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A BOTT–BOREL–WEIL THEOREM FOR DIAGONAL IND–GROUPS

IVAN DIMITROV AND IVAN PENKOV

ABSTRACT. A diagonal ind–group is a direct limit of classical affine algebraic groups of
growing rank under a class of embeddings which contains the embedding

SL(n)→ SL(2n), M 7→

(
M 0
0 M

)

as a typical special case. If G is a diagonal ind–group and B ⊂ G is a Borel ind–subgroup,

we consider the ind–variety G/B and compute the cohomology Hℓ(G/B,O−λ) of any G–
equivariant line bundle O−λ on G/B. It has been known that, for a generic λ, all cohomol-
ogy groups ofO−λ vanish, and that a non–generic equivariant line bundleO−λ has at most
one nonzero cohomology group. The new result of the present paper is a precise descrip-

tion of when H j(G/B,O−λ) is nonzero and the proof of the fact that, whenever nonzero,

H j(G/B,O−λ) is a G–module dual to a highest weight module. The main difficulty is in
defining an appropriate analog WB of the Weyl group, so that the action of WB on weights
of G is compatible with the analog of the Demazure ”action” of the Weyl group on the

cohomology of line bundles. The highest weight corresponding to H j(G/B,O−λ) is then
computed by a procedure similar to that in the classical Bott–Borel–Weil theorem.

INTRODUCTION

The classical Bott–Borel–Weil theorem is a cornerstone of geometric representation the-
ory. In the late 1990’s Joseph A. Wolf and his collaborators became interested in extending
the theorem to direct limit Lie groups, and since then have made essential progress, see
[NRW], [W]. In the context of direct limit algebraic groups, i.e. ind–groups, the problem
has been addressed in our joint paper [DPW]. In that paper a quite general theorem has
been proved (concerning infinite–rank equivariant bundles on locally proper homoge-
nous ind–varieties), under the condition that the ind–group considered is root reductive,
the definition see in section 1 below. The known results become much sketchier when
this condition is dropped. The purpose of the present paper is to consider in detail the
most interesting class of ind–groups beyond the root reductive ones, that of diagonal ind–
groups.

Recall that a locally affine ind–group G is the direct limit of embeddings of connected
affine algebraic groups

G1 → G2 → . . . .

The Bott–Borel–Weil paradigm for ind–groups is concerned with the computation of the
cohomology of a G–equivariant line bundle O−µ on the ind–variety G/B, where B =
lim
→

Bn is the direct limit of Borel subgroups Bn ⊂ Gn with Bn−1 = Bn ∩ Gn−1. In the

classical case G is a connected affine algebraic group and the result (due to Borel–Weil [S]
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2 IVAN DIMITROV AND IVAN PENKOV

and Bott [B], see also [D1], [D2]) is that the simple (finite–dimensional) G–module VB(λ)∗

with B–highest weight λ occurs as the unique nonzero cohomology group of each of the
sheaves O−w·λ, where w runs over the Weyl group W and · stands for the ”dot action” of
w on λ. More precisely, VB(λ)∗ occurs as the cohomology group of O−w·λ in degree ℓ(w),
where ℓ(w) is the length of w with respect to the simple roots of B.

In contrast with this result, in the infinite–dimensional case it is not difficult to see that
a generic line bundle O−µ is acyclic, i.e. all its cohomology groups vanish. Wolf has
introduced the condition of cohomological finiteness of a weight µ (see [W] and compare
with [DPW]), which is equivalent to the condition that O−µ has a unique non–vanishing
cohomology group. If µ is dominant, then this cohomology group is H0(G/B,O−µ), and
in this case it is easy to show that H0(G/B,O−µ) is the (algebraic) dual of the simple
B–highest weight G–module VB(µ).

What is not known in general is whether all higher cohomology groups H j(G/B,O−µ)
are also dual to B–highest weight modules. This problem has been open since the late
1990’s, and the main result of the present paper is that for any locally simple diagonal ind–

group G (see the definition in section 1), all nonzero cohomology groups H j(G/B,O−λ)
are indeed dual to simple B–highest weight modules. The proof is a mixture of com-
binatorics and geometry. The most important new idea is to consider the intermediate

algebraic groups G̃n
∼= Gn × Gn × . . .× Gn,

Gn → G̃n → Gn+1,

introduced in section 1. They arise naturally from the diagonal embeddings Gn → Gn+1.

The corresponding homogenous spaces G̃n/B̃n, where B̃n = Bn+1 ∩ G̃n, play a key role
in the proof. More precisely, the realization of O−λ as a line bundle on both G/B and on

lim
→

G̃n/B̃n enables us to reduce the problem of studying the cohomologies H j(G/B,O−λ)

to two finite–dimensional problems — one concerns the embeddings Gn → G̃n and the

one concerns the embeddings G̃n → Gn+1. For the second problem we use a recent result
of Valdemar Tsanov, which allows us to obtain a strong condition on the weight λ so that

H j(G/B,O−λ) 6= 0; under this condition we then apply a result of Mike Roth and the first

named author to the embedding Gn → G̃n. The final result, Theorem 4.27, is absolutely
similar to the classical Bott–Borel–Weil Theorem with the only exception that the ”Weyl
group” WB, relevant for G/B, depends on the choice of Borel ind–subgroup B.

Acknowledgement. We thank the Mathematisches Forschungsinstitut Oberwolfach, Ger-
many, and the Banff International Research Station, Canada, where parts of this work
were done. I. D. acknowledges the hospitality of the ICTS at Jacobs University Bremen.

1. DIAGONAL IND–GROUPS: DEFINITIONS AND NOTATION

We work over an algebraically closed field K of characteristic 0. If V is a vector space,

we set V⊕k = V ⊕ · · · ⊕V︸ ︷︷ ︸
k times

.

Throughout this paper, classical group will be an abbreviation for a connected (affine)
algebraic group G whose Lie algebra is a simple classical Lie algebra. An embedding
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G → G′ of classical groups is diagonal if the induced injection of Lie algebras g → g′

has the following property: the natural representation of g′ considered as a g–module is
isomorphic to a direct sum of copies of the natural representation of g, of its dual, and
of the trivial representation. (If g = so, sp the natural representation is self–dual, hence
in this case the natural representation of g′ must simply be a direct sum of copies of the
natural and trivial representations). If g and g′ are reductive Lie algebras, an injective
Lie algebra homomorphism g → g′ is a root injection, if for any Cartan subalgebra h ⊂ g

there exists a Cartan subalgebra h′ ⊂ g′ containing the image of h and such that any h–
root space of g is mapped to precisely one h′–root space of g′. An embedding G → G′ of
reductive affine algebraic groups is a root embedding if the corresponding injection g→ g′

is a root injection.

By definition a diagonal ind–group G as the direct limit of a sequence of diagonal embed-
dings of classical groups

(1.1) G1 → . . .→ Gn → Gn+1 → . . . .

The group G is called pure if, for large enough n, the natural representation of gn+1 con-
tains no trivial gn–constituents.

Example 1.2. A diagonal embedding of classical groups G → G′ of type A can be realized
in matrix form as

M 7−→




M
. . .

M
(M⊺)−1

. . .

(M⊺)−1

1
. . .

