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BLOCKS WITH EQUAL HEIGHT ZERO DEGREES

GUNTER MALLE AND GABRIEL NAVARRO

Abstract. We investigate a natural class of blocks of finite groups: the blocks such
that all of their height zero characters have the same degree. It is conceivable that these
blocks, which are globally defined, are exactly the Broué-Puig (locally defined) nilpotent
blocks and we offer some partial results in this direction. The most difficult result here
is to prove that, with one family of possible exceptions, blocks with equal height zero
degrees of simple groups have abelian defect groups and are in fact nilpotent.

1. Introduction

The celebrated nilpotent blocks of finite groups introduced by M. Broué and L. Puig
in 1980 ([8]) are locally defined in terms of the Alperin-Broué subpairs ([1]). There is a
general consensus that nilpotent blocks are the most natural blocks from the local point
of view. It is not easy, however, to check if a block is nilpotent or not, and to have a
global characterization of them, especially one that can be detected in the character table
of the group, would be quite interesting.

Here we propose to study blocks B of a finite group G such that all of its height zero
characters χ ∈ Irr0(B) have the same degree d. This property of blocks, that can easily
be detected in the character table of G, seem to appear quite naturally in block theory,
and deserves some consideration. The blocks all of whose irreducible characters have the
same degree were already considered by T. Okuyama and Y. Tsushima in [35].

In a nilpotent block B all height zero degrees are equal. And we suspect that the
converse might be true. In this paper, we are able to prove this in some cases, with quite
different arguments.

If B is the principal block of G, or if the defect group D of B is normal in G, or if D
is abelian (and we assume the Height Zero Conjecture) then the blocks with equal height
zero character degrees are nilpotent. These results constitute Sections 3, 4, and 5 below.

The most difficult result in this paper, to which a large extent of it is devoted, is to
prove that the blocks of simple groups with equal height zero degrees have abelian defect
groups and satisfy Brauer’s Height Zero Conjecture. By our previously mentioned result,
this implies that equal height zero degrees blocks are also nilpotent. This certainly agrees
with the recent work of J. An and C. Eaton in which they prove that nilpotent blocks of
simple groups have abelian defect groups for p > 2 [2].

The study of blocks of p-solvable groups with equal height zero degrees, which we do in
the last section of the paper, leads to a variation of a classical large orbit question which
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does not seem easy to solve and which has interest in its own. (Some recent partial results
are given in [14].) This new type of orbit problem has connections with delicate questions
on the p′-character degrees of finite groups.

Finally, let us mention that the blocks B such that all character degrees χ(1) are p-
powers for χ ∈ Irr(B) give another example of blocks with equal height zero characters
degrees. These blocks were proved to be nilpotent by work of G. R. Robinson and the
second author ([32]).

2. EHZD blocks and Nilpotent Blocks

Suppose that G is a finite group, p is a prime, and B is a p-block of G. In general, we
use the notation in [29]. Hence Irr(B) are the irreducible complex characters in B, IBr(B)
are the irreducible Brauer characters in B, and Irr0(B) are the height zero characters of
B.

For the sake of brevity, let us say that B is EHZD (equal height zero degrees) if there
is an integer d such that χ(1) = d for all χ ∈ Irr0(B).

Recall that a block B is nilpotent if whenever (Q, bQ) is a B-subpair (that is, bQ is a
block of QCG(Q) such that (bQ)G = B), then NG(Q, bQ)/CG(Q) is a p-group.

If B is nilpotent, then we know that IBr(B) = {ϕ} by Theorem (1.2) of [8]. Also, if
χ ∈ Irr(B) has height zero, then by (3.11) in page 126 of [8], we have that χ(1) = ϕ(1). It
then follows that all irreducible height zero characters in B have the same degree. Thus,
as we mentioned in the introduction, nilpotent blocks are EHZD blocks. (We also notice
here that in a nilpotent block all height zero characters are modularly irreducible. This
condition, if not equivalent, seems also closely related to nilpotency as we shall point out
in several places of this paper.)

3. Principal blocks

If B is the principal block of G, then (Q, bQ) is B-subpair if and only if bQ is the
principal block of NG(Q) (by the Third Main Theorem). Since the principal block bQ
is NG(Q)-invariant, we conclude that B is nilpotent if and only if NG(Q)/CG(Q) is a
p-group for every p-subgroup Q of G. Hence B is nilpotent if and only if G has a normal
p-complement, by a classical theorem of Frobenius.

Theorem 3.1. Let G be a finite group, let p be a prime and let B be the principal block
of G. Then the following conditions are equivalent:

(a) All height zero χ ∈ Irr(B) have the same degree.
(b) All height zero χ ∈ Irr(B) are modularly irreducible.
(c) B is a nilpotent block.

Proof. In Section 2 we have pointed out that (c) implies (a) and (b). Suppose now that
all height zero characters in B have the same degree. Hence all non-linear characters in
B have degree divisible by p. Then G has a normal p-complement by Corollary 3 of [23]
and so B is nilpotent.

Now, suppose that all the height zero (that is, p′-degree) characters in B lift an irre-
ducible Brauer character of G. We are going to use a theorem of Pahlings that asserts
that ϕ ∈ IBr(G) is linear and all nonlinear characters χ ∈ Irr(G) with decomposition
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number 0 6= dχϕ have degrees divisible by p, then G has a normal p-complement. (See
Theorem 2 of [33].) Write ϕ = 1G ∈ IBr(G) for the trivial Brauer character of G, and
suppose that χ is non-linear with dχϕ 6= 0. If χ has p′-degree, then by hypothesis, χ0 = 1G
and therefore χ is linear. This is not possible. Hence, we conclude that p divides χ(1). It
follows that G has a normal p-complement by Pahling’s theorem.

4. Abelian Defect Groups

In this section we prove that EHZD blocks with abelian defect groups are exactly the
nilpotent blocks (assuming Brauer’s Height Zero Conjecture).

Theorem 4.1. Let B be a block with an abelian defect group, and assume that Irr(B) =
Irr0(B). Then the following conditions are equivalent:

(a) All height zero χ ∈ Irr(B) have the same degree.
(b) All height zero χ ∈ Irr(B) are modularly irreducible.
(c) B is a nilpotent block.

Proof. By Proposition 1 of [35], we have that (a) and (b) are equivalent. Also, by Theorem
3 of [35], we have that (a) happens if and only if B has inertial index one. Hence, it suffices
to show that the nilpotent blocks with abelian defect groups are exactly the blocks with
inertial index one and abelian defect groups. In page 118 (1.ex.3) of [8] it is stated that
blocks with abelian defect group and inertial index one are nilpotent. Now, suppose that
B is nilpotent with defect group D. If (D, bD) is a B-subpair, then NG(D, bD)/CG(D) is
a p′-group (by Theorem (9.22) of [29]). Since B is nilpotent, NG(D, bD)/CG(D) is also a
p-group, and we conclude that NG(D, bD) = CG(D). That is, B has inertial index one.

5. Normal Defect Groups

In this Section we prove that EHZD blocks with a normal defect group are nilpotent.

The following should be well-known.

Lemma 5.1. Let B be a block with defect group D ⊳ G and let bD be a block of DCG(D)

covered by B. Let B̃ be the Fong-Reynolds correspondent of B over bD. If B̃ is nilpotent,
then B is nilpotent.

Proof. Let T be the stabilizer of bD in G. Now (bD)T = B̃, and (D, bD) is a B̃-subpair.

Since B̃ is nilpotent, we have that T/CG(D) is a p-group. Since T/DCG(D) has order not
divisible by p, we conclude that T = DCG(D) and B̃ = bD. Now, suppose that (Q, bQ) is a
B-subpair. We want to show that NG(Q, bQ)/CG(Q) is a p-group. For this we may replace
(Q, bQ) by any G-conjugate. Since (bQ)G = B, we have that Q ⊆ D (Theorem (4.14) of
[29]). Now let e = (bQ)DCG(Q). We have that eG = B by the transitivity of induction.
Now, if f is a block of DCG(D) covered by e, we have that e = fDCG(Q) by Corollary
(9.21) of [29]. Hence eG = B and fx = bD for some x ∈ G. Now, replacing (Q, bQ) by
(Qx, (bQ)x), we may assume that (bD)DCG(Q) = e. Now, suppose that y stabilizes (Q, bQ).
Then y stabilizes (bQ)DCG(Q) = e. Hence e covers (bD)y, and therefore (bD)yz = bD
for some z ∈ CG(Q). Since T = DCG(D), we see that yz ∈ DCG(D) and therefore
y ∈ DCG(Q). Thus NG(Q, bQ)/CG(Q) is a p-group and B is nilpotent.
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Theorem 5.2. Suppose that B has defect group D ⊳ G. Then the following conditions
are equivalent:

(a) All height zero χ ∈ Irr(B) have the same degree.
(b) All height zero χ ∈ Irr(B) are modularly irreducible.
(c) B is a nilpotent block.

