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CREPANT RESOLUTIONS AND BRANE TILINGS I: TORIC

REALIZATION

SERGEY MOZGOVOY

Abstract. Given a brane tiling, that is, a bipartite graph on a torus, we can
associate with it a singular 3-Calabi-Yau variety. In this paper we study its
commutative and non-commutative crepant resolutions. We give an explicit
toric description of all its commutative crepant resolutions. We also explain
how the McKay correspondence in dimension 3 can be interpreted using brane
tilings.
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1. Introduction

The main goal of this paper is to give an explicit toric description of all possible
crepant resolutions of singular 3-Calabi-Yau varieties arising from brane tilings (see
Section 2.1). All these crepant resolutions can be constructed as moduli spaces of
representations of some quiver with relations [15, Theorem 15.1]. It follows from
the construction of these moduli spaces that they are toric varieties. We give an
explicit description of the corresponding fan.

With any brane tiling we can associate a quiver potential (Q, W ) (see Sec-
tion 2.1). It turns out that under certain consistency conditions on the brane
tiling the corresponding quiver potential algebra CQ/(∂W ) is a 3-Calabi-Yau al-
gebra [19, 7]. The singular Calabi-Yau variety mentioned above is isomorphic to
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2 SERGEY MOZGOVOY

the spectrum of the center of CQ/(∂W ). We will show that this variety is a nor-
mal Gorenstein toric variety and that CQ/(∂W ) is its non-commutative crepant
resolution [27]. Related questions are studied in [4].

Using this fact, we can apply the result of Van den Bergh [27, Theorem 6.3.1],
which says that certain moduli spaces of representations of a non-commutative
crepant resolution give rise to (commutative) crepant resolutions and, moreover,
the derived categories of commutative and non-commutative crepant resolutions
are equivalent. As Van den Bergh mentions, his result is a generalization of the
well-known approach of [6] to the McKay correspondence. In the case of brane
tilings, the moduli spaces are Mθ = Mθ(CQ/(∂W ), α) – the moduli spaces of
θ-semistable CQ/(∂W )-representations of dimension α = (1, . . . , 1) ∈ ZQ0 , where
θ ∈ ZQ0 is α-generic. A direct proof of the smoothness of these moduli spaces was
given by Ishii and Ueda [16]. They also proved the derived equivalence [15] by using
some tricky modifications of brane tilings.

The moduli space Mθ has a natural action of a certain 3-dimensional torus. We
will prove that every orbit in Mθ is determined by its cosupport – the subset of
arrows in Q1 inducing zero action on the representations from the orbit. It was
proved in [16, Lemma 6.1] that the cosupports of 2-dimensional orbits are perfect
matchings. We can give similar descriptions for the cosupports of 0-dimensional
and 1-dimensional orbits. It turns out that the cosupports of 1-dimensional orbits
are unions of two perfect matchings and the cosupports of 0-dimensional orbits are
unions of three perfect matchings. This allows us to reconstruct the toric diagram
of the toric 3-Calabi-Yau variety Mθ.

We will show that with any finite abelian group G ⊂ SL3(C) we can associate
a brane tiling. The corresponding quiver potential algebra CQ/(∂W ) is a non-
commutative crepant resolution of the quotient singularity C3/G. It is known that

the Hilbert scheme HilbG(C3) of G-clusters in C3 is a crepant resolution of C3/G
[20]. This Hilbert scheme is isomorphic to Mθ for certain θ (see Remark 5.9). It

was shown by Nakamura [20] that HilbG(C3) is a toric variety. He also described
the corresponding fan. According to the results mentioned above, we can describe
the toric diagram of Mθ for any generic θ by using the perfect matchings of the
brane tiling. A different algorithm to determine this toric diagram, by computing
the vertices of the polyhedron defining Mθ, was proposed in [10].

The paper is organized as follows: In Section 2 we gather preliminary material
on brane tilings, quiver potential algebras, consistency conditions, and Calabi-Yau
property. In Section 3 we study some properties of the quiver potential algebra
induced by the brane tiling and prove, in particular, that it is a non-commutative
resolution. In Section 4 we give a toric description of the moduli spaces Mθ.
We study the orbits of Mθ and give an explicit description of its toric diagram. In
Section 5 we relate the McKay correspondence for finite abelian groups G ⊂ SL3(C)
with brane tilings.

In the subsequent paper, joint with Martin Bender, we will give a toric descrip-
tion of tilting bundles on the crepant resolutions. This result gives a proof of the
conjecture of Hanany, Herzog and Vegh [14] and of a version of the conjecture of
Aspinwall [1].

I would like to thank Markus Reineke for many useful discussions. I would also
like to thank Igor Burban, Alastair Craw, and Victor Ginzburg for many useful
comments.
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2. Preliminaries

2.1. Brane tilings.

Definition 2.1. A brane tiling is a bipartite graph G = (G±
0 , G1) together with an

embedding of the corresponding CW-complex into the real two-dimensional torus
T so that the complement T \G consists of simply-connected components. We call
the elements of G+

0 (resp. G−
0 ) white vertices (resp. black vertices). We identify

homotopy equivalent embeddings. The set of connected components of T \G is
denoted by G2 and is called the set of faces of G.

We define a quiver Q = (Q0, Q1) dual to the graph G as follows. The set of
vertices Q0 is G2, the set of arrows Q1 is G1. For any arrow a ∈ Q1 we define its
endpoints to be the polygons in G2 adjacent to a. The direction of a is chosen in
such a way that the white vertex is on the right of a. For any arrow a ∈ Q1, we define
s(a), t(a) ∈ Q0 to be its source and target. The CW-complex corresponding to Q is
automatically embedded in T . The set of connected components of the complement,
called the set of faces of Q, will be denoted by Q2. It can be identified with
G0. There is a decomposition Q2 = Q+

2 ∪ Q−
2 corresponding to the decomposition

G0 = G+
0 ∪G−

0 . It follows from our definition that the arrows of the faces from Q+
2

go clockwise and the arrows of the faces from Q−
2 go anti-clockwise.

For any face F ∈ Q2, we denote by wF the necklace (equivalence class of cycles
in Q up to shift) obtained by going along the arrows of F . We define the potential
of Q (see e.g. [13, 5]) by

W =
∑

F∈Q+
2

wF −
∑

F∈Q−

2

wF .

For any cycle u = a1 . . . an in Q and for any arrow a ∈ Q1, we define the differential

∂u

∂a
=

∑

i:ai=a

ai+1 . . . ana1 . . . ai−1 ∈ CQ.

Extending the differential by linearity, we get ∂W/∂a ∈ CQ.

Definition 2.2. Define a two-sided ideal (∂W ) ⊂ CQ to be generated by ∂W/∂a,
a ∈ Q1. Define a quiver potential algebra to be the algebra CQ/(∂W ).

2.2. Some groups related to brane tilings. Consider a complex of abelian
groups

ZQ2
d2−→ ZQ1

d1−→ ZQ0 ,

where d2(F ) =
∑

a∈F a, F ∈ Q2 and d1(a) = t(a) − s(a) for any arrow a ∈ Q.
Its homology groups coincide with the homology groups of the 2-dimensional torus
containing Q. Following [19], we define

Λ = ZQ1/ 〈d2(F ) − d2(G) | F, G ∈ Q2〉 .
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Equivalently, Λ is given by a cocartesian left upper square

ZQ2
d2
- ZQ1

d1
- ZQ0

Z
? ωΛ

- Λ

wt
?....

