be a vertex operator algebra. In [Z] Zhu introduced certain associa-
tive algebra A(V) attached to V, which turned out to be very important for
the representation theory of V. In particular, the rationality of V is conjec-
tured to be equivalent to finite-dimensionality and semi-simplicity of A(V).
Moreover, for rational VOAs the representations of the vertex algebra and
of the Zhu’s algebra are in one-to-one correspondence.

There is another algebra (also introduced in [Z]) one can attach to V.
This commutative (Poisson) algebra is called the C2-algebra and is de-
noted by A[2](V) (we follow the notations from [GG], [GabGod]). The
C2-algebra as a vector space is the quotient of V by its C2-subspace. The
finite-dimensionality condition of A[2](V) (which is called the C2-cofiniteness
condition) is a very important characterization of V ([ABD], [CF], [DM],
[M1],[M2]). In particular, it implies that the number of isomorphism classes
of irreducible V-modules is finite and their characters have certain modular
properties. We note however that finite-dimensionality of the C2-algebra
does not mean that V is rational (see [GK]).

The algebras A(V) and A[2](V) are very closely related. It has been shown
in many examples that the Zhu’s and C2-algebras have the same dimensions
and the former can be regarded as a non-commutative deformation of the
latter. But there are also examples where the equality of dimensions does
not hold. Note that these two algebras can be included into the larger family
of spaces and thus be defined in a uniform way (see [GabGod], [GG]). One
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of the special features of the A[2](V) (compared with Zhu’s algebra) is that
the C2-algebra comes equipped with the special grading, induced by the
conformal weights (energy) grading on V. Thus A[2](V) =

⊕
m≥0 Am

[2](V).

The spaces Am
[2](V) play the central role in this paper.

In this paper we are only interested in the case of vertex-operator algebras,
associated with affine Kac-Moody algebras on the integer level (see [K2],
[BF]). So let g be a simple Lie algebra, ĝ be the corresponding affine Kac-
Moody Lie algebra (see [K1]). For any non-negative integer k (which is
called the level) we denote by V(g; k) the vertex operator algebra associated
with ĝ on the level k. In particular, as a vector space, V(g; k) is isomorphic
to the level k basic (vacuum) representation Lk of ĝ. It is proved in [FZ]
that the corresponding Zhu’s algebra is isomorphic to the quotient of the
universal enveloping algebra U(g) by the two-sided ideal generated by the
power of the highest root eθ:

A(V(g; k)) = U(g)/〈ek+1
θ 〉.

The C2-algebra A[2](V(g; k)) is the quotient of Lk by the subspace, spanned

by the vectors (a⊗t−n)v, where a ∈ g, n ≥ 2 and v ∈ Lk. In particular, each
space Am

[2](V(g; k)) is equipped with the structure of a g-module. One can see

from the definition that A[2](V(g; k)) is the quotient of the symmetric algebra

S(g) ≃ S(g ⊗ t−1) by some ideal. Therefore, it is a very natural question
to ask whether the dimensions of Zhu’s and C2-algebras do coincide. The
answer is believed to be positive in many cases (though to the best of our
knowledge is not proved outside the level 1 case). Note however that for g

of the type E8 the answer is negative (see [GG]).
We show that if g is of type A, then the C2-algebra is a degeneration of the

Zhu’s algebra exactly like S(g) is the degeneration of U(g). We also prove
the conjecture from [GG], computing the structure of each Am

[2](V(g; k)) as

g-module (see also [F] for the affine version in type A1).
Our approach is based on the following observation: let ωn be the ”mid-

dle” (in the standard Bourbaki numeration [B]) fundamental weight of the
Lie algebra gl2n. The representation V (kωn) is equipped with the structure
of a sln-module via the embeddings

sln →֒ gln →֒ gln ⊕ gln →֒ gl2n

(the first embedding is trivial, the second is the diagonal one and the last
embedding comes from the identification of gln⊕gln with the Levi subalgebra
of the parabolic subalgebra pn ⊂ gl2n corresponding to ωn). We construct
an isomorphism of sln-modules (not of algebras)

V (kωn) ≃

k⊕

i=0

A[2](V(sln; i),
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We derive the graded decomposition of the C2-algebras by describing
V (kωi) as a representation of enveloping algebra of nilpotent radical of p,
which is isomorphic to the symmetric algebra S(gln).

The paper is organized as follows:
In Section 1 we fix the main definitions and prove that the dimensions of

Zhu’s and the C2-algebras coincide in type A. The main tool is a deformation
argument.

Knowing the dimension formula, in Section 2 we compute the graded
decomposition of A[2](V(sln; k)) as sln-module.

In Section 3 we discuss some properties of abelian radicals and spherical
representations used in the sections before. This discussion is independent
of the type of the algebra and should be helpful to generalize the arguments
to other groups of classical types. We work out explicitly the type A case.

1. Zhu’s and C2-algebras in type A

1.1. Definitions. Let g be a simple Lie algebra. Let θ be the highest root
of g and let eθ ∈ g be a highest weight vector in the adjoint representation.
Fix a non-negative integer k. Let P+

k (g) be the set of level k integrable g

weights, i.e the set of dominant integral g weights β satisfying (β, θ) ≤ k.
We denote by V (β) the irreducible g-module with highest weight β. The
following Theorem is proved in [FZ]:

Theorem 1.1. The level k Zhu’s algebra A(g; k) is the quotient of the uni-

versal enveloping algebra U(g) by the two-sided ideal generated by ek+1
θ :

A(g; k) = U(g)/〈ek+1
θ 〉.