1




with k copies of M, l copies of (M⊺)−1, and t copies of the one–by–one matrix with entry
one. Therefore, any diagonal ind–group of type A is obtained by iterating such embed-
dings with varying parameters k, l, and t. In particular, the ind–group SL(∞) can be
defined as a diagonal ind–group of type A with k = t = 1, l = 0 at each step. To define
the diagonal ind–group SL(2∞) we set G1 := SL(2) and then put k = 2, l = t = 0 at each
step. It is easy to check that, up to isomorphism, SL(∞) does not depend on the choice of
n1 where G1 = SL(n1). The ind–group SL(2∞) is pure while SL(∞) is not. �

In this paper we consider two types of G–modules, defined respectively as direct or
inverse limits of finite–dimensional Gn–modules. Fix G = lim

→
Gn, and let

(1.3) V1 → . . .→ Vn → Vn+1 → . . . ,

(respectively,

(1.4) . . .→ Yn+1 → Yn → . . .→ Y1)
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be a direct (resp. inverse) system of finite–dimensional Gn–modules. By a G–module will
mean the direct limit of a system (1.3) endowed with Gn–module structures for all n, up
to an isomorphism, and by a dual G–module mean the projective limit of a system (1.4)
endowed with Gn–module structures. It is clear that if V = lim

→
Vn is a G–module, then

V∗ = lim
←

V∗n is a dual G–module. Conversely, if Y = lim
←

Yn is a dual G–module, then

lim
→

Y∗n is a G–module.

For the rest of the paper we fix an exhaustion G = lim
−→

Gn of G by simply–connected
classical groups of the same type A, B, C, or D. In particular, every direct system (1.1) we
consider has a well–defined type. In general G may have exhaustions of different type,
however we will use the term ”type of G” to refer to the type of the fixed exhaustion. The
corresponding exhaustion of g is then g = lim

−→
gn. We denote the rank of gn by rn.

For the purposes of this paper, we define a Cartan subgroup H of G as a direct limit of
Cartan subgroups Hn ⊂ Gn. The corresponding Lie algebra h is then the direct limit of
Cartan subalgebras hn ⊂ gn such that hn = hn+1 ∩ gn. We fix once and for all a Cartan
subgroup H = lim

−→
Hn of G with corresponding Cartan subalgebra h = lim

−→
hn of g. The

weights of gn are expressed in terms of the standard functions ε1
n, . . . ,εrn+1

n ⊂ h∗n if G is
of type A or ε1

n, . . . ,εrn
n ⊂ h∗n otherwise. These functions are determined by the choice of

the Cartan subalgebra hn ⊂ gn. The weights of the natural representation of gn are as

follows: for G of type A they are ε1
n, . . . ,εrn+1

n ; for G of type B — ±ε1
n, . . . ,±εrn

n , 0; and for
G of type C or D — ±ε1

n, . . . ,±εrn
n . Since hn ⊂ hn+1, the hn+1–weight spaces of the natural

representation of gn+1 restrict to hn–weight spaces. In particular, εi
n+1 restricts to ±ε

j
n for

some j, or to 0.

Denote the injection gn → gn+1 by δn. We will now define a subalgebra g̃n
∼= g

⊕sn
n of

gn+1, where sn is the total multiplicity of all nontrivial simple constituents of the natural
representation of gn+1 considered as a gn–module. Note first that the hn+1–weight de-
composition of the natural representation of gn+1 determines a unique decomposition of
each nontrivial isotypic gn–component as a direct sum of simple constituents. To define
the subalgebra g̃n it suffices to define its simple ideals: if G is of type A, each simple ideal
of g̃n equals the traceless endomorphisms of a simple nontrivial constituent of the nat-
ural representation of gn+1; if G is of type B, C, or D, each simple ideal of g̃n is the Lie
algebra of orthogonal or respectively symplectic endomorphisms of a simple nontrivial
constituent of the natural representation of gn+1. In all cases, there is an obvious injective
homomorphismϕn : gn → g̃n such that the diagram

(1.5) gn
δn //

ϕn   A
AA

AA
AA

A
gn+1

g̃n

κn

<<yyyyyyyy

is commutative, κn being the inclusion. Moreover, if G is of type A, C, or D, the map κn is
a root injection.

If G is of type B and sn > 1, κn is no longer a root injection, however we can still factor
κn as

g̃n
ψn
−→ ḡn

θn−→ gn+1
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so that θn is a root injection and ψn is ”close” to a root injection. To construct this fac-

torization, recall that gn
∼= Brn , g̃n

∼= B⊕sn
rn , gn+1

∼= Brn+1 , and that the natural represen-
tation Vn+1 of gn+1 when considered as a gn–module contains sn copies of the natural
representation of gn and zn copies of the trivial representation. Note that 2rn+1 + 1 =
sn(2rn + 1) + zn, hence sn and zn are distinct modulo 2. The smallest interesting case
is when sn = 2 and zn = 1. In this case the gn–module decomposition of the natural
representation of gn+1 is Vn+1 = V1 ⊕ V2 ⊕K, where V1 and V2 are the two copies of
the natural representation of gn. We set ḡn := so(V1 ⊕ V2) ∼= D2rn+1 and consider the

natural injections g̃n
ψn
→ ḡn

θn→ gn+1. The assumption that hn is contained in hn+1 ensures
that hn+1 is contained in ḡn and, consecutively, θn is a root injection. Furthermore, for
each long root of g̃n, the corresponding root space is mapped via ψn into a root space
of ḡn. In the case when sn and zn are arbitrary, i.e. when V′ = V1 ⊕ . . . ⊕ Vsn ⊕ Kzn ,
we combine V1, . . . , Vsn into pairs when sn is even, and into pairs and a single element
when sn is odd, and set ḡn := so(V1 ⊕ V2) ⊕ . . . ⊕ so(Vsn−1 ⊕ Vsn) in the former case
and ḡn := so(V1 ⊕ V2) ⊕ . . . ⊕ so(Vsn−2 ⊕ Vsn−1) ⊕ so(Vsn) in the latter. The injections

g̃n
ψn
→ ḡn

θn→ gn+1 are defined in the obvious way, θn is a root injection, and ψn maps
roots spaces corresponding to long roots of g̃n to root spaces of ḡn. As a result of this
construction, we obtain a refinement of diagram (1.5) as follows:

(1.6) gn
δn //

ϕn   @
@@

@@
@@

@
gn+1

g̃n
ψn

//

κn

44jjjjjjjjjjjjjjjjjjjjj
ḡn

θn

<<zzzzzzzz

.

Remark 1.7. Note that the subalgebra ḡn above depends on the way we combine V1, . . . , Vsn

into pairs. In the proof of Corollary 4.30 below we consider diagrams analogous to (1.6)
for different choices for ḡn in the case when sn is odd and greater than one.

2. BOREL SUBALGEBRAS, DOMINANT WEIGHTS, AND HIGHEST WEIGHT MODULES

For the purposes of this paper we adopt the following definition of a Borel subgroup:
B is a Borel subgroup of G if B = lim

−→
Bn, where Bn is a Borel subgroup of Gn for every n. All

Borel sugroups we consider contain the fixed Cartan subgroup H. The corresponding Lie
algebra b then contains h and is the direct limit of Borel subalgebras bn ⊂ gn containing
the fixed Cartan subalgebras hn. Note that we have bn = bn+1 ∩ gn.

The Borel subalgebras of gn which contain hn correspond to linear orders on the weights
of the natural representation of gn. More precisely (see also [DP]), the Borel subalgebras
of gn correspond to

• the linear orders on the set {ε1
n, . . . ,εrn+1

n } for type A;
• the linear orders compatible with multiplication by−1 on the set {±ε1

n, . . . ,±εrn
n , 0}

for type B;
• the linear orders compatible with multiplication by −1 on the set {±ε1

n, . . . ,±εrn
n }

for type C;
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• the linear orders compatible with multiplication by −1 on the set {±ε1
n, . . . ,±εrn

n }
for type D.