....
....
....
..

d

-

M

ωM
?

......... i

-

where the left arrow is given by F 7→ 1, F ∈ Q2. It is proved in [19, Lemma
3.3], under the condition that G has at least one perfect matching, that Λ is a free
abelian group and the map ωΛ : Z → Λ is injective. There exists a unique map
d : Λ → ZQ0 making the right triangle commutative. Note that dωΛ = 0. We
put M = ker(d). Then there exists a unique map ωM : Z → M making the lower
triangle commutative.

Let B = ker(ZQ0 → Z), where the map is given by i 7→ 1, i ∈ Q0. This group
is generated by the elements of the form j − i, where i, j ∈ Q0. This implies that
B = im d1 = im d, as the quiver is connected. We have then an exact sequence

0 → M
i
−→ Λ

d
−→ B → 0.

Let us compute the ranks of the groups in this exact sequence. It is clear that
rkB = #Q0 − 1. We have

rkΛ = rk(cokerd2) + 1 = rk(ker d1) + 3 = rkZQ0 − rk(coker d1) + 3 = #Q0 + 2.

This implies that rkM = 3.

2.3. Weights and equivalence relations. We define a weak path in Q to be a
path consisting of arrows of Q and their inverses (for any arrow a we identify aa−1

and a−1a with trivial paths). For any weak path u, we define its content |u| ∈ ZQ1

by counting every arrow of u with appropriate sign. We define the weight of u by
wt(u) = wt(|u|) ∈ Λ.

Let A = CQ/(∂W ) and let A′ be obtained from A by inverting all arrows. We
say that two paths in Q are equivalent if they are equal in A. We say that two weak
paths are weakly equivalent if they are equal in A′ (cf. [19, Section 4]). It is proved
in [19, Prop. 4.8] under the condition that G has at least one perfect matching

Proposition 2.3. Two weak paths in Q having the same start points are weakly
equivalent if and only if they have the same weights.

For any face F ∈ Q2 and for any vertex i ∈ F we define ωi,F to be a cycle
starting at i and going along F . It is proved in [19] that ωi,F ∼ ωi,G if i ∈ F ∩ G.
We denote the corresponding equivalence class by ωi. We denote its weight by ω.

Let π : T̃ → T be the universal cover of the torus and let Q̃ be the preimage of
Q. Then Q̃ is a periodic quiver. We can define equivalence (resp. weak equivalence)

relation on the set of paths (resp. weak paths) of Q̃ in the same way as above (see

[19]). For any weak paths u in Q̃ we can define a weak path π(u) in Q. We define
then the weight wt(u) ∈ Λ to be the weight of π(u). Similarly to Proposition 2.3

we can prove that two weak paths in Q̃ having the same start points are weakly
equivalent if and only if they have the same weights.
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2.4. Consistency conditions. Let G be a brane tiling and let (Q, W ) be the
corresponding quiver potential.

Definition 2.4. A brane tiling G is called consistent (resp. geometrically consis-
tent) if there exists a map R : Q1 → (0, 1] (resp. R : Q1 → (0, 1)), called an
R-charge, that satisfies

(1)
∑

a∈F

Ra = 2, F ∈ Q2,

(2)
∑

a∋i

(1 − Ra) = 2, i ∈ Q0.

Remark 2.5. By the Birkhoff-von Neumann Theorem (see e.g. [24, Corollary 8.6a])
consistency condition implies that the bipartite graph G is non-degenerate, that is,
every edge of G is contained in some perfect matching.

Theorem 2.6 ([4, Theorem 8.15]). A brane tiling is consistent if and only if any
two weakly equivalent paths in Q are equivalent.

Remark 2.7. It was proved earlier in [14, Lemma 5.3.1] that geometric consistency
implies that any two paths in Q having the same start points and the same weight
are equivalent. This implies that weakly equivalent paths are equivalent.

Remark 2.8. We do not discuss in this paper consistency conditions on brane
tilings involving zig-zag paths (see [7, Section 3.4.2], [15, Def. 5.2], [4, Theorem
8.12]). These consistency conditions are equivalent to Definition 2.4 by [4, Theorem
8.12] and [15, Section 5].

Definition 2.9. We say that a path u : i → j in Q is minimal if it is not equivalent
to vωi for any path v : i → j.

Proposition 2.10 (see [12, Lemma 7.3]). Assume that the brane tiling is consis-
tent. Then for any minimal path u : i → j in Q there exists an arrow a ∈ Q1 such
that s(a) = j and au is still minimal.

Remark 2.11. This property together with a consistency condition was used in
[19] (see also [7], [12]) to show that the quiver potential algebra is a 3-Calabi-Yau
algebra (see Section 2.5).

Let A be the set of perfect matchings on G. Any perfect matching I ∈ A can be
considered as a subset of Q1, so we can define a linear map χI : ZQ1 → Z

χI(a) =

{

1, a ∈ I,

0, a 6∈ I.

Note that χI(d2(F )) = 1 for any face F ∈ Q2, so we can factor χI : ZQ1 → Z

through Λ and get χI : Λ → Z. Thus χI ∈ Λ∨ and we can consider χI := i∗χI ∈
M∨. We define a cone σ ⊂ M∨

Q to be generated by χI , I ∈ A. The following result
is proved in [15, Prop. 6.5]

Proposition 2.12. Let I be some perfect matching in the consistent brane tiling.
Then the following conditions are equivalent

(1) The ray in M∨
Q generated by χI is an extremal ray of σ.

(2) For any J ∈ A, J 6= I we have χI 6= χJ .
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(3) The quiver Q\I = (Q0, Q1\I) is strongly connected, i.e. for any vertices
i, j ∈ Q0 there exists a path from i to j in Q\I.

A perfect matching satisfying these conditions is called an extremal (or corner, or
external) perfect matching.

In this paper we will work only with geometrically consistent brane tilings
because we will need the following important result proved by Broomhead [7,
Prop. 6.2]

Proposition 2.13. Assume that the brane tiling is geometrically consistent. Then,
for any vertices i, j ∈ Q̃, there exists a path u : i → j such that χI(u) = 0 for some
extremal perfect matching.

Remark 2.14. It is conjectured that the analogous statement also holds for consis-
tent brane tilings. All the results of our paper can be then proved in this generality.

2.5. Calabi-Yau property. In this section A will be a (left and right) noetherian
algebra, finitely generated over a field k. We define its enveloping algebra Ae =
A ⊗k Aop. Then A is a module over Ae in a natural way.

Definition 2.15. We say that A has finite Hochschild dimension if A has a finite
projective resolution as an Ae-module. We say that A is homologically smooth
if, moreover, this resolution can be chosen to consist only of finitely generated
Ae-modules.

Remark 2.16. If A has finite Hochschild dimension then A and Aop have finite
global dimension [9, Ch.9, Prop. 7.6]. In particular, A has finite injective dimension
as a module over A and over Aop (we say that A is Gorenstein in this case).

Definition 2.17. An algebra A is called a Calabi-Yau algebra of dimension d if A
is homologically smooth and

RHomAe(A, A ⊗ A) ≃ A[−d]

in the category Db(Ae).

