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Abstract

We give a direct geometric interpretation of the path model using galleries in the
1−skeleton of the Bruhat-Tits building associated to a semi-simple algebraic group. This
interpretation allows us to compute the coefficients of the expansion of the Hall-Littlewood
polynomials in the monomial basis. The formula we obtain is a “geometric compression”
of the one proved by Schwer, its specialization to the case An turns out to be equivalent
to Macdonald’s formula.
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1 Introduction

We give a direct geometric interpretation of the path model for representations and the
associated Weyl group combinatorics [20]. As a consequence, we get a generalization of
Macdonald’s formula for Hall-Littelwood polynomials in type An [23]. Our formula can be
seen as a geometric compression of Schwer’s formula [26].

Concerning the connection with the path model, a first step in this direction was done in
[9]. The advantage of the new approach is that galleries in the one-skeleton of the apartment
can directly be identified with piecewise linear paths running along the one-skeleton. They
can be concatenated and they can also be easily translated in the language of tableaux, for
classical groups. The goal now is to show that the original approach by Lakshmibai, Musili
and Seshadri [14, 16] towards what later became the path model has an intrinsic geometric
interpretation in the geometry of the affine Grassmannian, respectively in the geometry of
the associated affine building. Another instance of this approach can be found in the work
of Kapovich and Millson [10] where they use paths in the one-skeleton in their proof of the
“saturation” theorem.

To be more precise, let G be a semisimple algebraic group defined over C, fix a Borel
subgroup B and a maximal torus T . Let U− be the unipotent radical of the opposite Borel
subgroup. Let O = C[[t]] be the ring of complex formal power series and let K = C((t)) be the
quotient field. For a dominant coweight λ and an arbitrary coweight µ consider the following
intersection in the affine Grassmannian G(K)/G(O):

Zλ,µ = G(O).λ ∩ U−(K).µ.

Let Fq be the finite field with q elements and replace the field of complex numbers by the
algebraic closure K of Fq. Assume that all groups are defined and split over Fq. Replace K by

2



Kq = Fq((t)) and O by Oq = Fq[[t]]; the Laurent polynomials Lλ,µ defined by Lλ,µ(q) = |Zq
λ,µ|

show up as coefficients in the Hall-Littlewood polynomial: Pλ =
∑

µ∈X∨

+
q−〈ρ,λ+µ〉Lλ,µmµ.

We replace the desingularization of the Schubert variety Xλ in [9] by a Bott-Samelson
type variety Σ which is a fibred space having as factors varieties of the form H/R, where H is
a semisimple algebraic group and R is a maximal parabolic subgroup. In terms of the affine
building, a point in this variety is a sequence δ = (P0 = G(O), Q0, P1, Q1, . . . , Pr, Qr, Pr+1) of
parahoric subgroups of G(K) reciprocative contained in each other, i.e. G(O) ⊃ Q0 ⊂ P1 ⊃
Q1 ⊂ . . . ⊃ Qr ⊂ Pr+1. These desingularizations are smaller than the ones used in [9], in the
sense that the fibres are of smaller dimensions. In type An, these coincide with convolution
morphisms.

In terms of the faces of the building, a point in Σ is a sequence of closed one-dimensional
faces (corresponding to the parahoric subgroups Q0, . . . , Qr), where successive faces have (at
least) a common zero-dimensional face (i.e. a vertex corresponding to one of the maximal
parahoric subgroups P0, . . . , Pr+1). So if the sequence is contained in an apartment, then the
point in Σ can be seen as a piecewise linear path in the apartment joining the origin with a
special vertex.

We introduce the notion of a minimal one-skeleton gallery (which always lies in some
apartment) and of a positively folded combinatorial gallery in the one-skeleton. The points
in Σ corresponding to the points in the open orbit G(O).λ ⊂ Xλ are exactly the minimal
galleries, we identify those two sets. By choosing a generic one parameter subgroup of T in
the anti-dominant Weyl chamber, we get a Bia lynicki-Birula decomposition of Σ, the centers
δ of the cells Cδ correspond to combinatorial one-skeleton galleries δ (i.e. the galleries lying in
the standard apartment). We show that Cδ ∩G(O).λ 6= ∅ if and only if δ is positively folded.

The Bia lynicki-Birula decomposition of Σ can be used to define a decomposition Zλ,µ =
⋃

δ Zλ,µ ∩ Cδ, the indexing set of the strata are positively folded one-skeleton galleries. To
see the geometrical compression (compare Lenart [18], [19]), recall the decomposition in [9],
Zq
λ,µ =

⋃
S∆, where the ∆’s are certain galleries of alcoves of a fixed type in the appartment.

Now, fix a minimal gallery of alcoves ∆λ between 0 and λ and a minimal one-skeleton gallery
γλ contained in ∆λ. This allows to build a map from the galleries of alcoves in the standard
apartment to the one-skeleton ones staying in this apartment. This map sends positively
folded galleries of alcoves onto positively folded one-skeleton galleries. Note that this ap-
plication [even when restricted to positively folded galleries] is surjective but not injective.
Further, the pieces S∆ group together to build the pieces Zλ,µ ∩Cδ of our new decomposition
of Zλ,µ.

For example, in the An-case the galleries can be translated into the language of Young
tableaux, and the positively folded galleries ending in µ correspond exactly to the semi-
standard Young tableaux of shape λ and weight µ. In this sense, the new decomposition can
be viewed as the optimal geometric decomposition for type An.

To investigate the intersection Zλ,µ ∩ Cδ we need to unfold the (possibly) folded gallery
δ. As a consequence of the unfolding procedure we present the formula for the coefficients of
the Hall-Littlewood polynomials, the summands below counting the number of points in the
intersection of Zq

λ,µ ∩ Cδ for δ being positively folded and ending in µ:

Theorem 2.

Lλ,µ(q) =
∑

δ∈Γ+(γλ,µ)

qℓ(wD0
)

r∏

j=1

Ui(q),
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where Ui(q) is a polynomial of the form
∑

c∈Γ+

s
j
Vj

(ij ,op)
qt(c)(q − 1)r(c) that counts the number

of points over Fq in a subvariety of a generalised Grassmannian H/R, where H and R are
determined by δ.

To get a rough idea of what this formula means without getting drowned by the technical
details, let us consider the case whereG is of type An. We identify the positively folded galleries
with the semi-standard Young tableaux of shape λ having weight µ. We use the convention
that the entries in the tableau are weakly increasing in the rows and stricly increasing in
the columns, so the one dimensional faces of the gallery correspond to the columns of the
tableau. We enumerate the columns such that the right most column is the first one. Given
such a tableau δ, let E0, . . . , Er be the columns. We want to investigate the set of all minimal
galleries in Cδ lying in Zλ,µ. Proposition 15 shows that this set has a product structure

B−wD0
Q−

E0
/Q−

E0
×

r∏

j=1

Min(Ej−1, Ej) ,

which explains the product structure for each summand in Theorem 2. To get a minimal
gallery in the building that lifts δ, i.e. is an element of Cδ and lies in Zλ,µ, the possibilities for

the first column E0 form a Schubert cell leading to the term qℓ(wD0
). For j ≥ 1, the possibilities

for lifts of Ej depend on the column Ej−1 before. It can be shown that Macdonald’s algorithm
(see [23]) can be expressed also columnwise. More precisely, Klostermann [12] has shown in
the framework of her thesis that the structure of the second sum in the formula above in
Theorem 2 can be simplified in the An-case so that, in terms of Young tableaux, the resulting
algorithm is exactly the same as Macdonald’s algorithm.

The positively folded one-skeleton galleries having q〈λ+µ,ρ〉 as a leading term in the count-
ing formula for |Zq

λ,µ ∩ Cδ|, are called LS-galleries; this is an abbreviation for Lakshmibai-

Seshadri galleries. As in [9], for an LS-gallery δ, Zλ,µ ∩Cδ is an MV-cycle.
In section 8 we discuss the special role of the LS-galleries and the connection with the

indexing system by generalized Young tableaux introduced by Lakshmibai, Musili and Se-
shadri in a series of papers, see for example [14, 16, 17]. Recall that these papers were the
background for the path model theory started in [20]. An important notion introduced in the
theory of standard monomials is the defining chain ([14, 16], see also section 5), which was
a breakthrough on the way for the definition of standard monomials and generalized Young
tableaux. In the context of the crystal structure of the path theory this notion again turned
up to be an important combinatorial tool to check whether a concatenation of paths is in
the Cartan component or not. Still, the definition had the air of an ad hoc combinatorial
tool. But in the context of Bia lynicki-Birula cells, the folding of a minimal gallery by the
action of the torus occurs naturally: during the limit process (going to the center of the cell)
the direction (= the sector, see section 5) attached to a minimal gallery is transformed into
the weakly decreasing sequence of Weyl group elements, the defining chain for the positively
folded one-skeleton gallery in the center of the cell.

The connection between the path model theory and the one-skeleton galleries is summa-
rized in the following corollary. For a fundamental coweight ω let πωi

: [0, 1] → X∨
R , t 7→ tω

be the path which is just the straight line joining o with ω and let γω be the one-skeleton
gallery obtained as the sequence of edges and vertices lying on the path (see also Example 1
in Section 4.1).
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Corollary 3. Write a dominant coweight λ = ωi1 + . . . + ωir as a sum of fundamental
coweights, write λ for this ordered decomposition. Let Pλ be the associated path model of
LS-paths of shape λ defined in [20] having as starting path the concatenation πωi1

∗ . . . ∗ πωir
.

For a path π in the path model denote by γπ the associated gallery in the one-skeleton of A
obtained as the sequence of edges and vertices lying on the path. The one-skeleton galleries
γπ obtained in this way are precisely the LS-galleries of the same type as γωi1

∗ . . . ∗ γωir
.

In fact, the notion of a defining chain for LS-paths coincides in this case with the notion
of a defining chain for the associated gallery.

Since the number of the LS-galleries is the coefficient of the leading term of Lλ,µ, and
since Pλ → sλ for q → ∞, we get as an immediate consequence of Theorem 2 the following
character formula. In combination with Corollary 3, this provides a geometric proof of the
path character formula, first conjectured by Lakshmibai (see for example [17]) and proved in
[20]:

Corollary 4. CharV (λ) =
∑

δ e
target(δ), where the sum runs over all LS-galleries of the

same type as γλ.

The article is organized as follows: In section 2 we recall some basic facts about the
affine Grassmannian and Hall-Littlewood polynomials, in section 3 we recall the main facts
from building theory needed later. In section 4, we introduce the main object of this article,
the one-skeleton galleries of a fixed type, and its geometric counterpart, the Bott-Samelson
variety Σ. We give a description of the Bia lynicki-Birula cells of Σ. For groups of type
An, Bn, Cn, we establish a bijection between galleries and tableaux. In section 5 we introduce
the notion of a minimal one-skeleton gallery and of a positively folded combinatorial gallery in
the one-skeleton. We show that the correspondence between galleries and tableaux restricts
to a bijection between positively folded galleries and semistandard tableaux. In section 6 we
unfold the folded galleries locally, in section 7 we do this stepwise for the full gallery and we
prove: a cell Cδ contains minimal galleries if and only if δ is positively folded. In subsection 7.2
we present the formula for the coefficients of the Hall-Littlewood polynomials. In section 8
we discuss the special role of the LS-galleries and the connection with the indexing system
by generalized Young tableaux introduced by Lakshmibai, Musili and Seshadri.

2 Preliminaries

Let G be a connected complex semisimple algebraic group, we fix a Borel subgroup B ⊂ G
and a maximal torus T ⊂ B. Let O = C[[t]] be the ring of complex formal power series and
let K = C((t)) be the quotient field. Denote by v : K∗ → Z the standard valuation such that
O = {f ∈ K | v(f) ≥ 0}. As a set, the affine Grassmannian G is the quotient

G = G(K)/G(O).

Note that G(K) and G are ind–schemes and G(O) is a group scheme ([13]). The G(O)-orbits
in G are finite dimensional quasi-projective varieties.

2.1 Schubert varieties in the affine Grassmannian

We recall the classification of G(O)-orbits and the associated G(O)-stable Schubert varieties.
Denote by 〈·, ·〉 the non–degenerate pairing between the character group X := Mor (T,C∗) of
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T and its group X∨ := Mor (C∗, T ) of cocharacters. Let Φ ⊂ X be the root system of the
pair (G,T ), and, corresponding to the choice of B, denote Φ+ the set of positive roots, let
∆ = {α1, . . . , αn} be the set of simple roots, and let ρ be half the sum of the positive roots.

Let Φ∨ ⊂ X∨ be the dual root system, together with a bijection ∆ → ∆∨, α 7→ α∨. We
denote by R∨

+ the submonoide of the coroot lattice R∨ generated by the positive coroots Φ∨
+.

We define on X∨ a partial order by setting λ ≻ ν ⇔ λ − ν ∈ R∨
+. Let X∨

+ be the cone of
dominant cocharacters:

X∨
+ := {λ ∈ X∨ | 〈λ, α〉 ≥ 0∀α ∈ Φ+}.

Given λ ∈ X∨, we can view in fact λ as an element of G(K). By abuse of notation we write
also λ for the corresponding class in G.

Let ev : G(O) → G be the evaluation maps at t = 0 and let B = ev−1(B) be the
corresponding Iwahori subgroup. Then

G =
⋃

λ∈X∨

B.λ =
⋃

λ∈X∨

+

G(O).λ

We denote by X(λ) = B.λ the corresponding Schubert variety. Let N = NG(T ) be the
normalizer in G of the fixed maximal torus T , we denote by W the Weyl group N/T of G.
Note that for λ ∈ X∨

+ we have

G(O).λ = X(w0(λ))

where w0 is the longest element in the Weyl group W . By abuse of notation we just write
Xλ for the variety X(w0(λ)) of dimension 〈2λ, ρ〉.

2.2 Reduction to the simply connected case

Let now p : G′ → G be an isogeny with G′ being simply connected. The natural map
pO : G′(O) → G(O) is surjective and has the same kernel as p. Let X ′ and X ′∨ be the
character group respectively group of cocharacters of G′ for a maximal torus T ′ ⊂ G′ such
that p(T ′) = T , then p : T ′ → T induces an inclusion X ′∨ →֒ X∨.

The quotient X∨/X ′∨ measures the difference between G and the affine grassmannian
G′ = G′(K)/G′(O). In fact, G′ is connected, and the connected components of G are indexed
by X∨/X ′∨. The natural maps pK : G′(K) → G(K) and pO : G′(O) → G(O) induce a
G′(K)–equivariant inclusion G′ →֒ G, which is an isomorphism onto the component of G
containing the class of 1. Now G′(K) acts via pK on all of G, and each connected component
is a homogeneous space for G′(K), isomorphic to G′(K)/Q for some parahoric subgroup Q of
G′(K) which is conjugate to G(O) by an outer automorphism.

So to study G(O)–orbits on G(K)/G(O) for G semisimple, without loss of generality we
may sometimes for convenience assume that G is simply connected, but we have to investigate
more generally G(O)–orbits on G(K)/Q for all parahoric subgroups Q ⊂ G(K) conjugate to
G(O) by an outer automorphism.

2.3 Affine Kac-Moody groups

In the following let G be a simply connected semisimple complex algebraic group. The rotation
operation γ : C∗ → Aut (K), γ(z)

(
f(t)

)
= f(zt) gives rise to group automorphisms γG : C∗ →

Aut (G(K)), we denote L(G(K)) the semidirect product C∗×G(K). The rotation operation on
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K restricts to an operation on O and hence we have a natural subgroup L(G(O)) := C∗×G(O)
(for this and the following see [13], Chapter 13).

Let L̂(G) be the affine Kac-Moody group associated to the affine Kac–Moody algebra

L̂(g) = g⊗K ⊕ Cc⊕ Cd,

where 0 → Cc→ g⊗K⊕Cc→ g⊗K → 0 is the universal central extension of the loop algebra
g⊗K and d denotes the scaling element. We have corresponding exact sequences also on the
level of groups, i.e., L̂(G) is a central extension of L(G(K)):

1 → C∗ → L̂(G)
π

−→L(G(K)) → 1.

Denote PO ⊂ L̂(G) the “parabolic” subgroup π−1(L(G(O))), then

G = G(K)/G(O) = L(G(K))/L(G(O)) = L̂(G)/PO . (1)

LetNK be the subgroup of G(K) generated byN and T (K), let T ⊂ L̂(G) be the corresponding
standard maximal torus (i.e. π(T ) ⊃ C∗×T ) and let N be its normalizer in L̂(G). We get
two incarnations of the affine Weyl group:

W a = NK/T = N/T .

So to study G(O)–orbits on G(K)/G(O) for G semisimple, without loss of generality
we may assume that G is simply connected and study PO-orbits in L̂(G)/Q, where Q is
a parabolic subgroup of the affine Kac-Moody group L̂(G) conjugate to PO by an outer
automorphism.

