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Abstract. We show by explicit examples that in many degrees in a stable range the
homotopy groups of the moduli spaces of Riemannian metrics of positive scalar curvature
on closed smooth manifolds can be non-trivial. This is achieved by further developing and
then applying a family version of the surgery construction of Gromov-Lawson to certain
nonlinear smooth sphere bundles constructed by Hatcher.

As described, this works for all manifolds of suitable dimension and for the quotient of
the space of metrics of positive scalar curvature by the (free) action of the subgroup of
diffeomorphisms which fix a point and its tangent space.

We also construct special manifolds with positive scalar curvature where the quotient
of the space of metrics of positive scalar curvature by the full diffeomorphism group has
non-trivial higher homotopy groups.

1. Introduction

1.1. Motivation. Let M be a closed smooth manifold. In this article we study the topol-
ogy of the space of metrics of positive scalar curvature Riem+(M) and of corresponding
moduli spaces. We abbreviate “metric of positive scalar curvature” by “psc-metric”.

It has been known for a long time that there are quite a few obstructions to the existence
of psc-metrics. This starts in dimension 2, where the Gauß-Bonnet theorem tells us that
only the sphere and RP 2 admit such a metric. In general the Lichnerowicz formula in
combination with the Atiyah-Singer index theorem implies that if M is a spin manifold
and admits a psc-metric, then the Â-genus of M is zero. The Gromov-Lawson-Rosenberg
conjecture [27] was an attempt to completely characterize those spin manifolds admitting
psc-metrics. It was later disproved in [28].

In spite of the complicated picture for general manifolds, the existence question has been
resolved completely for simply connected manifolds M of dimension at least five. Gromov
and Lawson proved in [14] that if M is not spin, then there is no obstruction and M admits
a psc-metric. Assuming that M is spin, Stolz [29] proved that the only obstruction is the
KO -valued index of the Dirac operator on M .

If M admits a psc-metric, one can go on and investigate the topology of Riem+(M),
the space of psc-metrics on M equipped with the the C∞ -topology. Note that Diff(M),
the diffeomorphism group of M , acts on Riem+(M) via pull-back, and so it is even more
natural to study the moduli space Riem+(M)/Diff(M).
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In the spin case index theoretic methods were used to show that the spaces Riem+(M)
and Riem+(M)/Diff(M) have infinitely many components in many cases, see e.g. the work
of Gromov-Lawson [15] or Lawson-Michelsohn [23] or, for more refined versions, the papers
[6, 24, 26]. If M is simply connected, this applies to the case when dim(M) ≡ 1 (mod 4).

Hitchin observed in his thesis [17, Theorem 4.7] that sometimes, in the spin case, non-zero
elements in the homotopy groups of Diff(M) yield, via the action of Diff(M) on Riem+(M),
non-zero elements in the homotopy groups of Riem+(M). More precisely, he proves this
way that π0(Riem+(Mn)) is non-trivial for n ≡ −1, 0, 1 (mod 8) and π1(Riem+(Mn)) is
non-trivial for n ≡ −1, 0 (mod 8).

Contrasting these positive results, it has been an open problem to decide whether
πk(Riem+(M)) for k > 1 or πk(Riem+(M)/Diff(M)) for k > 0 can be non-trivial. Note
that, by construction, Hitchin’s elements in πk(Riem+(Sn)), k = 0, 1, are mapped to zero
in the moduli space Riem+(M)/Diff(M). Some experts even raised the suspicion that the
components of this moduli space are always contractible.

1.2. Moduli spaces of psc-metrics. In this paper we will construct many examples of
non-zero elements in higher homotopy groups of moduli spaces of psc-metrics on closed
smooth manifolds M . We denote by Riem(M) the space of all Riemannian metrics with
the C∞ -topology. The group of diffeomorphisms Diff(M) acts from the right on the space
Riem(M) by pull-back: (g, φ) 7→ φ∗(g). The orbit space of this action is the moduli
space of Riemannian metrics on M and written M(M). The orbit space M+(M) of the
restricted Diff(M)-action on the subspace Riem+(M) of psc-metrics, the moduli space of
Riemannian metrics of positive scalar curvature on M , is our principal object of interest.

In general the action of the full diffeomorphism group is not free on Riem(M): For
example, if a finite group G acts effectively on M (i.e. if G occurs as a finite subgroup
of Diff(M)), then any metric on M can be averaged over G , and the resulting metric will
be fixed by G . Therefore we also consider the moduli spaces with observer as proposed by
Akutagawa and Botvinnik [2].

1.1. Definition. Let (M,x0) be a connected closed smooth manifold with some basepoint
x0 . Let Diffx0(M) be the subgroup of Diff(M) of those diffeomorphisms which fix x0 and
induce the identity on the tangent space Tx0M . This is the group of diffeomorphisms which
preserve an observer based at x0 .

1.2. Lemma. If (M,x0) is a connected smooth closed manifold with a basepoint x0 then
Diffx0(M) acts freely on the space Riem(M) of Riemannian metrics on M .

Proof. This lemma is well known, compare e.g. [7, Proposition IV.5]. For convenience we
recall the proof. Assume g is a Riemannian metric on M , φ ∈ Diffx0(M) and φ∗g = g .
This means that the map φ is an isometry of (M, g). As x0 and Tx0M are fixed by φ , so
are all geodesics emanating from x0 (pointwise). Since M is closed and connected, every
point lies on such a geodesic, so φ is the identity. �

In the following we equip Diff(M) and Diffx0(M) with the C∞ -topologies. LetMx0(M) =
Riem(M)/Diffx0(M). We call Mx0(M) the observer moduli space of Riemannian metrics
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on M . Since the space Riem(M) is contractible and the action of Diffx0(M) on Riem(M)
is proper (see [10]), Lemma 1.2 implies that the orbit space Mx0(M) is homotopy equiva-
lent to the classifying space BDiffx0(M) of the group Diffx0(M). In particular one obtains
a Diffx0(M)-principal fiber bundle

(1.3) Diffx0(M)→ Riem(M)→Mx0(M).

This yields isomorphisms of homotopy groups

πqMx0(M) = πqBDiffx0(M) ∼= πq−1Diffx0(M), q ≥ 1.

Now we restrict the action of Diffx0(M) to the subspace Riem+(M) of psc-metrics. Clearly
this action is free as well. We call the orbit space

M+
x0

(M) := Riem+(M)/Diffx0(M)

the observer moduli space of psc-metrics. Again we obtain a Diffx0(M)-principal fiber
bundle

(1.4) Diffx0(M)→ Riem+(M)→M+
x0

(M) .

The inclusion Riem+(M) ↪→ Riem(M) induces inclusions of moduli spaces M+(M) ↪→
M(M) and M+

x0
(M) ↪→Mx0(M). We collect our observations in the following lemma.

1.5. Lemma. Let M be a connected closed manifold and x0 ∈M . Then

(1) there is the following commutative diagram of principal Diffx0(M)-fibrations

(1.6)

Riem+(M) Riem(M)

M+
x0

(M) Mx0(M)

?

-

?
-

(2) the observer moduli space Mx0(M) of Riemannian metrics on M is homotopy
equivalent to the classifying space BDiffx0(M);

(3) there is a homotopy fibration

(1.7) Riem+(M)→M+
x0

(M)→Mx0(M).

The constructions of Hitchin [17] use certain non-zero elements in πkDiff(M) and push
them forward to the space Riem+(M) via the first map in (1.4). It is then shown that
these elements are non-zero in πkRiem+(M) (for k = 0, 1).