Here ”compatible with multiplication by−1” means thatεi
n < ±ε

j
n is equivalent to∓ε

j
n <

−εi
n. The above correspondence is a bijection in types A, B, and C; in type D each Borel

subalgebra corresponds to exactly two orders as above since the smallest element ±εi
n

such that ±εi
n > ∓εi

n can be interchanged with its opposite without changing the Borel
subalgebra.

The condition bn = bn+1 ∩ gn is equivalent to the fact that the order on the weights
of the natural representation of gn+1 restricts to the order (or one of the two orders in
type D) on the weights of the natural representation of gn. In this way we can say that
a Borel subalgebra b = lim

−→
bn is determined by a projective system of linear orders on

the weights of the natural representations of gn. Note that in type A the weights of gn+1

corresponding to constituents isomorphic to the dual of the natural representation of gn

restrict to −εi
n.

Example 2.8. (i) Let G = SL(2∞). Then gn = sl(2n) with weights {ε1
n, . . . ,ε2n

n } of the

natural representation. The weights εi
n+1 and ε2n+i

n+1 restrict to εi
n for 1 ≤ i ≤ 2n. The

projective system of orders

ε1
n > ε2

n > . . . > ε2n

n

defines the Borel subgroup of G consisting of upper triangular matrices in the realization
of G from Example 1.2. We will call this Borel subgroup the upper triangular Borel subgroup
of SL(2∞).

(ii) A more interesting example of a Borel sugroup of SL(2n) is provided by the projective
systems of orders

ε1
n > ε2n−1+1

n > ε2
n > ε2n−1+2

n > . . . > ε2n−1

n > ε2n

n .

We will call this Borel subgroup the interlacing Borel subgroup of SL(2∞).

(iii) Let Gn = Sp(2(2n − 1)) and let the embedding Gn → Gn+1 be determined by the
condition that the natural representation of gn+1 contains two copies of the natural rep-
resentation of gn and two copies of the trivial representation. The resulting ind–group is
not pure; we denote it by Sp(2∞ + 1). The weights of the natural representation of gn are

±ε1
n, . . . ,±ε2n−1

n . We assume that ε1+i
n+1 and ε1+2n+i

n+1 restrict to ε1+i
n for 1 ≤ i ≤ 2n− 2, while

ε1
n+1 restricts to 0. The projective system of orders

ε1
n > ε2

n > ε2+2n−1

n > . . . > ε2n−1−1
n > ε2n−1

n

> −ε2n−1
n > −ε2n−1−1

n > . . . > −ε2+2n−1

n > −ε2
n > −ε1

n

defines an interlacing Borel subgroup B of Sp(2∞ + 1). �

A weight λ of G is by definition an inverse system of weights of Gn, i.e. a sequence {λn}
of integral weights of gn such that λn+1 restricts to λn for every n. We use the notation
λ = lim
←−

λn to indicate that the sequence {λn} defines the weight λ. P stands for the set of
weights of G. As in the finite–dimensional case, for every Borel subgroup B ⊂ G, P is in
a natural bijection with the one–dimensional B–modules. A weight λ ∈ P is B–dominant
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(or, simply, dominant if B is clear from the context) if λn is a Bn–dominant weight for
every n; the set of B–dominant weights will be denoted by P+

B (respectively, by P+). The
fundamental bn–weights of gn (in the standard order on the nodes of the Dynkin diagram
of gn) will be denoted byω1

n, . . . ,ωrn
n .

Example 2.9. We discuss P+
B for each of the Borel subgroups from Example 2.8.

(i) Consider λ = lim
←−

λn ∈ P . Let

(2.10) λn = λ1
nε

1
n + . . . + λ2n

n ε
2n

n = a1
nω

1
n + . . . + a2n−1

n ω2n−1
n .

Since ai
n = λi

n − λ
i+1
n for 1 ≤ i ≤ 2n − 1, the fact that λn+1 restricts to λn is equivalent to

the equations

(2.11) a1
n = a1

n+1 + a2n+1
n+1 , a2

n = a2
n+1 + a2n+2

n+1 , . . . , a2n−1
n = a2n−1

n+1 + a2n+1−1
n+1 ,

and λ ∈ P+ is equivalent to the condition that ai
n ∈ Z≥0 for every n and every 1 ≤ i ≤

2n − 1. As (2.11) shows, every Bn–dominant weight λn of Gn is the restriction of infinitely
many Bn+1–dominant weights of Gn+1. More precisely, there are finitely many choices for

the parameters a1
n+1, . . . , a2n−1

n+1 , a2n+1
n+1 , . . . , a2n+1−1

n+1 , and the parameter a2n

n+1 can be chosen

as any element of Z≥0. In particular, P+ is not finitely generated and contains the lattice
points of an open n–dimensional cone for every n.

(ii) As in (i) above, each λ ∈ P can be written as in (2.10). The restriction of λn+1 to λn is
equivalent to

(2.12)

a1
n = a1

n+1 + 2a2
n+1 + a3

n+1,

a2
n = a3

n+1 + 2a4
n+1 + a5

n+1,
...

...
...

...

a2n−1
n = a2n+1−3

n+1 + 2a2n+1−2
n+1 + a2n+1−1

n+1 .

Set bn := a1
n + . . . + a2n−1

n . Adding the equations in (2.12) we obtain

(2.13) bn = bn+1 + (a2
n+1 + . . . + a2n+1−2

n+1 ).

Thus b1 ≥ b2 ≥ b3 ≥ . . . and, consequently, bn0 = bn0+1 = bn0+2 + . . . for some n0. Again

(2.13) shows that a2
n = . . . = a2n−2

n = 0 and a1
n = a1

n+1, a2n−1
n = a2n+1−1

n+1 for every n > n0.

Putting these facts together, we see that if λ ∈ P+, then λ = lim
←−

(a′ω1
n + a′′ω2n−1

n ). In

particular, P+ consists of the lattice points in a cone of dimension two.

(iii) In this case we are going to show that P+ = 0. Again, consider λ = lim
←−

λn ∈ P . Let

λn = λ1
nε

1
n + . . . + λ2n−1

n ε2n−1
n = a1

nω
1
n + . . . + a2n−1

n ω2n−1
n .

Since ai
n = λi

n − λ
i+1
n for 1 ≤ i ≤ 2n − 2 and a2n−1

n = λ2n−1
n , the fact that λn+1 restricts to

λn is equivalent to the equations

(2.14)

a1
n = a2

n+1 + 2a3
n+1 + a4

n+1,

a2
n = a4

n+1 + 2a5
n+1 + a6

n+1,
...

...
...

...

a2n−2
n = a2n+1−4

n+1 + 2a2n+1−3
n+1 + a2n+1−2

n+1 ,

a2n−1
n = a2n+1−2

n+1 + 2a2n+1−1
n+1 .
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Assume that P+ 6= 0 and let λ ∈ P+ be a nonzero weight. Choose n0 so that λn0−1 6= 0

and set bk := a2k

n0+k + a2k+1
n0+k + . . . + a2n+k−1

n0+k for k ≥ 0. Adding the appropriate equations

from (2.14) we obtain

(2.15) bk = bk+1 + (a2k+1+1
n0+k+1 + . . . + a2n0+k+1−1

n0+k+1 ),

which implies that b0 ≥ b1 ≥ . . .. Hence there exists k0 such that bk0
= bk0+1 = . . .. We

may assume that k0 is the smallest such integer.