Proof. We already know that (c) implies (a) and (b). We prove by induction on |G| that
(a) implies (c). In an analog way, we could prove that (b) implies (c). Let bD be a block
of DCG(D) inducing B with defect group D. Let T be the stabilizer in G of bD, and

let B̃ be the Fong-Reynolds correspondent of B over bD. If all height zero χ ∈ Irr(B)
have the same degree, then the same happens in B̃ by the Fong-Reynolds correspondence
[29, Theorem (9.14)]. By Lemma (5.1), we may assume that T = G. Now by Reynolds
Theorems 6 and 7 of [36], there exists a group M with normal Sylow p-subgroup D such
that DCM(D) = D × Z, where Z is central, and M/DCM(D) ∼= G/DCG(D). Also M
has a block B1, with defect group D, having all height zero irreducible characters of the
same degree and such that Irr(B1) = Irr(M |λ) for some irreducible λ ∈ Irr(Z). (We
use Irr(M |λ) to denote the irreducible characters of M lying over λ.) Since D is normal
in M , the height zero characters of B1 are exactly those irreducible characters of B1 of
p′-degree. Hence, these are exactly the irreducible characters of B1 having D′ in their
kernel. Now, by Theorem (9.9.b) of [29], we have that B1 contains a block B̄1 of M/D′

with defect group D/D′. This block B̄1 has all irreducible characters of the same degree.
By Theorem 3 of [35], we conclude that B̄1 has inertial index one. Thus

(D/D′)CM/D′(D/D′) = M/D′ .

Using that a p′-group acts trivially on D if and only if it acts trivially on D/D′, we easily
conclude that M = DCM(D) and therefore G = DCG(D). In this case, the block is
nilpotent. (See (1.ex 1) on page 118 of [8].)

6. Quasi-Simple Groups

From now until the last section of the paper, we are devoted to proving the following
result.

Theorem 6.1. Let S be a finite non-abelian simple group, G a quasi-simple group with
G/Z(G) ∼= S, and p a prime. Assume that B is a p-block of G such that all characters
in Irr0(B) have the same degree. Then the defect group of B is abelian and thus B is
nilpotent, unless possibly one of the following holds:

(1) B is a faithful block for the 2-fold covering group 2.An of the alternating group An

(n ≥ 14) (a so-called spin-block), or
(2) B is a quasi-isolated block for an exceptional group of Lie type and p is a bad

prime.

Theorem 5.2 shows that in order to check Theorem 6.1 it suffices to prove the following
for any block B of G all of whose characters in Irr0(B) have the same degree:

(1) the defect group of B is abelian, and
(2) B satisfies the Height Zero Conjecture.
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In order to do this, we invoke the classification of finite simple groups as well as the
Deligne–Lusztig theory of characters of finite reductive groups and the fundamental results
of Bonnafé–Rouquier and Cabanes-Enguehard on blocks. It will be given in several steps
in the subsequent sections. The proof in the case of alternating groups will lead to a
relative hook formula for the character degrees in p-blocks of the symmetric group.

7. Unipotent blocks

In this section we consider the unipotent blocks of finite groups of Lie type. We intro-
duce the following standard setup: Any non-exceptional Schur covering group of a finite
simple group of Lie type can be obtained as G := GF , where G is a simple algebraic
group of simply-connected type over the algebraic closure of a finite field, and F : G → G

a Frobenius map with finite group of fixed points GF , with the sole exception of the Tits
group 2F4(2)′, which will be treated later in Proposition 9.4. Let G∗ denote a group in
duality with G and with corresponding Frobenius map F ∗ : G∗ → G∗ and fixed points
G∗ := G∗F ∗

. Let r denote the defining characteristic of G and q the absolute value of all
eigenvalues of Frobenius on the character lattice of an F -stable torus of G, a half-integral
power of r. We will then also write G = G(q) in order to indicate the corresponding value
of q.

By the fundamental work of Lusztig, the irreducible characters of G can be partitioned
into so called Lusztig series

Irr(G) =
∐

(s)

E(G, s)

indexed by conjugacy classes of semisimple elements s in G∗. The characters in the
Lusztig series E(G) := E(G, 1) corresponding to the trivial element in G∗ are the so-called
unipotent characters. These can be viewed as being the building blocks of the ordinary
character theory of finite groups of Lie type. Again by results of Lusztig, the unipotent
characters can be parametrized by a set depending only on the type of G, that is, on
the Weyl group of G together with the action of F on it, not on q or r. Moreover, their
degrees are given by the value at q of polynomials in one indeterminate of the form

1

n
xa

m
∏

i=1

Φi(x)
ai ,

where n is either a power of 2 or a divisor of 120, and Φi(x) denotes the ith cyclotomic
polynomial over Q (see for example Chapter 13 of [10]). We write Deg(γ) ∈ Q[x] for the
degree polynomial of a unipotent character γ ∈ E(G).

7.1. Specializations of degree polynomials. We start by investigating specializations
of degree polynomials of unipotent characters. We first discuss the question when two
different degree polynomials f1, f2 can lead to the same character degree f1(q) = f2(q).

Lemma 7.1. Let n1, n2, m ∈ N, ai ∈ Z with am 6= 0, q > 1 a prime power, and assume
that

n1 = n2

m
∏

i=1

Φi(q)
ai .
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(a) If both n1, n2 are powers of 2, then (m, q) = (6, 2) and (a3, . . . , a6) = (0, 0, 0,−a2),
or (m, q) = (2, 3), or m = 1, q = 2f + 1.

(b) If both n1, n2 are divisors of 120, then either m = 4 and q ∈ {2, 3}, or m = 2 and
q ∈ {2, 3, 4, 5, 7, 9, 11}, or m = 1, q − 1|120.

Proof. First assume that there is a Zsigmondy primitive prime divisor pm of Φm(q), that
is, pm divides Φm(q), but it does not divide Φi(q) for i < m. This is the case unless m = 1,
or m = 2 and q + 1 is a power of 2, or (m, q) = (6, 2). Clearly, pm 6= 2, 3 if m 6= 1, 2,
and pm 6= 5 if m 6= 1, 2, 4. Comparing prime factorizations on both sides we see that
m ∈ {1, 2, 4} if n1n2 is divisible by 5, and m ∈ {1, 2} if not.

Further assume that m = 4, so 5|(q2 + 1). As any two of q− 1, q+ 1, q2 + 1 have gcd at
most 2, their only prime divisors can be 2,3 and 5, and we must have q2 + 1 ≤ 240. It is
easy to check that this only happens for q ∈ {2, 3}. Next assume that m = 2, q+ 1 is not
a power of 2, and 5 is the largest Zsigmondy prime for q + 1. As before q + 1 ≤ 240, and
q − 1, q + 1 are only divisible by 2,3 and 5. We arrive at q ∈ {4, 9}. Similarly, if m = 2
and 3 is the only Zsigmondy prime for q + 1, then q ∈ {2, 5, 11}.

Thus we may assume that there is no Zsigmondy prime for Φm(q), that is, m = 1, or
m = 2 and q + 1 is a power of 2, or (m, q) = (6, 2). In the latter case, using Zsigmondy
primes for Φ3(q),Φ4(q),Φ5(q) we see that a3 = a4 = a5 = 0. Moreover, as Φ2(2) =
3 = Φ6(2), these two factors must occur with opposite exponent. If m = 2, then both
q − 1, q + 1 have to be powers of 2, whence q = 3, or both have to divide 240. The latter
implies that q ∈ {3, 7}. Finally, when m = 1 then q − 1 is a power of 2 or a divisor of
120. This proves the claim.