Our main method will be similar, but starting from the fiber sequence (1.7). We will show
that certain non-zero elements of πkBDiffx0(M) = πkMx0(M) can be lifted to M+

x0
(M).

Once such lifts have been constructed, it is immediate that they represent non-zero elements
in πkM+

x0
(M) as their images are non-zero in πkMx0(M).
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1.3. The results. We start from the particular manifold M = Sn . Let x0 ∈ Sn be a base
point. Then the group Diffx0(S

n) is homotopy equivalent to the group Diff(Dn, ∂Dn) of
diffeomorphisms of the disk Dn which restrict to the identity on the boundary ∂Dn . These
groups and their classifying spaces have been studied extensively. In particular the rational
homotopy groups πqBDiffx0(S

n) ⊗ Q are known from algebraic K -theory computations
and Waldhausen K -theory in a stable range.

1.8. Theorem. (Farrell and Hsiang [11]) Let 0 < k � n. Then

πkBDiffx0(S
n)⊗Q =

{
Q if n odd, k = 4q,
0 else.

Here and in later places the shorthand notation k � n means that for fixed k there is
an N ∈ N so that the statement is true for all n ≥ N .

Consider the inclusion map ι :M+
x0

(Sn)→Mx0(S
n) = BDiffx0(S

n) and the correspond-
ing homomorphism of homotopy groups:

ι∗ : πkM+
x0

(Sn)→ πkMx0(S
n).

Here is our first main result.

1.9. Theorem. The homomorphism

ι∗ ⊗Q : πkM+
x0

(Sn)⊗Q→ πkMx0(S
n)⊗Q

is an epimorphism for 0 < k � n. In particular, the groups πkM+
x0

(Sn) are non-trivial
for odd n and 0 < k = 4q � n.

Theorem 1.8 is essentially an existence theorem and does not directly lead to a geometric
interpretation of the generators of πkBDiffx0(S

n)⊗Q . This was achieved later in the work
of Bökstedt [5] and Igusa [18, 20] based on a construction of certain smooth nonlinear disk
and sphere bundles over Sk due to Hatcher. The non-triviality of some of these bundles is
detected by the non-vanishing of a higher Franz-Reidemeister torsion invariant.

Recall from [18, 19, 20] that for any closed smooth manifold M there are universal
higher Franz-Reidemeister torsion classes τ2q ∈ H4q(B Torr(M); Q), where Torr(M) ⊂
Diff(M) is the subgroup of diffeomorphisms of M that act trivially on H∗(M ; Q). Note
that Diffx0(S

n) ⊂ Torr(Sn). Furthermore, it is well-known that Torr(Sn) is the subgroup of
Diff(Sn) consisting of orientation preserving diffeomorphisms. In particular, these classes
define characteristic classes for smooth fiber bundles M → E → B over path connected
closed smooth manifolds B with π1(B) acting trivially on H∗(M ; Q). (The last condition
can be weakened to H∗(M ; Q) being a unipotent π1(M)-module [20], but this is not needed
here).

The relevant class τ2q ∈ H4q(S4q; Q) of the Hatcher bundles over S4q with fiber Sn

was computed in [13, 18, 20] and shown to be non-zero, if n is odd. The generators of
πkBDiffx0(S

n) appearing in Theorem 1.8 can be represented by classifying maps Sk →
BDiffx0(S

n) of these Hatcher bundles in this way. In order to prove Theorem 1.9 we
construct families of psc-metrics on these bundles.
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Therefore, in Section 2, we will first study how and under which conditions such con-
structions can be carried out. Assuming that a given smooth bundle admits a fiberwise
Morse function, we use the surgery technique developed by Walsh [30], which generalizes
the Gromov-Lawson construction of psc-metrics via handle decompositions [12, 14] to fam-
ilies of Morse functions, in order to construct families of psc-metrics on this bundle, see
Theorem 2.12. This is the technical heart of the paper at hand. Compared to [30] the
novel point is the generalization of the relevant steps of this construction to nontrivial fiber
bundles.

Then, we will study particular generators of πkBDiffx0(S
n)⊗Q for suitable k and n , as

in Theorem 1.8. To give a better idea how we are going to proceed, recall that the observer
moduli space Mx0(S

n) = BDiffx0(S
n) serves as a classifying space of smooth fiber bundles

with fiber Sn and structure group Diffx0(S
n). We obtain the universal smooth fiber bundle

Sn → Riem(Sn)×Diffx0 (Sn) S
n → Riem(Sn)/Diffx0(S

n) .

In particular, a map f : Sk → BDiffx0(S
n) representing an element α ∈ πkBDiffx0(S

n)
gives rise to a commutative diagram of smooth fiber bundles

(1.10)

E Riem(Sn)×Diffx0 (Sn) S
n

Sk BDiffx0(S
n)

?

-

?
-

f

This shows that a lift of the class α ∈ πkBDiffx0(S
n) to πkM+

x0
(Sn) is nothing but a family

of psc-metrics of positive scalar curvature on the bundle E → Sk from (1.10).
We will explain the precise relationship in Section 3 and show that the construction

described in Section 2 applies to Hatcher’s Sn -bundles. Here we make use of a family of
Morse functions on these bundles as described by Goette [13, Section 5.b]. This will finish
the proof of Theorem 1.9.

Given a closed smooth manifold M of dimension n , we can take the fiberwise connected
sum of the trivial bundle Sk ×M → Sk and Hatcher’s exotic Sn -bundle. Using additivity
of higher torsion invariants [20, Section 3] we obtain non-trivial elements in πkMx0(M) for
given k for any manifold M of odd dimension n as long as k � n .

If in addition M admits a psc-metric, this can be combined with the fiberwise psc-metric
on Hatcher’s Sn -bundle constructed earlier to obtain a fiberwise psc-metric on the resulting
nontrivial M -bundle over Sk . This shows:

1.11. Theorem. Let M be a closed smooth manifold admitting a metric h of positive scalar
curvature. If dimM is odd, then the homotopy groups πk(M+

x0
(M), [h]) are non-trivial for

0 < k = 4q � dimM .

In order to study the homotopy type of the classical moduli space of psc-metrics it remains
to construct examples of manifolds M for which the non-zero elements in πkM+

x0
(M)

constructed in Theorem 1.11 is not mapped to zero under the canonical map πkM+
x0

(M)→
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πkM+(M). This will be done in Section 4 and leads to a proof of the following conclusive
result.

1.12. Theorem. For any d > 0 there exists a closed smooth manifold M admitting a
metric h of positive scalar curvature so that π4q(M+(M), [h]) is non-trivial for 0 < q ≤ d.

1.13. Remark. One should mention that the manifolds we construct in Theorem 1.12 do
not admit a spin structure and are of odd dimension. In particular, the usual methods to
distinguish elements of π0M+(M), which use the index of the Dirac operator, do not apply
to these manifolds, and we have no non-trivial lower bound on the number of components
of M+(M).

1.14. Remark. Finding non-zero elements of πkRiem+(M) for k > 1 remains an open
problem. It would be especially interesting to find examples with non-zero image in
πk(Riem+(M)/Diff(M)), or at least in πk(Riem+(M)/Diffx0(M)).

We expect that a solution of this problem requires a different method than the one
employed in Sections 3 and 4 of our paper.

1.4. Acknowledgement. Boris Botvinnik would like to thank K. Igusa and D. Burghelea
for inspiring discussions on topological and analytical torsion and thank SFB-478 (Ge-
ometrische Strukturen in der Mathematik, Münster, Germany) and IHES for financial sup-
port and hospitality. Mark Walsh also would like to thank SFB-478 for financial support
and hospitality. Thomas Schick was partially supported by the Courant Research Center
“Higher order structures in Mathematics” within the German initiative of excellence.