If k0 = 0, then (2.15) shows that

a3
n0+1 = . . . = a2n0+1−1

n0+1 = 0,

which substituted in (2.14) implies

a2
n0

= . . . = a2n0−1
n0

= 0,

After another look at (2.14), we obtain λn0−1 = 0, which contradicts the assumption that
λn0−1 6= 0.

If k0 > 1, then (2.15) shows that

a2k0+1+1
n0+k0+1 = . . . = a2n0+k0+1−1

n0+k0+1 = 0,

which substituted back into (2.14) gives

a2k0 +1
n0+k0

= . . . = a2n0+k0−1
n0+k0

= 0.

The last equation together with (2.15) implies bk0−1 = bk0
, which contradicts the choice of

k0. This proves that P+ = 0. �

Despite Example 2.9 (iii), we can prove that P+ 6= 0 under some natural assumptions.
On the other hand, there are no strictly dominant weights unless G is root reductive.

Proposition 2.16.

(i) If G is pure, then P+
B 6= 0 for any Borel subgroup B ⊂ G.

(ii) For any G there exists a Borel subgroup B such that P+
B 6= 0.

(iii) Assume that P+
B contains a strictly dominant weight λ, i.e. such that (λn,α) > 0 for every

root α of bn. Then G is root reductive.

Proof. (i) If G is pure of type B, C, or D, then ω1
n+1 restricts to ω1

n and thus P+
B contains

lim
←−

(aω1
n) for every a ∈ Z≥0. If G is pure of type A, then ω1

n+1 restricts to ω1
n orωrn

n and

ω
rn
n+1 restricts to ω1

n or ωrn
n , which implies that every Bn–dominant weight of the form

a′ω1
n + a′′ωrn

n extends to a Bn+1–dominant weight. This shows that P+
B 6= 0.

(ii) Using induction we can construct compatible orders on the weights of the natural
representation of Gn in such a way that the maximal element among the weights of the
natural representation of Gn+1 restricts to a weight of the natural representation of Gn and
not to zero. Then, for every a ∈ Z>0, lim

←−
(aω1

n) is a nonzero element of P+
B .
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(iii) Letα be a long root of bm, and letα1, . . . ,αsm,n be the roots of bn, n > m, which restrict

to α. Assuming that λn is strictly dominant gn–weight we conclude that (λn,αi) ≥ 1/2
for 1 ≤ i ≤ sm,n. This gives

(λm,α) = (λn,α1) + . . . + (λn,αsm,n) ≥
1

2
sm,n,

which is only possible if there is n0 > m so that sm,n = sm,n0 for n ≥ n0. The latter
condition implies that G is root reductive. �

Every λ ∈ P+
B defines an irreducible G–module VB(λ) in the following way. The weight

λ determines the direct system of highest weight modules VBn(λn)
en→ VBn+1

(λn+1), where
en maps the Bn–highest weight space of VBn(λn) into the Bn+1–highest weight space of
VBn+1

(λn+1). Then VB(λ) is defined as lim
−→

VBn(λn).

Example 2.17. Let G = SL(2∞) and let B be any Borel subalgebra of G. Set λn := ω1
n +

ω2n−1
n . The sequence {λn} is a B–dominant weight of G and hence the G–module VB(λ) is

well–defined. Furthermore, in this case it is easy to check that VB(λ) is a weight module,
i.e.

VB(λ) = ⊕µVB(λ)µ , where VB(λ)µ = {v ∈ VB(λ) | h · v = µ(h)v for every h ∈ h}.

This observation implies that, despite the fact that each of the modules VBn(λn) is isomor-
phic to the adjoint representation of Gn, VB(λ) is not isomorphic to the adjoint represen-
tation of G since the latter is not a weight module. �

3. THE WEYL GROUP WB

In this section we use the filtration (1.5) to construct a group WB which plays the role
that the Weyl group plays in the classical Bott–Borel–Weil theorem.

First we consider the case when G is not of type B. Let Wn denote the Weyl group of gn

and let pri
n : g̃n = g

⊕sn
n → gn be the projection onto the ith direct summand for 1 ≤ i ≤ sn.

Then, for each pair n, i, the composition

(3.18) gn → g̃n
pri

n→ gi
n → gn+1

is a root injection and hence yields an injective homomorphism of Weyl groups

τ i
n : Wn →Wn+1.

For every sequence {tn}∞n=1 with 1 ≤ tn ≤ sn, the injections τ tn
n form a direct system. Note

that, if {t′n} and {t′′n} are two sequences which differ in finitely many positions only, then
lim
−→τ

t′n
n

Wn = lim
−→τ

t′′n
n

Wn. We define an equivalence relation between sequences by setting

{t′n} ∼ {t
′′
n} if t′n = t′′n for large enough n, and denote the set of equivalence classes by T :

T = {{tn} | 1 ≤ tn ≤ sn}/ ∼ .

The set T consists of a single element if G is root reductive, and is uncountable otherwise.
For any element t ∈ T we put Wt := lim

−→τ
tn
n

Wn, where {tn} is a representative of t. It

is easy to see that Wt depends only on the type of G. Namely, Wt is isomorphic to S∞,
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the group of finite permutations of N, if G is of type A; to the group of signed finite
permutations of N if G is of type C; and to the group of signed finite permutations of N

with even number of minus signs if G is of type D. Finally we put W := ×̇t∈TWt, where
×̇ stands for restricted direct product.

If G is root reductive of type B the definitions above still make sense. Moreover, T
consists of a single element t and W = Wt is isomorphic to the group of signed finite
permutations of N.

If G is of type B but is not root reductive, κn is not a root injection for infinitely many

n and we need to modify the definitions above. Let W̊n denote the subgroup of Wn gen-
erated by reflections along the long simple roots of bn. It is clear that (3.18) maps root
spaces corresponding to long roots of gn into root spaces corresponding to long roots of
gn+1. Hence, again we have an injective homomorphism of groups

τ i
n : W̊n → W̊n+1.

We can now proceed as above to define Wt := lim
−→τ

tn
n

W̊n and W := ×̇t∈TWt. Note that

Wt is isomorphic to the group of finite permutations of N.

Next we define a length function ℓB : W → N ∪ {∞}. Let ℓn denote the length function
on Wn determined by bn.

Lemma 3.19. For every n ∈ N, every 1 ≤ i ≤ sn, and every w ∈Wn we have

ℓn(w) ≤ ℓn+1(τ
i
n(w)).

Furthermore, if ℓn(w) = ℓn+1(τ
i
n(w)) then for every reduced factorization w = σ1 . . .σ j into a

product of simple reflections, τ i
n(w) = τ i

n(σ1) . . . τ i
n(σ j) is a reduced factorization of τ i

n(w).

Proof. Let ∆n = ∆+
n ⊔ ∆

−
n be the partition of the roots of gn into positive and negative

corresponding to bn, and let γ : ∆n → ∆n+1 be the map corresponding to the injection

(3.18). Then γ(∆±n ) ⊂ ∆±n+1. Set Φw := (w−1∆−n ) ∩ ∆+
n and Φτ i

n(w) := (τ i
n(w)−1∆−n+1) ∩

∆+
n+1. The inclusion γ(Φw) ⊂ Φτ i

n(w) implies

ℓn(w) = |Φw| ≤ |Φτ i
n(w)| = ℓn+1(τ

i
n(w)).

