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Abstract

Let A be a commutative unital Banach algebra, g be a semisimple
complex Lie algebra and G(A) be the 1-connected Banach–Lie group with
Lie algebra g⊗A. Then there is a natural concept of a parabolic subgroup
P (A) of G(A) and we obtain generalizations X(A) := G(A)/P (A) of the
generalized flag manifolds. In this note we provide an explicit description
of all homogeneous holomorphic line bundles over X(A) with non-zero
holomorphic sections. In particular, we show that all these line bundles
are tensor products of pullbacks of line bundles over X(C) by evaluation
maps.

For the special case where A is a C∗-algebra, our results lead to a
complete classification of all irreducible involutive holomorphic represen-
tations of G(A) on Hilbert spaces.
Keywords: Banach–Lie group, holomorphic vector bundle, holomorphic
section, Borel–Weil Theorem
MSC2000: 22E65, 46G20

1 Introduction

If g is a finite dimensional complex semisimple Lie algebra and A is a unital
commutative Banach algebra, then g(A) := g⊗A carries a natural Banach–Lie
algebra structure with respect to the A-bilinear extension of the bracket. As
we shall see below, there always exists a (1-connected) Banach–Lie group G(A)
with Lie algebra g(A). For any parabolic subalgebra p ⊆ g, we then obtain
a connected Banach–Lie subgroup P (A) with Lie algebra p(A) := p ⊗ A ⊆
g(A), which leads to the complex homogeneous spaces X(A) := G(A)/P (A)
generalizing the finite dimensional complex flag manifolds.
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In [MNS09] we have studied homogeneous vector bundles over a class of
Banach manifolds generalizing those of the form G(A)/P (A). Some of the
main results of that paper are that for each holomorphic Banach representation
ρ : P (A) → GL(E), the space of holomorphic sections of the associated bundle
G×ρ E always carries a natural Banach space structure turning it into a holo-
morphic G(A)-module and that every irreducible holomorphic G(A)-module
embeds in such a space of holomorphic sections. These results constitute natu-
ral extensions of Borel–Weil theory for finite dimensional reductive complex Lie
groups.

In this paper we obtain a complete classification of all homogeneous holomor-
phic line bundles over X(A) with non-zero holomorphic sections. In particular,
we show that all these line bundles are tensor products of pullbacks of line bun-
dles over the finite dimensional compact complex manifold X(C) by evaluation
maps ϕX

η : X(A) → X(C) induced by unital algebra homomorphisms η : A → C.
If, in addition, A is a C∗-algebra, then the involution of A and the Cartan

involution on g can be combined to an involution on the Banach–Lie algebra
g(A), which leads to an antiholomorphic involution ∗ on the corresponding Lie
group G(A). For these groups the natural class of representations are those
holomorphic representations π : G(A) → GL(H) on complex Hilbert spaces H
which are compatible with the involution. On the unitary groups

U(G(A)) := {g ∈ G(A) : g∗ = g−1}

they restrict to norm continuous unitary representation, from which they can be
reconstructed by analytic extension (cf. [Ne98]). We show that all irreducible
representations of this kind can be realized in holomorphic homogeneous line
bundles overX(A), from which we then derive a complete classification. Surpris-
ingly, it turns out that all the irreducible representations are actually finite di-
mensional and factor through multi-evaluation maps G(A) → G(CN ) ∼= G(C)N .

The structure of the present paper is as follows. In Section 2 we explain our
setup and collect some structural information on the Lie algebras g(A). Sec-
tion 3 is completely independent of our representation theoretic framework. Its
main result is Theorem 3.3, asserting that every multiplicative holomorphic map
χ : A → C on a unital commutative Banach algebra is a finite product of algebra
homomorphisms. This observation is the key to our results on the characteri-
zation of the holomorphic line bundles Lχ → X(A) associated to holomorphic
characters χ : P (A) → C×. Theorem 4.2 provides a characterization of those
characters χ for which Lχ has non-zero holomorphic sections, as those which are
products of characters pulled back from dominant characters of P (C) by homo-
morphisms ϕη : P (A) → P (C) induced by algebra homomorphisms η : A → C.
This theorem is proved in Section 5 by showing first that, for the special case of
g = sl2(C), it follows from Theorem 3.3 and then deriving the general case by
applying the sl2-case to sl2-subalgebras corresponding to simple roots of g. In
Section 6 we apply all that to the special case where A is a unital C∗-algebra.
Finally, we show in Section 7 that, in general, the space Oχ(G(A)) of holomor-
phic sections of Lχ is not finite-dimensional, although the corresponding line
bundle is a pullback of a finite dimensional one.
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For A = Ck(S1), k ∈ N0, the groups G(A) are variants of complex loop
groups. It is well-known that, at least for k = ∞, these groups have interest-
ing central extensions with a very rich representation theory (by unbounded
operators) (cf. [PS86], [Ne01]), so that our results can also be understood as a
contribution to the description of those representations of the centrally extended
groups which are trivial on the center.

As a consequence of our main result, the space of holomorphic sections of Lχ

contains a finite dimensional G(A)-invariant subspace whenever it is non-zero.
In particular, this leads to a natural class of finite dimensional representations
of groups of the type G(A) that deserve the name evaluation representations.
Finite dimensional representations of Lie algebras of the form g⊗A, A a unital
commutative algebra, are presently under active investigation from an algebraic
point of view. In [Se09] one finds a survey on this theory for the case where
A is an algebra of Laurent polynomials. For the larger class of Lie algebras
of the form (g ⊗ A)Γ, where A is the algebra of regular functions on an affine
variety and Γ a finite group acting on g and A, the irreducible finite dimen-
sional representations have recently been classified by Neher, Savage and Senesi
([NSS09]).

Also closely related to our setting is the notion of a Weyl module introduced
in [CP01]. These are the maximal finite dimensional modules of algebras of the
form g⊗A generated by eigenvectors of b⊗A, where b is a Borel subalgebra of
g. The connection to our context is as follows. For any line bundle Lχ as above,
we can identify its space of holomorphic sections with a certain space Oχ(G(A))
of holomorphic functions on G(A), so that the evaluation ev1 : Oχ(G(A)) → C

is a morphism of P (A)-modules. In particular, ev1 can be viewed as a P (A)-
eigenvector in the dual G(A)-module Oχ(G(A))∗. If Oχ(G(A)) is finite dimen-
sional (which is in particular the case if A is finite dimensional; cf. [MNS09,
Cor. 3.9]), then Oχ(G(A))∗ is a finite dimensional G(A)-module generated by
a P (A)-eigenvector. If the parabolic P (A) is minimal, these dual modules are
Weyl modules. Conversely, the description of Oχ(G(A)) as coinduced mod-
ules on the Lie algebra level in [MNS09, Sec. 2] implies that, whenever one
can translate between the analytic and the algebraic setting, Weyl modules can
be realized as duals of finite dimensional G(A)-invariant spaces of holomorphic
sections of some line bundle Lχ. For recent results on the structure of Weyl
modules we refer to [FoLi07], [FL04].