2. The surgery method in twisted families

The aim of this section is to prove a result on the construction of fiberwise metrcis of
positive scalar curvature on certain smooth fiber bundles. At first we briefly review the
Gromov-Lawson surgery technique [14] on a single manifold. Here we use the approach
developed by Walsh [30, 31].

2.1. Review of the surgery technique on a single manifold. Let W be a compact
manifold with non-empty boundary ∂W and with dimW = n + 1. We assume that the
boundary ∂W is the disjoint union of two manifolds ∂0W and ∂1W both of which come
with collars

(2.1) ∂0W × [0, ε) ⊂ W, ∂1W × (1− ε, 1] ⊂ W,

where ε is taken with respect to some fixed reference metric m on W , see Definition 2.2
below. By a Morse function on W we mean a Morse function f : W → [0, 1] such that

f−1(0) = ∂0W, f−1(1) = ∂1W

and the restriction of f to the collars (2.1) coincides with the projection onto the second
factor

∂0W × [0, ε)→ [0, ε), ∂1W × (1− ε, 1]→ (1− ε, 1].

We denote by Cr(f) the set of critical points of f .
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We say that a Morse function f : W → [0, 1] is admissible if all its critical points have
indices at most (n−2) (where dimW = n+1). We note that the last condition is equivalent
to the “codimension at least three” requirement for the Gromov-Lawson surgery method.
We denote by Morse(W ) and Morseadm(W ) the spaces of Morse functions and admissible
Morse functions, respectively, which we equip with the C∞ -topologies.

2.2. Definition. Let f ∈ Morseadm(W ). A Riemannian metric m on W is compatible with
the Morse function f if for every critical point p ∈ Cr(f) with ind p = λ the positive
and negative eigenspaces TpW

+ and TpW
− of the Hessian d2f are m-orthogonal, and

d2f |TpW+ = m|TpW+ , d2f |TpW− = −m|TpW− .

We notice that for a given Morse function f , the space of compatible metrics is convex.
Thus the space of pairs (f,m), where f ∈ Morseadm(W ), and m is a metric compatible
with f , is homotopy equivalent to the space Morseadm(W ). We call a pair (f,m) as above
an admissible Morse pair. We emphasize that the metric m on W has no relation to the
psc-metrics we are going to construct.

The ideas behind the following theorem go back to Gromov-Lawson [14] and Gajer [12].

2.3. Theorem. [30, Theorem 2.5] Let W be a smooth compact cobordism with ∂W =
M0 tM1 . Assume that g0 is a positive scalar curvature metric on M0 and (f,m) is an
admissible Morse pair on W . Then there is a psc-metric ḡ = ḡ(g0, f,m) on W which
extends g0 and has a product structure near the boundary.

Proof. We will provide here only an outline and refer to [30, Theorem 2.5] for details.
We begin with a few topological observations. For simplicity, we assume for the moment

w

Kq+1
+ (w)

Kp+1
− (w)

Sp
−(w)

Sq
+(w)

N

U

W

M1

M0

Figure 1. Trajectory disks of the critical point w contained inside a disk U

that W is an elementary cobordism, i.e. that f has a single critical point w of index
p + 1. The general case is obtained by repeating the construction for each critical point.
Fix a gradient like vector field for f . Intersecting transversely at w there is a pair of
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trajectory disks Kp+1
− and Kq+1

+ , see Fig. 1. Here the lower (p+ 1)-dimensional disk Kp+1
−

is bounded by an embedded p-sphere Sp− ⊂ M0 . It consists of the union of segments of
integral curves of the gradient vector field beginning at the bounding sphere and ending at
w . Here and below we use the compatible metric m for all gradient vector fields. Similarly,
Kq+1

+ is a (q + 1)-dimensional disk which is bounded by an embedded q -sphere Sq+ ⊂M1 .
The spheres Sp− and Sq+ are known as trajectory spheres associated to the critical point
w . As usual, the sphere Sp− ⊂ M0 is embedded into M0 together with its neighborhood
N = Sp− ×Dq+1 ⊂M0 .

We denote by U the union of all trajectories originating at the neighborhood N , and
notice that U is a disk-shaped neighborhood of Kp+1

− ∪ Kq+1
+ , see Fig. 1. A continuous

shrinking of the radius of N down to zero induces a deformation retraction of U onto
Kp+1
− ∪Kq+1

+ .
Now we consider the complement W \U , which coincides with the union of all trajectories

originating at M0 \N . By assumption none of these trajectories have critical points. We
use the normalized gradient vector field of f to specify a diffeomorphism

ψ : W \ U → (M0 \N)× [0, 1].

Now we construct the metric ḡ . On the region W \U , we define the metric ḡ to be simply
g0|M0\N + dt2 where the t coordinate comes from the embedding ψ above. To extend

standard

t

g1 + dt2

g1 + dt2

transition

transition

transition

transition

g0 + dt2 g0 + dt2

f = c1

f = c1

f = c0 f = c0

Figure 2. The metric ḡ on the disk U

this metric over the region U , we have to do more work. Notice that the boundary of U
decomposes as

∂U = (Sp ×Dq+1) ∪ (Sp × Sq × I) ∪ (Dp+1 × Sq).
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Here Sp×Dq+1 ⊂M0 is of course the tubular neighborhood N while the Dp+1×Sq ⊂M1

piece is a tubular neighborhood of the outward trajectory sphere Sq+ ⊂M1 .
Without loss of generality assume that f(w) = 1

2
. Let c0 and c1 be constants satisfying

0 < c0 <
1
2
< c1 < 1. The level sets f = c0 and f = c1 divide U into three regions:

U0 = f−1([0, c1]) ∩ U,

Uw = f−1([c0, c1]) ∩ U,

U1 = f−1([c1, 1]) ∩ U.
The region U0 is diffeomorphic to N × [0, c1] . We use again the flow to identify U0 with
N × [0, c1] in a way compatible with the identification of W \ U with M0 \N × I . Then,
on U0 , we define ḡ as the product g0|N + dt2 . Moreover, we extend this metric g0|N + dt2

near the Sp × Sq × I part of the boundary, where again t is the trajectory coordinate.
We will now define a family of particularly useful psc-metrics on the disk Dk . For a

detailed discussion see [30].

2.4. Definition. Let δ > 0 and ρδ be a smooth function ρδ : (0,∞) → R satisfying the
following conditions:

(1) ρδ(t) = δ sin ( t
δ
) when t is near 0;

(2) ρδ(t) = δ when t ≥ δ · π
2

;
(3) ρ̈δ(t) ≤ 0.

Clearly such functions ρδ exists, furthermore, the space of functions satisfying (1), (2), (3)
for some δ > 0 is convex. Let r be the standard radial distance function on Rk , and ds2

k−1

be the standard metric on Sk−1 (of radius one). Then the metric dr2 + ρδ(r)
2ds2

k−1 on
(0,∞)×Sk−1 is well-defined on Rk . By restricting this metric to (0, b]×Sk−1 , one obtains
the metric gktor(δ) on Dk . This metric is defined to be a torpedo metric, see Fig. 3.