2.4 Hall-Littlewood polynomials

There is a natural action of W on the group algebra R[X∨] with coefficients in some ring
R. For µ ∈ X∨ we denote the corresponding basis element by xµ. The algebra of symmetric
polynomials R[X∨]W is the algebra of invariants under this action. There are several classical
bases known for R[X∨]W , all indexed by dominant coweights. Two important ones are the
monomial symmetric polynomials {mλ}λ∈X∨

+
and the Schur polynomials {sλ}λ∈X∨

+
. The

monomial polynomials are just the orbit sums mλ =
∑

µ∈Wλ x
µ. The Schur polynomial sλ is

the character of the irreducible representation V (λ) of the Lie algebra g∨ of the Langlands’
dual group G∨ of G.

Specializing the ring of coefficients R to the ring L := Z[q, q−1] of Laurent polynomials we
have another basis for L[X∨]W , the Hall-Littlewood polynomials {Pλ}λ∈X∨

+
. They are defined

by

Pλ =
1

Wλ(q−1)

∑

w∈W

w
(
xλ

∏

α∈Φ+

1 − q−1x−α∨

1 − x−α∨

)

where Wλ ⊂W is the stabilizer of λ and Wλ(t) =
∑

w∈Wλ
tℓ(w). The Hall- Littlewood polyno-

mials interpolate between the monomial symmetric polynomials and the Schur polynomials
because Pλ(1) = mλ and Pλ → sλ for q → ∞.

We define Laurent polynomials Lλ,µ for λ, µ ∈ X∨
+ by

Pλ =
∑

µ∈X∨

+

q−〈ρ,λ+µ〉Lλ,µmµ.

7



Since Pλ → sλ for q → ∞, we know that q−〈ρ,λ+µ〉Lλ,µ ∈ Z[q−1].
The Hall-Littlewood polynomials are connected with the geometry of the affine Grassman-

nian. Let B− ⊂ G be the opposite Borel subgroup and denote by U− its unipotent radical.
We are interested in the structure of the irreducible components of the intersection of the
following orbits in G:

Zλ,µ := G(O).λ ∩ U−(K).µ ⊂ G, λ ∈ X∨
+, µ ∈ X∨. (2)

For a prime power q let Fq be the finite field with q elements, set Kq := Fq((t)) and Oq :=
Fq[[t]], and let Zq

λ,µ be defined as above, only K and O being replaced by Kq and Oq. The
Laurent polynomials Lλ,µ have the following geometric interpretation coming from the Satake
isomorphism.

Fact. |Zq
λ,µ| = Lλ,µ(q).

3 Apartments, chambers and buildings

Instead of studying directly the intersection Zλ,µ in (2), we replace the Schubert variety Xλ

by a desingularization given by an appropriately chosen Bott-Samelson variety or variety of
galleries. In this context the U−(K)-orbits are replaced by Bia lynicki-Birula cells associated
to a generic anti-dominant coweight. To describe the choice of the desingularization and get
hold of the combinatorial tools to calculate |Zq

λ,µ|, we need to recall some notation from the
theory of buildings. As references we suggest [4], [5], [25] and/or [29].

3.1 Apartment

The apartment associated to the root and coroot datum is the real vector space A = X∨⊗ZR

together with the hyperplane arrangement defined by the set {(α, n) | α ∈ Φ, n ∈ Z} of affine
roots. In terms of affine Kac-Moody algebras, a couple (α, n) corresponds to the real affine
root α+nδ, where δ denotes the smallest positive imaginary root. For an affine root (α, n) we
write sα,n : x 7→ x−

(
〈α, x〉+n

)
α∨ for the affine reflection and Hα,n = {x ∈ A | 〈α, x〉+n = 0}

for the corresponding affine hyperplane of fixed points, and we write

H
+
α,n = {x ∈ A | 〈α, x〉 + n > 0} ;

for the corresponding closed half-space. Similarly we define the negative half space H
−
α,n.

3.2 Chambers, alcoves, faces and sectors

Definition 1. The irreducible components of A −
⋃

α∈Φ+ Hα,0 are called open (spherical)
chambers, the closure is called a closed chamber or Weyl chamber, or just chamber. The
irreducible components of A −

⋃

(α,n)∈Φ+×Z Hα,n are called open alcoves, the closure is called
a closed alcove or just an alcove.

The Weyl group W and the affine Weyl group W a can be realized in this context as follows:
W is the finite subgroup of GL(A) generated by the reflections sα,0, α ∈ Φ, the affine Weyl
group W a is the group of affine transformations of A generated by the affine reflections sα,n,
(α, n) ∈ Φ × Z. The dominant Weyl chamber

C+ := {x ∈ A | ∀α ∈ Φ+ : 〈α, x〉 > 0} =
⋂

α∈Φ+

H
+
α,0

8



is a fundamental domain for the action of W on A and the fundamental alcove

∆f = {x ∈ A | ∀α ∈ Φ+ : 0 ≤ 〈α, x〉 ≤ 1} =
⋂

α∈Φ+

H
+
α,0 ∩

⋂

α∈Φ,n>0

H
+
α,n

is a fundamental domain for the action of W a on A.

Definition 2. By a face F we mean a subset of A obtained as the intersection
⋂

(β,m) H
•
β,n,

where for each pair (β, n), β ∈ Φ+, n ∈ Z, one choses H
•
β,n to be either the hyperplane,

the positive or the negative halfspace. By the corresponding open face F o we mean the
subset of F obtained when replacing the closed affine halfspaces in the definition of F by the
corresponding open affine halfspaces.

We call the affine span 〈F o〉aff = 〈F 〉aff the support of the (open) face, the dimension of
the face is the dimension of its support. A wall of an alcove is the support of a codimension
one face. In general, instead of the term hyperplane we use often the term wall, which is more
common in the language of buildings.

For any subset Ω and any face F contained in an apartment A of a building, we say that
a wall H separates Ω and F if Ω is contained in a closed half space defined by H and F o is a
subset of the opposite open half space.

We call a face of dimension one in A an edge and a face of dimension zero a vertex. For
a vertex ν let Φν ⊂ Φ be the subrootsystem consisting of all roots α such that ν ∈ H(α,n)

for some integer n. A vertex ν is called a special vertex if Φν = Φ. The special vertices are
precisely the coweights for G of adjoint type.

By a sector s with vertex ν ∈ A we mean a closed chamber translated by ν, i.e., there
exists a closed chamber C such that

s := {λ ∈ A | λ = ν + z for some z ∈ C}. (3)

By abuse of notation we write −s for the sector

− s = ν − C = {µ ∈ A | µ = ν − x for some x ∈ C}. (4)

For a sector s with vertex ν and an element µ ∈ A let s(µ) be the sector obtained from s by
translating the sector by µ− ν: If s is as in (3), then

s(µ) = {λ ∈ A | λ = (µ − ν) + z for some z ∈ s}.
= {λ ∈ A | λ = µ+ z for some z ∈ C}

(5)

If µ ∈ s, then obviously s(µ) ⊂ s ⊂ s(−µ).

3.3 Faces, parahoric and parabolic subgroups

The faces in A are in bijection with parabolic subgroups of the affine Kac-Moody group L̂(G)
containing T and parahoric subgroups in G(K) containing T .

To a root vector Xα ∈ LieG, one associates the one-parameter subgroup Uα = {xα(f) =
exp(Xα ⊗ f) | f ∈ K} of G(K) (resp. of L̂(G)). If f = atn for some a ∈ C and n ∈ Z, then,
for a fixed n, the set Uα+nδ = {xα(atn) | a ∈ C} is a one-parameter subgroup associated to
the real affine root α+ nδ.
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Definition 3. Given a face F , let P̂F be the unique parabolic subgroup of L̂(G) containing T
and all root subgroups Uα+nδ such that F ⊂ H

+
α,n.

Given a face F , let UF be the subgroup of G(K) generated by all elements of the form
xα(f), where f ∈ K∗ is such that v(f) ≥ n and F ⊂ H

+
α,n. Let PF be the unique parahoric

subgroup of G(K) containing T and UF .

For example, if F is a face of the fundamental alcove, then B ⊂ PF . Indeed, the fun-
damental alcove itself corresponds to the Iwahori subgroup B ⊂ G(K) respectively the fixed
Borel subgroup B̂ of L̂(G). The origin corresponds to the parahoric subgroup G(O) ⊂ G(K)
respectively the parabolic subgroup PO ⊂ L̂(G).

3.4 The affine building

Let O = C[[t]] be the ring of complex formal power series and let K = C((t)) be the quotient
field. Let N = NG(T ) be the normalizer in G of the fixed maximal torus T ⊂ G, then the
Weyl group W of G is isomorphic to N/T . For a real number r let Uβ,r ⊂ Uβ(K) be the
unipotent subgroup

Uβ,r = {1} ∪
{

xβ(f) | f ∈ K∗, v(f) ≥ r
}

.

For a non-empty subset Ω ⊂ A let ℓβ(Ω) = − infx∈Ω〈β, x〉. We attach to Ω a subgroup of
G(K) by setting

UΩ := 〈Uβ,ℓβ(Ω) | β ∈ Φ〉. (6)

Let N(K) be the subgroup of G(K) generated by N and T (K). To define the affine building
J a, let ∼ be the relation on G(K) × A defined by:

(g, x) ∼ (h, y) if ∃n ∈ N(K) such that nx = y and g−1hn ∈ Ux,

where Ux = U{x}.

Definition 4. The affine building J a := G(K) × A/ ∼ associated to G is the quotient of
G(K)×A by “∼”. The building J a comes naturally equipped with a G(K)–action g · (h, y) :=
(gh, y) for g ∈ G(K) and (h, y) ∈ J a.

The map A → J a, x 7→ (1, x) is injective and N(K)−equivariant, we will identify in the
following A with its image in J a. More generally, a subset A of J a is called an apartment
if it is of the form gA for some g ∈ G(K). We extend in the same way the notion of a face
F , a sector s, a chamber C and the notion of a parahoric subgroup PF associated to a face.
Moreover, the action of G(K) is such that the subgroup Uα+nδ fixes the halfspace H+α,n; indeed,
xα(atn) belongs to Ux, whence, (xα(atn), x) ∼ (1, x).

We denote by r−∞ : J a → A the retraction centered at −∞. It is a chamber complex map
and the fibers of r−∞ are the U−(K)−orbits in J a (see [9] Definition 8 and Proposition 1, or
[5] Sections 6,7).

3.5 Residue building

Let V be a vertex in J a. Let J a
V be the set of all faces F in J a such that F ⊃ V . Following

Bruhat and Tits in Remark 4.6.35 of [6], one endows J a
V with the complex simplicial structure

given by the relation F ⊂ F ′, for two faces containing V . Further, let HV be the connected
reductive subgroup of G with root system ΦV . Then, Theorem 4.6.33 of loc. cit. shows that
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the structure of a spherical building on the set of all parabolic subgroups of HV is isomorphic
to the one on J a

V .
This isomorphism restricts to any apartment and implies that if A is an apartment in J a,

then the set AV of all faces F ⊃ V contained in A is an apartment in J a
V . The simplicial

structure on AV is the one associated to the Coxeter complex given by the spherical group
W v

V . The latter is the subgroup of W generated by the reflections along Ker(α), for all
α ∈ ΦV .

Notation. The set J a
V , endowed with this structure, is called the residue building of J a at V .

The group HV acts transitively on the set of pairs (CV ⊂ AV ) of a chamber in an apartment
in J a

V .

For any face F of J a containing V , we denote the associated face in J a
V by FV . Given a

sector s = V + C in A with vertex V , one associates the chamber sV of AV in the following
way: let ∆ ⊃ V be the unique alcove in A such that ∆o ∩ so 6= ∅, then sV := ∆V . By
abuse of notation, −sV will denote the chamber associated to (V − C). Let C±

V denote the
positive (resp. negative) chamber in AV associated to V + C±. The stabilizers of C±

V in HV

are opposite Borel subgroups, denoted by B±
V .

Let now V ⊂ F be a one-dimensional face containing a vertex in J a. Let PV ⊃ PF be the
parahoric subgroups associated to V and F , then PV /PF is isomorphic to a Grassmannian
HV /QF where QF ⊃ BV is the maximal parabolic subgroup in HV associated to the simple
root αF defined by the type of FV .

4 One-skeleton galleries

Roughly speaking, a one-skeleton gallery is a sequence of edges in J a, two subsequent ones
having a common vertex. A combinatorial one-skeleton gallery is essentially a gallery that
stays in the apartment A. We will see that the set of one-skeleton galleries of fixed type
inherits in a natural way the structure of a Bott-Samelson variety Σ and provides the desired
desingularization of the Schubert variety Xλ (see Proposition 3). The combinatorial one-
skeleton galleries correspond precisely to the centers of Bia lynicki-Birula cells (Section 4.4)
for the smooth variety Σ.

4.1 Combinatorial one-skeleton galleries

Definition 5. We call a sequence γ = (V0 ⊂ E0 ⊃ V1 ⊂ E1 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) of faces
in A a combinatorial one-skeleton gallery if

• the faces Vi, i = 0, . . . , r + 1, are vertices in A;

• the vertex V0 (the source of the gallery) and the vertex Vr+1 (the target of the gallery)
are special vertices;

• the faces Ei, i = 0, . . . , r, are edges in A.

If γ′ = (V ′
0 ⊂ E′

0 ⊃ · · · ⊂ E′
t ⊃ V ′

t+1) is another one-skeleton gallery such that V ′
0 = Vr+1,

then one can concatenate the two galleries to get a new one:

γ ∗ γ′ = (V0 ⊂ E0 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1 = V ′
0 ⊂ E′

0 ⊃ · · · ⊂ E′
t ⊃ V ′

t+1).
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By abuse of notation we often write γ ∗ γ′ even if V ′
0 6= Vr+1. In this case, we mean the

concatenation of γ with the displaced gallery γ′ + (Vr+1−V
′
0). This construction makes sense

since, by assumption, V ′
0 and Vr+1 are special vertices.

Example 1. Suppose G is simple, of adjoint type and ω is a fundamental coweight. Let
R≥0ω ⊂ A be the extremal ray of the dominant Weyl chamber C+ spanned by ω. Set
V0 = o and let E0 be the unique face of dimension one in the intersection of R≥0ω with the
fundamental alcove. If the second vertex V1 of E0 is different from ω, then let subsequently
Ei be the unique dimension one face in R≥0ω (different from Ei−1) having Vi as a common
vertex with Ei−1. We obtain a one-skeleton gallery

γω = (V0 = o ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ ω = Vr+1)

joining o with ω. We refer to these kind of galleries as fundamental galleries, the faces Ej

of such a gallery are called fundamental faces (although, they might not be contained in the
fundamental alcove).

Example 2. Let λ be an arbitrary dominant coweight. We call a one-skeleton gallery γ =
(V0 ⊂ E0 ⊃ · · · ⊂ Er ⊃ Vr+1) a dominant combinatorial gallery joining o and λ along the
coweight lattice if γ = γωi1

∗ γωi2
∗ · · · ∗ γωir

is a concatenation of fundamental galleries such
that

∑s
j=1 ωij = λ.

Example 3. If we have fixed an enumeration ω1, . . . , ωn of the fundamental coweights and
λ =

∑
aiωi, then we write γλ for the gallery γa1ω1

∗ · · · ∗ γanωn joining o and λ.

Example 4. Let λ be again an arbitrary dominant coweight. We call a one-skeleton gallery
γ = (V0 ⊂ E0 ⊃ · · · ⊂ Er ⊃ Vr+1) a dominant combinatorial gallery joining o and λ if the
source is o, the target is λ and all the faces Ej are displaced fundamental faces.

Definition 6. Let Sa be the set of affine roots (α, n) such that ∆f ∩ H(α,n) is a face of
codimension one. Given a face F of the fundamental alcove ∆f , we call Sa(F ) := {(α, n) ∈
Sa | F ⊂ H(α,n)} the type of F . Given an arbitrary face F ⊂ A, there exists a unique face F f

of the fundamental alcove which is W a-conjugate to F . We set Sa(F ) := Sa(F f ) and call this
the type of F .

Definition 7. Given a combinatorial one-skeleton gallery γ = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂
Er ⊃ Vr+1), we call the sequence

tγ := (Sa(V0) ⊃ Sa(E0) ⊂ Sa(V1) ⊃ . . . ⊂ Sa(Vr) ⊃ Sa(Er) ⊂ Sa(Vr+1))

the gallery of types or the type of γ. We denote by Γ(tγ , V0) the set of all combinatorial
galleries starting in V0 and having tγ as type.