2 Preliminaries

Let g be a finite dimensional complex semisimple Lie algebra, h ⊆ g be a Cartan
subalgebra, and ∆ ⊆ h∗ be the corresponding root system, so that we have the
root decomposition

g = h ⊕
⊕

α∈∆

gα.
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We write α̌ ∈ h for the coroot associated to α ∈ ∆, i.e., the unique element
α̌ ∈ [gα, g−α] with α(α̌) = 2. Fix a positive system ∆+, and let Π = {α1, . . . , αr}
denote the corresponding simple roots.

In the following A always denotes a complex unital commutative Banach
algebra. Then g(A) := g ⊗A, equipped with Lie bracket defined by

[x1 ⊗ a1, x2⊗2] := [x1, x2] ⊗ a1a2

is a Banach–Lie algebra with respect to the natural tensor product topology,
for which g(A) ∼= Adim g as a Banach space. We consider g(A) as a Lie algebra
over the algebra A, hence sometimes write x⊗ a ∈ g ⊗A also as ax. From the
h-weight space decomposition

g(A) = (h ⊗A) ⊕
⊕

α∈∆

(gα ⊗A),

we derive that g(A) is weakly ∆-graded in the sense of [MNS09, Def. 1.1] because
it contains g∆ := g ⊗ 1 and we have the h-weight decomposition from above.

To each subset ΠΣ ⊆ Π, we associate a parabolic system of roots, defined by

Σ := (−∆+) ∪ (∆ ∩ spanZ(Π \ ΠΣ)). (1)

If xΣ ∈ h is such that

αi(xΣ) =

{
0 for αi 6∈ ΠΣ

−1 for αi ∈ ΠΣ,

then Σ = {α ∈ ∆ | α(xΣ) ≥ 0}. Let p := p(C) := h ⊕
⊕

α∈Σ gα be the
parabolic subalgebra corresponding to Σ. Then p(A) := p ⊗ A is called a
parabolic subalgebra of g(A).

The Lie-algebra g(A) integrates to a Banach–Lie group. In fact, if we choose
some faithful representation g → gln(C), g(A) is a closed subalgebra of the
Banach–Lie algebra gln(A) of n×n-matrices with entries in A. This Lie algebra
integrates to the Lie group GLn(A) of all invertible matrices with entries in A.
Hence g(A) is a closed Lie subalgebra of a Lie algebra of a linear Lie group,
and therefore integrates to a Lie group ([Mais62]). Let G(A), resp., G(C) be
simply connected Banach–Lie groups with Lie algebras g(A), resp., g, and define
Lie subgroups P (A), resp., P (C) as the connected subgroups with Lie algebras
p(A), resp., p(C) = p.

Remark 2.1 (a) The Lie algebra p is a semidirect sum p = u ⋊ l, where

l = h ⊕
⊕

α(xΣ)=0

gα and u =
⊕

α(xΣ)>0

gα.

Moreover, the subalgebra l is a semidirect sum l = c ⋉ s, where

c := span Π̌Σ and s := [l, l] =
( ⊕

α(xΣ)=0

Cα̌
)
⊕

⊕

α(xΣ)=0

gα.
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Let U := exp u and L := NP (C)(l) ∩ NP (C)(u). Then the multiplication map
L ⋉ U → P (C), (l, u) 7→ lu, is a holomorphic isomorphism. In particular, L is
connected because P (C) is connected.

(b) We define the groups C and S as the integral subgroups of L with Lie
algebras c and s, respectively. Let HS be the integral subgroup of S with Lie
algebra hS := h ∩ s. Then the integral subgroup H with Lie algebra h satisfies

H ∼= h/ ker(exp |h) = h/2πiZ[∆̌] ∼= (C×)r,

and this implies that the multiplication map C×HS → H is an isomorphism of
abelian complex Lie groups. The product group C · S ⊆ G, being the integral
subgroup with Lie algebra c⊕s, equals L. Hence the multiplication map C×S →
L is surjective. To see that it is also injective, we note that its kernel is discrete
and normal, hence contained in the center Z(C ×S) ⊆ C ×HS . The injectivity
now follows since the restriction of the multiplication to C ×HS is injective.

Let n(A) :=
∑

α∈∆\Σ gα ⊗ A, and let N(A) := exp(n(A)) be the corre-

sponding integral subgroup of G(A). Recall from [MNS09, Prop. 1.11] that the
multiplication map

N(A) × P (A) → G(A), (n, p) 7→ np (2)

is biholomorphic onto an open subset. It follows that P (A) is a complemented
Lie subgroup, so that the quotient space X(A) := G(A)/P (A) is a complex
Banach manifold and the projection map πA : G(A) → X(A) is a holomorphic
submersion defining a holomorphic P (A)-principal bundle.

3 Multiplicative holomorphic functions

In this section we are concerned with holomorphic functions ϕ : A → C on
a commutative unital Banach algebra which are multiplicative, i.e., ϕ(ab) =
ϕ(a)ϕ(b) for a, b ∈ A. Clearly, every algebra homomorphism has this property,
and so does every finite product of algebra homomorphisms. The main result
of this section (Theorem 3.3) asserts the converse, namely that any such ϕ is a
finite product of algebra homomorphisms.

We start with a simple algebraic observation.

Lemma 3.1 Let Γ be a finite group, and let σ : Γ → Aut(A) be a representation

of Γ as automorphisms of a unital algebra A over a field of characteristic zero.

Let AΓ denote the subalgebra of Γ-invariants. Then every proper left ideal I in

AΓ generates a proper left ideal in A.

Proof. Since the representation σ of Γ on A is locally finite, we can de-
compose A as a finite direct sum A =

⊕
τ∈bΓ Aτ , where Γ̂ denotes the set of

irreducible representations of Γ, and Aτ is the τ -isotypic component, i.e., the
sum of all irreducible subrepresentations of σ which are equivalent to τ . Ob-
serve that AΓ is the isotypic component of the trivial representation. For any
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a0 ∈ AΓ, the map x 7→ a0x is Γ-equivariant, so that AΓAτ ⊆ Aτ for any
τ ∈ Γ̂. Assume now that the left ideal AI generated by I is not proper, i.e,
that 1 ∈ AI =

⊕
τ Aτ I. Since 1 ∈ AΓ, it follows that 1 ∈ AΓI ⊆ I, which

contradicts that I is a proper ideal. Hence AI is a proper ideal.