Moreover, the equality ℓn(w) = ℓn+1(τ
i
n(w)) implies that γ(Φw) = Φτ i

n(w), and thus γ

sends every simple root inΦw into a simple root of bn+1. Consider a reduced factorization

w = σ1 . . .σ j and let σ j be the reflection along the simple root α of bn. Then τ i
n(σ j) is

the reflection along the simple root γ(α) of bn+1. Set w′ := σ1 . . .σ j−1. Then we have

ℓn(w′) = ℓn+1(τ
i
n(w′)), and we complete the proof by induction. �

Lemma 3.19 (and the observation that τ i
n(W̊n) ⊂ W̊n+1 if G is of type B) implies that

every element wt ∈ Wt has a well–defined, possibly infinite, length ℓB(wt). We extend the
definition of length to elements of W by setting ℓB(w) := ∑t∈T ℓB(wt) for w = (wt)t∈T .
We now define WB as the subgroup of W consisting of all elements w ∈W of finite length

ℓB(w). For w = (wt) ∈ WB we say that the support of w is {t1, . . . , tl} ⊂ T if wt = 1Wt

precisely when t 6∈ {t1 , . . . , tl}. Assume that n0 is such that wti
∈ Wn0 for 1 ≤ i ≤ l.
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Then wti
∈ Wn for n ≥ n0 and 1 ≤ i ≤ l. It is not necessarily true that wt1

, . . . , wtl

commute in Wn. If, however, the sequences (ti
n0

, . . . , ti
n−1) for i = 1, . . . , l are distinct,

then wt1
, . . . , wtl

commute in Wn, and define an element w(n) := wt1
. . . wtl

∈ Wn. Since
t1, . . . , tl are distinct, there exists n1 such that the sequences (ti

n0
, . . . , ti

n1−1) for i = 1, . . . , l

are distinct and hence wt1
, . . . , wtl

commute in Wn for every n ≥ n1. For the rest of the
paper, whenever for an element w ∈ WB we consider the elements w(n), we will assume

that n ≥ n1. If G is of type B, then w(n) ∈ W̊n.

Example 3.20. For G = SL(2∞) we have W ∼= ×̇T S∞. If B is the upper triangular Borel
subgroup of G, then WB = W. If, on the other hand, B is the interlacing Borel subgroup,
WB is trivial. �

Proposition 3.21. If WB contains an element of length l, then WB contains elements of all lengths
from 0 through l. WB may be finite or infinite and may or may not contain an element of maximal
length. In addition, for fixed G and variable B, any non–negative integer can appear as a maximal
possible length of an element in WB.

Proof. The first statement follows from the generalization of Lemma 3.19 discussed above:
Let w ∈ W with ℓB(w) = l. For any reduced expression for w(n), any subword of w(n) is
well–defined and represents an element of WB. Subwords of w(n) will provide elements
of W of any length between 0 and l.

The remaining statements are rather straightforward and we omit their proofs here. �

It is not difficult to see that in general the group WB does not act on P , i.e. there exist
w ∈ WB and λ = lim

←−
λn for which {w(n)(λn)} is not an inverse system of weights. Here

is a simple example.

Example 3.22. Let B be the upper triangular Borel subgroup of SL(2∞). Consider w ∈WB

given by

wt =

{
(12) if t = (1, 1, . . .)

1S∞
otherwise,

where the transposition (12) is understood as an element of the symmetric group S∞. Let

λ = lim
←−

λn be a weight such that a1
n = n and a2n−1+1

n = −1 in the notation of Example

2.9(i). Then w(n + 1)(λn+1) = λn+1 − (n + 1)(ε1
n − ε

2
n) restricts to λn − (n + 1)(ε1

n − ε
2
n),

while w(n)(λn) = λn − (n)(ε1
n −ε

2
n), which shows that w(n)(λn) is not an inverse system

of weights. �

Despite this example, we are going to show that if λ ∈ P+ then w(λ) is a well–defined
element of P for any w ∈ WB. We will also define an analog of the ”dot” action in the
finite–dimensional case. Recall that, for a finite–dimensional reductive Lie algebra g′ with
fixed Cartan subalgebra h′ ⊂ g′ and Borel subalgebra b′ ⊂ g′, b′ ⊃ h′, the dot action of
a Weyl group element w′ on a weight µ′ ∈ (h′)∗ is defined as w′(µ′ + ρb′) − ρb′ , where
ρb′ is the half–sum of roots of b′. One writes w′ · µ′ := w′(µ′ + ρb′)− ρb′ . In the case of



12 IVAN DIMITROV AND IVAN PENKOV

the diagonal ind–group G, for any λ = lim
←−

λn and w ∈ WB it is natural to consider the

weights {w(n)(λn + ρn)− ρn}, where ρn denotes the half–sum of the roots of bn.

To prove results about the action of WB on weights we need additional notation. Ifα′ is
a root of bm andα′′ is a root of bn with n ≥ m, we say thatα′′ is a successor ofα′ if α′′ ∈ h∗n
restricts to α′ ∈ h∗m. If, in addition, n = m + 1, we say that α′′ is an immediate successor of
α′. Every root of bm has exactly sm immediate successors. The set of successors Sα of a
root α of bm has a natural structure of a directed tree — every element is connected with
its immediate successors. If α is a root of bm, then Sα = ⊔n≥mS

α
n , where Sαn is the set of

successors of α of level n, i.e. those successors of α which are roots of bn. Furthermore,
given λ ∈ P , we assign integer labels to all nodes of this tree in a natural way: the node

α′ ∈ Sαn is labeled by 2(λn ,α′)
(α′,α′)

. It is clear that the sum of the labels of the elements of Sαn is

the same for all n and equals 2(λm ,α)
(α,α)

.

Proposition 3.23.

(i) If w ∈ WB, then w · 0 is a well–defined element of P , i.e. {w(n) · 0 = w(n)(ρn)− ρn} is an
inverse system of weights of G.

(ii) If w ∈WB and λ ∈ P+
B , then w(λ) is a well–defined element of P .

(iii) If w ∈WB and λ ∈ P+
B , then w · λ is a well–defined element of P .

Proof. (i) Since w ∈ WB we have w−1 ∈ WB as well and w(n)−1 = w−1(n). The proof of
Lemma 3.19 applied to w−1 implies that the set Φw(n+1)−1 projects onto the set Φw(n)−1

and the formulas, cf. [DR],

w(n) · 0 = w(n)(ρn)− ρn = − ∑
α∈Φ

w(n)−1

α

and

w(n + 1) · 0 = w(n + 1)(ρn+1)− ρn+1 = − ∑
α∈Φ

w(n+1)−1

α

imply that w(n + 1) · 0 restricts to w(n) · 0.

(ii) Let w = (wt) ∈WB have support t1, . . . , tl and let m be such that wti
for 1 ≤ i ≤ l all be-

long to Wn and commute in Wn for n ≥ m. Let w(m) = σα1 . . .σαq be a reduced expression

of w(n). Then, for n ≥ m, w(n) = σα1
n

. . .σ
α

q
n

is a reduced expression of w(n) and αi
n is a

successor ofαi for 1 ≤ i ≤ q. Furthermore, the sequenceαi = αi
m,αi

m+1,αi
m+2, . . . is a path

in Sα
i
. Since λ is dominant, i.e. all labels in Sα

i
corresponding to λ are non–negative inte-

gers, there exists n0 ≥ m such that the labels on each of the pathsαi = αi
m,αi

m+1,αi
m+2, . . .

of level n ≥ n0 stabilize. For n ≥ n0 we have

(3.24) w(n)(λn) = λn −

(

∑
1≤i≤q

2(λn,αi
n)

(αi
n,αi

n)
αi

n − ∑
1≤i< j≤q

2(λn,α
j
n)

(α
j
n,α

j
n)

2(α
j
n,αi

n)

(αi
n,αi

n)
αi

n + . . .