0 b

Figure 3. A torpedo function and the resulting torpedo metric

2.5. Remark. It is easy to show that the above conditions (1), (2), (3) guarantee that gktor(δ)
has positive scalar curvature. Moreover it is SO(k)-symmetric and is a product with the
standard metric on the (k − 1)-sphere of radius δ near the boundary of Dk and is the
standard metric on the k -sphere of radius δ near the center of the disk. Also one can show
that the scalar curvature of gktor(δ) can be bounded below by an arbitrarily large constant
by choosing δ sufficiently small.
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The most delicate part of the construction, carried out carefully in [30], involves the
following: Inside the region Uw , which is identified with the product Dp+1 × Dq+1 , the
metric smoothly passes into a standard product gp+1

tor (ε) + gq+1
tor (δ) for some appropriately

chosen ε, δ > 0, globally keeping the scalar curvature positive. This is done so that the
induced metric on the level set f−1(c1), denoted g1 , is precisely the metric obtained by
applying the Gromov-Lawson construction to g0 . Furthermore, near f−1(c1) we have
ḡ = g1 + dt2 . Finally, on U1 , which is identified with Dp+1 × Sq × [c1, 1] in the usual
manner, the metric ḡ is simply the product g1 + dt2 . See Fig. 2 for an illustration.

After the choice of the Morse coordinate diffeomorphism with Dp+1 ×Dq+1 (and of the
other parameters like ε and δ ), the construction is explicit and depends continuously on
the given metric g0 on Sp ×Dq+1 .

Later on we will need the following additional facts. The next lemma is proved in [30,
Section 3].

2.6. Lemma. The “initial” transition consists of an isotopy. In particular, g0 is isotopic
to a metric which, on a neighborhood diffeomorphic to Sp×Dq+1 of the surgery sphere Sp−
in M0 , is δ2ds2

p + gq+1
tor (δ).

2.7. Lemma. The whole construction is O(p+ 1)×O(q + 1)-equivariant.

Proof. By construction, the standard product of torpedo metrics even is O(p+1)×O(q+1)-
invariant. It is a matter of carefully going through the construction of the transition metric
in [30] to check that this construction is equivariant for the obvious action of these groups.
This is done in [31, Lemma 2.2]. �

Lemma 2.7 will be of crucial importance later, when in a non-trivial family we cannot
choose globally defined Morse coordinates giving diffeomorphisms to Dp+1 ×Dq+1 (as the
bundle near the critical set is not trivial). We will construct Morse coordinates well defined
up to composition with elements of O(p+1)×O(q+1). The equivariance of Lemma 2.7 then
implies that our construction, which a priori depends on the choice of these coordinates, is
consistent and gives rise to a smooth globally defined family of metrics.

We should emphasize that this construction can be carried out for a tubular neighborhood
N of arbitrarily small radius and for c0 and c1 chosen arbitrarily close to 1

2
. Thus the

region Uw , on which the metric ḡ is not simply a product and is undergoing some kind
of transition, can be made arbitrarily small with respect to the background metric m . As
critical points of a Morse function are isolated, it follows that this construction generalizes
easily to Morse functions with more than one critical point. �

2.2. Extension to families. There is a number of ways to generalize the surgery pro-
cedure to families of manifolds. A construction relevant to our goals leads to families of
Morse functions, or maps with fold singularities. We start with a local description.
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2.8. Definition. A map F : Rk × Rn+1 → Rk × R is called a standard map with a fold
singularity of index λ , if there is a c ∈ R so that f is given as

(2.9)
Rk × Rn+1 −→ Rk × R,

(y, x) 7−→
(
y, c− x2

1 − · · · − x2
λ + x2

λ+1 + · · ·+ x2
n+1

)
.

Roughly speaking, the composition

Rk × Rn+1 F→ Rk × R p2→ R
with the projection p2 onto the second factor defines a Rk -parameterized family of Morse
functions of index λ on Rn+1 in standard form.

Let W be a compact manifold with boundary ∂W 6= ∅ , dimW = n+ 1. We denote by
Diff(W,∂W ) the group of all diffeomorphisms of W which restrict to the identity near the
boundary ∂W . Then we consider a smooth fiber bundle π : E → B with fiber W , where
dimB = k and dimE = n + 1 + k . The structure group of this bundle is assumed to be
Diff(W,∂W ) and the base space B to be a compact smooth manifold. Assume that the
boundary ∂W is split into a disjoint union: ∂W = ∂0W t ∂1W .

Let π0 : E0 → B , π1 : E1 → B be the restriction of the fiber bundle π : E → B to the
fibers ∂0W and ∂1W respectively. Since each element of the structure group Diff(W,∂W )
restricts to the identity near the boundary, the fiber bundles π0 : E0 → B , π1 : E1 → B
are trivialized:

E0 = B × ∂0W
π0−→ B, E1 = B × ∂1W

π1−→ B.

Choose a splitting of the tangent bundle τE of the total space as τE ∼= π∗τB ⊕Vert , where
Vert is the bundle tangent to the fibers W , i.e. choose a connection.

2.10. Definition. Let π : E → B be a smooth bundle as above. For each z in B let

iz : Wz → E

be the inclusion of the fiber Wz := π−1(z). Let F : E → B×I be a smooth map. The map
F is said to be an admissible family of Morse functions or admissible with fold singularities
with respect to π if it satisfies the following conditions:

(1) The diagram

E B × I

B
?

π

-F

���
��� p1

commutes. Here p1 : B × I → B is projection on the first factor.
(2) The pre-images F−1(B × {0}) and F−1(B × {1}) coincide with the submanifolds

E0 and E1 respectively.
(3) The set Cr(F ) ⊂ E of critical points of F is contained in E\(E0∪E1) and near each

critical point of F the bundle π is equivalent to the trivial bundle Rk×Rn+1 p1→ Rk

so that with respect to these coordinates on E and on B the map F is a standard
map Rk × Rn+1 → Rk × R with a fold singularity as in Definition 2.8
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(4) For each z ∈ B the restriction

fz = F |Wz : Wz → {z} × I
p2−→ I

is an admissible Morse function as in Subsection 2.1. In particular, its critical points
have indices ≤ n− 2.

We assume in addition that the smooth bundle π : E → B is a Riemannian submersion
π : (E,mE) → (B,mB), see [4]. Here we denote by mE and mB the metrics on E and
B corresponding to the submersion π . Now let F : E → B × I be an admissible map
with fold singularities with respect to π as in Definition 2.10. If the restriction mz of the
submersion metric mE to each fiber Wz , z ∈ B , is compatible with the Morse function
fz = F |Wz , we say that the metric mE is compatible with the map F .

2.11. Proposition. Let π : E → B be a smooth bundle as above and F : E → B × I be
an admissible map with fold singularities with respect to π . Then the bundle π : E → B
admits the structure of a Riemannian submersion π : (E,mE) → (B,mB) such that the
metric mE is compatible with the map F : E → B × I .

Proof. One can choose a Riemannian metric mB on the base B , and for each fiber Wz

there is a metric mz compatible with the Morse function fz = F |Wz . Using convexity of
the set of compatible metrics and the local triviality in the definition of a family of Morse
functions, we can choose this family to depend continuously on z . Then one can choose
an integrable distribution (sometimes called connection) to construct a submersion metric
mE which is compatible with the map F : E → B × I , see [4]. �

Below we assume that the fiber bundle π : E → B is given the structure of a Riemannian
submersion π : (E,mE) → (B,mB) such that the metric mE is compatible with the map
F : E → B × I .

Consider the critical set Cr(F ) ⊂ E . It follows from the definitions that Cr(F ) is
a smooth k -dimensional submanifold in E , and it splits into a disjoint union of path
components (“folds”)

Cr(F ) = Σ1 t · · · t Σs .

Furthermore, it follows that the restriction of the fiber projection

π|Σj
: Σj −→ B

is a local diffeomorphism for each j = 1, . . . , s . In particular, π|Σj
is a covering map, and

if the base B is simply-connected then π|Σj
is a diffeomorphism onto its image.