Proposition 3.2 If A is a unital commutative complex Banach algebra and

Γ ⊆ Aut(A) a finite subgroup, then any algebra homomorphism ϕ : AΓ → C

extends to an algebra homomorphism ϕ̃ : A → C and any such homomorphism

is continuous.

Proof. The kernel I := kerϕ is a proper ideal in the subalgebra AΓ, so that
the preceding lemma implies that I is contained in a proper ideal of A. In
particular, it is contained in a maximal ideal of A, so that the Gelfand–Mazur
Theorem implies the existence of a (continuous) homomorphism ϕ̃ : A → C with
ker ϕ̃ ∩ AΓ = kerϕ ([Ru91, Thm. 11.5]). Since AΓ = I ⊕ C1, it follows that ϕ̃
extends ϕ. Its continuity follows from [Ru91, Thm. 11.10].

Theorem 3.3 Let A be a unital commutative Banach algebra and ϕ : A → C

be a holomorphic character of the multiplicative semigroup (A, ·). Then there

exist finitely many continuous algebra homomorphisms χ1, . . . , χn : A → C such

that

ϕ = χ1 · · ·χn. (3)

Proof. We first claim that ϕ is a homogeneous polynomial of some degree n,
i.e., there exists a symmetric n-linear map ϕ̃ : An → C with ϕ(a) = ϕ̃(a, . . . , a)
for every a ∈ A. Indeed, the map C → C, z 7→ ϕ(z1), is holomorphic and
multiplicative, hence of the form z 7→ zn for some n ∈ N0. From this, we get
the homogeneity condition

ϕ(za) = znϕ(a) for z ∈ C, a ∈ A. (4)

On the other hand, we have a power series expansion

ϕ =

∞∑

k=0

ϕk (5)

at the origin, where ϕk : A → C is a homogeneous polynomial of degree k.
Comparison of (4) and (5) yields ϕ = ϕn. We can thus write ϕ(a) = ϕ̃(a, . . . , a)
for a continuous n-linear map ϕ̃ : An → C.

Now let A⊗n denote the projective n-fold tensor product of A, which is the
completion of the algebraic tensor product with respect to the maximal cross
norm. It has the universal property that continuous linear maps A⊗n → X
to a Banach space are in one-to-one correspondence with continuous n-linear
maps An → X . From the universal property and the associativity of projective
tensor products it easily follows that A⊗n carries a natural unital commutative
Banach algebra structure, determined by

(a1 ⊗ · · · ⊗ an)(b1 ⊗ · · · ⊗ bn) := a1b1 ⊗ · · · ⊗ anbn.
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The symmetric group Sn acts by automorphisms on A⊗n by the continuous
linear extensions of the maps which permute the tensor factors, i.e.

σ(a1 ⊗ · · · ⊗ an) := aσ−1(1) ⊗ · · · ⊗ aσ−1(n), σ ∈ Sn.

The fixed point algebra Sn(A) := (A⊗n)Sn also is a unital Banach algebra. It
is topologically generated by tensors of the form

a1 ∨ · · · ∨ an :=
1

n!

∑

σ∈Sn

aσ(1) ⊗ · · · ⊗ aσ(n),

and by polarization it is actually generated by the diagonal elements a∨· · ·∨a =
a⊗ · · · ⊗ a.

With the universal property of the Banach space Sn(A), we find a continuous
linear map ψ : Sn(A) → C with ϕ̃(a, . . . , a) = ψ(a⊗ · · · ⊗ a) for a ∈ A. For the
diagonal generators of Sn(A) we now have

ψ((a⊗ · · · ⊗ a)(b ⊗ · · · ⊗ b)) = ψ(ab⊗ · · · ⊗ ab) = ϕ(ab) = ϕ(a)ϕ(b)

= ψ(a⊗ · · · ⊗ a)ψ(b ⊗ · · · ⊗ b).

From the linearity of ψ and its multiplicativity on a set of topological linear
generators of the Banach algebra Sn(A), it now follows that ψ is an algebra
homomorphism. By Proposition 3.2, we can extend ψ to an algebra homomor-
phism χ : A⊗n → C. Then

ϕ(a) = χ(a⊗ · · · ⊗ a)

= χ(a⊗ 1 ⊗ · · ·1)χ(1 ⊗ a⊗ 1⊗ · · · ⊗ 1) · · ·χ(1 ⊗ · · · ⊗ 1⊗ a)

= χ1(a) · · ·χn(a),

where χi : A → C is the character

χi(a) := χ(1⊗ · · · ⊗ 1⊗ a⊗ 1⊗ · · · ⊗ 1)

with a occurring as the ith factor. Since every character of A is automatically
continuous ([Ru91, Thm. 11.10]), this proves the theorem.

Remark 3.4 The preceding theorem basically asserts that for the commutative
Banach algebra Sn(A), the natural map

(A⊗n)̂ ∼= Ân → Sn(A)̂

is surjective, and it is not hard to see that this leads to a topological isomorphism

Sn(A)̂ ∼= Ân/Sn,

where the symmetric group Sn acts on Ân by permutations.
It is an interesting problem to find a non-commutative analog of this result

(for C∗-algebras) (cf. [Ar87] for some results pointing in this direction).
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Remark 3.5 There is an interesting algebraic version of the preceding theorem
which may also be of interest in other contexts. Let A be a finitely generated
unital commutative algebra over an algebraically closed field K of characteristic
zero and ϕ : A → K a non-zero multiplicative polynomial map. Then there
exists an n ∈ N0 with ϕ(z1) = zn for all z ∈ K and algebra homomorphisms
χ1, . . . , χn : A → K with ϕ =

∏n

i=1 χi.
To verify this claim, we first consider the polynomial K → K, z 7→ ϕ(z1).

Since it is multiplicative and non-zero, it maps K× into K×, so that it has no
zero in K×. This implies that ϕ(z1) = zn for some n ∈ N0 and all z ∈ K. We
conclude that ϕ is a homogeneous polynomial of degree n.

Following the same line of argument as above, we have to extend a homo-
morphism ψ : Sn(A) → K to an algebra homomorphism A⊗n → K. In view of
Lemma 3.1, this reduces to the problem to show that every maximal ideal J
of A⊗n has the property that A⊗n/J ∼= K. Since A is assumed to be finitely
generated, the same holds for the quotient field of A⊗n, so that it is a quotient
of some polynomial ring K[x1, . . . , xN ]. Therefore the assertion follows from
Hilbert’s Nullstellensatz.