)
.



A BOTT–BOREL–WEIL THEOREM FOR DIAGONAL IND–GROUPS 13

Now consider the restriction of w(n + 1)(λn+1) to h∗n. By the definition of λ, λn+1 restricts
to λn and, by the stabilization of the labels along the paths αi = αi

m,αi
m+1,αi

m+2, . . .,

∑
1≤i≤q

2(λn+1,αi
n+1)

(αi
n+1,αi

n+1)
αi

n+1− ∑
1≤i< j≤q

2(λn+1,α
j
n+1)

(α
j
n+1,α

j
n+1)

2(α
j
n+1,αi

n+1)

(αi
n+1,αi

n+1)
αi

n+1 + . . .

restricts to

∑
1≤i≤q

2(λn,αi
n)

(αi
n,αi

n)
αi

n − ∑
1≤i< j≤q

2(λn,α
j
n)

(α
j
n,α

j
n)

2(α
j
n,αi

n)

(αi
n,αi

n)
αi

n + . . . .

These observations together with (4.28) and its analog with n + 1 in place of n imply that
w(n + 1)(λn+1) restricts to w(n)(λn). This completes the proof of (ii).

(iii) The statement follows from (i), (ii), and the obvious formula

w(n) · λn = w(n)(λn) + w(n) · 0.

�

Proposition 3.25. (i) Let σ ∈ WB be an element of length one and let λ ∈ P be such that
σ(n) · λn is dominant for large enough n. Then there exists n′ such that, for n ≥ n′, σ(n) = σαn ,

(λn,αn) does not depend on n, and (λn,α) = 0 for every successorα ∈ S
αn′
n different fromαn;

(ii) Let w ∈ WB and λ ∈ P be such that µn := w(n) · λn is bn–dominant for large enough n.
Then µ := lim

←−
µn is a well–defined element of P+

B .

Proof. (i) Since ℓB(σ) = 1, σ(n) = σαn where αn+1 is an immediate successor of αn for
n ≥ n0 and both αn and αn+1 are simple roots of the respective Borel subalgebras bn and
bn+1. The label of λ at αn in Sαn0 is negative, while all other labels of λ in Sαn0 are non–
negative. This implies that the labels of λ along the pathαn0 ,αn0+1, . . . are non–increasing.
Let βn0+1 = αn0+1 +α′n0+1 be a root of bn0+1 higher than αn0+1 and let βn = αn +α′n be a

successor of βn0+1. Note that βn is uniquely determined byαn. We have

(λn,βn) = (λn,αn) + (λn,α′n),

which implies

(λn,αn) ≥ −(λn,βn).

Since {(λn,βn)} is a non–increasing sequence of non–negative integers or half–integers,
we conclude that the sequence {(λn,αn)} is bounded, and hence it stabilizes. Noting that
(λn+1,αn+1) = (λn,αn) implies that (λn+1,α) = 0 for every immediate successor of αn

other thanαn+1 concludes the proof of (i).

(ii) Write w(n) = σ1
αn

. . .σ
q
αn as in the proof of Proposition 3.23 (ii). As in (i) we prove that

the labels along the paths {αi
n} for 1 ≤ i ≤ q stabilize, and then repeat the argument in

the proof of Proposition 3.23 (ii). �
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4. G/B AND THE BOTT–BOREL-WEIL THEOREM

Recall that an ind–variety X = lim
−→

Xn is determined by a sequence of morphisms of
algebraic varieties

X1
ϕ1→ . . .→ Xn

ϕn→ Xn+1 → . . . ,

see for instance [Sh], [DPW]. We denote by OXn the structure sheaf of Xn and we define
the structure sheaf O of X as the inverse limit lim

←
OXn . More generally, a shea f F on X

is by definition the limit of an inverse system of sheaves Fn on Xn, and F is a shea f o f
O–modules whenever {Fn} is an inverse system of sheaves of OXn–modules. A sheaf
of O–modules is locally free of rank r whenever each Fn is locally free of rank r. In what
follows we will also call a locally free sheaf of O–modules a vector bundle on X.

Assume now that all Xn are proper. Then it is well–known that the cohomology H·(X, E)
of any vector bundle E = lim

←
En of finite–rank on X is canonically isomorphic to the in-

verse limit lim
←

H·(Xn, En), see [W], [DPW].

In this paper we consider the ind–varieties G/B and G/P, where G = lim
→

Gn is a di-

agonal ind–group and B = lim
→

Bn or P = lim
→

Pn are respectively direct limits of Borel

subgroups Bn ⊂ Gn or parabolic subgroups Pn ⊂ Gn. More precisely, if B = lim
→

Bn with

Bn = Gn ∩ Bn+1, or P = lim
→

Pn with Pn = Gn ∩ Pn+1, the embeddings Gn → Gn+1 induce

closed immersions Gn/Bn → Gn+1/Bn+1 and Gn/Pn → Gn+1/Pn+1 of proper smooth
varieties. In what follows, we denote the corresponding ind–varieties by G/B and G/P.

If λ ∈ P , the line bundles (OGn/Bn
)−λn form an inverse system, and hence determine a

line bundle (or a locally free sheaf of O–modules of rank one) O−λ on G/B. Recall that,
by definition, (OGn/Bn

)−λn is the Gn–equivariant line bundle on Gn/Bn whose geometric

fiber at the closed point Bn ∈ Gn/Bn is the Bn–module K−λn .

More generally, if En is a Gn–equivariant vector bundle (or, for short, Gn–bundle) on
Gn/Pn, then the vector bundle E = lim

←
En on Gn/Pn is by definition G–equivariant, and

each cohomology group H j(G/P, E) is a dual G–module, being an inverse limit of Gn–

modules H j(Gn/Pn, En).

The Bott–Borel–Weil theorem computes the cohomology H·(Gn/Bn, (OGn/Bn
)−λn) for

each weight λn, see [B], [D1], [D2], and [S]. It is the following result.

Theorem 4.26 (Bott–Borel–Weil, [S], [B]). If there exists a (necessarily unique) wn ∈ Wn such
that wn · λn is a Bn–dominant weight of Gn, then

H j(Gn/Bn, (OGn/Bn
)−λn)

∼=





VBn(wn · λn)∗ for j = ℓn(wn)

0 for j 6= ℓn(wn).

If wn as above does not exists, then

H·(Gn/Bn, (OGn/Bn
)−λn) = 0.

An immediate corollary of Theorem 4.26 is that, for a fixed λ ∈ P , there is at most

one j for which the cohomology group H j(G/B,O−λ) can be nonzero. This follows from



A BOTT–BOREL–WEIL THEOREM FOR DIAGONAL IND–GROUPS 15

Theorem 4.26 and from the fact that H j(G/B,O−λ) = lim
←

H j(Gn/Bn, (OGn/Bn
)−λn). The

following theorem provides a much stronger statement. It is an analog of the Bott–Borel–
Weil theorem and is the central result in this paper.