In addition, one has the isomorphism of g-modules:

A(g; k) ≃
⊕

β∈P+

k
(g)

V (β) ⊗ V (β)∗.

The form of the description of A(g; k) arises ultimately because of the
Peter-Weyl Theorem.

Notation 1.2. Let S(g) =
⊕∞

m=0 Sm(g) be the symmetric algebra of g. For
v ∈ Sm(g) and a ∈ g let av ∈ Sm+1(g) be the product in the symmetric
algebra. The adjoint action on g makes each homogeneous summand Sm(g)
into a g-module. For v ∈ Sm(g) and a ∈ g we denote by a ◦ v ∈ Sm(g) the
adjoint action of a.

The C2-algebra associated with V(g; k) can be described as follows. The
level k C2-algebra A[2](g; k) is the quotient of the symmetric algebra S(g)

by the ideal generated by the subspace Vk+1 = U(g) ◦ ek+1
θ →֒ Sk+1(g):

A[2](g; k) = S(g)/〈Vk+1〉.
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Remark 1.3. The subspace Vk+1 →֒ Sk+1(g) is isomorphic to the irreducible
g-module V ((k + 1)θ) of highest weight (k + 1)θ. The algebra A[2](g; k) is
naturally a g-module, the module structure being induced by the adjoint
action. Note that A[2](g; k) is not a g ⊕ g-module, differently from A(g; k).

Consider the standard filtration F• on the universal enveloping algebra
U(g), such that gr•F ≃ S(g). Let F•(k) be the induced filtration on the
quotient algebra A(g; k). We have an obvious surjection

(1.1) A[2](g; k) → gr•F (k).

Therefore, we have a surjective homomorphism of g-modules

(1.2) A[2](g; k) → A(g; k)

and thus dimA[2](g; k) ≥
∑

β∈P+

k
(g)(dim V (β))2. A natural question is:

when does this inequality turn into an equality? In this paper we are also in-
terested in the degree grading on A[2](g; k) and in the corresponding graded
decomposition into the direct sum of g-modules. Let

S(g) =
⊕

m≥0

Sm(g)

be the degree decomposition of the symmetric algebra. This decomposition
induces the decomposition of the C2-algebra:

(1.3) A[2](g; k) =
⊕

m≥0

Am
[2](g; k).

Each space Am
[2](g; k) is naturally a representation of g. Our main question

is as follows: Find the decomposition of Am
[2](g; k) into the direct sum of

irreducible g-modules. The conjectural answer in type A is given in [GG].
We prove the conjecture in the next sections.

1.2. Comparing dimensions in type A. In what follows we restrict our-
selves to the case g = sln. So we omit g in the notation of Zhu’s and
C2-algebras:

A(k) = A(sln; k), A[2](k) = A[2](sln; k), Am
[2](k) = Am

[2](sln; k).

It turns out that it is very convenient to consider the algebras sln and gln and
their representations simultaneously. We fix some notation: let ω1, . . . , ωn−1

be the fundamental weights for sln and let ωn be the additional fundamental
weight for gln. For a partition λ = (λ1 ≥ · · · ≥ λn) with λi ∈ Z, λn ≥ 0 we
denote by V (λ) the corresponding gln-module of highest weight:

(λ1 − λ2)ω1 + . . . + (λn−1 − λn)ωn−1 + λnωn.

(We note that V (λ) can be obtained by applying the Schur functor Sλ to
the standard gln-module V , see for example [FH], §6). For a partition
β = (β1 ≥ · · · ≥ βn−1), βi ∈ Z, βn−1 ≥ 0 let V (β) be the corresponding
sln-module of highest weight.

(β1 − β2)ω1 + · · · + (βn−2 − βn−1)ωn−2 + βn−1ωn−1.
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We have the following restriction isomorphism

(1.4) V (λ1, . . . , λn)|sln ≃ V (λ1 − λn, . . . , λn−1 − λn).

Note also that

P+
k = P+

k (sln) = {(β1, . . . , βn−1) : β1 ≤ k}.

Our goal is to prove the following theorem:

Theorem 1.4. A[2](k) and A(k) are isomorphic as sln-modules.

Because of (1.2), it is enough to prove that

(1.5) dim A[2](k) ≤
∑

β∈P+

k

(dim V (β))2.

In what follows we denote by V the n-dimensional vector representation of
sln. Let gln−1 →֒ sln be the standard embedding, i.e. A ∈ gln−1 is mapped
onto the matrix (

A 0
0 −a

)
∈ sln

where a = Tr (A) is the trace of A. We denote by U the standard (n − 1)-
dimensional vector representation of gln−1. Then

(1.6) sln ≃ U ⊕ gln−1 ⊕ U∗.

To be precise, the actions on U and U∗ are twisted by one-dimensional rep-
resentations given by the characters Tr and −Tr. But since these actions are
not important for the subsequent dimension counting, we omit to mention
them explicitly. Note also that

gln−1 ≃ gl(U) ≃ U ⊗ U∗, V ≃ U ⊕ C.