Since the metric mE is a submersion metric, the structure group of the vector bundle
Vert → E is reduced to O(n+ 1). Furthermore, since the metrics mz are compatible with
the Morse functions fz = F |Wz , the restriction Vert |Σj

to a fold Σj ⊂ Cr(F ) splits further
orthogonally into the positive and negative eigenspaces of the Hessian of F . Thus the
metric mE induces the splitting of the vector bundle

Vert |Σj
∼= Vert−j ⊕ Vert+

j
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with structure group O(p + 1) × O(q + 1) for each Σj . Here is the main result of this
section:

2.12. Theorem. Let π : E → B be a smooth bundle, where the fiber W is a compact
manifold with boundary ∂W = M0 tM1 , the structure group is Diff(W,∂W ) and the base
space B is a compact smooth simply connected manifold. Let F : E → B × I be an
admissible map with fold singularities with respect to π . In addition, we assume that the
fiber bundle π : E → B is given the structure of a Riemannian submersion π : (E,mE)→
(B,mB) such that the metric mE is compatible with the map F : E → B × I . Finally, we
assume that we are given a smooth map g0 : B → Riem+(M0).

Then there exists a Riemannian metric ḡ = ḡ(g0, F,mE) on E such that for each z ∈ B
the restriction ḡ(z) = ḡ|Wz to the fiber Wz = π−1(z) satisfies the following properties:

(1) ḡ(z) extends g0(z);
(2) ḡ(z) is a product metric gν(z) + dt2 near Mν ⊂ ∂Wz , ν = 0, 1;
(3) ḡ(z) has positive scalar curvature on Wz .

Proof. We assume that B is path-connected. Let dimB = k , dimW = n+ 1. We denote,
as above, Cr(F ) = Σ1 t · · · tΣs, where the Σj is a path-connected fold. For a given point
z ∈ B , we denote by fz = F |Wz : Wz → I the corresponding admissible Morse function.

The metric ḡ will be constructed by a method which is quite similar to that employed
in the proof of Theorem 2.3. We begin by equipping the boundary component E0 with
the given Riemannian metric g0 . We choose a gradient-like vector field V and use the
trajectory flow of V to extend ḡ0 as a product metric away from the folds Cr(F ). Near
the folds Cr(F ), some modification is necessary. However, roughly speaking, the entire
construction goes through in such a way that the restriction to any fiber is the construction
of Theorem 2.3.

We will initially assume that Cr(F ) has exactly one path-connected component Σ. The
more general case will follow from this by iterated application of the construction. We will
denote by c the critical value associated with the fold Σ, i.e. p2 ◦F (Σ) = c ∈ I . Let εc > 0
be small. Let V denote the normalized gradient vector field associated to F and mE which
is well-defined away from the singularities of F . As F has no other critical values, we use
V to specify a diffeomorphism

φ0 : E0 × [0, c− εc] −→ F−1(B × [0, c− εc])
(w, t) 7−→ (hw(t)),

where hw is the integral curve of V beginning at w . In particular, p2 ◦ F ◦ φ0 is the
projection onto [0, c − εc] . As the bundle π0 : E0 → B is trivial, this gives rise to a
diffeomorphism

B ×M0 × [0, c− εc] ∼= F−1(B × [0, c− εc]).
Let ḡc−εc denote the metric obtained on F−1(B × [0, c − εc]) by pulling back, via this
diffeomorphism, the warped product metric mB + g0 + dt2 . In order to extend this metric
past the fold Σ, we must adapt our construction.
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Our next goal is to construct a metric ḡc+εc on F−1(B× [0, c+ εc]), so that on each fiber

π−1(y) ∩ F−1(B × [0, c+ εc])

the induced metric has positive scalar curvature and is a product near the boundary. Fiber-
wise, this is precisely the situation dealt with in Theorem 2.3. However, performing this
over a family of Morse critical points, we must ensure compatibility of our construction
over the entire family. The main problem is that our construction depends on the choice
of “Morse coordinates”, i.e. the diffeomorphism of a neighborhood of the critical point to
Dp+1 ×Dq+1 . Because of the non-triviality of the bundle, a global choice of this kind is in
general not possible. We will normalize the situation in such a way that we choose diffeo-
morphisms up to precomposition with elements of O(p + 1) × O(q + 1) (in some sense a
suitable reduction of the structure group). We then use Lemma 2.7, that the construction
employed is equivariant for this smaller group O(p+ 1)×O(q + 1).

Our strategy actually is to use the fiberwise exponential map for mz at the critical set
as Morse coordinates. Because of the canonical splitting Vert |Σ = Vert− ⊕ Vert+ with
structure group O(p + 1) × O(q + 1) this gives coordinates which are well defined up to
an action of O(p + 1) × O(q + 1) (the choice of orthonormal bases in Vert+ and Vert− ).
However, these coordinates are not Morse coordinates for F . That the metrics mz are
compatible with the Morse function fz only means that this is the case infinitesimally. We
will therefore deform the given Morse function F to a new Morse function F1 for which
our coordinates are Morse coordinates.

We denote by DVertΣ the corresponding disk bundle of radius δ with respect to the
background metric mE . For each w ∈ Σ, we denote by Dw(VertΣ) the fiber of this bundle.
If δ is sufficiently small, the fiberwise exponential map (and local orthonormal bases for
Vert+ and Vert− ) define coordinates Dp+1 ×Dq+1 for neighborhoods of the critical point
in each fiber. We use the exponential map to pull back all structures to Dp+1×Dq+1 and,
abusing notation, denote them in the old way. In particular, the function F is defined on
Dp+1 ×Dq+1 .

Let ρ and r denote the distance to the origin in Dp+1 and Dq+1 , respectively. Then ρ2

and r2 are smooth functions on the image under the fiberwise exponential map of D(VertΣ).
Moreover, define Fstd : DVertΣ → R by Fstd := c− ρ2 + r2 . The compatibility condition on

F and the Taylor expansion theorem imply that F −Fstd = O(
√
r2 + ρ2

3
), i.e. F −Fstd is

cubic in the mz -distance to the origin.
Choose a sufficiently small α > 0 and a smooth cutoff function φα : R→ [0, 1] with

(1) φα(s) = 1 for s < α
(2) φα(s) = 0 for s > 2α
(3) |φ′(s)| ≤ 10/α ∀s ∈ R .

Then Ft := Fstd + (1 − tφα(
√
ρ2 + r2))(F − Fstd) provides a homotopy between F = F0

and F1 of families of Morse functions with the following properties:

(1) Cr(Ft) = Cr(F ) ∀t ∈ [0, 1];
(2) Ft coincides with F outside of a tubular neighborhood of Σ ∀t ∈ [0, 1];
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(3) F1 = Fstd on a sufficiently small neighborhood of the fold Σ in DVertΣ .

Dq+1
w

t

Dp+1
w

DVert+
w

DVert−w

Figure 4. The images of the trajectory disks Dp+1
w and Dq+1

w in DwVert(Σ)
after application of the inverse exponential map

The second and the third condition are evident. For the first, we have to check that we
did not introduce new critical points. Now the gradient of Fstd is easily calculated and its
norm at x is equal to the norm of x . On the other hand, the gradient of

(1− tφ(
√
r2 + ρ2))(F − Fstd)

has two summands:

(1) (1−tφ(
√
r2 + ρ2))∇(F−F ′) where (1−tφ) is bounded and ∇(F−F ′) is quadratic

in the distance to the origin (as F − F ′ has a Taylor expansion which starts with
cubic terms).