Definition 2.18 ([26, Def. 8.1], [28, Def. 5.1]). An object K ∈ Db(Ae) is called a
rigid dualizing complex if

(1) K has finite injective dimension over A and Aop.
(2) The cohomologies of K are finitely generated over A and Aop.
(3) Canonical morphisms A → RHomA(K, K) and A → RHomAop(K, K) are

isomorphisms in Db(Ae).
(4) (Rigidity) RHomAe(A, K ⊗ K) ≃ K in Db(Ae).

Proposition 2.19 ([26, Prop. 8.2]). Any two rigid dualizing complexes in Db(Ae)
are isomorphic.

We will denote the dualizing complex of A (if it exists) by KA. The following
result gives an explicit description of KA under certain conditions.

Proposition 2.20 ([28, Prop. 5.13]). Assume that A is Gorenstein and has a rigid
dualizing complex KA. Then KA ≃ RHomA(RHomAe(A, Ae), A).

Lemma 2.21. Assume that A is a d-CY algebra. Then A[d] is a rigid dualizing
complex.



CREPANT RESOLUTIONS AND BRANE TILINGS 7

Proof. A has finite injective dimension over A and Aop by Remark 2.17. From the
Calabi-Yau property we get

RHomAe
(A, A[d] ⊗ A[d]) = RHomAe(A, A ⊗ A)[2d] ≃ A[−d][2d] = A[d].

It follows that A[d] satisfies all the conditions on the rigid dualizing complex. �

Proposition 2.22 (see [28, Prop. 5.9]). If A is finite over its center and is finitely
generated over k then A has a rigid dualizing complex. More precisely, if S → A is
a finite central morphism, where S is a commutative smooth algebra of dimension
n, then KA := RHomS(A, Ωn

S/k[n]) is a rigid dualizing complex over A.

Remark 2.23. If S a commutative smooth algebra of dimension n over k then
S has a rigid dualizing complex KS = Ωd

S/k[n]. If R is a commutative algebra

of finite type over k, then we can always find a finite morphism S → R with S
smooth. Then R has a rigid dualizing complex KR = RHomS(R, KS). If R is a
Cohen-Macaulay algebra of dimension d then KR is concentrated in degree −d and
the module ωR := KR[−d] is a canonical module of R (see [8, Def. 3.3.16]). Note
that the canonical module of R is defined only up to tensoring with a projective
R-module of rank 1 (i.e. invertible sheaf on SpecR). The rigid dualizing complex
KR of R is, in contrast, uniquely determined. Thus KR[−d] gives a canonical choice
of a canonical module.

Theorem 2.24 (see [13, Theorem 7.2.14]). Let A have finite Hochschild dimension
and let R ⊂ A be a central subalgebra, such that A is finitely generated as a module
over R and R is a Cohen-Macaulay domain, equidimensional of dimension d. Then
the following conditions are equivalent

(1) A is a d-CY algebra.
(2) A is a maximal Cohen-Macaulay module over R and A ≃ HomR(A, KR[−d]),

where KR is a rigid dualizing complex of R.
(3) For any X ∈ Db(mod A), Y ∈ D−(mod A), we have (functorially)

RHomA(X, Y [d]) ≃ D RHomA(Y, X),

where D : D+(mod R) → D−(mod R) is defined by Z 7→ RHomR(Z, KR).

Remark 2.25. The algebra R is finitely generated over k under the conditions
of the theorem. This follows from [2, Prop. 7.8] if A is commutative. For the
non-commutative A the proof goes through the same lines.

Lemma 2.26. Let R be a commutative algebra of finite type over an algebraically
closed field k. Assume that R is Gorenstein and is equidimensional of dimension
d. Let modfl R be the category of finite length R-modules. Then the following
contravariant endofunctors on modfl R are isomorphic.

(1) M 7→ HomR(M, ER), where ER = ⊕m∈SpecmRE(R/m).
(2) M 7→ Homk(M, k).

(3) M 7→ Extd
R(M, R).

(4) M 7→ RHomR(M, KR).

Proof. According to [22, Prop. 1.1], there exists a unique (up to equivalence) con-
travariant, exact functor D : modfl R → modfl R such that D(R/m) ≃ R/m for
every m ∈ Specm R. The first and the second functors obviously satisfy these con-
ditions (we use here the assumption that k is algebraically closed). It follows from
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our assumptions that ωR := KR[−d] is an invertible sheaf on Spec R. Recall that
R has an injective resolution [3, §1]

0 → R →
⊕

ht p=0

E(R/p) →
⊕

ht p=1

E(R/p) → . . . →
⊕

ht p=d

E(R/p) = ER → 0.

This implies that Extd
R(M, R) = HomR(M, E) for any M ∈ modfl R and so the first

and the third functors are equivalent. This also implies

RHom(M, KR) = RHom(M, ωR[d]) = RHom(M, A[d]) ⊗ ωR = Hom(M, ER) ⊗ ωR.

Therefore the fourth functor also satisfies the above conditions. �

Corollary 2.27. Under the conditions of the theorem, assume that R is Gorenstein
and k is algebraically closed. Then for any finite dimensional A-modules X, Y we
have (functorially)

Extd−i(X, Y ) ≃ Homk(Exti(Y, X), k), 0 ≤ i ≤ d.

3. Non-commutative crepant resolution

Let A = CQ/(∂W ) be the quiver potential algebra associated to a geometrically
consistent brane tiling. In this section we will show that its center R = Z(A) is a
normal Gorenstein domain and A is a non-commutative crepant resolution of R in
the sense of Van den Bergh. Related questions are studied in [4].

Let Λ+ ⊂ Λ be a semigroup generated by the weights of arrows. Define a cone
P ⊂ ΛQ by

P =
{

∑

aiλi | ai ∈ Q≥0, λi ∈ Λ+ for all i
}

.

The saturation of Λ+ is given by Λ+ = P ∩ Λ. Recall that in Section 2.2 we have
constructed an exact sequence of free abelian groups

0 → M
i
−→ Λ

d
−→ B → 0.

For any i, j ∈ Q0, we define

Λij = d−1(j − i) ⊂ Λ, Λ+
ij = Λij ∩ Λ+.

We define M+ = M ∩Λ+. The following result is a consequence of the Birkhoff-von
Neumann Theorem (see e.g. [24, Corollary 8.6a])

Proposition 3.1. The dual cone P∨ ⊂ Λ∨
Q is generated by χI , I ∈ A (see Section

2.4).

Remark 3.2. It is proved in [7, Lemma 2.3.4] that the semigroup P∨ ∩ Λ∨ is
generated by χI , I ∈ A. Moreover, every χI generates a 1-dimensional face of P∨.

Corollary 3.3. The cone P equals

P = {λ ∈ ΛQ | χI(λ) ≥ 0 ∀I ∈ A}.

The saturation of Λ+ equals

Λ+ = P ∩ Λ = {λ ∈ Λ | χI(λ) ≥ 0 ∀I ∈ A}.

Lemma 3.4. If u is a weak path in Q such that χI(u) ≥ 0 for any extremal perfect
matching then u is weakly equivalent to a strict path.
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Proof. We consider u as a weak path from i to j in the periodic quiver Q̃. Let
v : i → j be a strict path such that χI(v) = 0 for some perfect matching I (see
Prop. 2.13). Then u = vωk for some k ∈ Z (see [19, Lemma 4.6]) and we have
0 ≤ χI(u) = χI(v) + k = k. This implies that vωk is a strict path. �

Corollary 3.5. A path u in Q̃ is minimal (see Def. 2.9) if and only if χI(u) = 0
for some extremal perfect matching.