Notation. Because a face F is always contained in an apartment A = gA, the notion of
a one-skeleton gallery, of the type of a face and the type of a gallery extends to the whole
building J a.

Let WVi
⊂ W a be the Weyl group of PVi

, i.e., WVi
is the stabilizer of the vertex Vi, and

let WEi
⊂W a be the Weyl group of PEi

, i.e., WEi
is the stabilizer of the edge Ei.
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Lemma 1. Let γ = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) be a combinatorial one-
skeleton gallery. The set Γ(tγ , V0) can be identified with sequences of Weyl group classes in
∏r

i=0WVi
/WEi

via the map

(w0, . . . , wr) 7→ (V0 ⊂ w0(E0) ⊃ w0(V1) ⊂ w0w1(E1) ⊃ · · ·
· · · ⊂ w0 · · ·wr(Er) ⊃ w0 · · ·wr(Vr+1)).

In particular, the set Γ(tγ , V0) is finite.

Proof. Let γ′ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ E′
1 ⊃ V ′

2 ⊃ . . .) be a one-skeleton gallery in Γ(tγ , V0). Since
the type of E0 and E′

0 are the same, the two have to be conjugate by the finite reflection group
WV0

generated by all affine reflections sα,n such that V0 ⊂ Hα,n. Proceeding by induction, we
see that the map defined above is a bijection. Therefore

|Γ(tγ , V0)| =
r∑

i=1

|WVi
/WEi

|, (7)

in particular, the set Γ(tγ , V0) is finite.

4.2 Young tableaux and one-skeleton galleries for classical groups of type

An, Bn, Cn

Throughout this section we use the Bourbaki enumeration of the weights and coweights.
Given a partition p = (p1, . . . , pn), the associated Young diagram of shape p consists of left
justified rows of boxes with p1 boxes in the first row, p2 boxes in the second row, etc. We
enumerate the rows from top to bottom (R1, . . .) and the columns from the right to the left
(C1, . . .).
Young tableaux of type An: For a dominant coweight λ =

∑n
i=1 aiωi set pi = ai + . . .+an,

we call pλ = (p1, . . . , pn) the associated partition. By a Young tableau T of shape pλ and type
An we mean a filling of the boxes of the Young diagram of shape pλ with positive integers
such that the entries are smaller or equal to n + 1 and the entries are strictly increasing in
the columns (top to bottom). The tableau is called semistandard if in addition the entries
are weakly increasing in the rows (left to right).

We use the linearly ordered alphabet N = {1 < 2 < . . . < n < n̄ < . . . < 2̄ < 1̄} with the
convention ¯̄i = i.
Young tableaux of type Bn: For a dominant coweight λ =

∑n
i=1 aiωi set pi = 2ai +

. . . + 2an−1 + an, we call pλ = (p1, . . . , pn) the associated partition. By a Young tableau of
shape pλ and type Bn we mean a filling of the boxes of the Young diagram of shape pλ with
elements of N such that the entries are strictly increasing in the columns (top to bottom), and
i and ī are never entries in the same column. Further, for each pair of columns (C2j−1, C2j),
j = 1, . . . , a1 + . . . + an−1, either C2j−1 = C2j or the column C2j is obtained from C2j−1 by
exchanging some of the entries k, 1 ≤ k ≤ 1̄, in C2j−1 by k̄. The tableau is called semistandard
if in addition the entries are weakly increasing in the rows (left to right).
Young tableaux of type Cn: For a dominant coweight λ =

∑n
i=1 aiωi set p1 = a1+

∑n
j=2 2aj

and for i ≥ 2 set pi = 2ai + . . . + 2an, we call pλ = (p1, . . . , pn) the associated partition. By
a Young tableau of shape pλ and type Cn we mean a filling of the boxes of the Young diagram
of shape pλ with elements of N, strictly increasing in the columns (top to bottom), but i and
ī are never entries in the same column. Further, for each pair of columns (Ca1+2j−1, Ca1+2j),
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j = 1, . . . , a2 + . . . + an, either Ca1+2j−1 = Ca1+2j or the column Ca1+2j is obtained from
Ca1+2j−1 by exchanging for an even number of times an entry k, 1 ≤ k ≤ 1̄, in Ca1+2j−1 by
k̄. The tableau is called semistandard if in addition the entries are weakly increasing in the
rows (left to right).

Example 5. The following tableaux are semistandard Young tableaux of shape pλ for λ =
ω1 + ω2 + ω3:

type A3:

1 1 3

2 3

3

, type B3:

1 1 2 2 2̄

2 2 1̄

3̄

, type C3:

1 1 2 3 3̄

2 3̄ 3̄ 2̄

3 2̄

.

The one-skeleton gallery γωi
:

(1) If ωi is a minuscule fundamental coweight (i.e. i is arbitrary for type An, i = 1 for type
Cn, i = n for type Bn), then γωi

= (o ⊂ E ⊃ ωi), where E is the closed face {tωi | t ∈ [0, 1]}.
The galleries of the same type as γωi

are the galleries γσ(ωi) = (o ⊂ σ(E) ⊃ σ(ωi)), where
σ(E) = {tσ(ωi) | t ∈ [0, 1]} and σ ∈ W/Wωi

. It follows that the gallery is completely
determined by the weight σ(ωi).
(2) If ωi is a not a minuscule fundamental weight, then 〈ωi, β

∨〉 ≤ 2 for all positive roots
(because we consider only groups of classical type), and there exists at least one root such
that 〈ωi, β

∨〉 = 2. Hence γωi
= (o ⊂ E1 ⊃ V ⊂ E2 ⊃ ωi), where V = 1

2ωi, E1 is the
closed face {tωi | t ∈ [0, 12 ]} and E2 is the displaced face E1 + 1

2ωi = {tωi | t ∈ [12 , 1]}.
The galleries of the same type having E1 as a first one-dimensional face are of the form
γ = (o ⊂ E1 ⊃ V ⊂ σ(E1) + 1

2ωi ⊃
ωi+σ(ωi)

2 ), where σ is an element in the subgroup W v
V

of W generated by the simple reflection sαj
, j 6= i, and the reflection sβ, where β is the

dominant short root. An arbitrary one-skeleton gallery of the same type as γωi
is of the form

γ = (o ⊂ τ(E1) ⊃ τ(ωi)
2 ⊂ τσ(E1) + 1

2τ(ωi) ⊃ τ(ωi)+τσ(ωi)
2 ), where τ ∈ W and σ is a above.

So the gallery is completely determined by the pair of weights τ(ωi) and τσ(ωi),
Weights, one column tableaux and two column tableaux:

We encode the Weyl group conjugates of a fundamental coweight in a tableau consisting
of one column. Then ωi = ǫ1 + . . . + ǫi for i = 1, . . . , n, except for type Bn, in this case
ωn = 1

2(ǫ1 + . . . + ǫn). To have a uniform notation, for 1 ≤ i ≤ n we write ǭi for −ǫi. In
type An we have W · ωi = {ǫj1 + . . . + ǫji | 1 ≤ i1 < . . . < ji ≤ n + 1}. By writing the
indices j1 < . . . < ji as entries in a Young tableaux of shape pωi

we get a bijection between
the elements in the orbit and the Young tableaux of shape pωi

and type An.
In type Cn and Bn we have W ·ωi = {ǫj1 + . . .+ ǫji | 1 ≤ j1 < . . . < ji ≤ 1̄, ∀ k, ℓ : jk 6= j̄ℓ},

except for ωn in type Bn, in this case W · ωn = {1
2 (ǫj1 + . . . + ǫjn) | 1 ≤ j1 < . . . < jn ≤

1̄,∀ k, ℓ : jk 6= j̄ℓ}. So by writing the indices as entries in a Young tableaux consisting of one
column with i boxes, this provides a bijection between the orbit W · ωi and the one column
Young tableaux satisfying the column conditions in the definition of Young tableaux of type
Bn and Cn. In particular:

Lemma 2. If ωi is minuscule, then this correspondence gives a bijection between the galleries
of the same type as γωi

and the set of Young tableaux of shape pωi
and type An respectively Bn

or Cn.

Suppose ωi is not minuscule and

γ = (o ⊂ τ(E1) ⊃ V =
τ(ωi)

2
⊂ τσ(E1) +

1

2
τ(ωi) ⊃

τ(ωi) + τσ(ωi)

2
) (8)
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is a gallery of the same type as γωi
. If τ = id, then W v

V is a subgroup of W of type Bi × Bn−i

for type Bn and of type Di×Cn−i for type Cn, we write W v
V = (W 1

V )v× (W 2
V )v for this product

decomposition. We have seen above that the possible choices for σ(E1) is in bijection with the
orbit W v

V ·ωi. The second part in the product decomposition of W v
V is in the stabilizer of ωi, so

the possible choices for σ(E1) are in bijection with the orbit (W 1
V )v ·ωi. The weights occurring

in this orbit are twice the weights of the Spin2i+1 respectively Spin2i representation, i.e. the
weights are obtained from ωi = ǫ1 + . . .+ ǫi just by a change of the signs in the Bn-case and
by an even number of sign changes in the Cn-case. Now if γ is an arbitrary gallery of the
same type as γωi

as in (8), by linearity the weight τσ(ωi) is obtained from the weight τ(ωi)
by a change of some signs in the Bn-case respectively by an even number of sign changes in
the Cn-case. So attach to γ the (two column) tableau of shape pωi

having as first column the
one corresponding to τ(ωi) and as second the one corresponding to τσ(ωi). It follows:

Lemma 3. If ωi is not minuscule, then this correspondence describes a bijection between
the galleries of the same type as γωi

and the set of Young tableaux of shape pωi
and type Bn

respectively Cn.

One-skeleton galleries and tableaux:

For a dominant coweight λ =
∑
aiωi let γλ be the concatenation of the galleries γωj

associated
to the fundamental coweights:

γλ = γω1
∗ · · · ∗ γω1

︸ ︷︷ ︸

a1–times

∗ · · · ∗ γωn ∗ · · · ∗ γωn
︸ ︷︷ ︸

an–times

and let γ = γ1 ∗ · · · ∗ γr, r =
∑
ai, be a gallery of the same type as γλ. One can associate to

γ in a natural way a tableau of shape pλ: fix j minimal such that aj 6= 0 and let T1 be the
one- respectively two column tableau of shape pωj

associated to γ1. Suppose we have already
defined Tk, 1 ≤ k ≤ r. If r = k, then set Tγ = Tk. If k < r, let ℓ be such that γk+1 is of shape
ωℓ and let Tk+1 be the tableau obtained from Tk by adding to the left the one column (if ωℓ

is minuscule) respectively the two column tableau (if ωℓ is not minuscule) corresponding to
γk+1. The construction above implies:

Proposition 1. The correspondence γ ↔ Tγ describes a bijection between the set of galleries
of the same type as γλ and the set of Young tableaux of shape pλ and type An respectively Bn

or Cn.

4.3 Varieties of galleries and Bott-Samelson varieties

Fix a combinatorial one-skeleton gallery γ = (V0 = o ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1),
we can associate to the gallery a sequence of parahoric subgroups:

G(O) ⊃ P
E

f
0

⊂ P
V

f
1

⊃ . . . ⊂ P
V

f
r
⊃ P

E
f
r
⊂ P

V
f
r+1

.

We use now this correspondence to identify one-skeleton galleries with points in (generalized)
Bott-Samelson varieties.

Definition 8. The variety Σ(tγ) of galleries of type tγ starting in V0 = o is the closed
subvariety of

G(K)/G(O) ×G(K)/P
E

f
0

× . . . ×G(K)/P
E

f
r
×G(K)/P

V
f
r+1
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given by all sequences of parahoric subgroups of shape

G(O) ⊃ Q0 ⊂ R1 ⊃ Q1 ⊂ · · · ⊃ Qr ⊂ Rr+1,

where Ri is conjugate to P
V

f
i

for i = 1, . . . , r + 1 and Qi is conjugate to P
E

f
i

for i = 0, . . . , r.

The action of the group G(K) on J a naturally extends to an action of G(K) on the set
of galleries. The action of G(K) is type preserving, the variety of galleries of fixed type
Σ(tγ) starting in V0 is stable under the action of G(O). Because of the bijection of parahoric
subgroups with faces of J a, the set of all points of the variety Σ(tγ) is in bijection with the
one-skeleton galleries in J a

g = (V0 = o ⊂ E′
0 ⊃ V ′

1 ⊂ E′
1 ⊃ · · · ⊂ E′

r ⊃ V ′
r+1)

having type tγ . The combinatorial galleries correspond to sequences of subgroups conjugated
to the P

E
f
i

’s and P
V

f
i

’s by elements in W a, these are precisely the T -fixed points in Σ(tγ).

Given a sequence of parahoric subgroups

G(O) ⊃ P
E

f
0

⊂ P
V

f
1

⊃ P
E

f
0

⊂ · · · ⊃ P
E

f
r
⊂ P

V
f
r+1

,

one defines the fibred product

G(O) ×P
E
f
0

P
V

f
1

×P
E
f
1

. . .×P
E
f
r−1

P
V

f
r
/P

E
f
r

as the quotient of P
V

f
0

× P
V

f
1

× · · · × P
V

f
r

by P
E

f
0

× P
E

f
1

× · · · × P
E

f
r

given by the action :

(p0, p1, ..., pr) · (q0, q1, ..., qr) = (q0p0, p
−1
0 q1p1, ..., p

−1
r−1qrpr).

This fibred product is a smooth projective complex variety. Its points are denoted by
[g0, . . . , gr]. The following proposition is proved in [7] in the case of varieties of galleries
in the spherical building associated to a semi-simple group. The proof extends naturally to
our setting.

Proposition 2. As a variety, Σ(tγ) is isomorphic to the fibred product via the map

[g0, . . . , gr] 7→ (PV0
⊃ g0PE0

g−1
0 ⊂ g0PV1

g−1
0 ⊃ g0g1PE1

g−1
1 g−1

0 ⊂ · · ·
· · · ⊂ g0 · · · grPVr+1

g−1
r · · · g−1

0 ).

Given a dominant coweight λ, let γλ = (o ⊂ E0 ⊃ . . . ⊂ Er ⊃ λ) be a corresponding
one-skeleton gallery as in Example 4. In this case, the variety of galleries of type tγλ starting
in o is called the Bott-Samelson variety associated to the gallery γλ and is denoted by:

Σ(γλ) := G(O) ×P
E
f
0

P
V

f
1

×P
E
f
1

. . . P
V

f
r−1

×P
E
f
r−1

P
V

f
r
/P

E
f
r
.

The set of all combinatorial galleries in the Bott-Samelson variety is denoted by Γ(γλ). For
instance, the gallery γλ corresponds to [1, w1, ..., wr ], where wj is the minimal representative
of the longest element in W

V
f
j

/W
E

f
j

.

Example 6. If ω is a minuscule fundamental coweight, then γω = (o ⊂ E0 ⊃ ω) and Σ(γω) =
G(O)/PE0

is just a homogeneous space, isomorphic to the orbit G(O).ω = G(O).ω = Xω.
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In general, the connection between Xλ and Σ(γλ) is given by the following proposition:

Proposition 3. As in Definition 6, denote by λf also the point in G = G(K)/G(O) corre-
sponding to the vertex of the fundamental alcove of the same type as λ. The canonical product
map

π : Σ(γλ) := G(O) ×PE0
PV1

×P
E
f
1

. . . P
V

f
r
/P

E
f
r

→ G

[g0, g1, . . . , gr] 7→ g0g1 · · · grλ
f

has as image the Schubert variety Xλ. The induced map π : Σ(γλ) → Xλ defines a desingu-
larization of the variety Xλ.

The proof of this proposition is similar to the proof in the classical case and is based on the
fact that the gallery γλ is minimal. The notion of minimality in our context is defined and
discussed in Section 5.

4.4 Cells

Let η : C∗ → T be a generic anti-dominant coweight. Then the set of η-fixed-points in Σ(γλ)
is finite and is in bijection with the set of all combinatorial galleries of the same type as γλ.
For such a fixed γ denote by Cγ the corresponding Bia lynicki-Birula cell, i.e. the set of points
such that limt→0 η(t).x = γ.

For a face F in J a, limt→0 η(t).F = r−∞(F ), and for a face F in A, r−1
−∞(F ) = U−(K).F .

Therefore, we want to determine as precisely as possible the group Stab−(F ) = StabU−(K)(F )
and the set Stab−(V )/Stab−(F ) when F and V are faces of the Coxeter complex such that
V ⊂ F .

Bruhat and Tits (see (7.1.1) in [5]) associate to a face F of the Coxeter complex the
function fF : α 7→ infk∈Z{α(F ) + k ≥ 0}. If α ∈ Φ, then fF (α) is the smallest integer
n such that F lies in the closed half-space H+

α,n. The function fF is convex and positively
homogeneous of degree 1; in particular, fF (iα+ jβ) 6 ifF (α) + jfF (β) for all roots α, β ∈ Φ
and all positive integers i, j.