We introduce an “intermediate” algebra B(k). In the following we often
identify S(sln) with the symmetric algebra S(U ⊕ gln−1 ⊕ U∗). Since

U ⊗ V ∗ ≃ U ⊕ U ⊗ U∗ ≃ U ⊕ gl(U),

we have embeddings

(1.7) ı : Sk+1(U)⊗Sk+1(V ∗) →֒ Sk+1(U⊕gl(U)) →֒ Sk+1(U⊕gl(U)⊕U∗).

Similarly, we have embeddings
(1.8)

ı∗ : Sk+1(U∗) ⊗ Sk+1(V ) →֒ Sk+1(gl(U) ⊕ U∗) →֒ Sk+1(U ⊕ gl(U) ⊕ U∗).

Definition 1.5. Define the algebra B(k) as the following quotient:

B(k) = S(U⊕gl(U)⊕U∗)/〈ı(Sk+1(U)⊗Sk+1(V ∗)), ı∗(Sk+1(V )⊗Sk+1(U∗))〉.

Remark 1.6. Let J = 〈Vk+1〉 ⊂ S(g) be the ideal defining A[2](k). We are
going to define a new grading on S(sln). Combining the results below, one
can view the algebra B(k) as the quotient of the symmetric algebra S(sln)
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by the ideal J̃ obtained from J by the method of the associated cone with
respect to this new grading. The new ideal is stable under the Levi subgroup

(1.9) L = GLn−1 ⊂ SLn, g 7→

(
g 0
0 (det g)−1

)

so B(k) admits an L-action. The advantage of the new ideal is the following:

Lemma 1.7. B(k) admits a GLn−1×GLn−1-action which, restricted to the
diagonally embedded L, is isomorphic to the action of L on B(k) induced by
the adjoint action of L on sln.

Proof. The canonical linear map sln → k = {A = (ai,j) ∈ Mn | an,n = 0}
given by (

A B
C −Tr(A)

)
7→

(
A B
C 0

)

is an isomorphism of L-representations. Now k admits an obvious L × L-
action: (ℓ1, ℓ2) ◦ A := ℓ1Aℓ−1

2 , which, restricted to the diagonal L gives
back the adjoint action. The L ×L-action also respects the decompositions
k = U ⊕ gl(U) ⊕ U∗ = U ⊕ V ⊗ U∗ = U ⊗ V ∗ ⊕ U∗ and hence

B(k) ≃ S(k)/〈Sk+1(U) ⊗ Sk+1(V ∗), Sk+1(V ) ⊗ Sk+1(U∗)〉

admits an L × L action with the desired properties. �

Lemma 1.8. dim A[2](k) ≤ dim B(k).

Proof. We prove our lemma by introducing a certain grading on A[2](k) and
keeping only the highest degree terms of the relations. We then show that
the resulting space of relations contains the relations of B(k).

We have on S(sln) = ⊕∞
m=0S

m(sln) the standard degree grading. We
introduce a new grading called the UU∗-grading, by setting

(1.10) sln = (sln)0 ⊕ (sln)1, (sln)0 = U ⊕ U∗, (sln)1 = gln−1.

This decomposition into degree zero and degree one elements induces the
UU∗-grading on the symmetric algebra

S(sln) =
⊕

l≥0

Sl(sln).

For an element f ∈ S(sln) let f =
∑p

j=0 fj, fp 6= 0 be a decomposition of f

into its homogeneous parts (with respect to the UU∗-grading), and denote
by grUU∗f := fp its homogeneous part of highest degree.

For a subspace I →֒ S(sln) let Ĩ be the subspace spanned by the highest
degree parts of the elements in I:

Ĩ = 〈grUU∗f | f ∈ I〉.

If I is an ideal, then so is Ĩ . Moreover, if I is homogeneous with respect to
the standard degree grading, then so is Ĩ, and for any m ≥ 0 we have:

(1.11) dim(S(sln)/I)m = dim(S(U ⊕ gl(U) ⊕ U∗)/Ĩ)m.
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The upper index m is used to denote the (standard) degree grading of the
quotient space. We are going to apply the procedure above to the ideal of
relations of the algebra A[2](k).

Recall that A[2](k) = S(sln)/〈Vk+1〉. Because of (1.11), Lemma 1.8 follows
from the statement that the generators

ı(Sk+1(U) ⊗ Sk+1(V ∗)), ı∗(Sk+1(V ) ⊗ Sk+1(U∗))

of the ideal of relations of B(k) are contained in Ṽk+1. Let us show that

(1.12) ı(Sk+1(U) ⊗ Sk+1(V ∗)) →֒ Ṽk+1

(the arguments for the second subspace of relations of B(k) are similar, see
Remark 1.9 for more details). Let

φj : Sk+1(U) ⊗ Sj(U∗) →֒ Sk+1(U) ⊗ Sk+1(V ∗), j = 0, . . . , k + 1

be the embedding coming from the decomposition

Sk+1(V ∗) ≃ Sk+1(U∗ ⊕ C) =

k+1⊕

j=0

Sj(U∗).