Proof. Assume that χI(u) = 0 for some (not necessarily extremal) perfect matching.
If u = vωk for some path v and some k ≥ 0 then 0 = χI(u) = χI(v) + k ≥ k, so
k = 0. This implies that u is minimal.

Assume that u is minimal. Then uω−1 is not equivalent to any strict path. It
follows from Lemma 3.4 that χI(uω−1) < 0 for some extremal perfect matching.
This implies χI(u) = 0. �

Corollary 3.6. For any i, j ∈ Q0, we have Λ+
ij = Λij ∩ P . The semigroup M+ is

saturated.

Proof. We have from Corollary 3.3

Λij ∩ P = {λ ∈ Λij | χI(λ) ≥ 0 ∀I ∈ A}.

For any λ as above, we can find a weak path u : i → j such that wt(u) = λ. Then
χI(u) ≥ 0 ∀I ∈ A and it follows from Lemma 3.4 that u is weakly equivalent to
a strict path, so λ = wt(u) ∈ Λ+. This proves the first statement. The second
statement follows from the first for i = j. �

Remark 3.7. The semigroup Λ+ is not saturated (i.e. Λ+ 6= Λ ∩ P ) in general.
So the above corollary can be quite confusing, as it says that Λij ∩ Λ+ = Λij ∩ P .
Note that Λ is not the union of Λij , i, j ∈ Q0.

Remark 3.8. For any i, j ∈ Q0 we can identify ejAei with a vector space C[Λ+
ij ]

(we denote its basis elements by eλ, λ ∈ Λ+
ij). This is the content of the algebraic

consistency condition [7, Definition 4.4.2] proved in [7]. For any λ ∈ Λij , we denote
by uλ

ij an (equivalence class of a) path from i to j having weight λ. The above

identification is given by uλ
ij 7→ eλ, λ ∈ Λ+

ij .

Remark 3.9. Let PM = P ∩ MQ. Then the dual cone P∨
M ⊂ M∨

Q is generated by
χI for extremal perfect matchings I (see Proposition 2.12). The elements χI are
contained in the hyperplane

{y ∈ M∨
Q | ω∗

M (y) = 1},

where ωM : Z → M was defined in Section 2.2. This implies that Spec C[M+] =
Spec C[PM ∩ M ] is a toric Calabi-Yau variety. Its toric diagram is defined as an
intersection of the cone P∨

M with the above hyperplane.

Lemma 3.10 (see [7, Lemma 4.3.1]). The center of the quiver potential algebra
A = CQ/(∂W ) is isomorphic to C[M+].

Let R = C[M+]. The inclusion R → A from the above lemma is given by
eλ 7→

∑

i∈Q0
uλ

ii. Note that every ejAei is automatically an R-module.

Lemma 3.11. For any i, j, k ∈ Q0, there is a canonical R-module isomorphism

HomR(ejAei, ekAei) = ekAej .
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Proof. There is a natural embedding of ekAej in HomR(ejAei, ekAei). We just
have to prove that it is a bijection. Let f ∈ HomR(ejAei, ekAei). We can assume
that there exists some weak path u : j → k such that f(v) = uv for any path
v : i → j. We have to show that u is equivalent to a strict path. Let u = ωku′

for the minimal path u′ and k ∈ Z. By Corollary 3.5 there exists an external
perfect matching I such that χI(u

′) = 0. We know that the quiver Q\I is strongly
connected (see Proposition 2.12), so there exists a strict path u′′ : i → j such that
χI(u

′′) = 0. Then the path f(u′′) = ωku′u′′ is strict. Therefore 0 ≤ χI(ω
ku′u′′) =

k + χI(u
′) + χI(u

′′) = k. This implies that u′ωk is a strict path. �

Corollary 3.12. For any i ∈ Q0, we have HomR(Aei, Aei) = A.

Proposition 3.13. The algebra R is a normal Gorenstein domain and the algebra
A = CQ/(∂W ) is its non-commutative crepant resolution (see [27, Definition 4.1]).

Proof. The algebra R = C[M+] is normal, as M+ is saturated. Let

PM = P ∩ MQ.

Then M+ = PM ∩ M . According to [21, p. 126], the algebra C[M+] is Gorenstein
if and only if

inn(PM ) ∩ M = m + (PM ∩ M)

for some m ∈ M . Let Ae ⊂ A be the set of extremal perfect matchings. We have

inn(PM ) ∩ M = {λ ∈ P ∩ M | χI(λ) > 0 ∀I ∈ Ae}.

This implies that, for any λ ∈ inn(PM ) ∩ M , we have χI(λ − ω) = χI(λ) − 1 ≥ 0,
I ∈ Ae, so λ − ω ∈ PM ∩ M . It follows that

inn(PM ) ∩ M = ω + (PM ∩ M)

and the algebra C[M+] is Gorenstein.
Let i ∈ Q0. We have seen that A = EndR(Aei). The R-module Aei is reflexive.

Indeed, we have

HomR(ejAei, R) = HomR(ejAei, eiAei) = eiAej .

Taking again the dual, we see that ejAei is reflexive and therefore also Aei is
reflexive. According to [27, Lemma 4.2], we just have to show that A has finite
global dimension and A is a CM-module over R. It is proved in [19] that A is a
3-Calabi-Yau algebra. This together with Remark 2.16 implies that A has finite
global dimension. To show that A is a CM-module over R we will apply Theorem
2.24. To do this we have to show that A is a finitely generated module over R. It is
enough to show that ejAei is finitely generated over R for every i, j ∈ Q0. Let us
choose some path v : j → i. Then the map ejAei → eiAei ≃ R, u 7→ vu is injective.
It follows that ejAei is finitely generated over R, as R = C[M+] is noetherian. �

4. Construction of crepant resolutions

Let (Q, W ) be the quiver potential associated with a geometrically consistent
brane tiling and let A = CQ/(∂W ) be the corresponding quiver potential algebra.
We denote by modA the category of finitely generated left A-modules.

Recall that Λ+ ⊂ Λ is a semigroup generated by the weights of the arrows from
Q1. It was shown in [19] that Λ+ ∩ (−Λ+) = {0}. The semigroup Λ+ is not
saturated and Spec C[Λ+] is not normal in general.
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We will consider the moduli spaces of representations of A having dimension
vector α = (1, . . . , 1) ∈ ZQ0 . The space of CQ-representations of dimension α is
given by

R(CQ, α)(C) = CQ1 .

Let R(A, α) ⊂ R(CQ, α) be the subvariety of those representations that satisfy
relations induced by the potential W . The structure ring of R(CQ, α) is a polyno-
mial algebra C[NQ1 ]. We will denote its natural basis by (eλ)λ∈NQ1 . For any arrow
a ∈ Q1, let F±

a ∈ Q2 be the faces containing a. Let u±
a be a path in Q such that

au±
a is a cycle along F±

a . Then

∂W

∂a
= u+

a − u−
a .

This implies that the structure ring of R(A, α) is given by

C[NQ1 ]/(e|u
+
a | − e|u

−

a | | a ∈ Q1),

where, for any path u, the vector |u| ∈ ZQ1 denotes its content (see Section 2.3).
The natural surjective map C[NQ1 ] → C[Λ+] can be factored

C[NQ1 ]/(e|u
+
a | − e|u

−

a | | a ∈ Q1) → C[Λ+].