4 Homogeneous line bundles

Let χ : P (A) → C
× be a holomorphic character. We define the associated

holomorphic homogeneous line bundle

Lχ := (G(A) × C)/P (A) := G(A) ×χ C

and write its elements as [g, v], which are the orbits for the P (A)-action on
G(A) × C by p.(g, v) := (gp−1, χ(p)v). We identify the space of holomorphic
sections of Lχ with

Oχ(G(A))

:= {f ∈ O(G(A)) : (∀g ∈ G(A))(∀p ∈ P (A)) f(gp) = χ(p)−1f(g)}

by assigning to f ∈ Oχ(G(A)) the section defined by sf (gP (A)) := [g, f(g)] (cf.
[MNS09]).

Let Â denote the space of all unital continuous algebra homomorphisms
A → C. We recall that this is a compact space with respect to the weak-∗-
topology on the topological dual space A′, and that the Gelfand transform

G : A → C(Â), a 7→ â, â(η) := η(a)

is a homomorphism of Banach algebras (cf. [Ru91, Ch. 11]).

For any η ∈ Â, we obtain a homomorphism of Lie algebras

ϕη : g(A) → g, x⊗ a 7→ η(a)x,

and, since G(A) is 1-connected, it integrates to a holomorphic homomorphism
of complex Banach–Lie groups

ϕG
η : G(A) → G(C).
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From ϕη(p(A)) ⊆ p(C), we derive ϕG
η (P (A)) ⊆ P (C) because P (A) is connected

by definition. Since the quotient map πA : G(A) → X(A) is a holomorphic
submersion, ϕG

η thus induces a holomorphic map

ϕX
η : X(A) = G(A)/P (A) → X(C) = G(C)/P (C)

such that the diagram

G(A)
ϕG

η
//

πA

��
��

G(C)

πC

��
��

X(A)
ϕX

η
// X(C)

commutes.

Remark 4.1 If ξ : P (C) → C is a holomorphic character, then by the iso-
morphism P (C) ∼= U ⋊ L ∼= U ⋊ (S ⋊ C) (cf. Remark 2.1), and the fact that
S is connected, semisimple, and u ⊆ [p(C), p(C)], it follows that ξ is uniquely

determined by its restriction to the subgroup C. Hence the group P̂ (C) of holo-
morphic characters P (C) → C× is generated by the characters of the form ξα,
where  L(ξα)|h = ωα ∈ h∗, α ∈ ΠΣ, is the fundamental weight with ωα(β̌) = δα,β

for β ∈ Π. For each ξ ∈ P̂ (C) we thus obtain

ξ =
∏

α∈ΠΣ

ξ L(ξ)(α̌)
α

and ξ is dominant if and only if  L(ξ)(α̌) ≥ 0 holds for each α ∈ ΠΣ, which in
turn implies  L(ξ)(α̌) ≥ 0 for each α ∈ ∆+.

According to the classical Borel–Weil Theorem, in our convention (1) for
the positive system, ξ is dominant if and only if the holomorphic line bundle Lξ

over X(C) has non-zero holomorphic sections.

Assume now that χ is the pullback of a holomorphic character ξ of P (C)
with respect to ϕG

η |P (A) : P (A) → P (C), i.e., it is of the form χ = ξ ◦ ϕG
η |P (A).

Then the corresponding line bundle Lχ is the pullback of the line bundle Lξ

over X(C) with respect to ϕX
η . If ξ is dominant, we can produce holomorphic

sections of Lχ by pulling back holomorphic sections to Lξ. This proves one half
of the following theorem.

Theorem 4.2 Let G(A) be a 1-connected Banach–Lie group with Lie algebra

g(A), P (A) a connected parabolic subgroup of G(A), and χ : P (A) → C× be a

holomorphic character. Then the line bundle Lχ over X(A) = G(A)/P (A) has

nonzero global holomorphic sections if and only if there exist η1, . . . , ηm ∈ Â
and fundamental holomorphic characters ξ1, . . . , ξm of P (C) such that

χ = Πm
j=1(ϕG

ηj
)∗ξj . (6)

This implies in particular that Lχ is the tensor product of line bundles of the

form (ϕX
ηj

)∗Lξj
, where  L(ξj) is a fundamental weight of g.

9



Remark 4.3 (a) If the group G(A) is connected, but not simply connected,

then the preceding theorem applies to the universal covering group q : G̃(A) →

G(A). If P̃ (A), resp., P (A), denote the connected subgroups of G̃(A), resp.,
G(A) with Lie algebra p(A), then we derive that Oχ(G(A)) 6= {0} implies that

the character χ̃ := q∗χ : P̃ (A) → C× is a product

χ̃ = Πm
j=1(ϕG

ηj
)∗ξj . (7)

Since, in general, an algebra homomorphism ηj : A → C does not lead to a
group homomorphism G(A) → G(C), we have to face the difficulty to express
the information directly with respect to the group G(A).

(b) However, if G(A) is a functorially attached to A, such as the groups
SLn(A)0, Sp2n(A)0 or SOn(A)0, every algebra homomorphism η : A → C in-
duces a morphism of Banach–Lie groups ϕG

η : G(A) → G(C), regardless of
whether G(A) is simply connected or not. Then (7) implies that

q∗χ = χ̃ = q∗
m∏

j=1

(ϕG
ηj

)∗ξj ,

which immediately leads to

χ =

m∏

j=1

(ϕG
ηj

)∗ξj (8)

because q : P̃ (A) → P (A) is surjective.

Remark 4.4 The preceding theorem implies in particular that if Lχ has non-
zero holomorphic sections, then it is a tensor product of pullbacks of finite
dimensional line bundles over X(C). Accordingly, the products of the pullbacks
of the finite dimensional spaces of holomorphic sections of these line bundles over
X(C) form a finite dimensional non-zero G-invariant subspace of Oχ(G(A)).
The results in [MNS09] imply that this subspace is contained in every closed
G(A)-invariant subspace. However, the G(A)-module structure on the Banach
space Oχ(G(A)) is far from being semisimple. As we shall see in Section 7
below, the space Oχ(G(A)) can be infinite dimensional, although it contains a
finite dimensional minimal non-zero subspace.

5 Proof of Theorem 4.2

5.1 The sl2-case

In this section we consider the special case g = sl2(C), g(A) = sl2(A), where

G(A) := S̃L2(A)0 is the simply connected covering group of the identity com-
ponent SL2(A)0 of SL2(A). We consider the parabolic subalgebra p of upper
triangular matrices in sl2(C), and put

h = Cα̌, α̌ =

(
1 0
0 −1

)
, ∆+ = {−α}, and u = C

(
0 1
0 0

)
.
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Definition 5.1 For z ∈ A×, we define h̃(z) ∈ G(A) by

h̃(z) :=

exp

(
0 0

z−1 − 1 0

)
exp

(
0 1
0 0

)
exp

(
0 0

z − 1 0

)
exp

(
0 −z−1

0 0

)
,

and observe that h̃(1) = 1. If q : G(A) → SL2(A)0 is the universal covering
map with  L(q) = idsl2(A), then

h(z) := q(h̃(z))

=

(
1 0

z−1 − 1 1

)(
1 1
0 1

) (
1 0

z − 1 1

)(
1 −z−1

0 1

)
=

(
z 0
0 z−1

)
.