Let us show that

(1.13) ıφj(S
k+1(U) ⊗ Sj(U∗)) →֒ (Ṽk+1)j

(the j-th UU∗-degree part of Ṽk+1). We start with j = 0. Note that since

eθ ∈ U , the power ek+1
θ belongs to (Ṽk+1)0. Since the UU∗-grading on S(sln)

is gln−1 invariant, we obtain

ıφ0(S
k+1(U)) →֒ (Ṽk+1)0.

Note: by definition, ek+1
θ ∈ Vk+1 and hence ıφ0(S

k+1(U)) →֒ Vk+1. So in

the following we just write Sk+1(U)) →֒ Vk+1. Now let us prove (1.13) for
j = 1, . . . , k + 1. Let u∗

1, . . . , u
∗
j be some elements of U∗ →֒ sln. Then for

any u1 . . . uk+1 ∈ Sk+1(U) ⊆ Vk+1 we have

(1.14) [u∗
j , [u

∗
j−1, . . . , [u

∗
1, u1 . . . uk+1] . . . ] ∈ Vk+1.

The highest UU∗-degree term of (1.14) is equal to

(1.15)
∑

1≤i1<···<ij≤k+1

u1 . . . ui1−1[u
∗
1, ui1 ] . . . [u

∗
j , uij ]uij+1 . . . uk+1,

because [U∗, U ] ⊆ gln−1 = (sln)1 and [U∗, gln−1] = U∗ →֒ (sln)0. It is easy
to see that the linear span of the elements (1.15) (for all ui ∈ U and u∗

i ∈ U∗)
coincides with ıφj(S

k+1(U) ⊗ Sj(U∗)). Therefore

ıφj(S
k+1(U) ⊗ Sj(U∗)) →֒ (Ṽk+1)j

which finishes the proof of the lemma. �
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Remark 1.9. In order to prove the inclusion

(1.16) ı∗(Sk+1(U∗) ⊗ Sk+1(V )) →֒ Ṽk+1

one starts with the element fk+1
θ (fθ ∈ sln is the lowest weight vector) and

introduce the embeddings

φ∗
j : Sk+1(U∗) ⊗ Sj(U) →֒ Sk+1(U∗) ⊗ Sk+1(V ), j = 0, . . . , k + 1.

Then Ṽk+1 =
⊕k+1

j=0(Ṽk+1)j , where

(Ṽk+1)j = ıφj(S
k+1(U) ⊗ Sj(U∗))⊕ ı∗φ∗

j(S
k+1(U∗)⊗ Sj(U)), j = 0, . . . , k

and

(Ṽk+1)k+1 = ıφk+1(S
k+1(U) ⊗ Sk+1(U∗)) = ı∗φ∗

k+1(S
k+1(U∗) ⊗ Sk+1(U)).

In what follows we often consider quotient algebras of the type

S(W1 ⊗ W2)/〈S
k+1(W1) ⊗ Sk+1(W2)〉.

In Section 3 (see subsection 3.3) we describe the gl(W1) ⊕ gl(W2)-module
structure of this algebra explicitly, see also [DEP]. Below we give the de-
scription in three special cases: W1 = W2 = U ; W1 = U , W2 = V ∗ and
W1 = V , W2 = U∗.

For a partition λ let U(λ) (resp. V (λ)) be the irreducible gln−1- (resp.
gln-) module with highest weight λ. Then

S(U ⊗ U∗)/〈Sk+1(U) ⊗ Sk+1(U∗)〉 ≃
⊕

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

U(λ) ⊗ U(λ)∗,(1.17)

S(U ⊗ V ∗)/〈Sk+1(U) ⊗ Sk+1(V ∗)〉 ≃
⊕

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

U(λ) ⊗ V (λ)∗,(1.18)

S(V ⊗ U∗)/〈Sk+1(V ) ⊗ Sk+1(U∗)〉 ≃
⊕

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

V (λ) ⊗ U(λ)∗.(1.19)

Proposition 1.10. dim B(k) ≤
∑

β∈P+

k
(dim V (β))2.

Proof. We regard B(k) as a L × L-module, recall that sln decomposes as

sln = U ⊗ U∗ ⊕ U ⊗ Cdet ⊕ Cdet−1 ⊗ U∗.

Here Cdet and Cdet−1 denote the one-dimensional representations given by
the determinant respectively its inverse. In the following we omit to indicate
the twists by these characters since they are not relevant for the dimension
counting. Let B0(k) →֒ B(k) be the subalgebra generated by gln−1 ≃ U⊗U∗.
Since the subspace

Sk+1(U) ⊗ Sk+1(U∗) →֒ Sk+1(gln−1)
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is sitting inside the space of relations of B(k), there exists an embedding of
L × L-modules

(1.20) B0(k) →֒
⊕

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

U(λ) ⊗ U(λ)∗.

We have a surjective homomorphism of L × L-modules

(1.21) S(U) ⊗ B0(k) ⊗ S(U∗) → B(k).

By (1.20), we obtain the L × L-equivariant surjection

(1.22)
⊕

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

S(U) ⊗ (U(λ) ⊗ U(λ)∗) ⊗ S(U∗) → B(k).