This implies that there is a closed embedding

Spec C[Λ+] → R(A, α).

Remark 4.1. This map need not be an isomorphism. We thank Alastair Craw for
this remark.

Proposition 4.2. Variety Spec C[Λ+] is an irreducible component of R(A, α)

Proof. Recall that we have a map wt : ZQ1 → Λ (see Section 2.2). We define ideals
I, J ⊂ C[NQ1 ] by the rule

I =
(

eλ+

− eλ−

| λ± ∈ NQ1 , λ+ − λ− ∈ ker(wt)
)

.

J =
(

e|u
+
a | − e|u

−

a | | a ∈ Q1

)

.

Note that the elements |u+
a | − |u−

a |, a ∈ Q1, generate the group ker(wt) (Λ was
defined as a factor group of ZQ1 by the subgroup generated by the above elements,
see Section 2.2). Ideal I defines variety Spec C[Λ+] and ideal J defines variety
R(A, α). The proof now literally repeats the proof of [10, Theorem 3.10]. �

In order to construct the moduli spaces of left A-modules of dimension α, we
have to identify isomorphic representations from R(A, α) with each other. This is
achieved by taking GIT quotients with respect to the natural action of the group

GLα(C) =
∏

i∈Q0

GLαi
(C)

on R(A, α) [18]. One can see that two representations from R(A, α) are isomorphic
if and only if they are contained in the same orbit. In our case

GLα(C) = (C∗)Q0 = HomZ(ZQ0 , C∗).

The diagonal C∗ ⊂ GLα(C) acts trivially on R(A, α), so our action factors through

TB = HomZ(B, C∗),
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where B = ker(ZQ0 → Z) was defined in Section 2.2. Given an element θ ∈ B, we
say that a representation X ∈ R(A, α) is stable (resp. semistable) if for any proper
nonzero subrepresentation Y ⊂ X , we have θ · dimY > 0 (resp. θ · dimY ≥ 0).
According to [18], the moduli space of θ-semistable left A-modules of dimension α
is given by the GIT quotient

Mθ(A, α) = R(A, α)//θTB.

Definition 4.3. An element θ ∈ B is called α-generic if, for any 0 < β < α we
have θ · β 6= 0.

If θ ∈ B is α-generic, then all θ-semistable A-modules of dimension α are stable.

Proposition 4.4. Assume that θ ∈ B is α-generic. Then we have

Mθ(A, α) = Spec C[Λ+]//θTB = Spec C[P ∩ Λ]//θTB.

Proof. We know from [16, Prop. 5.1] that Mθ is irreducible. We can find some
irreducible component Z ⊂ R(A, α) such that Z//θTB equals Mθ = Mθ(A, α).
As all points of TΛ ⊂ R(A, α) are θ-stable (they correspond to simple modules),
we deduce that TΛ ⊂ Z. Variety TΛ is dense in Spec C[Λ+], so Spec C[Λ+] ⊂
Z. By the previous proposition this inclusion is an isomorphism. This implies
Spec C[Λ+]//θTB = Mθ. To prove the second equality, we note that Spec C[P ∩
Λ]//θTB is a normalization of Spec C[Λ+]//θTB = Mθ and Mθ is smooth by [16,
Prop. 5.1]. �

If θ ∈ B is α-generic then there exists a universal vector bundle U on Mθ =
Mθ(A, α).

Theorem 4.5. Let θ ∈ B be α-generic. Then Mθ is smooth, the natural map
Mθ → Spec Z(A) is a crepant resolution, and there is a pair of inverse equivalences
of derived categories

Φ : Db(cohMθ) → Db(mod Aop), F 7→ RΓ(F ⊗L
Mθ

U∗),

Ψ : Db(mod Aop) → Db(cohMθ), M 7→ M ⊗L
A U .

Proof. This follows from [27, Theorem 6.3.1] and the fact that A is a non-commu-
tative crepant resolution of Z(A) (see Proposition 3.13). We should just note that
Van den Bergh considers the moduli spaces of right A-modules while we consider
the moduli spaces of left A-modules. �

Remark 4.6. This result was proved directly by Ishii and Ueda [16, 15].

According to [25], variety

Mθ(A, α) = Spec C[P ∩ Λ]//θTB

is a toric variety endowed with an action of the torus TM = TΛ/TB. We are going
to describe TM -orbits of Mθ(A, α). To do this we will describe the TΛ-orbits of
R(A, α). It turns out that orbits corresponding to indecomposable modules are
parametrized by their supports.

Definition 4.7. For any subset I ⊂ Q1 we define representation xI = (xI,a)a∈Q1 ∈
R(CQ, α) by the rule

xI,a =

{

0, a ∈ I

1, a 6∈ I
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We say that I is W -compatible if xI is contained in R(A, α). We say that I is
θ-stable (resp. semistable) for θ ∈ B, if xI is θ-stable (resp. semistable). We say
that I is indecomposable if xI is indecomposable.

Remark 4.8. Note that any perfect matching I ⊂ Q1 is W -compatible. If I is an
extremal perfect matching then Q\I is a strongly connected quiver. This implies
that xI is a simple representation and, in particular, θ-stable for any θ ∈ B.

Definition 4.9. For any representation x = (xa)a∈Q1 ∈ R(CQ, α) we define its
cosupport

Ix = {a ∈ Q1 | xa = 0}.

All representations in the same (C∗)Q1 -orbit of R(CQ, α) have the same cosupport.

Lemma 4.10. Let x ∈ R(A, α). Then Ix is W -compatible. Representation x is
θ-stable (resp. θ-semistable, resp. indecomposable) if and only if Ix is θ-stable (resp.
θ-semistable, resp. indecomposable).

Definition 4.11. Let I ⊂ Q1. We consider it as a subgraph of the bipartite graph
G = (G±

0 , G1) dual to Q in the two-dimensional torus T . A connected component
of I is called a big component of I if it contains more then one edge. Otherwise it
is called a small component of I.

Proposition 4.12. Two indecomposable representations x, y ∈ R(A, α) are con-
tained in the same TΛ-orbit if and only if they have the same support.

Proof. It is clear that any two representations in the same TΛ-orbit have equal
supports. Let us prove the converse. So let x, y ∈ R(A, α) be such that Ix = Iy =: I.
We define a new Q-representation z by the rule

za =

{

0, a ∈ I

x−1
a ya, a 6∈ I

It is clear that z is also an A-representation. It is also indecomposable, as this is a
property of the support. We claim that we can extend (za)a∈Q1\I to the element

in (C∗)Q1 that is still an A-representation. Such an element will be automatically
contained in TΛ and will map x to y, so that both elements will be in the same
TΛ-orbit.

We may suppose that I 6= ∅, as otherwise our claim is automatically satisfied. By
the W -relations the elements

∏

a∈F za are independent of F ∈ Q2 and therefore are
all zero. It follows that every face intersects I non-trivially. If every face intersects
I in precisely one element, then I is a perfect matching. In this case z can be
obviously extended to (C∗)Q1 and we are done.