When F and V are two faces of A such that V ⊂ F , then we denote by Φa
−(V, F ) the set of

all affine roots β ∈ Φ− ×Z such that V ⊂ Hβ and F 6⊂ H+
β ; in other words, (α, n) ∈ Φa

−(V, F )
if and only if α ∈ Φ−, n = fV (α) and n+1 = fF (α). We denote by Stab−(V, F ) the subgroup
of U−(K) generated by the elements of the form xβ(a) with β ∈ Φa

−(V, F ) and a ∈ C. We
plot an example to help the understanding of all these definitions. In the following picture,
α is a positive root.

H−α,−2 H−α,−1 H−α,0 H−α,1 H−α,2

H
+
−α,1

fV (−α) = 1

fF (−α) = 2

s
0

✲ α

sV �
�
�F
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The following proposition is proved in [1], Proposition 19.

Proposition 4. 1. The stabilizer Stab−(F ) of a face F of the Coxeter complex is generated
by the elements xα(p), where α ∈ Φ− and p ∈ K satisfy val(p) > fF (α).

2. Let F and V be two faces of the Coxeter complex such that V ⊂ F . Then Stab−(V, F )
is a set of representatives for the right cosets of Stab−(F ) in Stab−(V ). For any total
order on the set Φa

−(V, F ), the map

(aβ)β∈Φa

−
(V,F ) 7→

∏

β∈Φa

−
(V,F )

xβ(aβ)

is a bijection from CΦa

−
(V,F ) onto Stab−(V, F ), where CΦa

−
(V,F ) is the set of all mappings

from Φa
−(V, F ) to C.

In J a
V , FV corresponds to a spherical face of dimension one given by an element wF ∈

WV /WF such that F = wFφ
−
F , where φ−F is the face having the same type as FV contained in

C−
V . Let D = projF (C−

V ) be the closest chamber to C−
V containing FV , then wF = w(C−

V ,D).

Proposition 5. The walls Hβ, β ∈ Φa
−(V, F ), viewed as walls in AV , are the walls crossed by

any minimal gallery of chambers between C−
V and D.

Proof. By definition, Φa
−(V, F ) = {β ∈ Φ− × Z | V ⊂ Hβ, F 6⊂ H+

β }. So, for any β in this

set, the wall Hβ separates C−
V from FV . Moreover, F 6⊂ H+

β implies that it separates also C−
V

from D. Hence, Hβ is crossed by any minimal gallery of chambers between C−
V and D.

Therefore, Stab−(V, F ) can be identified with U−
V (wF ), where the latter is defined as

B−
V wFP

−
F /P

−
F = U−

V (wF )wFP
−
F /P

−
F . Let

δ = [δ0, δ1, ..., δr ] = (0 = V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) ∈ Γ(γλ)

and set
Stab−(δ) = Stab−(V0, E0) × Stab−(V1, E1) × · · · × Stab−(Vr, Er).

Proposition 6. The map

f : (v0, v1, . . . , vr) 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δr−1

−1
vr δ0 · · · δr

]

from Stab−(δ) to Σ(γλ) is injective and its image is Cδ (here x means that we take a coset
representative of x in G(K)). Therefore, Cδ is isomorphic to CΦa

−
(V0,E0) × · · · × CΦa

−
(Vr ,Er).

Proof. The proof is similar to the one of Proposition 22 in [1], we give it for the comfort of

the reader. Set ˜Stab−(δ) =

Stab−(V0) ×
Stab−(E0)

Stab−(V1) ×
Stab−(E1)

· · · ×
Stab−(Er−1)

Stab−(Vr)/Stab−(Er).
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Using the inclusions

Stab−(Ej) ⊆ δ0 · · · δj PE
f
j

δ0 · · · δj
−1

(for 0 6 j 6 r),

Stab−(V0) ⊆ G(O)δ0
−1
,

Stab−(Vj) ⊆ δ0 · · · δj−1 PV
f
j

δ0 · · · δj
−1

(for 1 6 j 6 r),

standard arguments imply that the map

f : [v0, v1, . . . , vr] 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δr−1

−1
vr δ0 · · · δr

]

from ˜Stab−(δ) to Σ̂(γλ) is well-defined.
The proof of Proposition 6 in [9] says that an element d = [g0, g1, . . . , gr] in the Bott-

Samelson variety belongs to the cell Cδ if and only if there exists u0, u1, . . . , ur ∈ U−(K) such
that

g0g1 · · · gjE
f
j = ujEj and uj−1Vj = ujVj

for each j. Setting v0 = u0 and vj = u−1
j−1uj for 1 6 j 6 r, the conditions above can be

rewritten
g0g1 · · · gjPE

f
j

= v0v1 · · · vj δ0δ1 · · · δj PE
f
j

and vj ∈ Stab−(Vj),

which shows that f([v0, v1, . . . , vr]) = d. Therefore the image of f contains the cell Cδ. The
reverse inclusion can be established similarly.

The map f is injective. Indeed suppose that two elements v = [v0, v1, . . . , vr] and v′ =

[v′0, v
′
1, . . . , v

′
r] in ˜Stab−(δ) have the same image. Then

v0v1 · · · vj δ0δ1 · · · δj PE
f
j

= v′0v
′
1 · · · v

′
j δ0δ1 · · · δj PE

f
j

for each j ∈ {0, . . . , r}. This means geometrically that

v0v1 · · · vj δ0δ1 · · · δj E
f
j = v′0v

′
1 · · · v

′
j δ0δ1 · · · δj E

f
j ;

in other words, v0v1 · · · vj and v′0v
′
1 · · · v

′
j are equal in U−(K)/Stab−(Ej). Since this holds for

each j, the two elements v and v′ are equal in ˜Stab−(δ).

We conclude that f induces a bijection from ˜Stab−(δ) onto Cδ. It then remains to observe

that the map (v0, v1, . . . , vr) 7→ [v0, v1, . . . , vr] from Stab−(δ) to ˜Stab−(δ) is bijective. This

follows from Proposition 4 part 2: indeed for each [a0, a1, . . . , ar] ∈ ˜Stab−(δ), the element
(v0, v1, . . . , vr) ∈ Stab−(δ) such that [v0, v1, . . . , vr] = [a0, a1, . . . , ar] is uniquely determined
by the condition that for all j ∈ {0, 1, . . . , r},

vj ∈
(
(v0 · · · vj−1)

−1(a0 · · · aj)Stab−(Ej)
)
∩ Stab−(Vj , Ej).
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5 Minimal one-skeleton galleries

To study the intersection Zλ,µ := G(O).λ∩U−(K).µ (see (2)) using the language of galleries,
we need to characterize which galleries in Σ(γλ) map onto the dense orbit G(O).λ in Xλ (see
Corollary 1). This will be done by introducing the notion of minimal galleries. These galleries
replace the minimal galleries of alcoves used in [9].

5.1 Minimality relative to an equivalence class of sectors

A sector s in the affine building is a sector in some apartment. Two sectors are called
equivalent if the intersection of the two is again a sector. Recall that for two given sectors
s1, s2, there exists an apartment A and subsectors s′1 ⊂ s1, s′2 ⊂ s2 such that s′1, s

′
2 ⊂ A. The

set of equivalence classes of sectors is in bijection with the set of Weyl chambers in A. Given
a sector s, we denote such an equivalence class by s.

Definition 9. A one-skeleton gallery

γ = (V0 ⊂ E0 ⊃ V1 ⊂ E1 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1)

is called minimal if there exists an equivalence class of sectors sγ and representatives s0, . . . , sr ∈
sγ such that for all i = 0, . . . , r: Vi is the vertex for the sector si and Vi ⊂ Ei ⊂ si. The class
sγ is not necessarily uniquely determined by γ.

The sequence s(γ) = (s0, . . . , sr) is called a chain of sectors associated to γ.

Example 7. The galleries described in Examples 1,2, 3 and 4 are minimal galleries such that
sγ = C+.

Remark 1. 1) With a little extra effort, one can see that this definition is an “instance” of
Definition 5.24 of [7], where Contou-Carrère defines generalized minimal galleries in a Coxeter
complex.

2) Thinking in geometric terms one might be inclined to demand that “minimality” should
be a local property, i.e. to be verified at each vertex of the gallery. This is not sufficient, see
below. Propositions 7 and 8 show that the more rigid definition above is the right definition
for our purpose.

Example 8. Consider the apartment of type A2, we use the notation γω1
, γω2

as in Example 2
for the fundamental weights. For an element w of the Weyl group set γw(ωi) := w(γωi

), i = 1, 2.
The galleries γ1 = γs1(ω1) ∗ γs1s2(ω2) and γ2 = γs1s2(ω2) ∗ γs2s1(ω1) are minimal with sγ1 =

s1s2(C
+) and sγ2 = s1s2s1(C

+). But the gallery γ := γs1(ω1) ∗ γs1s2(ω2) ∗ γs2s1(ω1) is not
minimal in the sense above.

The natural action of G(K) on J a induces a natural action on one-skeleton galleries: Let
γ be a one-skeleton gallery and g ∈ G(K), then we set

g.γ = (g.V0 ⊂ g.E0 ⊃ g.V1 ⊂ g.E1 ⊃ · · · ⊃ g.Vr ⊂ g.Er ⊃ g.Vr+1)

It follows immediately that the property of being minimal is preserved by the action. Let o

be the origin in A.

Proposition 7. Let γ be a minimal one-skeleton gallery in the building J a starting in V0 = o

and let s(γ) = (s0, . . . , sr) be an associated chain of sectors.
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a) γ is contained in s0.

b) For all i = 0, . . . , r+ 1: (Vi ⊂ Ei ⊃ Vi+1 ⊂ · · · ⊃ Vr+1) ⊂ s0(Vi). In particular, one may
choose as associated chain of sectors s(γ) = (s0, s0(V1), . . . , s0(Vr)).

c) There exists a unique gallery γ′ in the orbit G(O).γ such that γ′ is contained in the
dominant Weyl chamber C+ in A and the chain of sectors associated to γ can be chosen
to be all in the class of C+.

Proof. The sectors si, si+1, 0 ≤ i ≤ r − 1, are in the same equivalence class, so there exists a
subsector s′i contained in both sectors. A sector is the closure of the convex hull of its vertex
and any subsector, and hence si is the closure of the convex hull of Vi and s′i, and si+1 is
the closure of the convex hull of Vi+1 and s′i. Since si ⊃ Ei ⊃ Vi+1 it follows that si+1 is a
subsector of si, in fact, si+1 = si(Vi+1). By induction we conclude:

s0 ⊂ s0(V1) = s1 ⊂ s0(V2) = s1(V2) = s2 ⊂ . . . ⊂ s0(Vr) = . . . = sr. (9)

Now Ej ⊂ sj for all j = 0, . . . , r, so (Vi ⊂ Ei ⊃ Vi+1 ⊂ · · · ⊃ Vr+1) ⊂ s0(Vi), which finishes
the proof of a) and b).

Since G(O) acts transitively on the set of sectors having o as vertex, there exists g ∈ G(O)
such that g.s0 = C+. It follows: γ′ = g.γ is completely contained in C+. It remains to prove
the uniqueness.

Suppose now g′.γ = (V ′
0 ⊂ E′

0 . . .) and g′′.γ = (V ′′
0 ⊂ E′′

0 . . .) are contained in the dominant
Weyl chamber and hence in A. The action of G(O) preserves types, so both galleries have
the same gallery of types. Obviously we have V ′

0 = V ′′
0 = o and E′

0 = E′′
0 since both are faces

of the same type of the fundamental alcove. It follows: V ′
1 = V ′′

1 . Since g′.s1 = g′.(s0(V1)) =
C+(V ′

1) = C+(V ′′
1 ) = g′′.(s0(V1)) = g′′.s1, E′

1 ⊃ V ′
1 and E′′

1 ⊃ V ′
1 are faces of the same type of

the same sector C+(V ′
1), so necessarily E′

1 = E′′
1 . Repeating the argument shows γ = γ′.

Remark 2. In part b) above one can replace s0 by −s0 (see (4) for the notation), but one
has to replace the “tail” of the gallery by the “head”: For all i = 0, . . . , r + 1: (V0 ⊂ E0 ⊃
V1 ⊂ · · · ⊃ Vi) ⊂ −s0(Vi).

5.2 Orbits

The following proposition gives us a precise dictionary between the language of minimal one-
skeleton galleries and orbits of G(O) in the affine Grassmannian G(K)/G(O).

Proposition 8. Let γ be a minimal one-skeleton gallery in J a starting in o and ending in
λ = Vr+1 in the dominant Weyl chamber C+ in A. The target λ = Vr+1 is a special point
and hence is a coweight, by abuse of notation we also write λ for the corresponding point
in G(K)/G(O). The following natural map between the G(O)-orbit of the gallery γ and the
G(O)-orbit of λ in G is bijective:

G(O).γ −→ G(O).λ ⊂ G(K)/G(O), g.γ 7→ g.λ.

Proof. The map π defined in Proposition 3 is G(O)−equivariant and, as a desingularization
of X(λ), it must be an isomorphism over an open subset of X(λ) = G(O).λ. So it restricts
to a bijection G(O).γ ≃ G(O).λ.

Summarizing we have proved:
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Corollary 1. 1. Let γ be a minimal one-skeleton gallery starting in o, then the G(O)-orbit
of γ contains a unique element completely contained in the dominant Weyl chamber.

2. Let γ, γ′ be two minimal one-skeleton galleries starting in o.The two galleries are con-
jugate under the action of G(O) if and only if they have the same galleries of types.

3. Let γ = (V0 = o ⊂ E0 ⊃ V1 ⊂ E1 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) be a minimal one-skeleton
gallery contained in the dominant Weyl chamber and let λ = Vr+1 ∈ X+ be the target.
The projection G(O).γ 7→ G(O).λ ⊂ G(K)/G(O) is a bijection.

5.3 Positively folded one-skeleton galleries

Consider a vertex V of a gallery together with the two edges E and F . To simplify the
notation, we call such a sequence (V0 ⊂ E ⊃ V ⊂ F ⊃ V1) of vertices and edges a two steps
gallery. Note that none of the vertices needs to be a special vertex, and we often omit V0 and
V1. A two steps gallery is called minimal if there exists a sector s with vertex V0 such that
E ⊂ s and F ⊂ s(V ). An equivalent condition is the following: there exists a sector s′ with
vertex V such that E ⊂ s′ and F ⊂ −s′.

Definition 10. We say that a two steps gallery (E ⊃ V ⊂ F ′) ⊂ A is obtained from
(E ⊃ V ⊂ F ) ⊂ A by a positive folding if there exists an affine root (β, n) such that

V ∈ Hβ,n, F ′ = sβ,n(F ) and Hβ,n separates F and C−(V ) from F ′.

A two steps gallery (E ⊃ V ⊂ F ) in A is called positively folded if either the gallery is a
minimal, or if there exist faces F0, . . . , Fs containing V such that:

• (E ⊃ V ⊂ F0) is minimal and Fs = F ,

• ∀j = 1, . . . , s: (E ⊃ V ⊂ Fj) is obtained from (E ⊃ V ⊂ Fj−1) by a positive folding.

In the residue building at a vertex V we say that (EV , FV ) is a minimal pair if there exists
two opposite sectors s and −s with vertex V such that E ⊂ s and F ⊂ −s. We use this notion
to get the following equivalent definition for a positively folded two-step gallery, which uses
more the language of the residue building:

Definition 11. The two-step gallery (E ⊃ V ⊂ F ) in A is called positively folded if there
exist

• faces F0,V , . . . , Fs,V such that (EV , F0,V ) is a minimal pair, and Fs,V = FV ,

• for all j = 1, . . . , s there exists an affine root (βj , nj) such that βj ∈ ΦV , V ∈ Hβj ,nj
,

sβj ,nj
(Fj−1,V ) = Fj,V and Hβj ,nj

separates C−
V and Fj−1,V from Fj,V .

Remarks 3. 1) Note that two faces EV and F ′
V could be opposite in J a

V (i.e. there exists two
opposite chambers D and −D such that EV ⊂ D and F ′

V ⊂ −D) without being a minimal
pair. This can be seen in a root system of type B2.

2) Note that neither the face F0 nor the sequence of reflections are unique in Definition 10
and Definition 11. Below is an example for a root system of type B2. The dot in the middle
is the vertex V . The fact that (E ⊃ V ⊂ F ) is positively folded can be seen using one of the
two faces F0 and some reflections with respect to the drawn walls.
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Since the equivalence classes of sectors are in bijection with the Weyl chambers, we can
endow the set of equivalence classes with the Bruhat order: s ≥ s′ iff s = τ(C+), s = κ(C+)
and τ ≥ κ. Minimal galleries γ are characterized by the property that one can find an
associated chain of sectors s(γ) = (s0, . . . sr) such that we have for the classes: s0 = . . . = sr.