Lemma 5.2 For each a ∈ A, we have h̃(expA a) = exp

(
a 0
0 −a

)
, where

expA : A → A×, x 7→ ex =

∞∑

n=0

xn

n!

is the exponential function of the Banach–Lie group A×.

Proof. From q(h̃(expA a)) = h(expA a) = expSL2(A)

(
a 0
0 −a

)
, we derive

that h̃ ◦ expA : A → G(A) is the unique continuous lift of the map

A → SL2(A), a 7→ h(expA(a)) = expSL2(A)(aα̌)

satisfying h̃(exp(0)) = 1. Since a 7→ exp(aα̌) is another lift with this property,
the uniqueness of lifts implies the assertion.

Proposition 5.3 Let χ : P (A) → C× be a holomorphic character and observe

that it defines a holomorphic character

χA : (A,+) → C
×, a 7→ χ

(
exp(aα̌)

)−1
. (9)

If the line bundle Lχ over G(A)/P (A) admits nonzero holomorphic sections,

then χA vanishes on the kernel ker(expA) of the exponential function

expA : A → A×
0 ,

and induces a holomorphic character χA : A×
0 → C× which extends to a holo-

morphic character (A, ·) → C of the multiplicative semigroup (A, ·).

Proof. We identify the space of holomorphic sections of Lχ with the space
Oχ(G(A)) of holomorphic functions f : G(A) → C which are equivariant for
P (A) in the sense that f(gp) = χ(p)−1f(g) holds for g ∈ G(A) and p ∈ P (A).

11



If this space is nonzero, then [MNS09, Thm. 3.7] implies the existence of an
n(A)-invariant function f ∈ Oχ(G(A)) with f(1) = 1. This implies that f is
N(A)-left invariant and hence in particular f(N(A)) = {1}. Next we note that
χ vanishes on U(A) since u(A) ⊆ [p(A), p(A)], so that f is also U(A)-right
invariant. Therefore

f(h̃(z)) = f
(

exp

(
0 1
0 0

)
exp

(
0 0

z − 1 0

))
,

and the right hand side defines a holomorphic function on A. On the hand,
Lemma 5.2 implies that, for a ∈ A,

f(h̃(expA a)) = f(exp(aα̌)) = χ(exp(aα̌))−1 = χA(a).

First, this proves that ker expA ⊆ kerχA, so that χA factors through a holomor-
phic character χA : A×

0 = expA(A) → C× with χA ◦ expA = χA. For z ∈ A×
0 ,

we now have χA(z) = f(h̃(z)), and we have just seen that this function extends
to a holomorphic function on all of A. Since this function is multiplicative on
all pairs in the open subset A×

0 , it follows by analytic continuation that it is
multiplicative.

We can now prove Theorem 4.2 for g = sl2(C).

Proof. (of Theorem 4.2 for g = sl2(C)) If Lχ has nonzero holomorphic sec-
tions, then the preceding proposition implies the existence of a multiplicative
holomorphic function χA : A → C with

χ(exp(aα̌))−1 = χA(expA a) for a ∈ A.

Theorem 3.3 now implies that χA = η1 · · · ηn for algebra homomorphisms
ηj : A → C, and this implies that

χ(exp(aα̌))−1 =
n∏

j=1

ηj(expA a) for a ∈ A.

With the dominant fundamental character (with respect to ∆+ = {−α})

ξ : P (C) =
{(

a b
0 a−1

)
: a ∈ C

×, b ∈ C

}
→ C

×, ξ
((

a b
0 a−1

) )
:= a−1,

we now obtain

χ(exp(aα̌)) =

n∏

j=1

ηj(expA a)−1 =

n∏

j=1

e−ηj(a) =

n∏

j=1

ξ(expSL2(C) ηj(a)α̌)

=

n∏

j=1

(
(ϕG

ηj
)∗ξ

)
(exp(aα̌)).
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As P (A) = exp(Aα̌)U(A) and χ vanishes on U(A), this implies that

χ =

n∏

j=1

(ϕG
ηj

)∗ξ. (10)

The character ξ satisfies  L(ξ)(−α̌) = 1, hence it is dominant and funda-
mental. The corresponding line bundle Lξ then admits nonzero holomorphic
sections by the classical Borel–Weil Theorem, and this implies that the line
bundle Lχ

∼= ⊗n
j=1(ϕG

ηj
)∗Lξ has non-zero holomorphic sections.

Remark 5.4 The line bundle Lξ is the bundle of hyperplane sections over
the Riemann sphere. Its space of holomorphic sections is the two-dimensional
fundamental representation of SL2(C) on the dual space of C2.

5.2 The general case

Proof. (of Theorem 4.2) We have already seen that (6) is sufficient for the
existence of non-zero holomorphic sections. We now prove that it is also neces-
sary.

For any simple root α ∈ Π, consider the sl2(C)-subalgebra

gα := Cα̌+ gα + g−α ⊆ g and pα := Cα̌+ gα.

For the corresponding 1-connected Banach–Lie groups, we then have morphisms

γG
α : Gα(A) → G(A)

integrating the inclusion maps gα(A) →֒ g(A). Clearly, γG
α (Pα(A)) ⊆ P (A)

holds for the corresponding connected parabolic subgroups Pα(A) ⊆ Gα(A).
If Oχ(G(A)) 6= {0}, then, in view of the left invariance of this space, we also

have that

{0} 6= γ∗αOχ(G(A)) ⊆ Oχα(Gα(A)), where χα := χ ◦ γG
α |P α(A).

From the sl2-case we thus obtain algebra homomorphisms ηα
1 , . . . , η

α
nα

∈ Â with

χα =

nα∏

j=1

(ϕηα
j

)∗ξ,

where ϕηα
j

: Gα(A) → SL2(C) is the corresponding evaluation homomorphism.

If ια : Gα(C) ∼= SL2(C) → G(C) is the homomorphism integrating the in-

clusion gα → g, then the corresponding fundamental weight ξα ∈ P̂ (C) sat-
isfies ι∗αξα = ξ because  L(ξ)(α̌) = −1. With the evaluation homomorphisms
ϕG

ηα
j

= ια ◦ ϕηα
j

: Gα(A) → G(C), we thus obtain

χα =

nα∏

j=1

(ϕG
ηα

j
)∗ξα.