In the following we write µ � λ for µ is larger and in between λ, i.e.:

µ � λ ⇔ µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ . . . ≥ µn−1 ≥ λn−1,

and we write |λ| for the sum
∑

i λi. By the Pieri formula (see for exam-
ple [FH], Appendix A) the left hand side of (1.22) is, as L × L-module,
isomorphic to the direct sum

(1.23)
⊕

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

⊕

µ,ν�λ

U(µ) ⊗ U(ν)∗.

Because of the relations in B(k), not all the tensor products as in (1.23) do
really appear in the decomposition of B(k) as L×L-module. In fact, (1.18)
and (1.19) imply that if U(µ) ⊗ U(ν)∗ appears in B(k) (up to twists by a
character), then µ and ν are restricted by µ1 ≤ k and ν1 ≤ k. Thus our
proposition follows from the equality

(1.24)
∑

β∈P+

k

(dim V (β))2 =
∑

λ: k≥λ1

∑

k≥µ1,ν1

µ,ν�λ

dim U(µ) dim U(ν)∗,

which is going to be proved in the following lemma. �

Lemma 1.11. The equality in (1.24) holds.

Proof. We decompose each V (β) and V (β)∗ into the direct sum of gln−1-
modules following the Gelfand-Tseitlin rule (see [GT]) and keep in mind the
embedding of L = GLn−1 in SLn (see (1.9)). Thus our lemma is equivalent
to the following equation (again we omit twists by characters):

(1.25)
∑

β=(β1≥···≥βn−1)
k≥β1,βn−1≥0

∑

µ,ν�β

dim U(µ) dim U(ν)∗

=
∑

λ=(λ1≥···≥λn−1)
k≥λ1, λn−1≥0

∑

µ̄,ν̄�λ
µ̄1,ν̄1≤k

dim U(µ̄) dim U(ν̄)∗.
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To prove the latter we use the bijection between the parameter sets

(β, µ, ν) 7→ (λ, µ̄, ν̄),

λi = k − βn−i−1, µ̄i = k − µn−1−i, ν̄i = k − νn−1−i.

�

Corollary 1.12. A(k) and A[2](k) are isomorphic as sln-modules.

Proof. We have

∑

β∈P+

k

(dim V (β))2 = dim A(k) ≤ dim A[2](k)

≤ dimB(k) ≤
∑

β∈P+

k

(dim V (β))2.

Hence dimA(k) = dimA[2](k), which by (1.2) implies the corollary. �

Proof. (of Theorem 1.4) The theorem is a consequence of Corollary 1.12. �

As another consequence we get: the inequality dimS(sln)/〈Ṽk+1〉 ≤ dim B(k)
in the proof of Lemma 1.8 is an equality and hence, as claimed in Remark 1.6:

Corollary 1.13. B(k) = S(sln)/〈Ṽk+1〉.

Corollary 1.14. dimAm
[2](k) = dim Bm(k) for all m ≥ 0.

2. The graded decomposition of A[2](k)

In this section we compute the graded decomposition of C2-algebras, thus
proving the conjecture of [GG].

Definition 2.1. We define the algebra C(k) as follows:

C(k) = S(V ⊗ V ∗)/〈Sk+1(V ) ⊗ Sk+1(V ∗)〉

Remark 2.2. Let Ea,b ∈ gln be the standard matrix unit. Identifying V ⊗V ∗

with gl(V ) we can describe the subspace Sk+1(V ) ⊗ Sk+1(V ∗) as the linear
span of the monomials of the form

∑

σ∈Sk+1

Ei1,jσ1
Ei2,jσ2

. . . Eik+1,jσk+1
,

1 ≤ i1 ≤ · · · ≤ ik+1 ≤ n, 1 ≤ j1 ≤ · · · ≤ jk+1 ≤ n,

where the sum is taken over the permutation group Sk+1.

Remark 2.3. Using the identification in Lemma 1.7, we see that with respect
to the embeddings L = GLn−1 ⊂ SLn ⊂ GLn we have: B(k) ≃ C(k)/〈En,n〉,
also as a L × L-module.



ZHU’S ALGEBRAS, C2-ALGEBRAS AND ABELIAN RADICALS 11

The standard degree grading Sm on the symmetric algebra induces a
grading on C(k):

C(k) =
⊕

m≥0

Cm(k).

Recall that we have the decomposition with respect to the action of gln⊕gln:

(2.1) C(k) ≃
⊕

λ=(λ1≥···≥λn)
k≥λ1, λn≥0

V (λ) ⊗ V (λ)∗.

Moreover, using the Cauchy formula (see for example [P], §9) for Sm(V ⊗V ∗)
we see:

(2.2) Cm(k) ≃
⊕

λ: k≥λ1, λn≥0
λ1+···+λn=m

V (λ) ⊗ V (λ)∗.

We will extract the information about Am
[2](k) from (2.2).

Let sln →֒ gln be again the standard embedding. As sln-module (adjoint
action) the Lie algebra gln ≃ V ⊗ V ∗ decomposes as

(2.3) gln = sln ⊕ Cc,

where Cc is trivial one-dimensional module with fixed non-trivial vector c
(say, c ∈ V ⊗V ∗ is the identity operator). The algebra C(k) is by construc-
tion a S(gln)- as well as a S(sln)-module. For i ≥ 0 let Di ⊂ C(k) be the
S(sln)-submodule of C(k) generated ci:

Di = S(sln) · ci ⊂ C(k).