We are going to weaken this condition for the combinatorial positively folded one-skeleton
galleries:

Definition 12. For a dominant coweight λ, let γλ be a minimal one-skeleton gallery contained
in C+, starting in o and ending in λ. A combinatorial one-skeleton gallery of type tγλ :

γ = (V0 = o ⊂ E0 ⊃ . . . ⊂ Er ⊃ Vr+1) ⊂ A

is called globally positively folded or just positively folded if

i) the gallery is locally positively folded, i.e. the two-step galleries (Ei−1 ⊃ Vi ⊂ Ei) are
positively folded for all i = 1, . . . , r;

ii) there exists a chain of sectors s(γ) = (s0, . . . sr) such that for all i = 0, . . . , r: Vi is the
vertex of si and Ei ⊂ si, and s0 ≥ . . . ≥ sr.

The sequence of sectors respectively the sequence of Weyl group elements def (γ) = (τ0, . . . , τr)
(where τi(C

+) = si) is called a defining chain for γ.

Remark 4. A defining chain for a gallery is not necessarily unique. If τ0 = . . . = τr, then
the gallery is obviously minimal. Note that the gallery γ in Example 8 is locally minimal and
hence locally positively folded, i.e. the two-step galleries (E0 ⊃ V1 ⊂ E1) and (E1 ⊃ V2 ⊂ E2)
are positively folded, but the gallery is not globally positively folded.

5.4 Local and global properties in special cases

By Remark 4 and Example 8 we see that minimality and being positively folded are in general
not local properties. In this section we will show now that there are many interesting cases
where actually local minimality implies global minimality and locally positively folded implies
globally positively folded.

Fix a dominant coweight λ and let γλ be a concatenation of the galleries γω associated to
the fundamental coweights as in Example 3. More precisely, recall that we fixed a total order
on the set of fundamental coweights: ω1, ..., ωn, and if λ =

∑
aiωi, the associated minimal

gallery γλ is the concatenation of the correspondingly displayed galleries, see Example 3:

γλ = γω1
∗ · · · ∗ γω1

︸ ︷︷ ︸

a1times

∗ · · · ∗ γωn ∗ · · · ∗ γωn
︸ ︷︷ ︸

antimes

= (0 = V c
0 ⊂ Ec

0 ⊃ V c
1 ⊂ Ec

1 ⊃ · · · ⊃ V c
r ⊂ Ec

r ⊃ V c
r+1 = λ) ,
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where the V c
j ’s and the Ec

j ’s are vertices and faces of the dominant Weyl chamber.
Let suppλ be the set of nodes Ni of the Dynkin diagram such that ai 6= 0. We make a

special assumption on the enumeration of the nodes:

(∗) If Ni ∈ suppλ, then none of the nodes {Nj | j < i} is connected in the Dynkin diagram
with one of the nodes {Nj | j > i}.

If the Dynkin diagram has no branches, i.e. the root system of G is of type A, B, C, F4 or
G2, then the Bourbaki enumeration of the nodes satisfies the property (∗) for all dominant
coweights. If G is of type D or E and suppλ is contained in a subdiagram of type A, then it
is easy to see that one can find an enumeration satisfying the condition (∗).

Proposition 9. Suppose the enumeration of the nodes of the Dynkin diagram of G satisfies
the condition (∗) for suppλ. Let γ ⊂ A be a combinatorial one-skeleton gallery of the same
type as γλ. If γ is locally positively folded, then γ is globally positively folded.

Remark 5. A locally positively folded combinatorial one-skeleton can be viewed as the gallery
version of a weakly standard Young tableau defined by Lakshmibai, Musili and Seshadri in
[14], §12. The proof below is an adaption of their proof that in special cases (like the ones
above) weakly standard Young tableaux are standard Young tableaux.

Proof. Let γ be a combinatorial one-skeleton gallery of the same type as γλ, say

γ = (V0 = o ⊂ E0 ⊃ . . . ⊂ Er ⊃ Vr+1) ⊂ A.

The gallery γ is a concatenation γ = γ1 ∗ . . . ∗ γN of combinatorial one-skeleton galleries,
each being of the same type as γω for some fundamental weight ω corresponding to one of
the nodes in the support of λ. By abuse of notation we say that an edge Ei is of weight type
ωEi

if Ei occurs in the concatenation within a one-skeleton gallery of the same type as γωEi
,

and we say that Ei is of weight class κi ∈ W/WωEi
if the ray R≥0κi(ωEi

) coincides with the
ray starting in Vi and passing through Vi+1, up to a displacement by Vi. The gallery γ is
hence completely described by the sequence of Weyl group classes (κ0, . . . , κr). Further, given
a sector s with vertex Vi, then Ei ⊂ s only if s = τ(C+) for an element τ ∈ W such that
τ ≡ κi mod WωEi

.
It follows that to give a sequence of sectors (s0, . . . , sr) such that si has vertex Vi and Ei ⊂ s

is equivalent to give a sequence of Weyl group elements (τ0, . . . , τr) such that τi ≡ κi mod WωEi

for i = 0, . . . , r. The gallery is globally positively folded if and only if one can choose the
Weyl group elements such that in addition τ0 ≥ . . . ≥ τr.

As a first step, we show that the local minimality implies for all i = 0, . . . , r − 1 the
existence of pairs (σi, ηi+1) ∈ W ×W such that σi ≥ ηi+1, σi ≡ κi mod WωEi

and ηi+1 ≡
κi+1 mod WωEi+1

. For the positively folded two-step gallery (Ei ⊃ Vi+1 ⊂ Ei+1) let (Ei ⊃

Vi+1 ⊂ F0) be a corresponding minimal gallery with sector t0, i.e., t0 has vertex Vi, Ei ⊂ t0 and
F0 ⊂ t′0 = t0(Vi+1). If F0 = Ei+1, then set t1 = t′0. If F0 6= Ei+1, then let (β, n) be the affine
root such that F1 = sβ,n(F0) is obtained by a positive folding. Since Hβ,n separates F0 and
C−(V ) from F1, it separates also t′0 and C−(V ) from t′1 = sβ,n(t′0), so t0 ≥ t′1. By repeating
the argument if Ei+1 6= F1, we obtain successively the sector t1 with vertex Vi+1 such that
Ei+1 ⊂ t1 and t0 ≥ t1. Let σi, ηi+1 ∈ W be such that σi(C

+) = t0 and ηi+1(C
+) = t1, so

σi ≥ ηi+1 and σi ≡ κi mod WωEi
, ηi+1 ≡ κi+1 mod WωEi+1

.
We start now to define the sequence of Weyl group elements τ0, . . . , τr by choosing for τ0 ∈

W the maximal representative of the class κ0. Suppose we have already defined τ0, . . . , τi ∈W
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such that τ0 ≥ . . . ≥ τi and τj ≡ κj mod WωEj
for j = 0, . . . , i. Let k0 be such that the node

Nk0 corresponds to the fundamental weight ωEi
, let I be the set of nodes I = {Nℓ | ℓ < k0}

and set J = {Nℓ | ℓ > k0}. Denote by WI , WJ and WI∪J the subgroups of W generated by
the sα associated to the simple roots corresponding to the nodes in I, J and I∪J respectively.
The condition (∗) implies that the elements in WI commute with the elements in WJ . By
abuse of notation we write τ̄j not only for the class of τj in W/WωEi

= W/WI∪J , but also for
the minimal representative of this class in W . So we can write τj = τ̄jxjyj, where xj ∈ WI

and yj ∈WJ . Recall that xjyj = yjxj by condition (∗).
Since τ̄jxj is a minimal representative in W of the class (τj mod WJ), the inequalities

τ0 ≥ . . . ≥ τi imply the inequalities τ̄0x0 ≥ . . . ≥ τ̄ixi. Let now y be the maximal element
in WJ . Since y and the y0, . . . , yi fix the fundamental weight ωℓ for ℓ < k0, we can assume
without loss of generality yj = y for all j = 0, . . . , i, because if one replaces the yj by y, then
one still has the desired properties for all j = 0, . . . , i:

τ0 = τ̄0x0y ≥ τ1 = τ̄1x1y ≥ . . . ≥ τi = τ̄ixiy, and τj ≡ κj mod W/WωEj
.

To extend the sequence and define τi+1, we consider now the pair σi ≥ ηi+1 defined at the
beginning. Recall that σi ≡ κi = τ̄i mod WωEi

, ηi+1 ≡ κi+1 mod WωEi+1
. We can write

σi = τ̄ipiqi and ηi+1 = η̄i+1ri+1ti+1, where pi, ri+1 ∈ WI , qi, ti+1 ∈ WJ and η̄i+1 denotes the
class of ηi+1 in W/WI∪J as well as the minimal representative of the class in W .

Set τi+1 = η̄i+1ti+1, then τi+1 ≡ κi+1 mod WωEi+1
because ri+1 fixes ωEi+1

. Further,
τi = τ̄ixiy ≥ τi+1 = η̄i+1ti+1 because

(σi mod WωEi
) = κi = τ̄i ≥ (ηi+1 mod WωEi

) = η̄i+1

and, by construction, y ≥ ti+1. Proceeding by induction gives the desired defining chain.

5.5 Semistandard Young tableaux and positively folded one-skeleton gal-

leries

To characterize the tableaux corresponding to positively folded galleries, recall that the Bour-
baki enumeration of the fundamental coweights satisfies the condition (∗) in section 5.4 for
the groups of type An, Bn and Cn.

Proposition 10. The bijection in Proposition 1 induces a bijection between the positively
folded galleries and the semistandard tableaux.

Proof. By Proposition 9, a locally positively folded gallery is automatically globally positively
folded. Consider two consecutive faces of dimension one in the gallery: (Vi−1 ⊂ Ei−1 ⊃ Vi ⊂
Ei). Then either Ei−1 = Vi−1 + σ({tωj | t ∈ [0, 1]}) or Ei−1 = Vi−1 + σ({tωj | t ∈ [0, 12 ]})
for some j and some σ ∈ W/Wωj

, and Ei = Vi + τ({tωk | t ∈ [0, 1]}) or Ei = Vi + τ({tωk |
t ∈ [0, 12 ]}) for k = j or k = j + 1 and some τ ∈ W/Wωk

(for a more precise description
of the possible τ in the second case, see Equation (8)). Denote by Ci−1, Ci the columns in
the Young tableaux corresponding to the weights σ(ωj) and τ(ωk). It remains to show that
the condition positively folded at Vi is equivalent to the condition that the entries in the rows
of the tableaux consisting of the two columns Ci−1 (on the right side) and Ci are weakly
increasing.

It is easy to verify that the condition on the rows is equivalent to σ ≥ τ in W/Wωj
if

ωj = ωk (see [2], Chapter 3), respectively there exists lifts σ̃ ∈ W of σ and τ̃ ∈ W of τ such
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that σ̃ ≥ τ̃ (see [14]). Suppose first Vi is a special point. The condition σ̃ ≥ τ̃ implies the
condition positively folded: one starts with the sector Vi + σ̃(C+) which contains a conjugate
of Ei forming a minimal pair with Ei−1. If σ̃ > τ̃ , then one can find a sequence of reflections
such that σ̃ > sβ1

σ̃ > . . . > τ̃ and the length decreases in each step by one. It follows that the
corresponding folds at Vi are all positive. The reverse direction is proved in the same way:
start with a minimal pair Ei−1 ⊃ Vi ⊂ Ei,0 for Ei−1 ⊃ Vi ⊂ Ei, let σ̃(C+) be the chamber
such that Ei−1 ⊂ Vi−1 + σ̃(C+) and Ei,0 ⊂ Vi + σ̃(C+), applying the positive folds to the
sector Vi + σ̃(C+) yields a sector Vi + τ̃(C+) containing Ei, and, since the folds are positive,
one has σ̃ ≥ τ̃ . Since the sectors contain the faces we have σ̃(ωj) = σ(ωj) and τ̃(ωk) = τ(ωk),
i.e. these are lifts for σ and τ . If Vi is not a special point, then W v

Vi
= (W 1

Vi
)v × (W 2

Vi
)v

is of type Bj × Bn−j or Dj × Cj, where, in both cases, the second factor acts trivially. We
have a bijection between the possible entries of Ci and the orbit (W 1

Vi
)v · (ǫ1 + ǫ2 + · · · + ǫj),

in the following way: Let k1, ..., ks, ℓ̄1, ..., ℓ̄j−s, 1 ≤ kp, ℓq ≤ n, be the entries of Ci−1, we
order the set of integers {k1, ..., ks, ℓ1, ..., ℓj−s} in ascending order and we identify this linearly
ordered set with {1, 2, ..., j}. With respect to this bijection, the columns Ci−1, Ci correspond
to σ(ǫ1 + ǫ2 + · · · + ǫj) and τ(ǫ1 + ǫ2 + · · · + ǫj) for some σ, τ ∈ (WVi

1)v/(WVi
1)vǫ1+···+ǫj

.
Now again (see [2]), the Bruhat order on the orbit and the row condition on pairs of colums
coincide. So the same arguments, as above, show that positively folded and the row condition
are equivalent.

6 Local minimality

The language of building theory allows us to translate the study of the intersection Zλ,µ :=
G(O).λ ∩ U−(K).µ into a problem of studying intersections of subsets of a Bott-Samelson
variety Σ(γλ):

Zλ,µ = G(O).λ ∩ U−(K).µ =
⋃

δ∈Γ(tγλ ,o)

target(δ)=µ

{minimal galleries} ∩ Cδ.

Here Cδ denotes the Bia lynicki-Birula cell associated to the combinatorial gallery δ, which,
in terms of building theory, is the same as the fiber over δ of the retraction r−∞.

To describe more precisely the intersection of the set of minimal galleries with such a cell,
we need to “unfold” δ, i.e. we need to construct minimal galleries that retract onto δ. As a
first step we will, in this section, describe how to unfold two steps galleries. An important
tool will be the galleries of residue chambers.

6.1 Positively folded galleries of chambers

Let E and F be one dimensional faces in J a containing a vertex V , let also s be a sector
with vertex V containing E. Let wsV = w(C−

V , sV ) be the element in W v
V that sends C−

V to
sV . Among the residue chambers containing FV denote by D the one closest to C−

V . Fix a
reduced decomposition of wF = w(C−

V ,D) = si1 · · · sir in W v
V and let i = (i1, ..., ir) be the

type of the decomposition. We denote by αij the simple root in ΦV corresponding to sij . For
any root α ∈ ΦV , xα(·) denotes the one-parameter additive subgroup of HV associated to α,
let Uα denote its image in HV .

We consider now galleries of residue chambers c = (C−
V , C1, ..., Cr) in the apartment

AV starting at C−
V and of type i. The set of these galleries is in bijection with the set
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Γ(i) = {1, si1} × · · · × {1, sir} via the map (c1, ..., cr) 7→ (C−
V , c1C

−
V , ..., c1 · · · crC

−
V ). Let

βj = c1 · · · cj(αij ), then βj is the root corresponding to the common wall Hj = Hβj
of

Cj−1 = c1 · · · cj−1C
−
V and Cj = c1 · · · cjC

−
V . In the following, we shall identify a sequence

(c1, ..., cr) and the corresponding gallery.

Definition 13. A gallery c = (c1, ..., cr) ∈ Γ(i) is said to be positively folded with respect to
sV if cj = 1 implies w−1

sV
βj < 0. We denote the set of positively folded galleries by Γ+

sV
(i).

If sV = C+
V , a gallery c = (c1, ..., cr) is positively folded with respect to C+

V if, and
only if, the associated subexpression (id, c1, c1c2, ..., c1 · · · cr) is distinguished, see Deodhar
[8], Definition 2.3.

Proposition 11. A gallery c = (C−
V , C1, ..., Cr) ∈ Γ(i) is positively folded with respect to sV

if, and only if, Cj = Cj−1 implies that the wall Hj = Hβj
separates sV from Cj = Cj−1.

Proof. We have the following equivalences:
(Hj separates sV from Cj = Cj−1) ⇐⇒ (w−1

sV
Hj separates C−

V from w−1
sV
Cj = w−1

sV
Cj−1) ⇐⇒

(w−1
sV
βj is a negative root).