(2) tφ′(
√
r2 + ρ2)∇(

√
r2 + ρ2)(F − F ′). This vanishes identically if r2 + ρ2 ≤ α2 , and

is bounded by 10(F −F ′)/α0 ≤ 10(F −F ′)/
√
r2 + ρ2 if r2 + ρ2 ≥ α2 (here we use

that the gradient of the distance to the origin
√
r2 + ρ2 has norm 1). Since F −F ′

is cubic in
√
r2 + ρ2 , the whole expression is quadratic.

It follows that, if α is chosen small enough (there is a uniform bound because we deal
with a compact family, so we find uniform bounds for the implicit constants in the above
estimates), the gradient of Ft vanishes exactly at the origin. Near the origin, by the choice
of φ , Ft = tFstd + (1 − t)F . Because the Hessians of F and of Fstd are identical at the
origin, the Hessian of Ft also coincides with the Hessian of Fstd , in particular Ft is a family
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of Morse functions. To find the required local Morse coordinates, we can invoke Igusa’s
[18, Theorem 1.4].

Thus we can assume that the map F is standard near the fold Σ, i.e. F = F1 in the first
place, and from now on we will do so. Now, via the fiberwise exponential map for mπ(w) ,

DVert−w = Dp+1
w

DVert+
w = Dq+1

w

Figure 5. The shaded region denotes the region of the fiber DwVert(F ) on
which the induced metric is defined.

for each w ∈ Σ we can specify a neighborhood Uw ⊂ π−1(π(w)) containing the point w
and of the type described in the proof of Theorem 2.3. In Figures 4 and 5, the image of
this region under the inverse exponential map, before and after the above adjustment of
F , is shown. For each w ∈ Σ, replace the fiber DwVertΣ with the image under the inverse
exponential map of Uw . Abusing notation we will retain the name DVertΣ for this bundle,
the fibers of which should be thought of as the cross-shaped region described in Fig. 5.

The structure group of this bundle is still O(p+1)×O(q+1). The metric induced by ḡc−εc
is defined on a subbundle with fibers diffeomorphic to Sp×Dq+1×I , see Figure 5. On each
fiber we now perform the construction from Theorem 2.3. The fact that we adjusted F to
make the trajectories standard on the fiber disk guarantees consistency of the construction.
On each fiber there is a splitting into positive and negative eigenspaces over which we
will perform our construction. We must however, choose a pair of orthonormal bases for
the negative and positive eigenspaces of that fiber in order to appropriately identify the
fiber with Euclidean space. In order to guarantee consistency we must ensure that our
construction is independent of these choices. But this follows from Lemma 2.7.

Extending the metric fiberwise in the manner of Theorem 2.3 and pulling back via the
exponential map, gives a smooth family of fiber metrics, which, with respect to some
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integrable distribution H and the base metric mB , combine to the desired submersion
metric on F−1(B × [0, c+ δc]). �

2.13. Remark. With some little extra care it should be possible to remove the condition
that B is simply connected in Theorem 2.12. However, we are only interested in the case
B = Sn with n > 1 so that, for our purpose, we can stick to the simpler version as stated.

3. Metrics of positive scalar curvature on Hatcher’s examples

The work of Goette [13, Section 5.b] shows that Hatcher’s examples can be given the
structure which is described in Definition 2.10. The construction of the Hatcher bundles
Dn → E → Sk is explained in some detail in [13] and will not be repeated here. Most
important for our discussion is the fact that each of these bundles comes with an admissible
family F of Morse functions as indicated in the following commutative diagram:

(3.1)

Dn
z E Sk × [0, 1/2]

Sk

-iz

?
π

-
F=(φ,f)

����� p1

We follow the description given in [13]. Each fz := f |Ez : Dn
z → [0, 1/2] has three critical

points p
(0)
z , p

(1)
z and p

(2)
z . In particular, the points p

(0)
z form a unique fiberwise minimum

of the Morse functions fz with value 0, and F−1(Sk ×{0}) has a neighborhood F−1(Sk ×
[0, 1/8]) which (as a smooth bundle) is diffeomorphic to Dn×Sk . Near the value 1/2, the
inverse image F−1(Sk ×{1/2}) has a neighborhood diffeomorphic to (Sn−1× I)× Sk . We
now consider the upside-down copy of the bundle (3.1):

(3.2)

Dn
z E∗ Sk × [1/2, 1]

Sk

-iz

?
π

-F
∗

�
����� p1

Here E∗ := E and F ∗(e) := (π(e), 1−fπ(e)(e)), i.e. f ∗z = 1−fz , where we write F = (φ, f).

It follows that each f ∗z : Dn → [1/2, 1] has three critical points p
(∗0)
z , p

(∗1)
z and p

(∗2)
z . In

particular, the points p
(∗0)
z form a unique fiberwise maximum of the Morse functions f ∗z

with value 1, and (F ∗)−1(Sk×{0}) has a neighborhood (F ∗)−1(Sk× [7/8, 1]) which (as a
smooth bundle) is again diffeomorphic to Dn × Sk . Near the value 1/2, the inverse image
(F ∗)−1(Sk × {1/2}) again has a neighborhood diffeomorphic to (Sn−1 × I)× Sk .

By cutting out the neighborhood Dn × Sk of the fiberwise minima of F , we obtain a
smooth bundle

(3.3)

(Sn−1 × [1/8, 1/2])z E1 Sk × [1/8, 1/2]

Sk

-iz

?
π

-F1

���
����

p1
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where E1 := E \ F−1(Sk × [0, 1/8)), F1 := F |E1 , and the spheres Sn−1 in the product

Sn−1 × Sk = F−1(Sk × {1/8})
are given the standard metric g0 of fixed (but arbitrary) radius b independent of z ∈ Sk .
The bundle (3.3) satisfies all the assumptions of Theorem 2.12, and we obtain psc-metrics
gz on each fiber (Sn−1×[1/8, 1/2])z with a product-metric near the boundary. In particular,
this gives a family of metrics (g1)z on the spheres Sn−1

z × {1/2} .
Now we apply the same construction to the upside-down copy E∗ to obtain a smooth

bundle E∗1 with fibers (Sn−1 × [1/2, 7/8])z . To make sure that the metrics match, we set
g∗z := gz , i.e. we use the same metric upside-down.

Because our construction provides metrics which are products near the boundary, we

can glue together the bundles E1 and E∗1 to form a bundle Ẽ → Sk with fiber (Sn−1 ×
[1/8, 7/8])z together with a smooth family of psc-metrics. We notice that the restriction of

the bundle Ẽ to the boundaries

(Sn−1 × {1/8, 7/8})z = ∂(Sn−1 × [1/8, 7/8])z

is trivial by construction, and the spheres Sn−1×{1/8, 7/8} are given the standard metric
independent of the fiber. Thus we can glue the fiberwise caps (Dn

0 t Dn
1 )z to the bundle

Ẽ → Sk by identifying

(Dn
0 )z ⊃ Sn−1

z = (Sn−1 × {1/8})z ,

(Dn
1 )z ⊃ Sn−1

z = (Sn−1 × {7/8})z .
Then we define the torpedo metrics gtor(r) on the disks (Dn

0 )z and (Dn
0 )z such that they

match the chosen standard metric of radius b on the boundary spheres. We denote the
resulting metric on the fiber sphere Snz by gz . Let E → Sk be the resulting fiber bundle
with fiber Sn .