Proposition 7.2. Let f1, f2 ∈ Q[x] be the degree polynomials of two unipotent characters
of an exceptional group of Lie type G = G(q). If f1(q) = f2(q) for some prime power
q > 1, respectively square root of some odd power of a prime for the Suzuki or Ree groups,
then f1 = f2, or

G ∈ {G2(2), 2B2(2), 2F4(2), 2G2(3)}.

Proof. Write fj = 1
nj
xaj
∏mj

i=1 Φi(x)
ai,j for j = 1, 2. According to [10, Chap. 13], nj |120 for

G = E8, and nj |24 else. Now f1(q) = f2(q) implies that qa1−a2
∏mj

i=1 Φi(q)
ai,1−ai,2 ∈ Q has

numerator and denominator a divisor of 120. Since the second factor is coprime to q, this
holds in fact for both factors. Then Lemma 7.1(b) shows that q ≤ 121 for G = E8, and
q ≤ 25 for the other types. For these finitely many values of q and finitely many types the
assertion can be checked from the tables of degree polynomials. In fact, the additional
restrictions in Lemma 7.1(b) allow to restrict the number of necessary computations even
further.

Note that none of the exceptions G2(2), 2B2(2), 2G2(3), 2F4(2) is a perfect group. Unfor-
tunately, there are infinitely many exceptions to the conclusion of the previous proposition
in the case of classical groups, so we will choose a different approach for those.

7.2. e-symbols and degrees. We need to give a brief recall of the notion of e-symbols
and associated degree, see [26].

Let e ≥ 1 be an integer. An e-symbol is a sequence S = (S1, . . . , Se) of e strictly
increasing sequences Si = (si1 < . . . < sim) of non-negative integers of equal length m.
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The rank of an e-symbol S is defined as

rk(S) :=
∑

s∈S

s− e

(

m

2

)

.

We define an equivalence relation on e-symbols as the reflexive, symmetric and transitive
closure of the relation ∼ given by

(S1, . . . , Se) ∼ (S ′
1, . . . , S

′
e) ⇐⇒ S ′

i = (0, si1 + 1, . . . , sim + 1).

There is a natural 1-1 correspondence between e-tuples of partitions π = (π1, . . . , πe) ⊢ r
of r and equivalence classes of e-symbols of rank r, as follows: by adding zeros we may
assume that all πi = (πi1 ≤ . . . ≤ πim) have the same number of parts. It is easily verified
that S(π) = (S1, . . . , Se), with Si := (πi1, πi2 + 1, . . . , πim + m − 1) for 1 ≤ i ≤ e, has
indeed rank r, and is well-defined up to equivalence.

Let (v; u1, . . . , ue) be indeterminates over Q. For an e-symbol S we define

fS := (−1)c(S)

(v − 1)r
e
∏

i=1

uri ·

e
∏

i=1

e
∏

j=i

∏

s∈Si

∏

t∈Sj

s>t if i=j

(vsui − vtuj)

va(S)
∏

i<j

(ui − uj)
m ·

e
∏

i,j=1

∏

s∈Si

s
∏

k=1

(vkui − uj)

,

where

c(S) :=

(

e

2

)(

m

2

)

+ r(e− 1), and a(S) :=
m−1
∑

i=1

(

ei

2

)

(see [26, (5.12)]). It can be checked that the rational function fS only depends on the
equivalence class of the e-symbol S. We shall also write fπ for fS with S = S(π).

The following connection to the imprimitive complex reflection groupG(e, 1, r) ∼= Ce≀Sr

will be important for us. The irreducible complex characters of the wreath product
G(e, 1, r) can be parametrized by e-tuples of partitions (π1, . . . , πe) of r (see for example
[26, (2A)]), hence by equivalence classes of e-symbols of rank r. Now let H = H(W,u) de-
note the cyclotomic Hecke algebra for W = G(e, 1, r) with parameters u = (v; u1, . . . , ue).
This carries a canonical symmetrizing form. By the main result of Geck–Iancu–Malle [18]
the Schur element (with respect to this form) of the irreducible character of H indexed by
the multipartition (π1, . . . , πe) ⊢ r is f−1

S , where S = S(π1, . . . , πe) (see Conjecture 2.20
in [26]).

In particular, specializing v to 1 and uj to the eth roots of unity ζj := exp(2πij/e) we
obtain

fS(1; ζ1, . . . , ζe) =
dS

|G(e, 1, r)|
=

dS
er r!

,

where dS denotes the degree of the irreducible character of G(e, 1, r) indexed by S.
For later use let’s record the following special cases. If r = 1, so G(e, 1, r) is the cyclic

group Ce, then a multipartition π = (π1, . . . , πe) ⊢ r is uniquely determined by the unique
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i such that πi = (1). The corresponding e-symbol S has Si = (1), Sj = (0) for j 6= i, and

fS =
∏

j 6=i

uj
uj − ui

(compare [4, Bem. 2.4]).
More generally the e-symbols with Si = (r), Sj = (0) for j 6= i parametrize linear

characters ϕi of G(e, 1, r), for 1 ≤ i ≤ e. Evaluation of the defining formula shows that
then

(1) fS =

r
∏

k=1

(

v − 1

vk − 1
·
∏

j 6=i

uj
uj − vk−1ui

)

.

7.3. d-Harish-Chandra series and cyclotomic Hecke algebras. The blocks of finite
groups of Lie type are closely related to so-called d-Harish-Chandra series. Let G be as
above, the group of fixed points of a simple algebraic group G under a Frobenius map. For
any d ∈ N, there is a notion of d-split Levi subgroup L of G (an F -stable Levi subgroup
of G), and of d-cuspidal unipotent character of L := LF , see for example [5]. A pair
(L, λ) consisting of a d-split Levi subgroup L ≤ G with a d-cuspidal unipotent character
λ ∈ E(L) of L is called a d-cuspidal pair. Its relative Weyl group is then defined as

WG(L, λ) := NG(L, λ)/L.

By Broué–Malle–Michel [6, Thm. 3.2], the set of unipotent characters of G admits a
natural partition

(2) E(G) =
∐

(L,λ)/∼

E(G, (L, λ)),

into d-Harish-Chandra series E(G, (L, λ)), where (L, λ) runs over the d-cuspidal pairs in
G modulo conjugation. Furthermore, for each d-cuspidal pair (L, λ), there is a bijection

(3) ρ(L, λ) : E(G, (L, λ))
1−1
−→ Irr(WG(L, λ))

between its d-Harish-Chandra series and the irreducible characters of its relative Weyl
group WG(L, λ). The degree polynomials are then given by the following d-analogue of
Howlett-Lehrer-Lusztig theory:

Theorem 7.3. Let (L, λ) be a d-cuspidal pair of G. Then for any ϕ ∈ Irr(WG(L, λ))
there exists a rational function Dϕ(x) ∈ Q(x) with zeros and poles only at roots of unity
or zero, but not at primitive dth roots of unity, satisfying

Deg(γ) = ±|G : L|x′Dρ(L,λ)(γ) Deg(λ) for all γ ∈ E(G, (L, λ)),

and

|G : L|x′Dϕ ≡ |WG(L) : WG(L, λ)|ϕ(1) (mod Φd(x)) for all ϕ ∈ Irr(WG(L, λ)).

See [28, Thm. 4.2] and the references given there. In fact, the Dϕ(x) are inverses of
Schur elements of a cyclotomic Hecke algebra attached to WG(L, λ) with respect to its
canonical symmetrizing form. For example, if WG(L, λ) ∼= G(e, 1, r), then Dϕ(x) is a
suitable specialization of fϕ(u) as defined above.

We first determine for which parameters (u1, . . . , ue) all Schur elements of the cyclotomic
Hecke algebra for the cyclic group G(e, 1, 1) are equal:
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Lemma 7.4. Let K be a field of characteristic 0 and ui ∈ K×, 1 ≤ i ≤ e, pairwise
distinct. If

∏e
k=1

k 6=i
uk/(uk − ui) is independent of i, then there exists y ∈ K× with

{ui | 1 ≤ i ≤ e} = {ζ iy | 1 ≤ i ≤ e},

where ζ ∈ K is a primitive dth root of unity.