The set of all galleries of chambers starting at C−
V of type i in the building J a

V has a
structure of a smooth projective algebraic variety, which we denote by BS(i). (In fact, it is
a Bott-Samelson variety.) To a gallery of chambers c = (c1, ..., cr) = (C−

V , C1, ..., Cr) in Γ(i),
one can associate an open subset OsV (c) and a cell CsV (c) in the variety BS(i). They are
defined in the following way: for any j ∈ {1, ..., r}, and any aj ∈ C, set oj = xcj(αij

)(aj)cj ,

then OsV (c) = {(C−
V = C ′

0, C
′
1, ..., C

′
r) | ∀j : C ′

j = o1 · · · ojC
−
V }; further, set

gj =

{

cj if w−1
sV
βj > 0

xcj(αij
)(aj)cj if w−1

sV
βj < 0.

then CsV (c) = {(C−
V = C ′

0, C
′
1, ..., C

′
r) | ∀j : C ′

j = g1 · · · gjC
−}. The minimal galleries in

CsV (c) are those such that for any j: C ′
j−1 6= C ′

j , i.e. cj 6= 1 if w−1
sV
βj > 0, and aj 6= 0 if cj = 1

and w−1
sV
βj < 0. We denote the set of minimal galleries by Cm

sV
(c).

Lemma 4. The set Cm
sV

(c) is empty if the gallery c is not positively folded with respect to sV .
If c is positively folded with respect to sV , then Cm

sV
(c) is isomorphic to:

Cm
sV

(c) ≃ Ct(c) × (C∗)r(c)

where

t(c) = ♯{j | cj = sij and w−1
sV
βj < 0}, r(c) = ♯{j | cj = 1 and w−1

sV
βj < 0}.

Proposition 12. The cell CsV (c) identifies with r−1
sV

(c), where rsV : J a
V → AV is the retrac-

tion centered at sV .

Proof. For any chamber C ′, the retraction can be defined as rsV (C ′) = lims→0 s
θC ′, where

θ is a regular coweight contained in sV . To simplify, we take θ = wsV (−ρ∨). Further, the
retraction applies componentwise to the galleries, whence rsV (g) = (C−

V , rsV (C ′
1), ..., rsV (C ′

r)).

For any j, rsV (C ′
j) = lims→0 s

wsV
(−ρ∨)g1 · · · gjC

−
V = lims→0 g

′
1 · · · g

′
jC

−
V , where

g′j =

{

cj if w−1
sV
βj > 0

xcj(αij
)(s

〈cj(αij
), cj−1···c1wsV

(−ρ∨)〉aj)cj if w−1
sV
βj < 0.
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But 〈cj(αij ), cj−1 · · · c1wsV (−ρ∨)〉 = 〈w−1
sV
βj,−ρ

∨〉. Therefore, CsV (c) ⊂ r−1
CsV

(c). One sees in

the same way that CsV (c) ⊃ r−1
CsV

(c).

Remark 6. The cells define a Bia lynicki-Birula decomposition of the variety of all galleries
of chambers BS(i). In fact, BS(i) =

∐

c∈Γ(i) CsV (c).

6.2 Two steps minimal one-skeleton galleries

Theorem 1. Let (E ⊃ V ⊂ F ) be a two steps one-skeleton gallery in A. There exists a
minimal gallery (E ⊃ V ⊂ E′) in J a such that E′ has the same type as F and r−∞(E′) = F
if, and only if, (E ⊃ V ⊂ F ) is positively folded.

We divide the proof of Theorem 1 into four lemmas. Choose a chamber D containing FV

and let w be the element that sends C−
V to D.

Lemma 5. Suppose there exists a minimal one-skeleton gallery (E ⊃ V ⊂ E′) such that
r−∞(E′) = F . Let s be a sector in A with vertex V containing E such that E′ ⊂ −s, in any
apartment containing s and E′. Then one can find a minimal gallery of residue chambers m′

of type i = (i1, ..., ir) between C−
V and E′

V such that

i) w = si1 · · · sir is a reduced decomposition,

ii) c = rsV (m′) ⊂ AV is a positively folded gallery of residue chambers with respect to sV ,

iii) (EV , F
′
V ) is a minimal pair, where F ′

V = rsV (E′
V ) and F ′

V is of the same type as FV .

Proof. The fact that E′ has the same type as F is a consequence of r−∞(E′) = F .
Transferred to the setting of the residue building, the retraction r−∞ identifies with the
retraction centered at C−

V of J a
V onto AV , so rC−

V
(E′

V ) = FV . Since this retraction preserves

the distances from C−
V , any minimal gallery m′ = (C−

V , C
′
1, ..., C

′
r) of residue chambers in J a

V

from C−
V to E′

V (in any apartment containing those two) retracts onto a minimal gallery from
C−
V to FV , say of type i = (i1, ..., ir). Further, one can choose C ′

r such that rC−

V
(C ′

r) = D. Since

the gallery is minimal, it follows that i = (i1, ..., ir) corresponds to a reduced decomposition
of the element w.

Consider the variety of galleries BS(i). The gallery m′ belongs to the cell CsV (c), where
c = rsV (m′) = (C−

V , C1, ..., Cr). Let us suppose that Cj = Cj−1. Let us moreover assume
(without loss of generality) that the gallery m′ is already retracted until the index j − 1,
meaning that m′ = (C−

V , C1, ..., Cj−1,Dj , ...,Dr), where (Cj−1,Dj , ...,Dr) is a minimal gallery
retracting onto (Cj−1, Cj , ..., Cr). Suppose that Hj does not separate sV from Cj = Cj−1.
The chambers Cj−1 and Dj have to be distinct by the assumption on the minimality, so
Cj = rsV (Dj) and sV can not be on the same side of Hj, contradicting the assumption
Cj = Cj−1 are not separated from sV by Hj. It follows that the gallery of chambers c is
positively folded, i.e., c ∈ Γ+

sV
(i).

Let r∞,s be the retraction from ∞, but now with respect to the sector s. On the level of
the residue building, the retraction r∞,s identifies with the retraction centered at sV of J a

V

onto AV . So if we set r∞,s(E
′) = F ′, then F ′

V = rsV (E′
V ) and we get a minimal pair (EV , F

′
V )

in J a
V .

28



The face E′
V is contained in the opposite of sV in any apartment containing EV and E′

V ,
and rsV preserves the distance from sV . It follows that F ′

V = rsV (E′
V ) is contained in −sV ,

and hence we get a minimal pair (EV , F
′
V ) in J a

V . Since the type of E′
V and FV are the same

and the type of E′
V and F ′

V are the same, this finishes the proof of the lemma.

Lemma 6. If there exists a minimal one-skeleton gallery (E ⊃ V ⊂ E′) such that r−∞(E′) =
F , then the one-skeleton gallery (E ⊃ V ⊂ F ) is positively folded.

Proof. Let c = rsV (m′) ⊂ AV be the positively folded gallery of residue chambers with
respect to sV described in Lemma 5. By construction, unfolding c gives a minimal gallery
from C−

V to FV . We will see that this unfolding procedure shows that (E ⊃ V ⊂ F ) is
positively folded.

The procedure works as follows: Let {j1 < · · · < jk} ⊂ {1, ..., r} be the indices where c

is folded. Then we unfold the gallery of chambers starting with the fold at the wall Hj1 , the
resulting gallery will then still have a fold at sHj1

(Hj2), we unfold the gallery at this wall etc.
The face F ′

V will be reflected each time and we get

FV = sHj1
· · · sHjk−1

sHjk
(sHj1

· · · sHjk−1
)−1 · · · sHj1

sHj2
sHj1

sHj1
F ′
V

= τk · · · τ1F
′
V ,

where τl = sHj1
· · · sHjl−1

sHjl
(sHj1

· · · sHjl−1
)−1. To see that (E ⊃ V ⊂ F ) is positively folded,

it remains to prove that each time the face is reflected away from C−
V .

First recall that c is positively folded, so for each folding step we have the chambers
Cjk = Cjk−1 and sV lie within different half-spaces with respect to the wall Hjk . Further,
since F ′

V ⊂ −sV , the chambers Cjk = Cjk−1 and the face F ′
V lie within the same half-space.

We use the suggestive notation

F ′
V , Cjk = Cjk−1 |Hjk

sV ⊃ EV ,

for this situation.
The gallery of chambers c starts at C−

V and is folded for the first time at the hyperplane
Hj1 . It follows that the chambers C−

V and Cj1 = Cj1−1, and hence also F ′
V , are within the

same half-space with respect to Hj1:

C−
V , Cjk = Cjk−1, F

′
V |Hjk

sV ⊃ EV .

Thus, after the first unfolding, we have:

C−
V , C1, ..., Cj1−1 |Hj1

τ1(Cj1), τ1(F ′
V ) ,

meaning that the chambers C−
V , C1, ..., Cj1−1 are separated from τ1(Cj1) and from τ1(F

′
V ) by

the wall Hj1 (note that the face F ′
V = τ1(F

′
V ) may be contained in the wall Hj1). In particular,

either F ′
V is fixed by the reflection or is reflected away from C−

V . The gallery

c1 = (C−
V , C1, ..., Cj1−1, τ1(Cj1), ..., τ1(Cj2−1), τ1(Cj2), ..., τ1(Cr))

is now minimal up to the index j2 − 1. Moreover, we know that

F ′
V , Cj2−1 = Cj2 |Hj2

sV ⊃ EV ,
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applying τ1, we get
τ1(F

′
V ), τ1Cj2−1 = τ1Cj2 |τ1Hj2

τ1EV .

The gallery of chambers c1 is folded for the first time at the hyperplane τ1Hi2 , so C−
V and

τ1Cj2−1 = τ1Cj2 , and hence also τ1(F
′
V ) are on the same side of τ1Hi2 . Therefore, when

we unfold with respect to τ1Hi2 , this wall separates C−
V and τ1(F

′
V ) from τ2τ1(F

′
V ). This

procedure can be iterated to show that at each step the image of F ′
V is folded away from C−

V ,
which proves that (E ⊃ V ⊂ F ) is positively folded.

Proof of Theorem 1: “⇒”. Lemmas 5 and 6 show the existence of a minimal one-
skeleton gallery (E ⊃ V ⊂ E′) such that r−∞(E′) = F implies that the one-skeleton gallery
(E ⊃ V ⊂ F ) is positively folded.

Let (E ⊃ V ⊂ F ) be a positively folded one-skeleton gallery. Let s ⊂ A be a sector with
vertex V containing E. Choose a chamber D containing FV and let wD be the element that
sends C−

V to D. Let i = (i1, ..., ir) be the type of a reduced decomposition of wD = si1 · · · sir
in W v

V .

Lemma 7. For w ≤ wD let F ′
V be the a face of w(C−

V ) of the same type as FV . Then there
exists a gallery of chambers c = (C−

V , C1, ..., Cr) of type i, positively folded with respect to
−w(C−

V ), such that F ′
V ⊂ Cr.

Proof. Let m be a minimal gallery of type i = (i1, ..., ir) between C−
V and D ⊃ FV . By the

subword property, there exists a folded gallery d = (C−
V ,D1, ...,Dr) of type i in AV such that

Dr ⊃ F ′
V .

Suppose the gallery is not positively folded with respect to −w(C−
V ). Let j be the smallest

index such that −w(C−
V ) and Dj = Dj+1 are on the same side of the wall Hij of type ij.

The last chamber Dr contains F ′
V ⊂ w(C−

V ), and w(C−
V ) lies within the other half-space

defined by Hij . It follows that the gallery d has to meet Hij for some index larger than j.
Let jmax = maxk{Hik = Hij , k > j} or set jmax = r if Hij ⊃ F ′

V .
Consider the new gallery of type i, d′ = (C−

V ,D
′
1, ...,D

′
r) defined by :

D′
k =







Dk if k 6 j
sHij

(Dk) if j + 1 6 k 6 jmax

Dk if k > jmax .

This gallery still has the property that the last chamber contains F ′
V : D′

r ⊃ F ′
V , and the

gallery is now positively folded with respect to −w(C−
V ) till the index ij. By repeating the

procedure if necessary, one obtains a gallery c = (C−
V , C1, ..., Cr) ∈ Γ+

−w(C−

V
)
(i) such that

F ′
V ⊂ Cr.

Lemma 8. Let F ′
V be the face of −sV of the same type as FV . Then there exists a face E′

V

of the same type as FV such that (EV , E
′
V ) is a minimal pair in J a

V and rC−

V
(E′

V ) = FV .

Proof. Because (E ⊃ V ⊂ F ) is positively folded and s ⊃ E, the chamber −sV is closer to
C−
V than D. Therefore w = w(C−

V ,−sV ) ≤ wD. So we can apply Lemma 7 to get a gallery
of chambers c = (C−

V , C1, ..., Cr) of type i such that c is positively folded with respect to sV
and FV ⊂ Cr.

According to the preceding section (see Lemma 4 and before), there exist a minimal
gallery m = (C−

V , C
′
1, ..., C

′
r) in the cell CsV (c), and the chambers C ′

j can be described as
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C ′
j = g1 · · · gjC

−
V where gj = cj or xcj(αij

)(aj)cj , and cj 6= 1 if w−1
sV
βj > 0, and aj 6= 0 if cj = 1

and w−1
sV
βj < 0.

Let E′
V be the face of the same type as F ′

V contained in C ′
r. First, we note that the

minimality of the gallery m = (C−
V , C

′
1, ..., C

′
r) and the fact that rC−

V
(m) = c ensures that

r
C−

V
(E′

V ) = FV . Second, we are going to prove that sV and E′
V are contained in the apartment

gAV , with g = g1 · · · gr, and, in this apartment, E′
V is contained in the chamber opposite sV .

The proof is by an inductive procedure. We show that, for all j ∈ {1, ..., r}, sV and
g1 · · · gjC

−
V are in the apartment g1 · · · gjAV . We write in the following just Hj for the common

wall Hβj
of Cj−1 and Cj of type ij .

By assumption, c is a positively folded gallery with respect to sV , so there are three
possible relative position for sV , C−

V and C1 with respect to H1:
1) sV and C−

V are on the same side of H1 and C1 not, then C ′
1 = g1C

−
V = x−αi1

(a1)si1C
−
V =

x−αi1
(a1)C1. But x−αi1

(a1) pointwise stabilizes the halfspace bounded by H1 containing C−
V ,

hence x−αi1
(a1)(sV ) = sV and C ′

1 are in the apartment g1AV ;

2) sV and C−
V = C1 are separated by H1, then C ′

1 = g1C
−
V = xαi1

(a1)C−
V but xαi1

(a1)

pointwise stabilizes the halfspace bounded by H1 not containing C−
V , hence sV and C ′

1 are in
the apartment g1AV ;

3) sV and C1 are on the same side of H1 and C−
V not, then wsV has a reduced decomposition

that starts with si1 , wsV = si1u, so w−1
sV

(−αi1) > 0, whence g1 = c1 = si1 and sV and
C ′
1 = si1C

−
V are in the apartment g1AV .

By induction we assume now that the chambers sV and g1 · · · gj−1C
−
V are in the apartment

Aj−1 = g1 · · · gj−1AV . Again, we have three possible relative positions for sV , Cj−1 and Cj :
1) sV and Cj−1 are on the same side of Hj and Cj not, then sV and C ′

j−1 are on the same
side of g1 · · · gj−1Hj in Aj−1, and

C ′
j = g1 · · · gj−1x−αij

(aj)sijC
−
V

= g1 · · · gj−1x−αij
(aj)sij (g1 · · · gj−1)

−1C ′
j−1

= g1 · · · gj−1x−αij
(aj)(g1 · · · gj−1)

−1g1 · · · gj−1sij(g1 · · · gj−1)
−1C ′

j−1,

where g1 · · · gj−1sij (g1 · · · gj−1)
−1C ′

j−1 is the chamber adjacent to C ′
j along g1 · · · gj−1Hj in

Aj−1. Moreover, g1 · · · gj−1x−αij
(aj)(g1 · · · gj−1)

−1 pointwise stabilizes the halfspace bounded

by g1 · · · gj−1Hj containing C ′
j−1 and sV . So sV and C ′

j are in the apartment g1 · · · gjAV .
2) Cj−1 = Cj and sV are separated by Hj, then C ′

j−1 and sV are separated by g1 · · · gj−1Hj

in Aj−1, and sV and the chamber

g1 · · · gj−1sij (g1 · · · gj−1)
−1C ′

j−1

are on the same side of this wall. Moreover, for aj 6= 0

C ′
j = g1 · · · gj−1xαij

(aj)C
−
V = g1 · · · gj−1xαij

(aj)(g1 · · · gj−1)
−1C ′

j−1

is a chamber adjacent to C ′
j−1 along g1 · · · gj−1Hj = g1 · · · gj−1xαij

(aj)Hj in g1 · · · gjAV . The

root-subgroup g1 · · · gj−1xαij
(aj)(g1 · · · gj−1)

−1 pointwise stabilizes the halfspace bounded by

g1 · · · gj−1Hj and containing the chamber g1 · · · gj−1sij(g1 · · · gj−1)
−1C ′

j−1. So sV and C ′
j are

in the apartment g1 · · · gjAV .
3) sV and Cj are on the same side of Hj and Cj−1 not, then w−1

sV
βj > 0 and so C ′

j =

g1 · · · gj−1sijC
−
V . Whence sV and C ′

j are in the apartment g1 · · · gjAV .
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Therefore sV and E′
V are contained in the apartment gAV = g1 · · · grAV , and in this

apartment E′
V is the image of the face F ′

V contained in −sV . More precisely, E′
V = gφ−V =

bw−sV φ
−
V = bF ′

V , where φ−V is the face having the type of F ′
V contained in C−

V , F ′
V = w−sV φ

−
V

and b ∈ BsV = StabHV
(sV ). This element is obtained as follows:

g = g1 · · · gr
= xc1(αi1

)(a1)c1 · · · xcr(αir )
(ar)cr

= xβ1
(±a1) · · · xβr

(±ar)c1 · · · cr
= xβ1

(±a1) · · · xβr
(±ar)w−sV .