13



Since
p(A) = [p(A), p(A)] ⊕

⊕

α∈ΠΣ

Aα̌

(cf. Remark 2.1), the restrictions to the subgroups Pα(A) of P (A), α ∈ ΠΣ,
determine the character χ via

χ
( ∏

α∈ΠΣ

exp(aαα̌)
)

=
∏

α∈ΠΣ

χα(exp(aαα̌)) =
∏

α∈ΠΣ

nα∏

j=1

χj(exp aα)−1

(cf. Remark 4.1). We conclude that χ is a product of pullbacks of dominant
fundamental characters ξα by certain evaluation homomorphisms ϕG

χ , and this
completes the proof.

6 The case of C∗-algebras

Theorem 3.3 provides a complete classification of all homogeneous holomorphic
line bundles over the spaces X(A) with non-zero holomorphic sections. The
main reason for these bundles playing a role in the classical context A = C is
that the Borel–Weil Theorem asserts that the corresponding spaces of holomor-
phic sections are always irreducible and that every irreducible finite dimensional
holomorphic representation of G(C) can be realized in this way if P (C) is a Borel
subgroup, i.e., ΠΣ = Π.

For general commutative Banach algebras, one cannot expect such a sharp
picture, as the examples discussed in [NS09] show. Here the main source of the
lacking semisimplicity of the representations lies in the algebra, the simplest ex-
amples arising for the two-dimensional algebra A = C[ε] of dual numbers, where
ε2 = 0. As we know from the Gelfand theory of commutative Banach algebras,
commutative C∗-algebras are the prototype of commutative Banach algebras,
and any semisimple commutative Banach algebra A embeds continuously into
the C∗-algebra C(Â) by the Gelfand transform.

In this section we therefore study the special case where A is a commutative
unital C∗-algebra. Let σ : g → g be an involutive antilinear automorphism
satisfying σ(gα) = g−α for each root α and observe that this implies that σ(h) =
h and

σ(α̌) = −α̌ for α ∈ ∆.

We combine σ with the involution a 7→ a∗ of A to an antilinear map

∗ : g(A) → g(A), x⊗ a 7→ −σ(x) ⊗ a∗,

satisfying

(x∗)∗ = x and [x, y]∗ = [y∗, x∗] for x, y ∈ g(A).

Thus (g(A), ∗) is an involutive Banach–Lie algebra. In view of the Gelfand

isomorphism, we have A ∼= C(Â) and, accordingly, g(A) ∼= C(Â, g) with f∗(χ) =
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−σ(f(χ)). Since G(A) was assumed to be simply connected, there exists an
antiholomorphic involution g 7→ g∗ on G(A) satisfying

(gh)∗ = h∗g∗ and (expx)∗ = exp(x∗) for g, h ∈ G(A), x ∈ g(A).

A holomorphic involutive representation of (G(A), ∗) is a pair (π,H) consist-
ing of a complex Hilbert space H and a holomorphic homomorphism
π : G(A) → GL(H) which is compatible with the involutions in the sense that

π(g∗) = π(g)∗ for g ∈ G(A).

Such a representation is said to be irreducible if H contains no non-trivial G(A)-
invariant closed subspace. We write dπ : g(A) → B(H) for the derived repre-
sentation of g(A) by bounded operators on H.

Assume that (π,H) is an irreducible involutive holomorphic representation
of G(A) and P (A) is a connected parabolic subgroup. Then [MNS09, Thm. 5.1]
implies that E := H/u(A)H carries an irreducible holomorphic representation
ρ of P (A) with U(A) ⊆ ker ρ, and the quotient map β : H → E leads to an
inclusion of holomorphic G(A)-representations

βG : H → Oρ(G(A), E), βG(v)(g) := β(π(g)−1v),

where

Oρ(G(A), E)

:= {f ∈ O(G(A), E) : (∀g ∈ G(A))(∀p ∈ P (A)) f(gp) = ρ(p)−1f(g)}

corresponds to the space of holomorphic sections of the associated holomorphic
vector bundle G(A) ×ρ E over X(A). The closure of the image of βG is the
unique minimal closed G(A)-invariant subspace of Oρ(G(A), E).

From the construction of the involution ∗ on g(A), we immediately derive
that u(A)∗ = n(A) and l(A)∗ = l(A). In particular, the subgroup L(A) ⊆ G(A)
is ∗-invariant, hence also carries the structure of a complex involutive Banach–
Lie group. Since the subspace u(A)H of H is L(A)-invariant and L(A)∗ = L(A),
the orthogonal complement E ∼= (u(A)H)⊥ is also L(A)-invariant, so that the
representation (ρ,E) of L(A) actually is involutive.

If, in addition, P (A) is minimal parabolic, then l = h shows that l(A) is
abelian, so that Schur’s Lemma implies that dimE = 1, and thus ρ : P (A) →
GL(E) ∼= C× is a holomorphic character and the results developed above apply.
In particular, Remark 4.4 implies that the minimal G(A)-invariant subspace
of Oρ(G(A), E) is finite-dimensional, so that dimH < ∞. Further, the repre-
sentation of G(A) on the minimal submodule factors through some evaluation
homomorphism

(ϕG
η1
, . . . , ϕG

ηm
) : G(A) → G(Cm) ∼= G(C)m,

where ρ =
∏m

j=1(ϕG
ηj

)∗ξj . To see how this information can be made compatible
with the involution, we note that kerπ E g(A) is a ∗-invariant ideal. Hence it
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is in particular g-invariant, and since g(A) ∼= g ⊗A is an isotypical semisimple
g-module, the closed g-submodule kerπ is of the form kerπ = g ⊗ I, where
I ⊆ A is a closed ∗-invariant subspace. As kerπ is an ideal, the relation

[x⊗ a, kerπ] = [x, g] ⊗ aI

implies that I E A is an ideal. As dπ(g(A)) is finite dimensional, A/I is a finite
dimensional C∗-algebra, so that the Gelfand Representation Theorem implies
that A/I ∼= CN as C∗-algebras. We conclude that

π(g(A)) ∼= g ⊗ C
N ∼= gN ,

as involutive Lie algebras. Since (g,−σ) has an involutive Hilbert representation,
the fixed point algebra gσ is compact, so that σ actually is a Cartan involution
and gσ is a compact real form.

We collect the result of the preceding discussion in the following theorem.