So let us assume that I is not a perfect matching. We consider I as a subgraph
of the bipartite graph G = (G±

0 , G1) dual to Q in the two-dimensional torus T .
Graph I can have many connected components. Our assumptions imply that the
set of vertices of I equals the set of vertices of G, that every vertex (i.e. face in Q)
has valence at least one, and that there is at least one vertex having valence ≥ 2.
It follows from W -relations that any vertex connected to a vertex of valence ≥ 2
also has valence ≥ 2. So, if a connected component of I is big then all its vertices
have valence ≥ 2. We claim that there is precisely one big component.

First, let us note that the complement of I in the torus is connected as z is
indecomposable. One can easily see that the complement of two non-intersecting
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loops in the torus always has at least two connected components. Every big com-
ponent of I has loops, so the existence of two big components would imply that the
complement of I is not connected. This proves our claim that there exists just one
big component in I.

We will extend (za)a∈Q1\I to the element in (C∗)Q1 in such a way that products
along the faces (elements in Q2) are all equal one. The choice for the arrows of small
components is clear. Let J ⊂ I denotes the big component. For any F ∈ G0 = Q2

we define
zF =

∏

a∈F\I

zε(F )
a ,

where ε(F ) = ±1 for F ∈ G±
0 . It follows from the W -relations that

∏

F∈J0

zF = 1,

where J0 ⊂ G0 (resp. J1 ⊂ G1)denotes the set of vertices of J (resp. the set of edges
of J). More generally, we consider an arbitrary abelian group Γ and a sequence

ΓJ1
d
−→ ΓJ0

p
−→ Γ,

where d(γa) = γF+
a − γF−

a with F±
a ∈ J±

0 incident with a ∈ J1, and p(γF ) = γ for
F ∈ J0, γ ∈ Γ. The kernel of p is generated by the elements of the form γF+

a −γF−
a ,

a ∈ J1, γ ∈ Γ, as J is connected. So the above sequence is exact. In our situation
this means that there exists (ta)a∈J1 ∈ (C∗)J1 such that, for any F ∈ J0 ⊂ Q2, we
have

∏

a∈F∩J1

tε(F )
a = zF .

The elements t−1
a , a ∈ J1 give then the desired extension. �

Remark 4.13. We have shown that the cosupport of an indecomposable A-module
of dimension α can have at most one big component. Every vertex of a big compo-
nent has valence at least 2.

Corollary 4.14. There is a bijection between the TΛ-orbits of indecomposable rep-
resentations in R(A, α) and W -compatible, indecomposable subsets in Q1.

Let now θ ∈ B be α-generic. Then all representations from Mθ = Mθ(A, α)
are stable and in particular indecomposable. It follows that TB-orbits of Mθ are
parametrized by W -compatible, θ-stable subsets in Q1. We are going to give a
precise description of these subsets according to the dimension of the corresponding
orbits. For any W -compatible, θ-stable set I ⊂ Q1, we denote by σI the cone of
the fan of Mθ corresponding to the orbit defined by I.

Proposition 4.15. Let x ∈ Mθ and let Ox ⊂ Mθ be its TM -orbit. Then

(1) dim Ox = 3 if and only if Ix = ∅.
(2) dim Ox = 2 if and only if Ix is a perfect matching.
(3) dim Ox = 1 if and only if the big component of Ix is a cycle.
(4) dim Ox = 0 if and only if the big component of Ix has two trivalent vertices

of different colors and all other vertices of valence 2.

Proof. The first statement is trivial. The last statement is just a translation of [16,
Lemma 4.5] to our language in the case of a consistent brane tiling. It is proved there
also that if σ is a cone corresponding to the fixed point x then Uσ = Spec C[σ∨∩M ]
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is isomorphic to C3. This isomorphism can be described in the following way. Let
v± be the white and black vertices of valence 3 in the big component of Ix. Let
a±

i , i = 1, 2, 3 be the edges in the big component incident with v±. Then for any
choice of values ti ∈ C, i = 1, 2, 3 for the edges a+

i , i = 1, 2, 3 there exists the unique
choice of the values for the rest of the edges in Ix such that the corresponding quiver
representation satisfies W -relations (representation x corresponds to zero values on
the edges a+

i , i = 1, 2, 3). This gives the required isomorphism Uσ ≃ C3.
For any one-dimensional orbit Oy there exists a fixed point x in its closure. Let

σ be the cone corresponding to the point x. Then Oy ⊂ Uσ and using the above
identification Uσ ≃ C3, we can write without loss of generality

Oy = {(t, 0, 0) | t ∈ C∗}.

Let

(ai,1, . . . , ai,2ki+1), ki ≥ 0, i = 1, 2, 3

be the chains of edges in the big component of Ix that connect v+ and v−. We
assume that ai,1 = a+

i , i = 1, 2, 3. Then representation y satisfies

ya1,2k+1
6= 0, 0 ≤ k ≤ k1

ya1,2k
= 0, 1 ≤ k ≤ k1

yai,k
= 0, 1 ≤ k ≤ 2ki + 1, i = 2, 3.

This implies that the big component of Iy consists of the edges ai,k, 1 ≤ k ≤
2ki + 1, i = 2, 3. This is a cycle.

For any two-dimensional orbit Oy we again consider a fixed point x in its closure
and the cone σ corresponding to x. We can write without loss of generality

Oy = {(t1, t2, 0) | t1, t2 ∈ C∗}.

We use the same notation as above for the chains connecting v+ and v−. Then
representation y satisfies

yai,2k+1
6= 0, 0 ≤ k ≤ ki, i = 1, 2

yai,2k
= 0, 1 ≤ k ≤ ki, i = 1, 2

ya3,2k+1
= 0, 0 ≤ k ≤ k3

ya3,2k
6= 0, 1 ≤ k ≤ k3.

This implies that Iy is a perfect matching. �

Remark 4.16. The one-dimensional cones of the fan of Mθ are generated by χI ∈
M∨, where I ∈ A are θ-stable. All these vectors are contained in the hyperplane

{y ∈ M∨
Q | ω∗

M (y) = 1},

where ωM : Z → M was defined in Section 2.2. This implies that Mθ is a toric
Calabi-Yau variety (cf. Remark 3.9). Its toric diagram is defined as an intersection
of the cones of the fan of Mθ with the above hyperplane. This toric diagram is a
triangulation of the toric diagram of C[M+] (see Remark 3.9).

Remark 4.17. For any non-extremal point of the toric diagram there exists more
than one perfect matching that is mapped to it (see Proposition 2.12). However,
only one of these perfect matchings is θ-stable.
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Corollary 4.18. Let x ∈ Mθ be a fixed point and let

(ai,1, . . . , ai,2ki+1), i = 1, 2, 3

be the chains of edges connecting the trivalent points of the big component of Ix.
Then there are precisely three 2-dimensional orbits containing x in their closures.
The corresponding perfect matchings are given by (for i = 1, 2, 3)

Ix\{aj,2k+1 | 0 ≤ k ≤ kj , j 6= i}\{ai,2k | 1 ≤ k ≤ ki}.

These are the only perfect matchings contained in Ix. Ix is a union of these perfect
matchings.

Corollary 4.19. Let Ox ⊂ Mθ be a one-dimensional orbit and let

(a1, . . . , a2k)

be the big component of Ix which is a cycle. Then there are precisely two 2-
dimensional orbits containing Ox in their closures. The corresponding perfect
matchings are given by

Ix\{a1, a3, . . . , a2k−1}, Ix\{a2, a4, . . . , a2k}.