Let us investigate what we have achieved: for each z ∈ Sk we get a psc-metric on the fiber
Snz over z . This is a manifold diffeomorphic to Sn , but not with a given diffeomorphism.
Hence this metric defines a point in the moduli space of pcs-metrics on Sn . Finally, there is
a base point z0 ∈ Sn together with a fixed neighborhood on which all these diffeomorphisms
restrict to the identity. This implies that in fact we get an element in πkM+

x0
(Sn). The

map
ι :M+

x0
(Sn) −→Mx0(S

n) = BDiffx0(S
n)

forgets the fiberwise Riemannian metrics and just remembers the structure of E as a
smooth bundle. Because for odd n the generators of πkM+

x0
(Sn)⊗Q can in a stable range

be represented by classifying maps of Hatcher bundles [5, 18, 13] we have proved our first
main result, Theorem 1.9.

To prove our second main result, Theorem 1.11, for a general manifold M , we use the
above fiber bundles to form non-trivial bundles by taking a fiberwise connected sum M#Sn .

Let M be a smooth manifold with a base point x0 . We assume that M is equipped with
a psc-metric h . We fix a disk Dn

0 ⊂ M of small radius centered at x0 . We may always
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deform the metric h near x0 such that its restriction on Dn
0 is a torpedo metric gtor(r)

(use e.g. Lemma 2.6 and thinking of the given disk as one half of a tubular neighborhood
of an embedded S0 ). Thus we will assume that the metric h already has this property.

On the other hand, we consider the bundle E → Sk with with psc-metrics gz on the
fibers Snz , z ∈ Sk , as constructed before. We notice that the metrics gz are chosen in such
way that their restrictions to the disks (Dn

0 )z and (Dn
1 )z are torpedo metrics (with chosen

parameter). Let

D̃n
z = Snz \ (Dn

1 )z.

This is a disk together with the metric g̃z = gz|gDn
z

which is a product-metric g0 +dt2 near

the boundary Sn−1
z ⊂ D̃n

z . Now for each z ∈ Sk we define the Riemannian manifold

Mz = M#(Sn)z = (M \D0) ∪Sn−1
z

D̃n
z

equipped with the metric h̃z so that

h̃z|M\D0 = h|M\D0 , h̃z|Dn
z

= g̃z.

This defines a smooth fiber bundle

Ẽ = (M × Sk)#E −→ Sk,

where (M ×Sk)#E is the total space of the fiber-wise connected sum as we just described.
It follows from the additivity property [20, Section 3.1] that the higher Franz-Reidemeister

torsion of the fiber bundle Ẽ → Sk is a non-zero class in Hk(Sk; Q). This implies that the
classifying map

Sk → BDiffx0(M) =Mx0(M)

of this bundle defines a non-zero element in πk(Mx0(M); [h̃]). Since we have constructed

psc-metrics on the fibers Mz , this non-zero element can be lifted to πk(M+
x0

(M), [h̃]). This
finishes the proof of Theorem 1.11.

4. Homotopy type of the usual psc-moduli space

In this section, we show that for a suitable choice of M as in Theorem 1.11, the map
M+

x0
(M)→M+(M) is non-trivial on πk .

For a closed smooth manifold M let AH(M) be the image of the canonical map Diff(M)→
Aut(H∗(M ; Q)).

4.1. Lemma. For any N ≥ 0 there is is a closed smooth orientable manifold M of dimen-
sion n with the following properties.

(1) n is odd and n ≥ N .
(2) M carries a psc-metric.
(3) Each S1 -action on M is trivial.
(4) AH(M) is finite.
(5) Each diffeomorphism of M is orientation preserving.
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Before we explain the construction of M , we show how Theorem 1.12 follows.
Let d > 0 be given and choose N so that Theorem 1.9 holds for all n ≥ N and all

k = 4q ≤ d . For k = 4q ≤ d we consider the fibration

M → E → Sk

constructed at the end of Section 3. By construction this fibration is classified by a map
f : Sk → BG , where G := Torr(M) ∩ Diffx0(M). Because the higher Franz-Reidemeister
torsion of this bundle is a non-zero element in Hk(Sk; Q), the fundamental class of Sk

is mapped to a non-zero element in Hk(BG; Q) and then further to a non-zero element
c ∈ Hk(B Torr(M); Q).

Let φ : M →M be a diffeomorphism. Then φ is orientation preserving by assumption.
Because Torr(M) is normal in Diff(M), the map φ induces a map φ : B Torr(M) →
B Torr(M), where we think of B Torr(M) as EDiff(M)/Torr(M).

4.2. Lemma. φ∗(c) = c.

Proof. The map φ is induced my the group homomorphism Torr(M)→ Torr(M) given by
conjugation with φ . By construction, E is classified by a map Sk → BDiffx0(M,M −D)
where D ⊂ M is a small embedded disc around the base point x0 ∈ M . Note that
Diffx0(M,M −D) can be regarded as a subgroup of Torr(M). The map φ is isotopic to a
diffeomorphism fixing D . Conjugation by this element induces the identity homomorphism
on the subgroup Diffx0(M,M −D) ⊂ Torr(M). �

We conclude that the finite group AH(M) = Diff(M)/Torr(M) acts freely on the space
EDiff(M)/Torr(M) = B Torr(M) with quotient EDiff(M)/Diff(M) = BDiff(M) and fixes
c ∈ H∗(B Torr(M); Q). A transfer argument implies that c is mapped to a nonzero class
in H∗(BDiff(M); Q) under the canonical map B Torr(M)→ BDiff(M).

Theorem 1.12 now follows from the observation that this class lies in the image of the
Hurewicz map, from the commutativity of the diagram

Riem+(M)/G //

��

Riem(M)/G

��

Riem(M)×G EDiff(M)=BG

��
Riem+(M)/ Torr(M) //

��

Riem(M)/ Torr(M)

��

Riem(M)×Torr(M)EDiff(M)=B Torr(M)

��

oo

Riem+(M)/Diff(M) // Riem(M)/Diff(M) Riem(M)×Diff(M)EDiff(M)=BDiff(M)
µoo

and from the following lemma.

4.3. Lemma. Assume that γ ∈ πk(BDiff(M)) is not in the kernel of the Hurewicz map

πk(BDiff(M))→ Hk(BDiff(M); Q).

Then the canonical map

µ : BDiff(M) = Riem(M)×Diff(M) EDiff(M)→ Riem(M)/Diff(M) ,
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sends γ to a non-zero element in πk(Riem(M)/Diff(M)).

Proof. For [g] ∈ Riem(M)/Diff(M) the preimage µ−1([g]) = (g ·Diff(M))×Diff(M)EDiff(M)
is homeomorphic to B(Diff(M)g), where Diff(M)g is the isotropy group of g ∈ Riem(M).
Furthermore, by the existence of a local slice through g for the action of Diff(M) on
Riem(M), which can be assumed to be Diff(M)g -linear, see for example [7, Section II.13.],
each neighborhood of [g] ∈ Riem(M)/Diff(M) contains an open neighborhood U so that
µ−1(U) retracts to µ−1([g]). In particular, the Leray sheaf H∗(µ) for µ , cf. [8, IV.4], is
constant and equal to Q in degree 0 and equal to 0 in all other degrees. Here we use the
Myers-Steenrod theorem [25] which says that Diff(M)g is a compact Lie group and hence
finite as S1 can act only trivially on M . This implies that the reduced sheaf theoretic

cohomology H̃∗sh(BDiff(M)g; Q) = 0 for all g ∈ Riem(M) by the usual transfer argument
[8, II.19.] for sheaf theoretic cohomology.

We conclude that the cohomological Leray spectral sequence (see e.g. [8, IV.6])

Ep,q
2 = Hp

sh(Riem(M)/Diff(M);Hq(µ))⇒ Hp+q
sh (BDiff(M); Q)

collapses at the E2 -level. From this it follows that the map µ induces an isomorphism in
sheaf theoretic cohomology with rational coefficients.