Theorem 6.1 Let (A, ∗) be a commutative C∗-algebra, σ ∈ Aut(g) be an invo-

lutive automorphism with σ(gα) = g−α for each α ∈ ∆ and define an involution

on g(A) by (x⊗ a)∗ := −σ(x) ⊗ a∗. Let (G(A), ∗) be the 1-connected involutive

Banach–Lie group corresponding to (g(A), ∗). Then every irreducible involu-

tive representation (π,H) of G(A) is finite dimensional and factors through an

involutive surjective multi-evaluation homomorphism

ϕG
η : G(A) → G(C)N , g 7→ (ϕG

η1
(g), . . . , ϕG

ηN
(g)).

Remark 6.2 From the preceding theorem we can now easily derive a descrip-
tion of all irreducible involutive representations of G(A). Since every finite
dimensional involutive representation is a direct sum of irreducible ones, this
implies a classification of all finite dimensional ones.

As every irreducible involutive representation factors through an involutive
representation of some group G(C)N , the classification problem reduces to a de-
scription of all irreducible holomorphic involutive representations of this group.
In view of Weyl’s Unitary Trick, this is equivalent to the classification of irre-
ducible unitary representations of the maximal compact subgroup

{g = (g1, . . . , gN) ∈ G(C)N : (∀j)σG(gj) = gj} ∼= KN ,

where σG is the antiholomorphic involution of G(C) with  L(σG) = σ and K :=
G(C)σ. As all representations of this product group are tensor products of
irreducible representations of the factor groups K, their classification follows
from the Cartan–Weyl classificaton in terms of highest weight modules of g(C).

Remark 6.3 (a) The preceding discussion applies in particular to the univer-

sal covering G(A) = S̃Ln(A)0 of the group SLn(A)0 for a commutative unital
C∗-algebra, if we take g = sln(C). Then the factorization of the representation
through some G(C)N = SLn(C)N even implies that all irreducible involutive
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representations of G(A) factor through SLn(A)0 because the evaluation homo-
morphisms to SLn(C)N have this property.

(b) The techniques developed above apply to groups of the form G(A), where
g(A) = g⊗A and g is semisimple. If we want to extend the results to reductive
Lie algebras g, we observe that, in this case,

g(A) = (z(g) ⊗A) ⊕ g′(A),

where g′ = [g, g] is the commutator algebra and z(g) ⊗A = z(g(A)) is central.
In view of Schur’s Lemma, all irreducible involutive holomorphic represen-

tations (π,H) of
G(A) ∼= Z(G(A))0 ×G′(A)

have the property that π(Z(G(A))) ⊆ C×1, so that π|G′(A) is also irreducible.
Therefore the classification in the reductive case splits into the classification in
the semisimple case and the description of the holomorphic characters of

Z(G(A))0 ∼= z(g) ⊗A = z(g(A)),

which can be identified with the elements in the dual space z(g)∗ ⊗ A′, which
are invariant under the canonical extension of ∗.

For g = gln(C) we have z(g) = C, so that the holomorphic characters of
Z(G(A))0 correspond to arbitrary hermitian functionals α : A → C. In par-
ticular, these functionals do not have to factor through evaluation maps. A

typical example is the Riemann integral I(f) =
∫ 1

0
f(x) dx on the commutative

C∗-algebra A = C([0, 1]).

7 An infinite dimensional space of sections

We have seen in Theorem 4.2 that, whenever the space Oχ(G(A)) is nonzero for
a holomorphic characters χ : P (A) → C×, then the corresponding line bundle
Lχ → X(A) is a product of pullbacks of line bundles Lξ → X(C). Since the
corresponding space Oξ(G(C)) of holomorphic sections is finite dimensional,
we obtain a G(A)-invariant non-zero finite dimensional subspace of Oχ(G(A)).
In this section we describe an example where the space Oχ(G(A)) is infinite
dimensional.

Throughout this section, we fix a commutative unital Banach algebra A and
a unital algebra homomorphism η : A → C. Let I := ker η. As we shall see
below, an important ingredient in our construction is the space Tη(A) := I/I2,
and we shall assume that this space is infinite dimensional.

Examples 7.1 (a) The simplest examples where Tη(A) is infinite dimensional
arises as follows. For a Banach space E, we consider the unital Banach algebra

A = E ⊕ C with (v, λ)(w, µ) := (λw + µv, λµ),

and the homomorphism η : A → C, η(v, λ) := λ. Then I = E and I2 = {0}, so
that Tη(A) ∼= I is infinite dimensional if E has this property.
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(b) An example which reminds more of an algebra of functions can be con-
structed as follows. Let E be a Banach space and A be the algebra of all analytic
functions f =

∑∞
n=0 fn (fn homogeneous of degree n) with

‖f‖ :=

∞∑

n=0

‖fn‖ <∞,

where ‖fn‖ := sup‖v‖≤1 ‖fn(v)‖, so that A can be conidered as an algebra of
functions on the closed unit ball of E. It is easy to verify that A is a Banach
algebra with respect to pointwise multiplication. Further η(f) := f(0) = f0
defines a continuous homomorphism to C and

I = ker η = {f ∈ A : f0 = 0}

implies that
I2 ⊆ {f ∈ A : f0 = f1 = 0}.

In particular, we obtain an injection E′ →֒ Tη(A), so that this space is infinite
dimensional if E is.

(c) Another class of examples can be produced by considering for a unital
commutative Banach algebra B the Banach algebra

A :=
{
f =

∞∑

n=0

tnfn ∈ B[[t]] :

∞∑

n=0

‖fn‖ <∞, f0 ∈ C1
}

of formal B-valued power series converging absolutely for |t| ≤ 1. Then η(f) :=
f(0) ∈ C defines a homomorphism η : A → C, for which

I =
{
f ∈ A : f =

∞∑

n=1

tnfn

}
, I2 =

{
f ∈ A : f =

∞∑

n=2

tnfn

}
,

so that Tη(A) ∼= B, as a Banach space.

Definition 7.2 Let E be a Banach space. A continuous linear functional
δ : A → E is called an η-derivation if

δ(ab) = η(a)δ(b) + η(b)δ(a) for a, b ∈ A. (11)

We write Derη(A, E) for the space of all η-derivations on A.

Remark 7.3 Clearly, for δ ∈ Derη(A, E), the relation δ(1) = 2δ(1) leads to
δ(1) = 0, so that δ is determined by its values on the hyperplane ideal I and
(11) further implies that δ(I2) = {0}. Using the relation

ab− η(ab)1 ∈ η(a)(b − η(b)1) + η(b)(a− η(a)1) + I2,

it is easy to see that, conversely, every continuous linear map α ∈ I → E
vanishing on I2 defines an η-derivation via

δ(a) := α(a− η(a)1).
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This leads to an isomorphism of Banach spaces

Derη(A, E) ∼= B(Tη(A), E) ∼= {α ∈ B(I, E) : I2 ⊆ kerα}.