(10)

As EV and F ′
V are in opposite chambers in AV , so are EV and E′

V in gAV . Let E′ ⊂ J a

be the one dimensional face such that V ⊂ E′ and E′
V is the associated face in the residue

building J a
V . Let r∞,s be the retraction from ∞, but now with respect to the sector s. On

the level of the residue building, the retraction r∞,s identifies with the retraction rsV centered
at sV of J a

V onto AV . Since E′
V retracts with respect to rsV onto F ′

V in AV , E′ retracts with
respect to r∞,s onto F ′ in A. The retraction is distance preserving with respect to s, so the
fact that E and F ′ are in opposite sectors implies that the same holds for E and E′. In other
words, (EV , E

′
V ) is a minimal pair.

Proof of Theorem 1: “⇐”. Since (E ⊃ V ⊂ F ) is positively folded, there exists a sector
s ⊃ E with vertex V and a face F ′ ⊃ V of the same type as F such that F ′ ⊂ −s. Therefore,
we can apply Lemmata 7 and 8 to get a minimal pair (EV , E

′
V ), with rC−

V
(E′

V ) = FV , in other

words a minimal gallery (E ⊃ V ⊂ E′), with r−∞(E′) = F . The fact that E′ has the same
type as F is a consequence of r−∞(E′) = F .

Definition 14. Given a two-step gallery (E ⊃ V ⊂ F ) in J a, denote by Min(E,F ) the set
of all faces E′ ⊃ V such that r−∞(E′) = F and (E ⊃ V ⊂ E′) is minimal. This set can be
identified with the set of all faces E′

V such that rC−

V
(E′

V ) = FV and (E′
V , EV ) is a minimal

pair.

We assume now that (E ⊃ V ⊂ F ) is positively folded, we want to give this set an
algebraic structure as an open subset of a union of cells in a Bott-Samelson variety.

We use the same notation as in section 6.1. Let s be a sector containing E and let
wsV = w(C−

V , sV ) be the element inW v
V that sends C−

V to sV . LetD be the chamber containing
FV the closest to C−

V . Since (E ⊃ V ⊂ F ) is positively folded, w−sV = w(C−
V ,−sV ) ≤ wD =

w(C−
V ,D). Fix a reduced decomposition of wD = si1 · · · sir in W v

V and denote its type by
i = (i1, ..., ir).

We denote by Γ+
sV

(i, op) the set of all galleries c = (C−
V , C1, ..., Cr) of residue chambers of

type i which are positively folded with respect to sV and have the property that the face F ′
V

of the same type as FV contained in Cr forms a minimal pair with EV in AV .

Proposition 13. The setMin(E,F ) is in bijection with the disjoint union
∐

c∈Γ+
sV

(i,op) C
m
sV

(c),

where Cm
sV

(c) is the set of all minimal galleries in the cell CsV (c) ⊂ BS(i).

Proof. First recall that Min(E,F ) identifies with the set of all faces E′
V such that (EV , E

′
V )

is a minimal pair and rC−

V
(E′

V ) = FV . Next, the proof of Lemma 8 asserts that to a minimal

gallery m′ ∈ CsV (c) corresponds such a unique face E′
V = g(m′). It is the face of the same type

as FV contained in the last chamber of m′. Lemma 5 shows that this mapping g is surjective.
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Suppose now that m′,n′ ∈ CsV (c) are two minimal galleries such that E′
V = g(m′) = g(n′).

Since D is the closest chamber to C−
V containing FV the last chambers of m′ and of n′ have

to be the same. Since they have the same type and the same origin, m′ = n′.

7 From local properties to global properties

In Theorem 1 we have shown that one can obtain a minimal two steps gallery by “unfolding”
a combinatorial two steps gallery (E ⊃ V ⊂ F ) only if the latter is positively folded. This
provides a procedure to unfold a locally positively folded combinatorial one-skeleton gallery
inductively to get a locally minimal one-skeleton gallery. The first aim of this section is to
show that if one starts with a globally positively folded gallery, then this unfolding algorithm
produces automatically globally minimal one-skeleton galleries. Next we derive a formula for
the polynomials Lλ,µ.

7.1 From positively folded two-steps galleries to minimal galleries

Proposition 14. Let δ = [δ0, δ1, ..., δr ] = (V0 ⊂ E0 ⊃ · · · ⊂ Er ⊃ Vr+1) ∈ Γ(γλ). The
intersection {minimal galleries} ∩ Cδ is non-empty if, and only if, δ is positively folded.

Proof. Let γ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ · · · ⊃ V ′
r ⊂ E′

r ⊃ V ′
r+1) be a minimal one-skeleton

gallery in the cell Cδ. Since γ starts at V0 = o, we may replace γ by uγ for some u ∈ U−(O)
if necessary and assume that E′

0 = E0 and V ′
1 = V1 are in A. Let s′(γ) = (s0, s

′
1, ..., s

′
r) be

the sequence of representatives of the same equivalence class of sectors such that V ′
i is the

vertex of s′i and E′
i ⊂ s′i. The sequence starts with a sector tipped at 0 whose image by r−∞

is the chamber τ0(C
+), for some τ0 ∈ W . We know that (E0 ⊃ V1 ⊂ E′

1) is minimal and
such that r−∞(E′

1) = E1, hence Lemma 6 shows that (E0 ⊃ V1 ⊂ E1) is positively folded.
This means that there exists a face V1 ⊂ E′′

1 ⊂ A such that (E0 ⊃ V1 ⊂ E′′
1 ) is minimal

and (E0 ⊃ V1 ⊂ E1) is obtained from (E0 ⊃ V1 ⊂ E′′
1 ) by a positive folding, see Lemma 5

and Lemma 6 and the proofs. Now in the proof one may choose for the minimal gallery of
residue chambers as last chamber the residue chamber associated to s0(V1) = s1. But E′′

1 is
contained in τ0(C

+)(V1) (see Lemma 5 and its proof) and the sector s1 retracts onto a sector
of A tipped at V1 and containing E1. Therefore r−∞(s1) = τ1(C

+)(V1), with τ0 ≥ τ1.
We want to repeat this argument to prove the claim in an inductive procedure. To do so,

recall from Proposition 6, that γ corresponds to a sequence

(v0, v1, ..., vr) ∈ Stab−(V0, E0) × Stab−(V1, E1) × · · · × Stab−(Vr, Er)

and that E′
j = v0v1 · · · vjδ0δ1 · · · δjE

f
j = v0v1 · · · vjEj . The gallery γ can be retracted step by

step, that means that we consider the sequence:

γ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ · · · ⊃ V ′
r ⊂ E′

r ⊃ V ′
r+1),

γ0 = (V0 ⊂ E0 ⊃ V1 ⊂ v1E1 · · · ⊂ (v1 · · · vr)Er ⊃ (v1 · · · vr)Vr+1),
...

γj−1 = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Ej−1 ⊃ Vj ⊂ vjEj ⊃ · · ·
· · · ⊂ (vj · · · vr)Er ⊃ (vj · · · vr)Vr+1)

...
γr = δ = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1).
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Now, at each step, (Ej−1 ⊃ Vj ⊂ vjEj) is minimal because it is obtained from a minimal
two-step gallery by applying elements of G(K). So, we can repeat the previous arguments to
show that δ is globally positively folded.

Reciprocally, we show that if δ is positively folded then one can, inductively, built a
minimal gallery that retracts onto it. Indeed, we start applying Theorem 1 at the vertex Vr.
So we get a gallery

δr = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Er−1 ⊃ Vr ⊂ E′
r ⊃ V ′

r+1),

where (Er−1 ⊃ Vr ⊂ E′
r) is minimal in an apartment Ar, r−∞(E′

r) = Er and a sequence of
sectors (s0, s1, ..., sr) such that s0 ≥ s1 ≥ · · · ≥ sr−1 = sr. We apply the theorem again at the
vertex Vr−1. So we get a gallery

δr−1 = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Er−2 ⊃ Vr−1 ⊂ E′
r−1 ⊃ V ′

r ),

where (Er−2 ⊃ Vr−1 ⊂ E′
r−1) is minimal in an apartment Ar−1, r−∞(E′

r−1) = Er−1 and
a sequence of sectors (s0, s1, ..., sr−1) such that s0 ≥ s1 ≥ · · · ≥ sr−2 = sr−1. Now, since
(Er−1 ⊃ Vr ⊂ E′

r) is positively folded in A, there exists a face F ′
r of the same type as Er such

that (Er−1 ⊃ Vr ⊂ F ′
r) is minimal in A. Since E′

r−1 = ur−1Er−1, we can take Ar−1 = ur−1A

and the image of (Er−1 ⊃ Vr ⊂ F ′
r) in Ar−1 is still minimal. So we complete the gallery δr−1

with it to get a one-skeleton gallery which is minimal after the index r − 1 and contained in
the sector sr−2 = sr−1 = sr of Ar−1. Iterating this procedure, we get a minimal one-skeleton
gallery that retracts onto δ.

7.2 A formula for Lλ,µ

For a dominant coweight λ let γλ be a dominant combinatorial gallery joining o and λ (see
Example 4). The investigation of the intersection Zλ,µ can be transferred to the Bott-Samelson
variety Σ(γλ):

Zλ,µ = G(O).λ ∩ U−(K).µ =
⋃

δ∈Γ(tγλ ,o)

target(δ)=µ

{minimal galleries} ∩ Cδ.

Proposition 14 states that the intersection {minimal galleries} ∩Cδ is non-empty if and only
if δ is positively folded. We want to describe the intersection more precisely.

Recall from Definition 14 that for a two steps gallery (E ⊃ V ⊂ F ) the set Min(E,F )
identifies with the set of all faces E′

V such that (EV , E
′
V ) is a minimal pair and rC−

V
(E′

V ) = FV .

Let δ = (o = V0 ⊂ E0 ⊃ · · · ⊃ Vr ⊂ Er ⊃ µ) be a positively folded combinatorial
gallery and let B− ⊂ G be the opposite Borel subgroup. Denote by D0 the chamber in A

which contains E0 and is the closest to C−, and let wD0
∈ W be the element such that

wD0
(C−) = D0.

Proposition 15. The set of all minimal one-skeleton galleries in the cell Cδ identifies with
the product

B−wD0
Q−

E0
/Q−

E0
×

r∏

j=1

Min(Ej−1, Ej) .
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Proof. If γ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ · · · ⊃ V ′
r ⊂ E′

r ⊃ V ′
r+1) is a minimal gallery of Cδ, then

E′
0 identifies with an element of the orbit B−wD0

Q−
E0
/Q−

E0
. Further, to γ ∈ Cδ corresponds

a sequence (v0, v1, ..., vr) in

Stab−(δ) = Stab−(V0, E0) × Stab−(V1, E1) × · · · × Stab−(Vr, Er).

In the proof of Proposition 14, we have seen that h(γ) := (E′
0, v1E1, ..., vrEr) belongs to

B−wD0
Q−

E0
/Q−

E0
×
∏r

j=1Min(Ej−1, Ej), and we have also seen that h is surjective. The fact
that h is injective is a consequence of Proposition 4.

Let Fq be the finite field with q elements and replace the field of complex numbers by
the algebraic closure K of Fq. Assume that all groups are defined and split over Fq. We
replace now K by Kq = Fq((t)), the field of Laurent series, and O by Oq = Fq[[t]]. For a given
positively folded gallery δ = [δ0, δ1, ..., δr ] = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Er ⊃ Vr+1) we want to
count the number of points (over Fq) of the intersection

{minimal galleries} ∩Cδ .

For convenience, we first fix (and recall) some notation: ∀j = 0, 1, ..., r, let

• Dj be the closest chamber to C−
Vj

containing (Ej)Vj
;

• sj ⊃ Ej−1 be a sector with vertex Vj such that there exists a face F ′
j ⊂ −sj containing

Vj of the same type as Ej ;

• ij = ((ij)1, ..., (ij)rj ) be a reduced decomposition of w(C−
Vj
,Dj).

We denote by Γ+

s
j
Vj

(ij , op) the set of all galleries c = (C−
Vj
, C1, ..., Crj ) of residue chambers of

type ij which are positively folded with respect to s
j
Vj

and have the property that the face

(E′
j)Vj

of the same type as (Ej)Vj
contained in Crj forms a minimal pair with (Ej−1)Vj

in
AVj

.
The exponents in the formula are, first, the length ℓ(wD0

) and, second, for each c =
(c1, ..., crj ) ∈ Γ+

s
j
Vj

(ij , op), the nonnegative integers t(c) and r(c) defined in Lemma 4: t(c) =

♯{k | ck = s(ij)k and w−1

s
j
Vj

βk < 0} and r(c) = ♯{j | ck = 1 and w−1

s
j
Vj

βk < 0}. Combining

Lemma 4, Theorem 1 and Propositions 13 – 15, we obtain the following formula:

Theorem 2.

Lλ,µ(q) =
∑

δ∈Γ+(γλ,µ)

qℓ(wD0
)

( r∏

j=1

∑

c∈Γ+

s
j
Vj

(ij ,op)

qt(c)(q − 1)r(c)
)

.

Remark 7. According to a result of Katz (Theorem 6.1.12) in [11]), the value Lλ,µ(1) gives
the Euler-Poincaré characteristic of the variety G(O).λ∩U−(K).µ. Now a summand above is
nonzero if and only if the gallery is minimal. It is easy to see that a gallery is minimal if and
only if the gallery has as a target an extremal weight. Thus, we recover a result of Ngô and
Polo [24], saying that this characteristic is 1 if µ is in the orbit Wλ, and it is 0 otherwise.
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Example 9. Let us consider an example in type A2. Let λ = 2ω1 + ω2 where ωi are the
fundamental coweights. There are three possibilities for µ ≤ λ in the fundamental Weyl
chamber: µ = λ, µ = 2ω2 and µ = ω1. If µ = λ, then one finds Lλ,λ(q) = q2q2q2. In the
second case, Lλ,2ω2

(q) = q(q − 1)qq2. Finally, if µ = ω1, there are two one-skeleton galleries
starting in o and ending in ω1. Let us explain the computation in the case of the gallery
(o ⊂ E1 ⊃ V1 ⊂ E2 ⊃ V2 ⊂ E3 ⊃ ω1) plotted in the picture below.

At the vertex o, ℓ(wD0
) = 1, therefore we get a q. At the vertex V1, there is only one

gallery c of residue chambers positively folded with respect to s1, starting in C−
V1

and ending

in a chamber containing an opposite to E1. This gallery c has a positively (with respect to s1)
folding on one wall and crosses positively another, so we have t(c) = 1 and r(c) = 1, whence
we get (q − 1)q. At the vertex V2, the gallery (E2 ⊃ V2 ⊂ E3) is minimal. The gallery of
residue chambers has only two terms and positively (with respect to another sector) crosses
the vertical wall, therefore, we get q. One computes in an analogous way the number of
minimal one-skeleton galleries retracting on the second gallery ending in ω1 and one gets
q(q − 1)q2. Finally, Lλ,ω1

(q) = q(q − 1)qq + q(q − 1)q2 = 2(q − 1)q3.
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8 Dimension of rmin−∞(δ), LS-galleries and Young tableaux

We want now to discuss some examples and the connection with the work of Lakshmibai,
Musili and Seshadri. Recall that the theory of a path model for a representation is a gener-
alization of the original idea of Lakshmibai, Musili and Seshadri (see for example [14], [16],
[17]) to index a basis of fundamental representation by sequences of Weyl group elements
satisfying certain combinatorial conditions. Monomials of these basis elements then form a
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generating system for the other irreducible representations (respectively the corresponding
dual Weyl modules in positive characteristic), and the aim was to show that special monomi-
als, the standard monomials = monomials having a defining chain, form in fact a basis. This
program was successfully realized in many cases, for example for all representations of the
classical groups but also in many other cases (see ibidem). The path model theory provided a
new approach and made it possible to prove the conjecture for the character in full generality
for Kac-Moody algebras [20], the construction of an associated standard monomial theory is
discussed in [22].