Theorem 4.27. Let G be a diagonal ind–group, let B be a Borel subgroup of G, and let λ ∈ P .
Then H j(G/B,O−λ) 6= 0 for at most one value of j. More precisely, H j(G/B,O−λ) 6= 0 if and
only if there exists w ∈ WB such that w · λ ∈ P+

B . In the latter case we have an isomorphism of
dual G–modules

H j(G/B,O−λ) ∼= VB(w · λ)∗ .

Before we prove Theorem 4.27 we state two results necessary for the proof. Let G′ ⊂
G′′ be reductive algebraic groups with Lie algebras g′ ⊂ g′′ respectively. Assume that
B′′ ⊂ G′′ is a Borel subgroup of G′′ and that B′ := G′ ∩ B′′ is a Borel subgroup of G′.
Then we have a close immersion of homogeneous spaces G′/B′ → G′′/B′′. Denote the
Weyl groups of G′ and G′′ by W ′ and W ′′ respectively. If G′ (respectively, G′′) is of type B

or product of groups of type B, denote by W̊ ′ (respectively, W̊ ′′) the subgroup of W ′ (re-
spectively, W ′′) generated by reflections along the long simple roots of the corresponding
Borel subalgebra. Let λ′′ be a weight of B′′ which restricts to the weight λ′ of G′. Assume
that there exist w′ ∈W ′ and w′′ ∈W ′′ both of length j and such that w′′ · λ′′ and w′ · λ′ are
dominant weights. The natural map

(4.28) H j(G′′/B′′,O−λ′′)→ H j(G′/B′,O−λ′)

is a homomorphism of nontrivial G′–modules.

Proposition 4.29 (Tsanov, [T]). In the notation above the following statements hold.

(i) Assume that g′ is a root subalgebra of g′′ and consider W ′ as a subgroup of W ′′. Then (4.28) is
nonzero if and only if w′′ = w′ ∈W ′.

(ii) Assume that g′ ∼= Br ⊕ Br and g′′ ∼= D2r+1 as in section 1. If w′′ = w′ ∈ W̊ ′ then (4.28) is
nonzero.

Corollary 4.30. Let G′ = G1 × . . . × Gs
∼= (Br′)

s with s > 1, let G′′ ∼= Br′′ and assume
that the embedding κ : G′ → G′′ is analogous to κn from (1.6). In other words, the natural
representation V′′ of G′′ decomposes as V′1 ⊕ . . .⊕ V′s ⊕Kz, where each V′i is isomorphic to the
natural representation of Br′ . Consider the diagram

(4.31) g′
κ //

ψ ��=
==

==
==

g′′

ḡ′
θ

??�������

,

where ḡ′ is defined analogously to ḡn from (1.6).

(i) If (4.28) is nonzero then w′′ ∈ W̊ ′′.

(ii) If w′ ∈ W̊ ′, then (4.28) is nonzero if and only if w′′ = w′.
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Proof. The second statement follows from Proposition 4.29. Here is the proof of (i). Denote
by Ḡ′ the simply–connected algebraic group with Lie algebra ḡ′. Assume that (4.28) is
nonzero. The fact that (4.28) is nonzero implies that the map

H j(G′′/B′′,O−λ′′)→ H j(Ḡ′/B̄′,O−λ̄′)

is nonzero, where λ̄′ is the restriction of λ′′ to Ḡ′. Since θ is a root injection, Proposition

4.29(i) implies that w′′ ∈ W̊ ′′ if s is even. If s is odd, Proposition 4.29(i) implies that w′′

is contained in the subgroup 1W̊ ′′ of W ′′ generated by reflections along long simple roots
corresponding to the components of Ḡ′ of type D and by reflections along the simple
roots corresponding to the component of Ḡ′ of type B. We can use a different way of
combining the G′–constituents V′1, . . . , V′s of the natural representation of G′′ to obtain a
diagram analogous to (4.31) but with different ḡ′ and different maps κ and θ. Repeating

the argument above we conclude that w′′ ∈ 2W̊ ′′ for a subgroup 2W̊ ′′ analogous to 1W̊ ′′.

Note that 1W̊ ′′ ∩ 2W̊ ′′ = W̊ ′′ as long as we choose a different component of type B of ḡ′.
This completes the proof. �

Proposition 4.32 (Corollary 5.4.1, [DR]). Let g′′ equal the direct sum of s isomorphic copies
g′′1 , . . . , g′′s of g′ so that g′ projects isomorphically onto each subalgebra g′′i . Assume that

H j(G′′/B′′,O−λ′′) = H j(G′′1 /B′′1 ,O−λ′′1 )⊗ H0(G′′2 /B′′2 ,O−λ′′2 )⊗ . . .⊗ H0(G′′s /B′′s ,O−λ′′s ),

where G′′ = G′′1 × . . .×G′′s
∼= (G′)s and λ′′1 , . . . , λ′′s are the restrictions of λ′′ to g′′1 , . . . , g′′s . Then

(4.28) is a nonzero homomorphism.

Proof of Theorem 4.27. For n > m diagram (1.5) induces the commutative diagram

(4.33) gm
δm,n

//

ϕm,n   B
BB

BB
BB

B
gn

gn
m

κm,n

>>}}}}}}}}

,

where δm,n = δn−1 ◦ . . . ◦ δm and ϕm,n and κm,n are defined in the obvious way. By defi-

nition g̃m := gm+1
m and gn

m
∼= g

⊕sn
m

m , where sn
m := sm . . . sn−1. Given λ ∈ PB, we denote the

restriction of λ to gn
m by λn

m. Furthermore, for n > m > k there exist maps δk,m,n,ϕm,n
k , and

κn
k,m such that the diagram

(4.34) gk
δk,m

//

ϕk,m

&&M
MMMMMMMMMMMM

ϕk,n

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
gm

δm,n
//

ϕm,n

  A
AA

AA
AA

A
gn

gm
k

κk,m
>>}}}}}}}} δk,m,n

//

ϕm,n
k

��2
22

22
22

22
22

22
gn

m

κm,n

88qqqqqqqqqqqqq

gn
k

κn
k,m

EE�������������

κk,n

??~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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commutes. To simplify notation we set

ϕn
m :=





ϕm if n = m

ϕ
n,n+1
m if n > m,

κn
m :=





κm if n = m + 1

κn
m,m+1 if n > m + 1,

and gn
n := gn.

Diagram (4.34) gives rise to a commutative diagram

(4.35)

. . . gm → gm+1 → gm+2 → gm+3 . . .
ց ր ց ր ց ր

. . . gm+1
m gm+2

m+1 gm+3
m+2 . . .

ց ր ց ր
. . . gm+2

m gm+3
m+1 . . .

ց ր
. . . gm+3

m . . .

. . .

The idea of the proof is to study the maps between the cohomology groups

H j(Gn
m/Bn

m,O−λn
m
) induced from (4.35), where Gn

m is the simply–connected classical group
with Lie algebra gn

m and Bn
m = B∩Gn

m. More precisely, every injection in the direct system

(4.36) gk → gk+1
k → gk+2

k → . . .

splits into the direct product of embeddings to which Proposition 4.32 applies. Similarly,
Proposition 4.29 and Corollary 4.30 apply to every injection in the sequence

(4.37) gn
m → gn

m+1 → . . .→ gn
n−1 → gn.

Assume first that H j(G/B,O−λ) 6= 0. Then there exists k such that all maps between the
cohomology groups H j(Gn

m/Bn
m,O−λn

m
) induced from (4.35) for n ≥ m ≥ k are nonzero.