Proof. Equivalently we may assume that ui
∏

k 6=i(ui−uk) is independent of i. Thus, with

f :=
∏e

k=1(x− uk) ∈ K(u1, . . . , ue)[x] and ′ denoting the derivative with respect to x,

uif
′(ui) = ui

e
∏

k=1

k 6=i

(ui − uk) =: c

is independent of i. That is, u1, . . . , ue are zeros of the polynomial g := xf ′−c of degree e,
so g = b

∏e
k=1(x − uk) = bf for some b ∈ K. Writing f =

∑e
j=0 ajx

j we have jaj = baj
for j = 1, . . . , e. Since ae = 1 we conclude b = e, and thus aj = 0 for j = 1, . . . , e − 1.
The claim follows.

The following result will allow to show the existence of different height zero degrees in
blocks of classical groups, that is, groups of type An, Bn, Cn, Dn,

2An or 2Dn.

Proposition 7.5. Let G = G(q) be quasi-simple of classical type. Let (L, λ) be a d-
cuspidal pair in G. Assume that WG(L, λ) 6= 1. Then there exist unipotent characters
γ1, γ2 ∈ E(G, (L, λ)) with the following properties:

(a) γ1(1) 6= γ2(1), and
(b) ρ(L, λ)(γi) ∈ Irr(WG(L, λ)) are linear characters.

More precisely, γ1(1)q < γ2(1)q, or q = 2, p = 3 and G is of type Dn or 2Dn.

Proof. We will show thatWG(L, λ) has linear characters ϕ1, ϕ2 such thatDϕ1
(q) 6= Dϕ2

(q).
The claim then follows from Theorem 7.3. In groups of classical type, there are three
essentially different possibilities for the structure of the relative Weyl group (see [4, (3B)]).
Firstly, WG(L, λ) could be a symmetric group Sn. This happens if and only if either
G = SLn(q) and d = 1, or G = SUn(q) and d = 2. In both cases, all of E(G) is just one
d-Harish-Chandra series and we may take the trivial and the Steinberg character, which
correspond to the two linear characters of Sn and have distinct degrees.

The second possibility is that WG(L, λ) ∼= G(m, 1, r) for some m ≥ 2. This occurs
for all other d-Harish-Chandra series E(G, (L, λ)) in classical groups for which λ is not
parametrized by a so-called degenerate symbol. Let ϕi denote the linear character of
G(m, 1, r) parametrized by the multipartition (π1, . . . , πm) with πi = (r). According
to (1) we have Dϕi

= c f−1
i (q), where

fi(v, u1, . . . , um) := uri

m
∏

j=1

j 6=i

r−1
∏

k=0

(vkui − uj)

for some non-zero c not depending on i, and the parameters q are certain powers of q, up
to sign, as follows (see [4, Bem. 2.10, 2.14, 2.19]):
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(I) for G = SLn(q), d 6= 1, we have m = d and

q = (qd; 1, qb1d+1, qb2d+2, . . . , qbd−1d+d−1),

(I’) for G = SUn(q), d 6= 2, we have m = d∗, and q is obtained from the parameters
in case (I) for d∗ by replacing q by −q,

(II) for G of type Bn, Cn, Dn,
2Dn and d odd we have m = 2d, e = d and

q = (qe; 1, qb1e+1, . . . , qbe−1e+e−1,−qbee, . . . ,−qb2e−1e+e−1),

(II’) for G of type Bn, Cn, Dn,
2Dn and d ≡ 2 (mod 4) we have m = d, and q is obtained

from the parameters in case (II) for d∗ by replacing q by −q,
(III) for G of type Bn, Cn, Dn,

2Dn and d ≡ 0 (mod 4) we have m = d, e = d/2 and

q = (−qe; 1, qb1e+1, . . . , qbe−1e+e−1,−(−1)beqbee, . . . ,−(−1)b2e−1qb2e−1e+e−1),

where the bi are non-negative integers which are determined by λ. Here, for d ∈ N, d∗ is
defined by

d∗ :=











2d if d is odd,

d/2 if d ≡ 2 (mod 4),

d if d ≡ 0 (mod 4).

Note that it can never happen that vkui − uj = 0 for the above choices of parameters.
Furthermore, we claim that there is at least one i with |ui| > 1. Indeed, otherwise we
are necessarily in cases (II) or (II’) and e = 1. But then, since λ is not parametrized
by a degenerate symbol, b1 > 0 by the definition of the bi in [4, (2B)], so |u2| > 1, a
contradiction.

By our above reductions it suffices now to show that not all fi(q) are equal. For this,
we estimate the q-power in fi(q) for two choices of i. For i = 1 we have u1 = 1, and
vku1−uj is at most divisible by the q-power uj (at least when q is odd), and not divisible
by q if k = 0, so f1(q) is at most divisible by the q-power

∏m
j=2 u

r−1
j . Now let i be such

that |ui| is maximal among the {u1, . . . , um}. Then vkui − uj is divisible by at least the
q-power uj, so fi(q) is at least divisible by

uri

m
∏

j=1

j 6=i

urj =

m
∏

j=1

urj .

By our above observation we have |ui| ≥ q, so f1(q) 6= fi(q) as claimed.
If q is even, then vku1 − uj is divisible by 2uj if vku1 = −uj. For fixed j, this can only

happen for at most one value of k, and only when j ≡ 1+ e (mod 2e) and we are in cases
(II), (II’) or (III). Thus, we get an additional factor at most 2 in the q-part of f1(q). It
follows that the q-parts of f1(q) and fi(q) can only agree if |ui| = q = 2 and all other uj
have absolute value 1. Thus e = 1, we are in cases (II) or (II’) and q = (q; 1,−q). But
then

f1(q) =
r−1
∏

k=0

(qk + q) 6=
r−1
∏

k=0

(qk+2 + q)

(or the same with q replaced by −q).
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Finally, we consider the case where λ is parametrized by a degenerate symbol, which
can only happen in types Dn and 2Dn. Then WG(L, λ) ∼= G(2m, 2, r), for some m ≥ 1.
We denote by ψ1, . . . , ψm the m distinct linear characters contained in the restrictions of
the linear characters ϕ1, . . . , ϕ2m from G(2m, 1, r) to its normal subgroup G(2m, 2, r) of
index 2. Evaluation of [26, (5.12)] shows that Dψi

= c̃ g−1
i (q) for some constant c̃, where

gi(v, u1, . . . , um) := uri

m
∏

j=1

j 6=i

r−1
∏

k=0

(vkui − uj) (1 ≤ i ≤ m),

and the q are certain powers of q, up to sign, as follows (see [4, Bem. 2.16, 2.19]):

(IV) for G of type Dn,
2Dn and d odd we have m = e = d and

q = (qe; 1, q2b1e+2, . . . , q2be−1e+2e−2),

(IV’) for G of type Dn,
2Dn and d ≡ 2 (mod 4) we have m = d∗, and q is obtained from

the parameters in case (IV) for d∗ by replacing q by −q,
(V) for G of type Dn,

2Dn, and d ≡ 0 (mod 4) we have m = e = d/2 and

q = (−qe; 1, qb1d+2, . . . , qbe−1d+d−2).

Clearly, unless d = 1, we can argue as before to conclude that g1(q) 6= gi(q) for a suitable
index i. If d = 1 then WG(L, λ) ∼= G(2, 2, r) is the Weyl group of type Dr, and we are in
the principal 1-series of G. Here instead we take the trivial and the Steinberg character,
which have distinct degree.

7.4. Unipotent blocks. After these combinatorial preparations we are ready to inves-
tigate unipotent blocks of groups of Lie type G = G(q); here a p-block of G is called
unipotent if it contains at least one unipotent character of G.

Theorem 7.6. Let G be a simple algebraic group of simply-connected type, F : G → G

a Frobenius map with group of fixed points G = GF . Let B be a unipotent p-block of
G, where p is not the defining characteristic r of G. Then either B is of defect 0, or B
contains two height 0 characters of different degrees. Moreover, these two degrees have
different r-parts, unless possibly if r = 2.

Proof. First assume that p is a good prime for G, odd, and not equal to 3 when G is not
of type 3D4. Then by Cabanes–Enguehard [9, Thm. 22.9] the intersections of unipotent p-
blocks with E(G) are just the d-Harish-Chandra series, where d is the multiplicative order
of q modulo p. Let B be a unipotent p-block corresponding to the d-Harish-Chandra
series of the d-cuspidal pair (L, λ). If L = G, so λ is a d-cuspidal character of G, then the
defect group of B is trivial by [9, Thm. 22.9(ii)], whence B is of defect 0.