Lemma 2.4. The canonical surjective map S(sln) → D0 ⊂ C(k), f 7→ f ·1,
induces a surjective homomorphism A[2](k) → D0 of sln-modules.

Proof. By definition, the image of S(sln) in C(k) is D0. Now eθ = E1,n and

by Remark 2.2 ek+1
θ ∈ Sk+1(V ) ⊗ Sk+1(V ∗), which proves the lemma. �

In general the following proposition holds.

Proposition 2.5. For all i = 0, 1, . . . , k we have a surjective homomorphism
of sln-modules

A[2](k − i) →
i∑

j=0

Dj

/
i−1∑

j=0

Dj

and Dk+1 →֒
∑k

j=0 Dj.

Proof. It suffices to show that for any 0 ≤ i ≤ k + 1 the following is true in
the symmetric algebra S(V ⊗ V ∗):

(2.4) ek+1−i
θ ci ∈ Sk+1(V ) ⊗ Sk+1(V ∗) +

i−1∑

l=0

Dl.
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Let Ea,b ∈ gln be the matrix with entries (δi,aδb,j)1≤i,j≤n. Note that

eθ = E1,n, c =
n∑

a=1

Ea,a.

We first write

(2.5) ek+1−i
θ ci =


(c − nEn,n)i +

i−1∑

j=0

ni−j

(
i

j

)
(c − nEn,n)jEi−j

n,n


 Ek+1−i

1,n .

Let us show that for any j = 0, . . . , i − 1

(2.6) Ei−j
n,n Ek+1−i

1,n ∈ Sk+1(V ) ⊗ Sk+1(V ∗) +
i−1∑

l=0

Dl.

For the j = 0 term (because of Remark 2.2) we have

Ei
n,nEk+1−i

1,n ∈ Sk+1(V ) ⊗ Sk+1(V ∗).

Note that since E1,n ∈ sln the general j case of (2.6) follows from the
statement that for any p ≥ 0

(2.7) Ep
n,n ∈ S(sln)span{1, c, . . . , cp}

We prove (2.7) by induction on p. For any α = 1, . . . , n we have

Ep
n,n − Ep−1

n,n Eα,α = Ep−1
n,n (En,n − Eα,α).

By induction assumption Ep−1
n,n ∈ S(sln)span{1, c, . . . , cp−1} and thus sum-

ming up over all α

nEp
n,n − cEp−1

n,n ∈ S(sln)span{1, c, . . . , cp−1}.

Using the induction assumption again we arrive at

Ep
n,n ∈ S(sln)span{1, c, . . . , cp}.

This finishes the proof of the proposition. �

Recall (see (3.1)) that C(k) is isomorphic to the gl2n-module

V (k, . . . , k︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

).

We endow C(k) with a structure of sln-module via the chain of embeddings

sln →֒ gln →֒ gln ⊕ gln →֒ gl2n.

Here the first embedding is the standard one, the second is the diagonal
embedding and the last one comes from the isomorphism of gln⊕gln and the
Levi subalgebra of gl2n, corresponding to ωn (Ei,j ⊕Ek,l 7→ Ei,j +En+k,n+l).
So in what follows we consider C(k) equipped with this structure of sln-
module.
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Theorem 2.6. We have an isomorphism of sln-modules

C(k) ≃

k⊕

i=0

A[2](k − i).

Moreover,

Cm(k) ≃

min(m,k)⊕

i=0

Am−i
[2] (k − i).

Proof. Because of Lemma 2.4 and Proposition 2.5 it suffices to prove that

k∑

j=0

dim A[2](j) = dim C(k).

Because of Corollary 1.12 this is equivalent to

k∑

j=0

dim A(j) = dimC(k).

Recall that

(2.8) dimC(k) =
∑

λ=(λ1≥···≥λn)
k≥λ1, λn≥0

(dim V (λ))2

=

k∑

λn=0

∑

β=(λ1−λn,...,λn−1−λn)

(dim V (β))2,

where V (β) in the last line are irreducible sln-modules. We note that if
βi = λi − λn as above, then the sln-module V (β) and gln-module V (λ) are
isomorphic as vector spaces. Note also that if λn is fixed, the restriction
k ≥ λ1 turns into β1 ≤ k − λn. Therefore, (2.8) can be rewritten as

dim C(k) =

k∑

λn=0

dimA(k − λn),

which proves the theorem. �

Corollary 2.7. We have an isomorphism of sln-modules

Am
[2](k) ≃ Cm(k)/Cm−1(k − 1).

Corollary 2.8. We have an isomorphism of sln-modules

Am
[2](k) =

⊕
λ: k≥λ1, λn≥0
λ1+···+λn=m

V (λ) ⊗ V (λ)∗

⊕
λ: k−1≥λ1, λn≥0
λ1+···+λn=m−1

V (λ) ⊗ V (λ)∗
,

where the gln-module V (λ) is regarded as the sln-module with the highest
weight (λ1 − λn, . . . , λn−1 − λn).
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Corollary 2.8 is a restatement of the Conjecture of Gaberdiel and Gannon
(see [GG], formulas (4.4) and (4.5)). Recall that, despite the suggesting
formula, Am

[2](k) is not a sln ⊕ sln-module.