In this sense the map

δu : A → Tη(A), a 7→ [a− η(a)1] := (a− η(a)1) + I2

is the universal η-derivation; every other η-derivation factors uniquely through δu.

For the construction of examples where Oχ(G(A)) is infinite dimensional,
we shall focus on the case where g = sl2(C) and χ is the square of a pullback
character, i.e., m = 2 in the notation of Theorem 4.2, resp., (10):

χ = (ϕG
η )∗ξ2.

In this case the representation of SL2(C) in the space Oξ2(SL2(C)) is equiv-
alent to the adjoint representation of sl2(C), so that the pullback by ϕG

η leads
to an injection

sl2(C) →֒ Oχ(G(A)),

where G(A), resp., the quotient group SL2(A) acts on this space by

g.x := Ad(ϕG
η (g))x.

Accordingly, we write sl2(C)η for theG(A)-module sl2(C), endowed with this ac-
tion. Using [MNS09, Prop. 2.13], we see that the quotient module
Oχ(G(A))/ sl2(C)η is trivial because the only eigenvalue of α̌ on this space
is zero. We take this as a motivation to study g(A)-modules V which are ex-
tensions of a trivial module W by sl2(C)η:

0 → sl2(C)η →֒ V →→ W → 0.

As sl2(C) is finite dimensional, the Hahn–Banach Theorem implies that any
such module can be written as a direct sum V = sl2(C)η ⊕W of Banach spaces,
and the action is given by

(x⊗ a).(y, w) = (η(a)[x, y] + f(w)(x ⊗ a), 0),

where
f : W → Z1(sl2(A), sl2(C)η)

is a continuous linear map with values in the Banach space of 1-cocycles on
sl2(A) with values in sl2(C). We therefore have to analyze the space
Z1(sl2(A), sl2(C)η). Averaging over the compact group corresponding to the
subalgebra su2(C) ⊆ sl2(C) ⊆ sl2(A), it follows that every cocycle
β ∈ Z1(sl2(A), sl2(C)η) is cohomologous to an su2(C)-equivariant one, and by
complex linearity, it is even sl2(C)-equivariant. Since sl2(C) is a simple sl2(C)-
module, the description of sl2(A) as sl2(C) ⊗ A exhibits A as a multiplicity
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space, and we conclude that any sl2(C)-equivariant map sl2(A) → sl2(C) is of
the form

β(x⊗ a) = d(a)x

for a continuous linear map d : A → C. Now

β([x⊗ a, y ⊗ b]) = β([x, y] ⊗ ab) = d(ab)[x, y]

and
(x⊗ a).β(y ⊗ b) = (x⊗ a)d(b)y = η(a)d(b)[x, y]

imply that β is a 1-cocycle if and only if d is an η-derivation. This shows that

Z1(sl2(A), sl2(C)η)sl2(C) ∼= Derη(A,C).

We therefore consider the Banach space

V := sl2(C)η ⊕ Tη(A)′ ∼= sl2(C)η ⊕ Derη(A,C)

and observe that

(x⊗ a).(y, α) := (η(a)[x, y] + α(a)x, 0)

defines a continuous action of sl2(A) on V because f(α)(x⊗a) := α(a)x defines
a continuous linear map

f : Derη(A,C) → Z1(sl2(A), sl2(C)).

Since the group G(A) = S̃L2(A)0 is simply connected, this sl2(A)-module
structure integrates to a holomorphic representation (π, V ) of G(A). It remains
to show that V injects into the space Oχ(G(A)) for χ = (ϕG

η )∗(ξ2).
In the following we recall the basis

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
and f :=

(
0 0
1 0

)

of sl2(C) with the relations

[e, f ] = h, [h, e] = 2e and [h, f ] = −2f.

We write (h∗, e∗, f∗) for the corresponding dual basis of sl2(C)∗ and recall the
fundamental character

ξ : P (C) → C
×, ξ

((
a b
0 a−1

) )
:= a−1.

Lemma 7.4 For χ = (ϕG
η )∗(ξ2), the continuous linear functional µ ∈ V ′, de-

fined by

µ(x, α) := f∗(x)

defines an embedding

µG : V → Oχ(G), µG(v)(g) := µ(g−1.v)

of holomorphic Banach G(A)-modules.
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Proof. In view of [MNS09, Thm. A.6], we have to show that µ is P (A)
equivariant if the action on C is defined by χ, and that µ is G(A)-cyclic, i.e.,
that µ(G(A).v) = {0} implies v = 0.

First we verify the equivariance. For x ⊗ a ∈ p(A) with x = γh + βe, we
have

µ((x⊗ a).(y, α)) = µ(η(a)[x, y] + α(a)x, 0) = η(a)f∗([x, y]) = γη(a)f∗([h, y])

= −2γη(a)f∗(y) = −2γη(a)µ(y, α) = 2 L(ξ)(x)η(a)µ(y, α)

=  L(χ)(x⊗ a)µ(y, α),

so that the connectedness of P (A) implies the equivariance of µ.
Next we show that µ is cyclic. Let v = (y, α) ∈ V be such that µ(G(A).v) =

{0}. By taking first order derivatives, we obtain µ(sl2(A).v) = {0}, which
implies in particular that, for each a ∈ A, we have

0 = µ(f ⊗ a.(y, α)) = µ(η(a)[f, y] + α(a)f, 0)

= η(a)f∗([f, y]) + α(a)f∗(f) = η(a)f∗([f, y]) + α(a).

For a = 1 this leads to f∗([f, y]) = 0, so that y ∈ span{f, e}. For a ∈ I we
further obtain α = 0. Now 0 = µ(y, α) = f∗(y) implies that y = λe for some
λ ∈ C. We also have

0 = µ((f ⊗ a)2.(y, 0)) = η(a)µ(η(a)[f, [f, y]], 0) = η(a)2f∗([f, [f, y]])

= λη(a)2f∗([f,−h]) = (−2)λη(a)2,

which leads to λ = 0, and hence to (y, α) = 0. This proves that µ is cyclic.

The preceding lemma implies in particular that Oχ(G(A)) is infinite dimen-
sional if Tη(A) has this property. This completes the proof of:

Proposition 7.5 Let A be a unital commutative Banach algebra and χ ∈ Â
with kernel I such that Tχ(A) = I/I2 is infinite dimensional. Let G := S̃L2(A)0
and ϕη

G : G→ SL2(C) denote the group homomorphism induced by η. Then, for

the holomorphic character

ξ
((

a b
0 a−1

))
:= a−1

of P (C), and the pullback of its square χ := (ϕG
η )∗(ξ2) : P (A) → C×, the Banach

space Oχ(G) is infinite dimensional.
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