If L < G, then WG(L, λ) 6= 1. Now

Deg(γ) = ±|G : L|x′ Dϕ Deg(λ)

for γ ∈ E(G, (L, λ)), where ϕ := ρ(L, λ)(γ), and

|G : L|q′Dϕ(q) ≡ |WG(L) : WG(L, λ)|ϕ(1) (mod Φd(q))

for ϕ ∈ Irr(WG(L, λ)), by Theorem 7.3(b). As p divides Φd(q) by definition, this implies
the same congruence (mod p). By the description in [9, Thm. 22.9(ii)], some unipotent
character in B is of height zero. This shows that the unipotent characters in B of height 0
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are precisely those γ ∈ E(G, (L, λ)) with ϕ = ρ(L, λ)(γ) of degree prime to p, for example
the linear characters of WG(L, λ). For G of classical type it is shown in Proposition 7.5
that not all unipotent characters in B parametrized by linear characters of WG(L, λ) have
the same degree.

If G is of exceptional type and WG(L, λ) is cyclic, we may invoke Lemma 7.4 together
with the parameters in [4, Tab. 8.1] to conclude. The relative Weyl groups WG(L, λ) for
exceptional groups which are non-cyclic are listed in [4, Tab. 3.6] and [6, Tab. 1]. It is
easy to check that these have two distinct character degrees prime to p, for all primes p
which are good for G. But then the corresponding unipotent degrees must be distinct by
Proposition 7.2, and of height 0 by Theorem 7.3(b).

Next, if G is of classical type and p = 2, then all unipotent characters of G lie in the
principal p-block of G, by [9, Th. 21.14]. Here, the trivial character and the Steinberg
character have p-height 0 and different degrees.

It remains to consider the case where G is of exceptional type and p is a bad prime for
G (including the case of 3D4 with p = 3). There is no bad prime for 2B2. The 2-blocks for
2G2 and the 3-blocks of 2F4 have been determined by Fong [17] resp. Malle [25, Bem. 1]:
unipotent characters lie either in the principal block or are of defect zero. In the principal
block the trivial and the Steinberg character have different degree.

Table 1. Non-principal p-blocks of positive defect for bad p

G (p, d) L λ WG(L, λ) γ1, γ2

F4 (3, 1) 22.B2 1 C2 B2, 1;B2, ǫ
E6 (3, 1) 12.D4 ζ1 S3

(3, 2) 2.A5 ξ C2 ϕ64,4;ϕ64,13

E7 (2, 1) 1.E6 E6[θ] C2 E6[θ], 1;E6[θ], ǫ
(3, 1) 13.D4 ζ1 W (B3)

E8 (2 or 5, 1) 12.E6 E6[θ] W (G2) E6[θ], ϕ1,0;E6[θ], ϕ1,6

(3 or 5, 1) 14.D4 ζ1 W (F4)
(3 or 5, 1) 1.E7 E7[ξ] C2 E7[ξ], 1;E7[ξ], ǫ

(5, 4) 42.D4 ξ1, . . . , ξ4 G8

For the other types of exceptional groups, we use the description of unipotent blocks
for bad primes p obtained by Enguehard [15, Th. A]. Here, again any unipotent p-block
is either of defect 0, or it contains at least one non-trivial d-Harish-Chandra series. Ac-
cording to loc. cit. and the tables in [15, pp. 347–358], the non-principal unipotent blocks
not of defect zero are as listed in Table 1 (up to Ennola duality and algebraic conju-
gacy; the notation is as in loc. cit.) In each case either the relative Weyl group has two
distinct character degrees prime to p, in which case we may conclude as above, or we
list two unipotent characters γ1, γ2 in the corresponding d-Harish-Chandra series which
are of p-height 0 and have distinct r-parts in their degrees (see [6, Tab. 2] for the list of
d-Harish-Chandra series and [10, Ch. 13] for the degrees of unipotent characters).

This completes the proof of Theorem 7.6. Note that the results hold even when the
finite group G is not perfect, or even solvable.
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We now extend the result to unipotent blocks of arbitrary finite connected reductive
groups.

Theorem 7.7. Let G be a connected reductive group with a Frobenius map F : G → G

and group of fixed points G := GF . Let B be a unipotent p-block of G, where p is not
the defining characteristic r of G. Then either B is of central defect, and all characters
of B have the same degree, or B contains two height 0 characters of different degrees.
Moreover, these two degrees have different r-parts unless possibly if r = 2.

Proof. The derived group [G,G] is semisimple, hence a central product G1 ◦ . . . ◦ Gr of
simple algebraic groups. We assume the Gi ordered such that G1, . . . ,Gs, for some s ≤ r,
is a system of representatives for the F -orbits on {G1, . . . ,Gr}. Then, G′ := [G,G]F is
a central product G1 ◦ . . . ◦ Gs of groups, with Gi

∼= GFmi

i , where mi is the size of the
F -orbit of Gi. Note that, in general, G′ will be larger than the commutator subgroup of
G. Modulo Z([G,G])F = Z(G′) we obtain a direct product

Ḡ := G′/Z([G,G])F ∼= Ḡ1 × . . .× Ḡs,

where Ḡi := Gi/(Gi ∩ Z([G,G])F ). Now let B be a unipotent p-block of G. Since
unipotent characters restrict irreducibly to the F -fixed points of the derived group [24] B
covers a unique block B′ of G′. Furthermore unipotent characters have the center in their
kernel, so the same holds for unipotent blocks. Thus B′ corresponds to a unique block B̄
of the direct product Ḡ. This is a direct product B̄ = B̄1 × . . .× B̄s of blocks B̄i of Ḡi.

Now assume that one of the B̄i is not of defect 0 for Ḡi. Since Ḡi is a central factor
group of a group as in Theorem 7.6, B̄i then contains two height 0 unipotent characters
of different degrees, with different r-parts if r = 2. Thus, the same is true for B̄, hence
also for B′. By the above-mentioned irreducibility of restrictions, this then also holds for
B.

On the other hand, if all B̄i are of defect 0, then so is B̄, so B′ is of central defect,
contained in Z([G,G])F . But Z([G,G]) ⊆ Z(G) as G = [G,G]Z(G), so the block B is
also of central defect in G, as claimed. Moreover, as each B̄i contains a unique ordinary
character, we also have Irr(B′) = {χ′} for some ordinary (unipotent) character χ′ of G′.
Since this is the restriction of an irreducible character of G, and G/G′ is abelian, all
characters of G above χ′ have the same degree, hence the height zero conjecture holds for
B in this case.

Proposition 7.8. Let G be a finite group, N ⊳ G a normal subgroup of index prime to p
with G/N either cyclic or a Klein four group. Let b be a p-block of G, and b′ a p-block of
N lying below b. Then:

(a) b and b′ have isomorphic defect groups.
(b) Assume that b′ has two height 0 characters χ1, χ2 of different degrees, and let r be

a prime for which the r-parts of χ1(1), χ2(1) differ. If gcd(r, |G : N |) = 1 then b
also has two height 0 characters of different degrees.

Proof. The first assertion is well-known. For the second, let νi be a character of b lying
above χi, for i = 1, 2. Since p does not divide the index |G : N |, νi is again of height 0.
Furthermore, the assumption that gcd(r, |G : N |) = 1 and G/N is cyclic or Klein four
implies by Clifford theory that ν1(1) 6= ν2(1).
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8. Blocks of groups of Lie type

Proposition 8.1. The assertion of Theorem 6.1 holds when S is a simple group of Lie
type and p is the defining characteristic.

Proof. By the result of Humphreys [21] the covering group G of S has exactly one p-block
of defect zero, consisting of the Steinberg character, and all other p-blocks are of full
defect, in one-to-one correspondence with the irreducible characters of Z(G). For the
principal block, it is clear that there exist two height 0 characters of distinct degree (viz.
the trivial character and at least one further non-linear character). For the remaining
blocks, some more work is needed. By the above we may now assume that Z(G) 6= 1, so
in particular p is odd for classical groups not of types An or 2An.

Recall that Z(G) is naturally isomorphic to the commutator factor group G∗/[G∗, G∗]
of the dual group G∗ of G. If s ∈ G∗ is semsimple, the corresponding semisimple character
χs ∈ Irr(G) is of p′-degree given by χs(1) = |G : CG∗(s)|p′ (see for example [28, (2.1)]; note
that CG∗(s) is not necessarily connected). So we are done if we can find two semisimple
elements s1, s2 ∈ G∗ whose centralizer orders have different p′-part.