Note that
H j(Gm

k /Bm
k ,O−λm

k
) = ⊗t∈T m

k
H jt((Gm

k )t/(Bm
k )t,O−(λm

k )t
),

where T m
k = {(tk , . . . , tm−1) | 1 ≤ ti ≤ si}, (Gm

k )t and (Bm
k )t are the respective constituents

of Gm
k and Bm

k corresponding to t, and (λm
k )t is the restriction of λ to (Gm

k )t. Let wt de-

note the element of the Weyl group (Wm
k )t of (Gm

k )t such that wt · (λm
k )t is dominant.

We say that t′′ ∈ T m+1
k is an immediate successor of t′ ∈ T m

k if t′ = (tk , . . . , tm−1) and
t′′ = (tk , . . . , tm−1, tm); we denote this relation by t′ ≺ t′′. Kunneth’s formula implies that
jt = ∑t≺t′ jt′ . Hence there is a finite collection of sequences

ti = (ti
k , ti

k+1, . . .), for 1 ≤ i ≤ l

such that, for t ∈ T m
k , jt 6= 0 if and only if t = (ti

k, . . . , ti
m−1) for some 1 ≤ i ≤ l. Fix

m > k such that, for t ∈ T m
k with jt 6= 0, jt′ 6= 0 for exactly one immediate successor
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t′ of t. In particular jti stabilizes for n > m. Noting that (λm+1
k )t′′ is dominant for every

t ≺ t′′ 6= t′ we conclude that τ
ti
n

n (wti
) = wti

for n > m. The last equation means that we

have well–defined elements wti
∈ Wti

if G is not of type B. If G is of type B, Corollary

4.30(i) ensures that wti
∈ Wti

if we repeat the argument above with k + 1 in place of k.

Furthermore, ℓB(wti
) = jti and wt1

, . . . , wtl
define an element w of WB of length j. The

fact that w · λ ∈ P+
B follows from Proposition 3.25. The existence of an isomorphism

H j(G/B,O−λ) ∼= VB(w · λ)∗ is obvious.

Conversely, assume that w ∈ WB satisfies w · λ ∈ P+
B . We need to show that there

exists k such that all maps between cohomology groups H j(Gn
m/Bn

m,O−λn
m
) correspond-

ing to (4.35) with n ≥ m > k are nonzero. Assume that the support of w is t1, . . . , tl

and choose k so that the sequences ti
k, ti

k+1, . . . for 1 ≤ i ≤ l are distinct. The fact that

H j(Gn
m,O−λn

m
) → H j(Gn−1

m ,O−λn−1
m

) is nonzero follows from Propodition 4.32, while the

fact that H j(Gn
m,O−λn

m
) → H j(Gn

m−1,O−λn
m−1

) is nonzero follows from Proposition 4.29

and Corollary 4.30. Finally, H j(Gn+1/Bn+1,O−λn+1
) → H j(Gn/Bn,O−λn) being the com-

position of

H j(Gn+1
n+1 ,O−λn+1

n+1
)→ H j(Gn+1

n ,O−λn+1
n

) and H j(Gn+1
n ,O−λn+1

n
)→ H j(Gn

n ,O−λn
n
)

is nonzero. �

Example 4.38. Let G = SL(2∞). If B is the upper triangular Borel subgroup, then The-
orem 4.27, together with the explicit description of WB given above, implies that for
each j there are line bundles Oλ with H j(G/B,O−λ) 6= 0. If B is the interlacing Borel
subgroup of SL(2∞), then WB is the trivial subgroup of W, and hence, by Theorem
4.27, H j(G/B,O−λ) = 0 for all B–weights λ and all j > 0. Moreover, in this case

H j(G/B,L) = 0 for all j > 0 and for any line bundle L on G/B, as it is easy to show
that any L is G–equivariant, i.e. L ≃ O−λ for some B–weight λ. This implies that the
above two homogeneous ind–spaces are not isomorphic as ind–varieties, and in partic-
ular that the interlacing Borel subgroup is not conjugate to the upper triangular Borel
subgroup by an automorphism of SL(2∞). �

Note that the group WB which we use in Theorem 4.27 is different from the Weyl group
WF defined in [NRW] unless G is root reductive. (In fact WF is a trivial group if G is diag-
onal but not root reductive.) Nevertheless, if H j(G/B,O−λ) 6= 0 for some λ, the B–weight
λ is cohomologically finite in the sense of [NRW]. A question we do not answer in the

present paper is whether the cohomological finiteness of λ is sufficient for H j(G/B,O−λ)
to be nonzero.

5. G/P AND PROJECTIVITY

Let P be a parabolic subgroup of G and let B ⊂ P be a Borel subgroup of G. It is easy to
see that every finite–dimensional simple P–module admits a B–highest weight, i.e. is the
limit of the direct system of simple highest weight Pn–modules for an inverse system of



A BOTT–BOREL–WEIL THEOREM FOR DIAGONAL IND–GROUPS 19

Gn–weights λn. Setting λ = lim
←−

λn, we denote by Mλ the simple P–module with highest
weight λ.

Proposition 5.39. Set O(M∗λ) := lim
←−

(OGn/Pn
)(M∗λ), where (OGn/Pn

)(M∗λ) is the usual Gn–

equivariant bundle on Gn/Pn with fibre M∗λ. Then H j(G/P,O(M∗λ)) 6= 0 if and only if

H j(G/B,O−λ) 6= 0, and in that case

H j(G/P,O(M∗λ)) = H j(G/B,O−λ) ∼= VB(w · λ)∗,

where w ∈WB and w · λ ∈ P+
B .

Proof. It is easy to see that O(M∗λ)
∼= pr∗O−λ, pr : G/B→ G/P being the natural submer-

sion. Moreover, the fibre of pr equals P/B = lim
−→

Pn/Bn, hence the classical Bott–Borel–

Weil theorem implies Ri pr∗OG/P = 0 for i > 0 and pr∗OG/P = OG/B. This is sufficient to
conclude that

H j(G/P,O(M∗λ)) = H j(G/B,O−λ)

for any j ∈ Z≥0. The isomorphism H j(G/B,O−λ) ∼= VB(w · λ)∗ is established in Theorem
4.27. �

We conclude this paper by discussing the projectivity of the ind–varieties G/B and G/P.
Recall that an ind–variety X is projective, i.e. admits an embedding in the projective ind–
space P∞, if and only if it admits a very ample line bundle L. An explicit criterion for the
projectivity of G/B (and, more generally, of G/P) when G is root reductive is proved in
[DPW].

For diagonal ind–groups we have the following.

Corollary 5.40. Let G a diagonal ind–group and B be a Borel subgroup of G. Then if G/B is
projective, G is necessarily root reductive.

Proof. If ι : G/B → P∞ is a closed immersion then L := ι∗(OP∞(1)) is a very ample line
bundle on G/B. In other words, L|Gn/Bn

is very ample for each n. Since Gn is simply–

connected for each n, L|Gn/Bn
∼= (OGn/Bn

)−λn for some strictly dominant weight λn of
Gn. The weights λn form an inverse system and hence define a strictly dominant weight
λ = lim
←−

λn of G. By Proposition 2.16 (iii) G is root reductive. �

The following example shows that G/P may be projective even if G is not root reduc-
tive.

Example 5.41. Let G = SL(2∞) and Pn be the stabilizer of the span of the first i standard

basis vectors in C2n
. Then lim

−→
Pn is a well–defined maximal parabolic subgroup of G,

and it is easy to see that G/P is isomorphic to the ind–Grassmannian of i–dimensional
subspaces of C∞. The latter is clearly projective.
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