These are the only perfect matchings contained in Ix. Ix is a union of these perfect
matchings.

We have now a simple algorithm to construct a fan of Mθ for α-generic θ ∈ B.
Construction of such fan is equivalent to the triangulation of the toric diagram.
We find first those perfect matchings that are θ-stable. Then we test for all the
pairs of these perfect matchings if their union is θ-stable (note that the union of
any two perfect matchings is automatically W -compatible). In this way we get
all 1-dimensional and 2-dimensional cones of the required fan. The 3-dimensional
cones are constructed then automatically. The triangulation of the toric diagram
is uniquely determined from this data.

5. Orbifolds and brane tilings

In this section, for any finite abelian subgroup G ⊂ SL3(C), we construct certain
brane tiling. The underlying quiver will coincide with the McKay quiver of the
G-representation C3. It turns out that the corresponding quiver potential algebra
is Morita-equivalent (and even isomorphic) to the skew product C[x, y, z]⋊G and it
is therefore the most natural candidate for the non-commutative crepant resolution
of the orbifold singularity C3/G.

5.1. McKay quiver. Let G be an arbitrary finite group and let V be its finite-
dimensional representation over C. We denote by Ĝ the set of all irreducible G-
representations.

Remark 5.1. If G is abelian, then Ĝ has a group structure induced by tensor

products and Ĝ can be identified with HomZ(G, C∗). It is called the group of
characters of G. This group is non-canonically isomorphic to G.

Recall the definition of the McKay quiver Q of a G-representation V . Its set of
vertices is given by Q0 = Ĝ. The set of arrows from σ ∈ Ĝ to ρ ∈ Ĝ is given by
some fixed basis of

HomG(σ, ρ ⊗ V ).
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This quiver can be used to describe left modules over a skew-group algebra S(V ∨)⋊
G. To define such module structure on a vector space M it is enough to endow
M with a structure of a G-representation and to give a G-equivariant linear map
V ∨ ⊗ M → M (corresponding to the multiplication) that satisfies certain axioms
(see e.g. [17, Section 3]). Let us show that this data defines a representation of
the McKay quiver. We decompose M = ⊕ρ∈ĜMρ ⊗ ρ, where Mρ are some vector

spaces. We put this vector spaces at the vertices of the McKay quiver (recall that

Q0 = Ĝ). We have

HomG(V ∨ ⊗ M, M) = ⊕σ,ρ HomG(V ∨ ⊗ σ, ρ) ⊗ Hom(Mσ, Mρ)

= ⊕σ,ρ HomG(σ, ρ ⊗ V ) ⊗ Hom(Mσ, Mρ).

This means that for any arrow from σ ∈ Ĝ to ρ ∈ Ĝ, we have a linear map
Mσ → Mρ. This gives us a required quiver representation. In this way we get a
full and faithful functor

mod(S(V ∨) ⋊ G) → mod CQ.

To get an equivalence of categories, we have to impose certain relations in the path
algebra CQ [17, Section 3].

Let now G be a finite abelian subgroup G ⊂ SL3(C). For any character ρ ∈ Ĝ
we denote the corresponding one-dimensional G-representation also by ρ. We can
decompose the G-representation V = C3 (induced by the inclusion G ⊂ SL(C3))

V = ρ1 ⊕ ρ2 ⊕ ρ3,

where ρ1, ρ2, ρ3 ∈ Ĝ. Note that ρ1ρ2ρ3 = 1, as G ⊂ SL3(C). Then

ρ ⊗ V ≃ ρρ1 ⊕ ρρ2 ⊕ ρρ3

and HomG(σ, ρ ⊗ V ) can be nonzero only if σ = ρρi for some i = 1, 2, 3. It follows

that any vertex ρ ∈ Q0 = Ĝ has three ingoing arrows

aρ
i : ρρi → ρ, i = 1, 2, 3.

Sometimes we will omit the upper index if the ingoing or outgoing vertex is known.
Now we describe the set of faces Q2 corresponding to some brane tiling. All faces
will contain just three arrows. For any vertex ρ ∈ Ĝ and any permutation π ∈ S3,
we consider the face

ρ
aπ(3)
−−−→ ρρπ(1)ρπ(2)

aπ(2)
−−−→ ρρπ(1)

aπ(1)
−−−→ ρ.

It is clear that every arrow is contained in precisely two faces. This implies that
if we glue the faces along the common arrows we obtain some oriented compact
surface. The number of arrows equals 3 ·#G and the number of faces equals 2 ·#G.
This implies that the Euler number of our surface is zero and therefore the surface
is homotopic to a torus. So we obtain a brane tiling. Let W be the corresponding
potential.

Remark 5.2. We have used the fact that Q is a connected quiver. This follows
from the fact that ρ1, ρ2, ρ3 generate the whole group Ĝ. Indeed, assume that

they generate some proper subgroup Ĥ ⊂ Ĝ. Then the map G →֒ SL3(C) can be

factored through G → H → SL3(C), where H = HomZ(Ĥ, C∗). This would imply
that G → SL3(C) is not injective.

The next result follows from [23, Section 5.2] or [17, Section 3] or [10, Section 2]
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Proposition 5.3. There is an equivalence of categories

mod(C[x, y, z] ⋊ G) → mod CQ/(∂W )

.

Remark 5.4. It is proved in [11, Proposition 2.8] that the above algebras are
actually isomorphic.

Remark 5.5. It was shown in [13, Section 4.4] that for any finite subgroup G ⊂
SL3(C) one can endow the corresponding McKay quiver with a potential (depending
on some choices) in such a way that the quiver potential algebra is Morita equivalent
to the skew group algebra. The coefficients of the cycles in that potential are not
always ±1, so it can not correspond to some brane tiling. However one can show
that if G is abelian then one can make such choices that the coefficients of the cycles
of the potential are ±1 and this potential is induced by the brane tiling constructed
above.

Remark 5.6. The periodic quiver of the above brane tiling coincides with the
periodic quiver corresponding to the brane tiling of C3. This implies that the
constructed brane tiling is always geometrically consistent.

5.2. Toric realization of orbifolds. Let G ⊂ SL3(C) be a finite abelian group.
We have associated a quiver potential (Q, W ) and a triple of characters ρ1, ρ2, ρ3 ∈

Ĝ with such a group. These characters generate Ĝ. So, we get a surjective map

p : M0 = Z3 → Ĝ.

There is a map π : ZQ1 → M0, that maps an arrow aρ
i to the i-th canonical basis

vector of M0 = Z3. It can be factored through π : Λ → M0. Recall that we have
defined B = ker(ZQ0 → Z). We define a map ν : B → Ĝ to be the composition

B →֒ ZQ0 = ZĜ → Ĝ. It follows from [23, Lemma 10.5]

Lemma 5.7. The following diagram is cartesian and cocartesian

Λ
d
- B

M0

π
? p

- Ĝ

ν
?

Corollary 5.8. We have a commutative diagram with short exact sequences in the
rows

0 - M - Λ
d
- B - 0

0 - M

w

w

w

w

w

- M0

π
? p

- Ĝ

ν
?