Table 2. Tori and Zsigmondy primes for classical groups

|T1| |T2| ℓ1 ℓ2
An (qn+1 − 1)/(q − 1) qn − 1 l(n + 1) l(n)
2An (n ≥ 2 even) (qn+1 + 1)/(q + 1) qn − 1 l(2n + 2) l(n)
2An (n ≥ 3 odd) (qn+1 − 1)/(q + 1) qn + 1 l(n + 1) l(2n)
Bn, Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) l(2n) l(2n− 2)
Bn, Cn (n ≥ 3 odd) qn + 1 qn − 1 l(2n) l(n)
Dn (n ≥ 4 even) (qn−1 − 1)(q − 1) (qn−1 + 1)(q + 1) l(n− 1) l(2n− 2)
Dn (n ≥ 5 odd) qn − 1 (qn−1 + 1)(q + 1) l(n) l(2n− 2)
2Dn(n ≥ 4) qn + 1 (qn−1 + 1)(q − 1) l(2n) l(2n− 2)

In Table 2 we have listed two maximal tori T1, T2 of G∗ for each type of classical group
G (by giving their orders, which determines them uniquely). Except for types Bn, Cn
with n even this is Table 3.5 in Malle [27]. We write l(m) for a Zsigmondy prime divisor
of qm − 1. Then |Ti| is divisible by the Zsigmondy prime ℓi as indicated in the table,
which exists unless G is of type A1, or G is of type A2,

2A2 or B2 and i = 2. (Note that
the case that q = 2 and G of type A5, A6 or 2A6 does not concern us here, since then
the center of G is trivial.) If |Ti| is divisible by a Zsigmondy prime ℓi, then there exist
regular semisimple elements si of order ℓi in G∗, that is, elements with centralizer order
|CG∗(si)| = |Ti|. If both Zsigmondy primes exist, this yields two semisimple characters of
different degrees, and we are done.

So now assume that G is of type A1, A2,
2A2 or B2. From the known character tables

it can be seen that the group SL2(q) has faithful irreducible characters of degrees q + 1,
(q − 1)/2 for q ≡ 1 (mod 4), and of degrees q − 1, (q + 1)/2 for 7 ≤ q ≡ 3 (mod 4). The
group SL3(q), q ≡ 1 (mod 3), has faithful irreducible characters of degrees q2 + q+ 1 and
(q−1)(q2−1), the group SU3(q), 2 < q ≡ 2 (mod 3), has faithful irreducible characters of
degrees q2−q+1 and (q+1)(q2−1), and the group Sp4(q), q odd, has faithful irreducible
characters of degrees (q2−1)/2 and q4−1, which are clearly distinct and of p-height zero.
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The only exceptional simply-connected groups with non-trivial center are those of types
E6,

2E6 and E7. For these, we may argue as above using the maximal tori and Zsigmondy
primes listed in Table 3. The proof is complete.

Table 3. Tori T1 and T2

G |T1| |T2| ℓ1 ℓ2
E6(q) Φ12Φ3 Φ9 l(12) l(9)
2E6(q) Φ18 Φ12Φ6 l(18) l(12)
E7(q) Φ18Φ2 Φ14Φ2 l(18) l(14)

We now turn to the non-defining primes for groups of Lie type.
According to the work of Broué–Michel [7], for any p-block B of G there exists a

unique G∗-conjugacy class [s] of semisimple p′-elements of G∗, such that some irreducible
representation of B is in the rational Lusztig series attached to [s]. Let’s write Ep(G, s)
for the union of all p-blocks of G associated with the class of the p′-element s ∈ G∗. The
blocks in Ep(G, 1) are called unipotent. More generally, if G is disconnected, then a block
of GF is called unipotent if it covers a unipotent block of (G◦)F . We need the following
crucial result of Enguehard [16, Th. 1.6]:

Theorem 8.2 (Enguehard). Assume that p is good for G, and different from 3 if F
induces a triality automorphism on G.

Let s ∈ G∗ be a semisimple p′-element, and B a p-block in Ep(G, s). Then there exists
a reductive group G(s) defined over Fr, with corresponding Frobenius map again denoted
by F , and a unipotent p-block b of G(s) := G(s)F , such that the defect groups of B and b
are isomorphic and there is a height-preserving bijection Irr(B) → Irr(b). Here, G(s)◦ is
a group in duality with CG∗(s)◦, and G(s)/G(s)◦ ∼= CG∗(s)/CG∗(s)◦.

In the case of p = 2 for classical groups, he proves [16, Prop. 1.5]:

Theorem 8.3 (Enguehard). Assume that G is of classical type in odd characteristic.
Let s ∈ G∗ be a semisimple p′-elements. Then all 2-blocks in E2(G, s) have defect group
isomorphic to a Sylow 2-subgroup of CG∗(s)◦. If moreover G is of type Bn, Cn or Dn,
then E2(G, s) is a single 2-block.

Proposition 8.4. The assertion of Theorem 6.1 holds if G is quasi-simple of Lie-type.

Proof. By Proposition 8.1 we may assume that p is not the defining characteristic for
G, and by Proposition 9.4 we have that S 6∼=2F4(2)′. Furthermore, by the remarks at the
beginning of Section 7 we have that G = GF for some simple, simply connected algebraic
group G with Frobenius map F : G → G.

Let B be a p-block of G and s ∈ G∗ semisimple such that B ⊆ Ep(G, s) (see above).
First assume that s is not quasi-isolated in G∗, that is, CG∗(s) is a Levi subgroup of G∗.
Then by the result of Bonnafé–Rouquier [9, Th. 10.1] the block B is Morita-equivalent to
a block b ⊆ Ep(L, 1) where L is a Levi subgroup of G in duality with CG∗(s), and Jordan
decomposition gives a height preserving bijection from B to b. We may then conclude by
Theorem 7.7.
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Next assume that p is good for G, different from 3 if G is of type 3D4. Then by
Theorem 8.2 there is a group G(s) in duality with the centralizer C := CG∗(s) of s in G∗

and a height preserving bijection between B and a unipotent block b of G(s) := G(s)F

with the same defect group as B. By [3, Cor. 2.9] the order a(s) := |C : C◦| of the
component group of C is prime to the defining characteristic r and divides the order of
s. As s is a p′-element, this implies that a(s) is prime to p as well. Moreover, by loc. cit.
C/C◦ is isomorphic to a subgroup of the fundamental group of G, hence either cyclic
or a Klein four group. Now let b′ be a p-block of the normal subgroup N := (C◦)F of
CF = CG∗(s) lying below b. We showed in Theorem 7.7 that any unipotent block of the
connected group N with non-abelian defect group contains two height 0 characters which
are divisible by different powers of the defining prime r. Thus, Proposition 7.8 applies in
this case and the claim follows.

Now assume that p = 2 and G is of classical type Bn, Cn, Dn or 2Dn. Then E2(G, s) is a
single 2-block by Theorem 8.3. By Jordan decomposition the character degrees in E2(G, s)
are obtained from those in E2(CG∗(s), 1) by multiplication with a common constant. If
CG∗(s)◦ is not a torus, the trivial character and the Steinberg character in E2(CG∗(s), 1)
have distinct degrees prime to p and the claim follows. On the other hand, if CG∗(s)◦ is a
torus, that is, s is a regular element in G∗, then again by the Theorem 8.3 of Enguehard
the defect group of B is isomorphic to a Sylow 2-subgroup of CG∗(s)◦, hence abelian.
Moreover, by the result of Lusztig [24], all characters in B have the same degree, whence
B satisfies the height zero conjecture.

Thus we may assume that G is of exceptional type, p is a bad prime and s is quasi-
isolated. There are no quasi-isolated elements for 2B2. The p-blocks for 2G2, G2,

2F4 and
3D4 have been determined by Fong [17], Hiss–Shamash [19, 20], Malle [25], Deriziotis–
Michler [12] respectively. The claim can be easily checked from those results.

The remaining cases are the possible exceptions mentioned in the theorem.

9. Alternating and sporadic groups

In order to prove our main result for the alternating groups, we first derive a similar
statement for blocks of the symmetric group.