8.1 LS one-skeleton galleries

Given a dominant coweight λ, let γλ be a combinatorial one-skeleton gallery as in Example 4.
Let δ = (V0 = o ⊂ E0 ⊃ . . . ⊃ Vr+1) be a positively folded combinatorial one-skeleton gallery
of the same type as γλ. By Proposition 14 we know that the intersection of the set of minimal
galleries G(O).γλ with the cell Cδ is a dense subset of Cδ, so

dim rmin
−∞(δ) = dim ({minimal galleries} ∩ Cδ) = dim(Cδ).

The dimension of the cell can be computed by Proposition 6 using combinatorial properties
of the gallery: given an affine root (α, n), α > 0, a vertex V ∈ Hα,n and an edge E in A, then
we say that (V,E) crosses the wall (or hyperplane) Hα,n in the positive (negative) direction
if F 6⊂ H−

α,n (respectively F 6⊂ H+
α,n).

Remark 8. Using the terminology of section 4.4, an equivalent formulation is to say that a
wall crossing is positive if (−α,−n) ∈ Φa

−(V, F ).

For the gallery δ denote by ♯+δ the number of positive wall crossings, by ♯−δ the number
of negative wall crossings and by ♯±δ the number of all wall crossings:

♯+δ =
∑r

i=0(♯positive wall crossings of (Vi, Ei))
♯−δ =

∑r
i=0(♯negative wall crossings of (Vi, Ei))

♯±δ = ♯+δ + ♯−δ.

For the last number we have ♯±δ = ♯+γλ = 〈λ, 2ρ〉 because it depends only on the type of the
gallery. Together with Remark 8 and Proposition 6 we get:

Lemma 9. ♯+δ = dim(Cδ).

An upper bound for ♯+δ can be determined using the target of the gallery:

Proposition 16. Let µ be the target of δ, then ♯+δ ≤ 〈λ+ µ, ρ〉.

Proof. Since Pλ → sλ we know that q−〈ρ,λ+µ〉Lλ,µ ∈ Z[q−1], so the power of the leading term
in Lλ,µ is less or equal to 〈ρ, λ + µ〉. By the formula in Theorem 2, the maximal power of
the contribution coming from a positively folded gallery δ occurs with coefficient +1. The
maximal power of the term coming from δ is dim(Cδ), which proves the claim.

Definition 15. We call a positively folded combinatorial one-skeleton gallery δ of the same
type as γλ a LS-gallery if ♯+δ = 〈λ+ µ, ρ〉, where µ is the target of δ.
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Remark 9. All minimal combinatorial one-skeleton galleries are LS-galleries. Indeed, if δ is
a minimal gallery with target µ, then 〈µ, 2ρ〉 = ♯+δ − ♯−δ, so

♯+δ =
1

2
(♯+δ − ♯−δ + ♯±δ) =

1

2
〈λ+ µ, 2ρ〉 = 〈λ+ µ, ρ〉.

8.2 Reduction to the case of a fundamental weight

To describe the connection of the path model with LS-galleries in the one-skeleton, one of the
first steps is the reduction to the case of a fundamental weight.

Lemma 10. 1. If ω is a minuscule coweight, then all combinatorial galleries of the same
type as γω are LS-galleries.

2. Suppose δ1, . . . , δr are positively folded combinatorial galleries of the same type as γλ1
, . . . , γλr

respectively. Suppose the concatenation δ = δ1 ∗ . . . ∗ δr is positively folded. Then δ is
an LS-gallery if and only if each of the δj , j = 1, . . . , r, is a LS-gallery.

Proof. If ω is a minuscule coweight, then all combinatorial galleries of the same type as γω
have no folds and hence are minimal, which proves the claim by Remark 9.

Let δ = δ1 ∗ . . . ∗ δr be a concatenation of positively folded galleries as in (3). If δ has
target µ and δi has target µi, then ♯+δ =

∑r
j=1 ♯

+δj and 〈λ + µ, ρ〉 =
∑r

j=1〈λj + µj, ρ〉. So

by Proposition 16 we have equality ♯+δ = 〈λ+ µ, ρ〉 if and only if ♯+δj = 〈λj + µj, ρ〉 for all
j = 1, . . . , r.

In the following let γλ be as in Example 2, we want to characterize the LS-galleries of the
same type as γλ. The Lemma above reduces the consideration to the case where λ = ω is a
fundamental weight.

Let δ0 = (o = V0 ⊂ E0 ⊃ . . . ⊂ Vj ⊂ . . . ⊃ Vr = µ0) be a positively folded gallery of the
same type as γω, and let j be such that δ0 has no folds at the vertices Vi for i > j (note: we
do not ask j to be minimal with this property). Let β be a positive root and suppose there
exists an m ∈ Z such that Vj ∈ Hβ,m. Denote by δ the gallery

δ = (o = V0 ⊂ E0 ⊃ . . . ⊂ Vj ⊂ sβ,m(Ej) ⊃ . . . ⊃ sβ,m(Vr) = µ) (11)

Given the one-dimensional face Ej let νEj
be the rational weight Vj+1 − Vj. Since Ej is of

type ω, there exists a unique element τEj
∈W/Wω such that the two rays RτEj

(ω) and RνEj

coincide.

Definition 16. We say that δ is obtained from δ0 by a positive fold if sβτEj
< τEj

in the
Bruhat order on W/Wω. We say that δ is obtained from δ0 by an LS–fold if in addition
ℓ(sβτEj

) = ℓ(τEj
) − 1 for the length function ℓ on W/Wω

By definition, if δ is obtained from δ0 by a positive fold, then δ is also positively folded.
Obviously every positively folded gallery can be obtained from a minimal gallery by a sequence
of such positive folds.

To be able to characterize the LS-galleries of the same type as γω, we divide this folding
algorithm into the smallest possible steps. Since we can only fold with respect to the roots
in the local root system ΦVj

, we consider first the Weyl group WVj
of ΦVj

. There exists a
unique ray Rν0 contained in the dominant Weyl chamber with respect to ΦVj

and a unique
element t ∈WVj

/(WVj
)ν0 such that t(ν0) = νEj

.
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Definition 17. We say that the fold by sβ,m is minimal for the local root system ΦVj
if

ℓ(sβt) = ℓ(t) − 1 for the length function ℓ on WVj
/(WVj

)ν0 .

If the fold is not minimal, then one can find positive roots β1, . . . , βq in ΦVj
such that

t > sβ1
t > . . . > sβq

· · · sβ1
t = sβt in the Bruhat ordering on WVj

/(WVj
)ν0 , and in each step

the length decreases by one. For each root βi let mi be such that Vj ∈ Hβi,mi
, then the

sequence of folds by the affine reflections sβ1,m1
, . . . , sβq,mq

are all positive and, by the choice,
minimal. Summarizing we have:

Lemma 11. A positively folded gallery of the same type as γω is obtained from a minimal
gallery by a sequence of positive folds such that each fold is minimal for the local root system
associated to the corresponding vertex.

We want to compare ♯+δ and ♯+δ0, where δ is obtained from δ0 by a fold as in (11), but
now assume that the positive fold is minimal.

Proposition 17. ♯+δ ≤ ♯+δ0 + 〈µ−µ0, ρ〉. Further, δ is an LS-gallery if and only if δ0 is an
LS-gallery and the new fold is an LS-fold.

Since the condition of being folded by a sequence of LS-folds is equivalent to the condition
for LS-paths, we get as an immediate consequence:

Corollary 2. For a fundamental coweight ω let πω : [0, 1] → X∨
R be the path t 7→ tω and let

π be an LS-path of shape ω as in [20]. As associated gallery γπ in the one-skeleton of A take
the sequence of edges and vertices lying on the path. This map π 7→ γπ describes a bijection
between the LS-paths of shape ω and the LS-galleries of the same type as γω.

Proof of the proposition. For δ0 = (o = V0 ⊂ E0 ⊃ . . . ⊃ Vr = µ0) let j be such that
δ = (o = V0 ⊂ E0 ⊃ . . . ⊂ Vj ⊂ sβ,m(Ej) ⊃ . . . ⊃ sβ,m(Vr) = µ). Denote by ♯+j δ0 the number
of positive crossings associated to the vertices Vk for k > j. Since the two galleries coincide
till Vj , we have ♯+δ − ♯+δ0 = ♯+j δ − ♯+j δ0.

Let ν0 be the rational weight µ0 − Vj and set ν = µ− Vj . There exists a rational number
0 < r ≤ 1 and elements κ, τ ∈ W/Wω such that ν0 = rτ(ω), ν = rκ(ω), r〈κ(ω), β〉 ∈ Z, and
sβτ = κ. Note that

〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉 = 〈µ − µ0, ρ〉
= 〈r(κ(ω) − τ(ω)), ρ〉
= r

2 (
∑

γ>0〈κ(ω), γ〉 −
∑

γ>0〈τ(ω), γ〉).

We need the following simple lemma, which we state without proof.

Lemma 12. Let ψ be a root system with Weyl group W (Ψ) and let ν be a dominant weight.
Fix sβτ ∈W (Ψ)/W (Ψ)ν and let β be a positive root such that sβτ < τ . We divide the set of
positive roots into Ψ+ = A∪B, where A = {γ > 0 | sβ(γ) > 0} and B = {γ > 0 | sβ(γ) < 0}.
Consider the following sets:

A+
τ = {γ ∈ A | 〈τ(ν), γ〉 ≥ 0} A0

τ = {γ ∈ A |, 〈τ(ν), γ〉 = 0}

B+
τ = {γ ∈ B | 〈τ(ν), γ〉 ≥ 0} B0

τ = {γ ∈ B | 〈τ(ν), γ〉 = 0},

and similarly we define the sets A−
τ and B−

τ .
Then sβ(A±

τ ) = A±
sβτ

, sβ(A0
τ ) = A0

sβτ
, −sβ(B+

τ ) = B−
sβτ

, −sβ(B−
τ ) = B+

sβτ
and −sβ(B0

τ ) =

B0
sβτ

. Further, B+
τ ∪ {β} ⊂ B+

sβτ
, and one has equality if and only if ℓ(τ) = ℓ(sβτ) + 1 for

the length function ℓ on W (Ψ)/W (Ψ)ν .
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Using the notation and the results of Lemma 12, this sums reduces to

〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉 = r(
∑

γ∈B+
κ

〈κ(ω), γ〉 −
∑

γ∈B+
τ

〈τ(ω), γ〉),

since 〈κ(ω), γ〉 = 〈sβκ(ω), sβ(γ)〉 = 〈τ(ω), sβ(γ)〉. Again by Lemma 12, we can divide B+
κ

into B+
τ ∪ {β} ∪ Rest and get:

〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉 = r(
∑

γ∈B+
τ
〈κ(ω) − τ(ω), γ〉 + 〈κ(ω), β〉

+
∑

γ∈Rest〈κ(ω), γ〉)

=
∑

γ∈B+
τ
r〈κ(ω), β〉〈β, γ〉 + r〈κ(ω), β〉

+
∑

γ∈Rest r〈κ(ω), γ〉.

We want to compare this sum to ♯+j δ− ♯
+
j δ0. If γ is a positive root, then (Vk, Ek) crosses some

wall Hγ,p positively for some k > j only if 〈τ(ω), γ〉 > 0, and if γ ∈ ΦVj
, then the number

of such crossings is r〈τ(ω), γ〉. If γ 6∈ ΦVj
, then the number of such crossings is ⌊r〈τ(ω), γ〉⌋,

the largest integer smaller or equal to r〈τ(ω), γ〉. So again with the notation as in Lemma 12
and the decomposition B+

κ = B+
τ ∪ {β} ∪ Rest:

♯+j δ − ♯+j δ0 =
∑

γ∈A+
κ ∪B+

κ
⌊r〈κ(ω), γ〉⌋ −

∑

γ∈A+
τ ∪B+

τ
⌊r〈τ(ω), γ〉⌋

=
∑

γ∈B+
κ
⌊r〈κ(ω), γ〉⌋ −

∑

γ∈B+
τ
⌊r〈τ(ω), γ〉⌋

=
∑

γ∈B+
τ

(⌊r〈κ(ω), γ〉⌋ − ⌊r〈τ(ω), γ〉⌋) + ⌊r〈κ(ω), β〉⌋

+
∑

γ∈Rest⌊r〈κ(ω), γ〉⌋

=
∑

γ∈B+
τ

(⌊r〈κ(ω), γ〉⌋ − ⌊r〈κ(ω), γ〉 − r〈κ(ω), β〉〈β, γ〉⌋)

+⌊r〈κ(ω), β〉⌋ +
∑

γ∈Rest⌊r〈κ(ω), γ〉⌋

Since r〈κ(ω), γ〉 is an integer by assumption, we obtain:

♯+j δ − ♯+j δ0 =
∑

γ∈B+
τ

r〈κ(ω), β〉〈β, γ〉 + r〈κ(ω), β〉 +
∑

γ∈Rest

⌊r〈κ(ω), γ〉⌋

As a consequence we see:

(〈µ− µ0, ρ〉) − (♯+δ − ♯+δ0) = (〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉) − (♯+j δ − ♯+j δ0)

=
∑

γ∈Rest(r〈κ(ω), γ〉 − ⌊r〈κ(ω), γ〉⌋),

which proves the inequality in the proposition. We have equality if and only if the right hand
term above is zero. The target µ is a special point, so r〈κ(ω), γ〉 is an integer if an only
if γ ∈ ΦVj

. Since the folding is minimal by assumption, the intersection Rest ∩ ΦVj
= ∅.

But this implies that we have equality if and only if Rest = ∅, i.e., the fold is an LS-fold by
Lemma 12. In particular, δ is an LS-gallery if and only if δ0 is an LS-gallery and the new fold
is an LS-fold.

8.3 Connection with the path model

Summarizing the results above, we have the following connection between the path model of
a representation and the one-skeleton galleries:
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Corollary 3. Write a dominant coweight λ = ωi1 + . . . + ωir as a sum of fundamental
coweights, write λ for this ordered decomposition. Let Pλ be the associated path model of
LS-paths of shape λ defined in [20]. The associated one-skeleton galleries (same procedure as
in Corollary 2) are precisely the LS-galleries of the same type as γωi1

∗ . . . ∗ γωir
.

In fact, the notion of a defining chain for LS-paths introduced by Lakshmibai, Musili
and Seshadri coincides in this case with the notion of a defining chain for the associated
gallery. As an immediate consequence of Theorem 2 and Proposition 16 we get the following
character formula. In combination with Corollary 3, this provides a geometric proof of the
path character formula, first conjectured by Lakshmibai (see for example [17]) and proved in
[20]:

Corollary 4. CharV (λ) =
∑

δ e
target(δ), where the sum runs over all LS-galleries of the same

type as γλ.

Proof. The formula in Theorem 2 and the results above show that the highest power of q
in the Laurent polynomial Lλ,µ is 〈λ + µ, ρ〉, and the coefficient of the highest power is the
number of LS-galleries having µ as a target. Since Pλ → sλ for q → ∞, this proves the
character formula.

Let us now consider some of the special cases discussed in section 5.4, these cases occur
already in [14]. The question why for some enumeration of the fundamental weights the
combinatorics for tableaux becomes suddenly much easier than for other enumerations seems
to have a geometric answer: because for special orderings locally minimal and globally minimal
are equivalent conditions for one-skeleton galleries.

8.4 LS-tableaux and LS-galleries

It remains to describe the semi-standard tableaux corresponding to LS-galleries, we call these
LS-tableaux. Since the condition of being folded by a sequence of LS-folds is equivalent to
the condition for LS-paths, these tableaux can be found in [21], we refer here to a slightly
different but equivalent description by Lakshmibai.

Proposition 18. i) In type An all semistandard tableaux are LS-tableaux.

ii) In type Bn a semistandard tableau T is an LS-tableau if and only if the following holds:
each pair of columns (C1, C2) corresponding to a gallery for a non-minuscule weight
satisfies the conditions for an admissible pair in Proposition B1 of [15].

iii) In type Cn a semistandard tableau T is an LS-tableau if and only if the following holds:
each pair of columns (C1, C2) corresponding to a gallery for a non-minuscule weight
satisfies the conditions for an admissible pair in Proposition C1 of [15].

Example 10. The tableau of type B3 in Example 5 is semistandard but not LS.
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[1] P. Baumann and S. Gaussent, On Mirković-Vilonen cycles and crystal combinatorics,
Represent. Theory 12 (2008), pp. 83-130.

[2] S. Billey and V. Lakshmibai, Singular Loci of Schubert varieties, Birkhuser, Progress
in Math. 182.
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Chapitres IV, V, VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann,
Paris, 1968.

[4] K. S. Brown, Buildings, Springer-Verlag, New-York (1989).
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