- 0

This corollary allows us to interpret all the results of [23], [20] or [10] in the
context of brane tilings. For example, let P0 ⊂ (M0)Q = Q3 be a cone generated
by the basis vectors. Then C3 = Spec C[P0 ∩ M0] and C3/G = Spec C[P0 ∩ M ] by
the general theory of toric quotients [25, Prop. 3.1] (see also [20, Section 1]). But
the last scheme coincides with Spec Z(A) = Spec C[P ∩ M ], where A = CQ/(∂W )
and P ⊂ ΛQ is a cone defined in Section 3.
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Remark 5.9. It is proved in [20] that C3/G has a crepant resolution HilbG(C3) –
the Hilbert scheme of G-clusters in C3 (see [20, 10]). It follows from [10, Prop. 5.2]

that HilbG(C3) can be identified with Mθ(A, α), where A = CQ/(∂W ), α =

(1, . . . , 1) ∈ ZQ0 and θ ∈ B is such that θρ0 < 0 and θρ > 0 for ρ 6= ρ0 (ρ0 ∈ Ĝ is a
trivial representation).

Remark 5.10. It was shown in [20] that HilbG(C3) is a toric variety and it was
proposed there a way to compute the corresponding fan. In [23, 10] it was shown
that Mθ(A, α) is a toric variety for α-generic θ ∈ B and in [10] an algorithm was
given to compute the corresponding fan. This algorithm consists in computing
the vertices of the polyhedron P θ ∩ MQ (this polyhedron defines a toric variety
Mθ, see [25] for the general results on toric varieties defined by polyhedra), where
P θ = P − λ for some λ ∈ Λ with d(λ) = θ. The results of the previous sections
give us a new way to compute this fan by using θ-stable perfect matchings on the
brane tiling constructed above.

5.3. Example. In this example we will describe the toric diagram of HilbG(C3),
where G = Z6 and the action on C3 is given by 1

6 (1, 2, 3). We have chosen this
example as it was also considered by Nakamura [20] using completely different
methods.

Let us make first some general remarks. We have an exact sequence

0 → M → M0 → Ĝ → 0.

Applying the functor HomZ(−, Z) we get an exact sequence

0 → Hom(M0, Z) → Hom(M, Z) → Ext1(Ĝ, Z) → 0.

We claim that Ext1(Ĝ, Z) = G. The module Z over the ring Z has an injective
resolution

0 → Z → Q → Q/Z → 0.

Using it we get

Ext1(Ĝ, Z) = Hom(Ĝ, Q/Z) = Hom(Ĝ, C∗) = G,

where we have used an inclusion Q/Z → C∗, x 7→ e2πix. This implies that there is
an exact sequence

0 → M∨
0 → M∨ → G → 0.

Let n = #G. Then, for any f ∈ M∨, we have nf ∈ M∨
0 . In particular, for any

perfect matching I ∈ A, we have nχI ∈ M∨
0 . To determine this function, we have to

find its values on the basis elements ei ∈ M0, i = 1, 2, 3. Given an arrow aρ
i , ρ ∈ Ĝ,

i = 1, 2, 3, we say that it has type i. We have nχI(ei) = χI(nei), so to find this
value, we have to evaluate χI on any path consisting of n arrows of type i. Such a
path will not necessarily contain only pairwise different arrows (there are precisely
n different arrows of type i in quiver Q). But one can easily show that the value of
χI on such a path equals the number of arrows of type i in the perfect matching I.
This gives us an easy way to determine the elements χI ∈ (M0)

∨
Q = M∨

Q .

Let us return now to the case G = Z6 with an action 1
6 (1, 2, 3). We depict first

the periodic quiver and the fundamental domain corresponding to the brane tiling
constructed earlier, see Figure 1. The corresponding quiver on the torus is a McKay
quiver of the G-representation C3, see Figure 2
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Figure 1. Periodic quiver with a fundamental domain
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Figure 2. McKay quiver

We will denote the arrow from vertex i to vertex j by ij. The type of such arrow
equals j − i if j > i and j − i + 6 otherwise. The list of all perfect matchings of the
brane tiling is given in the Table 1. Every perfect matching is written as a set of
arrows from Q.

Remark 5.11. We see that the elements 1
6 (1, 2, 3), 1

6 (2, 4, 0), etc. are contained in

M∨. Let g ∈ G = Z6 be the image of 1
6 (1, 2, 3) with respect to the canonical map

M∨ → G. This is a generator of G. We can see that 1
6 (2, 4, 0) 7→ g2, 1

6 (3, 0, 3) 7→ g3,
1
6 (4, 2, 0) 7→ g4 (cf. [20]). These elements of M∨ will be sometimes denoted by their
images in G. The perfect matchings I such that χI = ei, i = 1, 2, 3, are precisely
the extremal perfect matchings.

We consider now a stability θ ∈ B that corresponds to the resolution HilbG(C3)
of C3/G. It should satisfy θ0 < 0 and θi > 0 for 1 ≤ i ≤ 5. A perfect matching
I ∈ A is θ-stable if and only if one can reach any vertex of Q from vertex 0 ∈ Q0

by going only through the arrows of Q\I. The θ-stable perfect matchings are listed
in Table 2.

We choose now such pairs of θ-stable perfect matchings that their union is still
θ-stable. All pairs including I13, except the pair {I13, I4}, satisfy this condition.

This allows us to reconstruct the toric diagram of HilbG(C3), see Figure 3. This
diagram coincides with a toric diagram constructed by Nakamura [20].
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N I 6χI

1 34, 01, 02, 35, 24, 51 (2, 4, 0)
2 34, 01, 02, 35, 45, 12 (4, 2, 0)
3 34, 01, 23, 50, 24, 51 (4, 2, 0)
4 34, 01, 23, 50, 45, 12 (6, 0, 0)
5 34, 14, 30, 50, 52, 12 (3, 0, 3)
6 34, 14, 30, 35, 24, 25 (1, 2, 3)
7 13, 40, 02, 35, 24, 51 (0, 6, 0)
8 13, 40, 02, 35, 45, 12 (2, 4, 0)
9 13, 40, 23, 50, 24, 51 (2, 4, 0)
10 13, 40, 23, 50, 45, 12 (4, 2, 0)
11 13, 14, 02, 03, 52, 12 (1, 2, 3)
12 13, 14, 23, 03, 24, 25 (1, 2, 3)
13 41, 40, 30, 50, 52, 51 (1, 2, 3)
14 41, 40, 30, 35, 45, 25 (1, 2, 3)
15 41, 03, 01, 02, 52, 51 (1, 2, 3)
16 41, 03, 01, 23, 45, 25 (3, 0, 3)
17 41, 03, 14, 52, 25, 30 (0, 0, 6)

Table 1. Perfect matchings and their coordinates in M∨
Q

N I χI

4 34, 01, 23, 50, 45, 12 e1 = (1, 0, 0)
5 34, 14, 30, 50, 52, 12 g3 = 1

6 (3, 0, 3)
7 13, 40, 02, 35, 24, 51 e2 = (0, 1, 0)
9 13, 40, 23, 50, 24, 51 g2 = 1

6 (2, 4, 0)
10 13, 40, 23, 50, 45, 12 g4 = 1

6 (4, 2, 0)
13 41, 40, 30, 50, 52, 51 g = 1

6 (1, 2, 3)
17 41, 03, 14, 52, 25, 30 e3 = (0, 0, 1)

Table 2. θ-stable perfect matchings

e2

e3 g
3

e1

g
g

4

g
2

Figure 3. Toric diagram of HilbZ6(C3)
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