3. Abelian radicals and spherical modules

Let G be a simple simply connected algebraic group with Lie algebra g.
We fix a Borel subgroup B with Lie algebra b and a maximal torus T ⊂ B
with Lie algebra t. Let Φ be the root system and let Φ+ be the set of positive
roots and ∆ the set of simple roots corresponding to the choice of b.

Let p be a maximal standard parabolic subalgebra of the simple Lie al-
gebra g, i.e. p contains the fixed Borel subalgebra b. Then p is completely
determined by the only simple root α such that the root space g−α is not
contained in p, we call α the simple root associated to p.

Let p = l⊕m be a Levi decomposition, i.e. l is a reductive Lie subalgebra
containing l and m is the nilpotent radical of p.

Let P be the corresponding maximal parabolic subgroup of G with Levi
decomposition P = LP u, L ⊃ T . Then L and l act on m via the adjoint
action.

The opposite parabolic subalgebra is denoted by p−. Let p− = l⊕m− be
its Levi decomposition, then m− ≃ m∗ as L-module.

3.1. Certain annihilators. Corresponding to the choice of a maximal par-
abolic and its associated root α let ω be the associated fundamental weight.
Let n be the nilpotent radical of b and let n− be the nilpotent radical of the
opposite Borel subalgebra b−.

We define a Z-grading on the root system Φ by setting for the simple roots
degα = 1 and deg γ = 0 for γ 6= α. Let g =

⊕
j∈Z

gj be the corresponding
Z-grading, then

l = g0, p =
⊕

j≥0

gj m =
⊕

j≥1

gj and m− =
⊕

j≤−1

gj

We choose a basis X−β ∈ g−β, β ∈ Φ+, of root vectors for n−. Fix a highest
weight vector vkω in V (kω). For all k ∈ N we have a surjective map

Ψ : U(n−) → V (kω), n 7→ nvkω,

the kernel being the left ideal in U(n−) generated by

{Xk+1
−α ,X−γ | γ ∈ ∆,deg γ = 0}.

The restriction of this map to U(m−) is already surjective:

πk : U(m−) → V (kω), m 7→ mvkω.

To describe a generating system for the kernel of πk, recall that m− is a
L-module via the adjoint action of l and L on g. We write ℓ ◦ m for the
adjoint action. Set l′ := [l, l].



ZHU’S ALGEBRAS, C2-ALGEBRAS AND ABELIAN RADICALS 15

Lemma 3.1. The kernel of πk is the left U(m−)-ideal generated by the irre-

ducible L-module 〈L◦Xk+1
−α 〉 = U(l′)◦Xk+1

−α , and πk induces an isomorphism
of L-modules U(m−)/ ker πk ≃ V (kω)⊗C−kω, where C−kω denotes the one-
dimensional representation associated to the L-character −kω.

Proof. If p1, . . . , pr ∈ m− and X ∈ l′, then

X.p1 · · · pr =

r∑

j=1

p1 · · · [X, pj ] · · · pr + p1p2 · · · prX

= X ◦ (p1 · · · pr) + p1p2 · · · prX.

So if m1, . . . ,mq are monomials in U(m−) and
∑q

j=1 ajmj ∈ ker πk, then

X ◦ (

q∑

j=1

ajmj) = X.(

q∑

j=1

ajmj) − (

q∑

j=1

ajmj).X

annihilates vkω too since X annihilates vkω. Hence the left ideal generated
by U(l′) ◦ Xk+1

−α is contained in ker πk. Set n−0 = n− ∩ l, then

ker Ψ = U(n−)Xk+1
−α +

∑
γ∈∆,deg γ=0 U(n−)X−γ

= U(m−)U(n−0 )Xk+1
−α +

∑
γ∈∆,deg γ=0 U(n−)X−γ

= U(m−)
(
U(n−0 ) ◦ Xk+1

−α

)
+

∑
γ∈Φ+,deg γ=0 U(n−)X−γ .

Now X−α (and hence Xk+1
−α too) is a highest weight vector for the action

of U(l′) and hence U(l′) ◦ Xk+1
−α = U(n−0 ) ◦ Xk+1

−α . So the image of ker Ψ

in U(n−)/U(n−).n−0 ≃ U(m−) coincides with the left ideal described in the
lemma, which shows the equality.

To make the induced isomorphism U(m−)/ ker πk ≃ V (kω) L-equivariant,
we need to twist the representation by the appropriate character. �

3.2. Abelian and spherical radicals. The action of a reductive group
H on a (possibly infinite dimensional) locally finite representation space
V is called multiplicity free if the decomposition of the H-module V into
the direct sum of irreducible finite dimensional H-modules contains any
irreducible L-module with multiplicity at most one. The action of H on an
affine variety M is called multiplicity free if C[M ] is multiplicity free.

Note that the action of L on C[m−] is multiplicity free if and only the
action of L on U(m−) is multiplicity free. In particular, in this case the
irreducible L-module in U(m−) spanned by the generating set for the ideal
ker πk (see Lemma 3.1) is uniquely determined by the highest weight −kα.