Recall that the irreducible characters of Sn as well as the unipotent characters of
GLn(q), where q is any prime power, are parametrized by partitions λ ⊢ n. We write χλ
resp. γλ for the corresponding character of Sn, resp. of GLn(q). The following important
connection between their degrees is well-known: χλ is obtained by specializing q to 1 in
the degree polynomial for γλ (see for example the formula in [10, 13.8] and compare to the
hook formula for χλ(1)). This is sometimes referred to by saying that Sn is ‘the general
linear group over the field with one element’.

Furthermore, χλ and χµ for two partitions λ, µ ⊢ n lie in the same p-block of Sn if
and only if λ and µ have the same p-core, which in turn happens if and only if γλ and γµ
lie in the same d-Harish-Chandra series of Irr(GLn(q)), where d = p. Thus, the degrees
of irreducible characters of Sn in a fixed p-block are specializations at q = 1 of degree
polynomials of unipotent characters in a fixed p-Harish-Chandra series.

Let S = (S1, . . . , Sd) be a d-symbol. A hook of S is a pair h = (s, t) where

s ∈ Si, t ∈ {0, . . . , s} \ Sj , with j > i if s = t,
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for some 1 ≤ i, j,≤ d. We then also write i(h) := i, j(h) := j, and l(h) := s − t. For
1-symbols, that is, β-sets of partitions, this is just the usual notion of hook. We can
now formulate the following relative hook formula for characters in a fixed p-block of a
symmetric group which seems to be new:

Theorem 9.1. Let p be a prime. Let π ⊢ n be a partition with p-core µ ⊢ r and p-quotient
(ν1, . . . , νp) ⊢ w, with corresponding p-symbol S. Let bi denote the number of beads on the
ith runner of the p-abacus diagram for µ, and ci := pbi + i− 1. Then

χπ(1) =
n!

r!
·

1
∏

h hook of S

|pl(h) + ci(h) − cj(h)|
· χµ(1)

and
χπ(1)/χµ(1) ≡ ψν(1) (mod p)

where ψν denotes the irreducible character of Cp ≀ Sw parametrized by ν.

Proof. Let γ be the unipotent character of GLn(q) parametrized by π, for q a prime
power. Set d := p. Then γ lies in the d-Harish-Chandra series above (L, λ), where L ∼=
GLr(q) × GL1(q

d)w, with λ parametrized by µ ⊢ r and n = r + dw. Let S = (S1, . . . , Sd)
be the d-symbol corresponding to (ν1, . . . , νd). According to Theorem 7.3, [26, (2.19)] we
have Deg(γ)/Deg(λ) = ±|G : L|q′Dρ(L,λ)(γ) =

±

n
∏

i=1

(qi − 1)

(qd − 1)w
r
∏

i=1

(qi − 1)

·

(v − 1)w
d
∏

i=1

uwi ·
d
∏

i=1

d
∏

j=i

∏

s∈Si

∏

t∈Sj

s>t if i=j

(vsui − vtuj)

va(S)
∏

i<j

(ui − uj)
m ·

d
∏

i,j=1

∏

s∈Si

s
∏

k=1

(vkui − uj)

with
(v; u1, . . . , ud) = (qd; 1, qc2, . . . , qcd)

(see (I) in Sect. 7.3 for the parameter values). By our above remarks, specialization
at q = 1 gives the corresponding character degrees for Sn. Note that numerator and
denominator of the expression for Deg(γ)/Deg(λ) are indeed divisible by the same power
of (q − 1), viz. n+ w +

(

me
2

)

, so that the specialization makes sense. We obtain

χπ(1)

χµ(1)
= ±

n!

r!
·

d
∏

i=1

d
∏

j=i

∏

s∈Si

∏

t∈Sj

s>t if i=j

(d(s− t) + ci − cj)

∏

i<j

(ci − cj)
m ·

d
∏

i,j=1

∏

s∈Si

s
∏

k=1

(dk + ci − cj)

= ±
n!

r!
·

1
∏

h hook of S

(d l(h) + ci(h) − cj(h))

as claimed.
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Now choose q such that q ≡ 1 (mod p). Then we have

γ(1)/λ(1) ≡ ±ψν(1) (mod Φd(q))

by Theorem 7.3, and

γ(1)/λ(1) ≡ ±χπ(1)/χµ(1) (mod q − 1)

by our observation above. As p divides both Φd(q) = qd−1 + . . .+ 1 and q − 1, the stated
congruence follows.

Let’s note the following special case of p-quotients (ν1, . . . , νp) ⊢ w such that the cor-
responding p-symbol S has Si = (w), Sj = (0) for j 6= i. Since these correspond to linear
characters of the relative Weyl group in GLn(q), they parametrize characters of height 0
in B by the congruence in Theorem 9.1. We obtain

(4) χπ(1) =
n!

pwr!w!
·
w−1
∏

k=0

∏

j 6=i

|pk + ci − cj|
−1 · χµ(1).

A p-blocks B of Sn labelled by a p-core µ ⊢ n − wp is said to be of weight w. So w
denotes the number of p-hooks which must be removed from any partition π indexing a
character in B to obtain its core µ. The block is said to be self-dual if µ is a self-dual
partition.

Proposition 9.2. Let G = Sn, n ≥ 5, p a prime, and B a p-block of G. Then one of
the following occurs:

(a) B is of weight (and hence defect) 0,
(b) p = 2 and B is of weight 1,
(c) p = 3, B is of weight 1 and self-dual, or
(d) B contains two height 0 characters of different degrees d1 < d2, either both indexed

by non-self-dual partitions or with d2 6= 2d1.

Proof. We use the relative hook formula in (4) for the character degrees of Sn for certain
height 0 characters in B. We may assume that the weight w of B is positive. Let
µ ⊢ n − pw denote the p-core associated to B, let 0 = e1 < e2 . . . < ep be the ordered

set of the ci as in Theorem 9.1, and fi :=
∏w−1

k=0

∏

j 6=i |pk + ei − ej |, for 1 ≤ i ≤ p. Note

that by [34, Prop. 3.5] none of the partitions λi corresponding to the p-quotients Si is
self-dual, unless w = 1 in which case at most one of them is. Clearly, fp > fp−1 unless
p = 2 and w = 1 (which is case (b)), which yields two distinct height 0 degrees d1, d2.
If both corresponding partitions are self-dual, then w = 1. But by Theorem 9.1 we have
di ≡ ±1 (mod p), and then d1 = d2/2 implies that p = 3.

Corollary 9.3. Let p be a prime, B a p-block of An. Then one of the following holds:

(a) B is of defect 0,
(b) p = 3, B is of weight 1 (hence with cyclic defect group C3), self-dual, and all

χ ∈ Irr(B) have the same degree, or
(c) B contains two height 0 characters of different degrees.

In particular, the assertion of Theorem 6.1 holds when S is an alternating group.
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Proof. Let B be a p-block of Sn, containing all characters χλ for which λ has fixed p-core
µ ⊢ (n−pw). According to [34, Prop. 12.2], for example, if w > 0 then B covers a unique
block B1 of An. First assume that p is odd. Let χ1, χ2 ∈ B be two height zero characters of
different degrees, parametrized by non self-dual partitions, according to Proposition 9.2.
These restrict irreducibly to characters of An in B1 of height 0. Similarly, if χ1, χ2 ∈ B
have different degrees d1 < d2 with d2 6= 2d1, then the restrictions of χ1, χ2 to An contain
characters of B1 of height 0 and of different degrees.

If p = 3, B is of weight 1 and self-dual, then two characters of B have the same
irreducible restriction and one splits into two constituents for An. We obtain a block B1

with defect group of order 3 and three equal character degrees.
For p = 2, restriction of characters from G to B1 either preserves heights or decreases

it, by [34, Prop. 12.5]. Thus, we may conclude by Proposition 9.2 unless w = 1. Here,
the two irreducible characters in B have the same restriction to An, so B1 is a block with
a unique ordinary character, that is, a block of defect zero.

Note that case (b) of Corollary 9.3 occurs if and only if there is a self-dual 3-core for
n− 3. The conditions for this to occur have been worked out in [2, Lemma 3.1].

It can be checked from the known character tables that the assertion of Theorem 6.1
remain true for the faithful blocks of 2.An when n ≤ 13.

We complete our investigation of blocks of quasisimple groups by showing:

Proposition 9.4. The assertion of Theorem 6.1 holds when S is sporadic or a simple
group of Lie type with exceptional Schur multiplier, or S = 2F4(2)′.