Let θ denote the highest root of g. A simple root α is called co-minuscule
if α occurs with coefficient 1 in the expression of θ as a sum of simple roots.

Proposition 3.2. i) The nilpotent radical m− of p− is abelian if and only if
the simple root α associated to p is co-minuscule. In this case the action of
L on m− is irreducible. (For a list of co-minuscule weights see Remark 3.3.)
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ii) The action of L on C[m−] is multiplicity free if and only if either m−

is abelian, or α = αn for g of type Bn, or α = α1 for g of type Cn.

Remark 3.3. Let ∆ = {α1, . . . , αn} be the simple roots, indexed as in [B],
Planches I-IX. According to the tables in [B] we find the following list of
co-minuscule roots αi, or, equivalently, the list of roots such that the corre-
sponding maximal parabolic subalgebra has an abelian nilpotent radical: in
type An all roots are co-minuscule, in type Bn only the root α1 and in type
Cn only the root αn are co-minuscule. In type Dn the roots α1, αn−1, αn and
in type E6 the roots α1, α6 are co-minuscule. In type E7 only the root α7 is
co-minuscule. For the types E8, F4 and G2 there are no maximal parabolic
subalgebras with abelian nilpotent radical.

Proof. The first part i) is well known: Let Φ+
m be the positive roots occurring

in m. If the last condition holds, then for two roots β, γ ∈ Φ+
m the sum is

never a root and hence the commutator of the two root subspaces is zero. If
the condition fails, then we can find two roots β, γ ∈ Φ+

m such that the sum
is a root, and hence the corresponding root subspaces fail to commute. It
follows now from elementary properties of root systems that the l-action on
m is irreducible, having the root α as lowest weight vector.

A comparison of the list of co-minuscule roots with the tables in [K3]
shows that in these cases the representations of L on m are multiplicity free.

Another approach, which gives the complete list at once is the following:
the action of a reductive group H on a variety Y is called spherical if a
Borel subgroup of H has a dense orbit in Y . It is know for Y affine that the
conditions spherical and multiplicity free are equivalent. The action of L on
m is spherical if and only if it is so for the action on m−. Via the exponential
we see that the action of L on is m− is spherical if and only if the action
of L on the unipotent radical P−,u of the opposite parabolic subgroup is
so. Now P−,u can be identified in a L-equivariant way with the open cell
P−,u.id ⊂ G/P , so we see that the action of L on m is multiplicity free if
and only if the action of L on G/P is spherical. These maximal parabolic
subgroups have been classified in [L1]. �

3.3. Type A case. In this subsection we work out explicitly the type A
case of the general constructions explained in Section 3 above.

So let g = glN and let

ωi = (1, . . . , 1︸ ︷︷ ︸
i

), i = 1, . . . , N

be some fundamental weight. Then l = gli ⊕ glN−i and the abelian radical

m− is isomorphic to (Ci)∗ ⊗ C
N−i as l-module (Ci and C

N−i are vector
representations of gli and glN−i). In what follows we deal with glN , gli and
glN−i-modules simultaneously, so we use the notation Vj(λ) to denote the
irreducible glj-module with highest weight λ.
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The l-module U(l) ◦ Xk+1
−αi

is isomorphic to

(3.1) Sk+1(Ci∗) ⊗ Sk+1(CN−i) →֒ Sk+1(m−).

We write (ki) for the partition (k, . . . , k︸ ︷︷ ︸
i

). Then Lemma 3.1 in type A reads

as:

(3.2) VN ((ki)) ⊗ C−kωi
≃ S(Ci∗ ⊗ C

N−i)/〈Sk+1(Ci∗) ⊗ Sk+1(CN−i)〉.

In the following lemma we describe VN ((ki)) as l = gli ⊕ glN−i-module
(the l action on VN (kωi) coming from the adjoint action of l on m−).

Lemma 3.4. The module S(Ci∗ ⊗ C
N−i)/〈Sk+1(Ci∗) ⊗ Sk+1(CN−i)〉 (re-

spectively VN ((ki)) ⊗ C−kωi
) is isomorphic (as gli ⊕ glN−i-module) to the

direct sum

(3.3)
⊕

λ

Vi(λ)∗ ⊗ VN−i(λ),

where the sum is running over all partitions λ = (λ1 ≥ · · · ≥ λmin(i,N−i))
such that k ≥ λ1.

Proof. Using (3.2), the lemma can be deduced from [DEP]. An alternative
approach is to use branching rules for Levi subgroups of GLN . The rule is
due to Littlewood, the formulation used here can be found in [L2].

We briefly explain how the formula (3.3) shows up in type A. The par-
tition (ki) is represented by the rectangular Young diagram having i-rows
and k-columns. The restriction formula for Levi subalgebras can in this case
be read as follows: the irreducible components of VN ((ki)) as gli ⊕ glN−i-
module are of the form Vi((k

i − λ)) ⊗ VN−i(λ) where the partition λ is
obtained by cutting the rectangle (ki) into two partitions: λ = (λ1, . . . , λi)
and (ki − λ) = (k − λi, . . . , k − λ1). Here we assume λN−i+1 = · · · = λi = 0
if i > N − i. But note that Vi((k

i − λ)) ≃ Vi(λ)∗ ⊗ Ckωi
, which proves the

lemma. �
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