Proof. The ordinary character tables of all quasi-simple groups such that S is as in the
assumption are contained in the Atlas [11]. From this, or using the electronic tables
available in GAP, it can be checked that whenever B is a p-block of G with all height
zero characters of the same degree then the defect group satisfies |D| ≤ p2, hence must
be abelian.

10. p-Solvable Groups

Our main result in this section is to reduce the study of EHZD blocks of general p-
solvable groups to groups with p′-lenght one. This latter case naturally leads us to consider
a variation of a classical large orbit problem.

Question 10.1. Suppose that V is a finite faithful completely reducible FG-module, where
F has characteristic p and G has a normal p-complement K > 1. Let P ∈ Sylp(G). Does
there exists v ∈ CV (P ) such that |CK(v)|2 < |K|?

Question 10.1 is not trivial, even if P = 1. In this case, it has an affirmative answer if
K is solvable (by [13]). Also, Question 10.1 has an affirmative answer if K is nilpotent,
and this constitutes the main result of [14]. In some sense, it is unfortunate that our only
way to prove that EHZD blocks of p-solvable groups are nilpotent is via large orbits. On
the other hand, Question 10.1 has interest in its own and it is closely related to the study
of p′-degrees of p-solvable groups, so it might deserve some consideration.

Our main result in this Section is the following.
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Theorem 10.2. Suppose that Question 10.1 has an affirmative answer. If B is an EHZD
block of a p-solvable group G, then B is nilpotent.

If λ ∈ Irr(N) is a character, we write o(λ) for its determinantal order. If N ⊳ G, then
recall that Irr(G|λ) are the irreducible characters of G lying over λ.

Lemma 10.3. Let Z ⊳ G and suppose λ ∈ Irr(Z) is G-invariant and that o(λ)λ(1) is
a p′-number. Assume that G/Z is p-solvable and that Op′(G/Z) = 1. Suppose that
Question 10.1 has an affirmative answer. If there exists an integer d such that χ(1) = d
for all χ ∈ Irr(G|λ) of p′-degree, then G/Z is a p-group.

Proof. We argue by induction on |G/Z|. We may certainly assume that |G/Z| > 1. By
using character triple isomorphisms (see Theorem (3.1) of [31]), we may also assume that
Z is a central p′-group. Thus Z = Op′(G).

Let U/Z = Op(G/Z) and note that U > Z. We suppose that U < G, and we seek a
contradiction. Let K/U = Op′(G/U). Note thatK > U . Also, write U = V ×Z, and note
that U = Op(G). Also, by Hall-Higman’s 1.2.3. Lemma, we have that CG(V ) ⊆ U × Z.

If V1 = Φ(V ), by elementary group theory we have that Op′(G/ZV1) = 1. If λ̃ = 1V1
×λ ∈

Irr(V1 × Z), then Irr(G|λ̃) ⊆ Irr(G|λ), and by induction we will conclude that G/ZV1

is a p-group, and this will prove the theorem. So we may assume that V = Op(G) is
elementary abelian. Hence CG(V ) = U × Z.

Now let K0 = Op(K) and U0 = U ∩ K0. Note that Z ⊆ U0 and that K0/U0 =
Op′(G/U0). In particular, Op′(G/K0) is trivial. Also, for all characters ϕ ∈ Irr(K0|λ), we
have o(ϕ) and ϕ(1) are p′-numbers (because K0 has a normal abelian Sylow p-subgroup
and Op(K0) = K0).

Now fix P ∈ Sylp(G) and suppose that ϕ ∈ Irr(K0|λ) is P -invariant. Write T = Gϕ

for the stabilizer of ϕ in G. Hence |G : T | is not divisible by p. We claim that T
satisfies the hypotheses of the theorem with respect to the character ϕ and the normal
subgroup K0 ⊳ T . Notice that all p′-degree members ψ of Irr(T |ϕ) induce to p′-degree
characters of G, therefore of degree d. Hence ψ(1) = d/|G : T |. Hence to prove the claim,
we need to check that Op′(T/K0) is trivial. Let W/K0 = Op(G/K0) ⊆ PK0/K0, and
therefore W stabilizes ϕ. Thus W ⊆ T and Op′(T/K0) centralizes the normal p-subgroup
W/K0. But Op′(G/K0) is trivial, and Hall-Higman’s Lemma 1.2.3 applies to show that
Op′(T/K0) = 1, as wanted.

By the inductive hypothesis, we conclude that T/K0 is a p-group, hence T = K0P
(since P ∈ Sylp(T )). We have proved this for all P -invariant ϕ ∈ Irr(K0|λ).

Now let G0 = PK0. We claim that G0 satisfies the hypothesis of the theorem with
respect to Z ⊳ G0. Let τ ∈ Irrp′(G0|λ) and let ϕ = τK0

∈ Irr(K0|λ) which is P -invariant
and irreducible (because G0/K0 is a p-group). We know that G0 is the stabilizer in G
of ϕ, by the previous paragraphs. Therefore τG = χ ∈ Irr(G) is irreducible of p′-degree.
Then χ(1) = d, and we conclude that τ(1) = d/|G : G0|. So in order to prove the claim
we just need to show that Op′(G0/Z) = 1. However, we have that Op′(G0/Z) centralizes
U/Z = Op(G/Z). Since Op′(G/Z) = 1, we conclude that Op′(G0/Z) = 1. If G0 < G,
the inductive hypothesis yields that G0/Z is a p-group, which contradicts the fact that
K > U . Hence we have that G = PK0. Thus Ḡ = G/U has a normal p-complement
K̄ = K/U .



Nilpotent blocks 21

Now we have that Irr(V ) is a completely reducible, finite, and faithful Ḡ-module. By
using the affirmative answer to Question (10.1), there exists β ∈ Irr(V ) centralized by P
such that

|Kβ/U |
2 < |K/U | ,

where Kβ is the stabilizer in K of β. In other words,

|K : Kβ|
2 > |K/U | .

Now, since Kβ/V is a p′-group, there exists a unique extension β̂ ∈ Irr(Kβ) of β,
by using Corollary (8.16) of [22], which has p-power order. In particular, this linear
character has Z in its kernel, and by uniqueness is P -invariant (because β is P -invariant).

Let λ̂ = 1V ×λ ∈ Irr(U). Since Kβ/U is a p′-group and λ̂ is P -invariant, then we may find

some γ ∈ Irr(Kβ|λ̂) which is P -invariant (this is because λ̂Kβ has p′-degree). Now we have

that γβ̂ ∈ Irr(Kβ) (because β̂ is linear) lies over β. By the Clifford correspondence, we

have that ρ = (γβ̂)K ∈ Irr(K). This character ρ is P -invariant, has p′-degree |K : Kβ|γ(1)
and lies over λ. Also ρK0

∈ Irr(K0) is P -invariant, has p′-degree, and therefore it has an
extension χ ∈ Irr(G) with χK0

= ρK0
, by using Corollary (8.16) of [22] and the fact that

K0 = Op(G). Hence
d = |K : Kβ |γ(1) ≥ |K : Kβ| .

Therefore,
d2 ≥ |K : Kβ|

2 > |K/U | .

Now, let H be a p-complement of G. Hence HV = K and H ∩ V = 1.
Finally, using that λ̂ is P -invariant and (λ̂)K has p′-degree, we can find a P -invariant

ξ ∈ Irr(K|λ̂) of p′-degree. Arguing as before, we have that ξ extends to G, and therefore
ξ(1) = d. However, ξH ∈ Irr(H|λ). Hence, d2 ≤ |H : Z| by elementary character theory.
However, |H : Z| = |K : U | and this is a contradiction.

(A similar argument gives the same conclusion of Lemma 11.3 if we assume that χ0 ∈
IBr(G) for all χ ∈ Irr(G|λ) of p′-degree.)

Proof of Theorem 10.2. We argue by induction on |G|. Let Z = Op′(G), and let
λ ∈ Irr(Z) be covered by B. If T is the stabilizer of λ in G and b is the block of T which
corresponds to B via Fong-Reynolds ([29], Theorem (9.14)), then b is a EHZD block. If
T < G, then b is nilpotent by induction. Thus B is nilpotent by Lemma 1 of [30], for
instance. Hence, we may assume that T = G. In this case, Irr(B) = Irr(G|λ) by Theorem
(10.20) of [29]. Now we conclude that G has a normal p-complement by Lemma 10.3.
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