In order to derive the statement of the lemma, note that up to homotopy equivalence
the space BDiff(M) can be assumed to be a paracompact Fréchet manifold [22, Section
44.21], in particular to be locally contractible. This and the homotopy invariance of sheaf
theoretic cohomology [8, Theorem II.11.12] imply by [8, Theorem III.1.1.] that there is a
canonical isomorphism

H∗sh(BDiff(M); Q) ∼= H∗sing(BDiff(M); Q)

of sheaf theoretic and singular cohomology.
Let γ be represented by a map Sk → BDiff(M) and consider the composition

Sk → BDiff(M)→ Riem(M)/Diff(M) .

We have shown above that there is a class in Hk
sh(Riem(M)/Diff(M); Q) whose pull-back

under this composition evaluates non-zero on the singular fundamental class of Sk (after
identifying Hk

sh(S
k; Q) = Hk

sing(S
k; Q)). This implies that this composition cannot be

homotopic to a constant map. �

It remains to construct the manifold M in Lemma 4.1.
Let n ≥ 3 be a natural number. According to Mostow rigidity the isometry group

of a closed hyperbolic n-manifold M is isomorphic to the outer automorphism group
Out(π1(M)). In [1, Theorem 1.1.] a closed hyperbolic n-manifold Mn with trivial isometry
group is constructed. In the notation of loc. cit., Mn is defined as a quotient Hn/B of
hyperbolic n-space by a discrete subgroup of Isom(Hn) which, according to Section 2.3.
and Remark 6.3. in loc. cit., can be assumed to consist only of orientation preserving
isometries of Hn . In particular, we can assume that Mn is orientable. Summarizing, we
have
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4.4. Lemma. For each n ≥ 3, there is an orientable closed hyperbolic (hence aspherical)
n-manifold Bn so that Out(π1(Bn)) = 1.

Next, let k ≥ 2 be a natural number. We construct an orientable 4k -dimensional
manifold N as follows.

Recall the Moore space M(Z/2, 2) = S2 ∪φ D3 where φ : ∂D3 → S2 is of degree 2. Its
reduced integral homology is concentrated in degree 2 and isomorphic to Z/2. Let S2 →
B SO(3k) represent a generator of π2(B SO(3k)) = Z/2. This map can be extended to a
map M(Z/2, 2) → B SO(3k) which then induces an isomorphism H2(B SO(3k); Z/2) ∼=
H2(M(Z/2, 2); Z/2) of groups that are isomorphic to Z/2. By pulling back the uni-
versal bundle over B SO(3k) we obtain a Euclidean vector bundle X → M(Z/2, 2) of
rank 3k which is orientable, but not spin. At this point we note that the generator
of H2(B SO(3k); Z/2) is the second Stiefel-Whitney class of the universal bundle over
B SO(3k).

In this discussion we can replace M(Z/2, 2) by a homotopy equivalent finite 3-dimensional
simplicial complex, which we denote by the same symbol. If k is chosen large enough then
M(Z/2, 2) can be embedded as subcomplex in Rk+1 . We consider a regular neighborhood
R ⊂ Rk+1 of this subcomplex. This is an compact oriented submanifold of Rk+1 with
boundary which contains M(Z/2, 2) as a deformation retract. By definition ∂R is an ori-
ented closed smooth manifold of dimension k . Furthermore, because R has the rational
homology of a point, Poincaré duality and the long exact homology sequence for the pair
(R, ∂R) show that ∂R is a rational homology sphere. Let E → ∂R be the restriction of
the pull back over R of the vector bundle X → M(Z/2, 2). If k is chosen large enough,
then H2(R; Z/2)→ H2(∂R; Z/2) is an isomorphism and hence E is not spin.

Let DE be the disc bundle of E and let P be the oriented double of DE . The manifold
P is the total space of an oriented S3k bundle over ∂R with vanishing Euler class (the
latter for dimension reasons). Hence the rational homology of P is concentrated in degrees
0, k , 3k and 4k and isomorphic to Q in these degrees. Furthermore, the manifold P is
orientable, but not spin. The latter holds, because the tangent bundle of DE restricted
to ∂R splits as a direct sum T (∂R) ⊕ E and the bundle T (∂R) is stably trivial, since it
becomes trivial after adding a trivial real bundle of rank 1.

Because P is simply connected by construction, the Hurewicz theorem modulo the Serre
class of finite abelian groups shows that P has finite homotopy groups up to degree k− 1.

If we additionally assume that k is odd, then the only possibly non-zero Pontrijagin class
of P lives in degree 4k , hence the Â-genus of P is a multiple of the signature of P and
thus equal to 0.

There is a 4k -dimensional oriented closed smooth manifold Q , given by a Milnor E8 -
plumbing construction [21], which is (2k − 1)-connected and whose intersection form on
H2k(Q; Z) is a direct sum of copies of the positive definite lattice E8 , hence itself a positive
definite lattice. In particular, the signature of M is non-zero. The first non-zero Pontrijagin
class is pk(Q) ∈ H4k(Q; Z), which is non-zero by the signature theorem. In particular the

Â-genus of Q is nonzero.
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For later use we recall that positive definite lattices have finite automorphism groups:
Given such a lattice E choose a bounded ball D around 0 which contains a set of generators.
Because E is finitely generated and positive definite, D is finite. Now observe that each
automorphism E permutes the points in D and is uniquely determined by this permutation.

We finally define the oriented manifold N4k := P]Q as the connected sum of P and Q .

4.5. Lemma. For each odd n > 0 and each (sufficiently large and odd) k > n, the manifold
M := Bn ×N4k has all the properties described in Proposition 4.1.

Proof. The dimension of M is odd and can be chosen arbitrarily large.
The manifold N is simply connected, of dimension at least 5 (if k is large enough) and

not spin. It therefore carries a metric of positive scalar curvature [14] and the same is then
true for the product Bn ×N4k .

Because B is aspherical and N is simply connected, we can regard the projection p1 :
M = B × N → B onto the first factor as the classifying map of the universal cover
of M . By construction, the manifold M has finite π2 and π4 and the higher Â-genus
〈A(M)∪ φ∗(c), [M ]〉 associated to the fundamental class c ∈ Hn(B; Q) = Hn(Bπ1(M); Q)
is nonzero. Because the group π1(B) is the fundamental group of a hyperbolic manifold, it
is torsion free and does not contain Z2 as a subgroup (the latter by Preissman’s theorem).
This implies that the image of any homomorphism Z → center(π1(M)) is trivial. We
can therefore apply [16, Theorem 4.1.] to conclude that M does not carry any effective
S1 -action.

We now show that AH ⊂ Aut(H∗(M ; Q)) is finite. Let f : M →M be a diffeomorphism.
Up to homotopy we can assume that f fixes a base point x0 so that we get an induced
automorphism f∗ : π1(M,x0)→ π1(M,x0) and together with the classifying map p1 : M →
B a homotopy commutative diagram

M //

f
��

B

Bf∗
��

M // B

Because the automorphism f∗ : π1(M) → π1(M) must be inner by our choice of B , the
right hand vertical map induces the identity in rational cohomology. The classifying map
φ : M → B being an isomorphism in rational cohomology up to degree n (because k > n),
we see that f ∗ preserves the subspace p∗1(H∗(B; Q)) ⊂ H∗(M ; Q) and acts as the identity
on this subspace.

Up to a homotopy equivalence M̃ → N , the universal cover π : M̃ → B × N can be
identified with the inclusion N = {∗}×N ↪→ B×N (i.e. the corresponding triangle diagram
commutes). This holds because B is aspherical and N is simply connected. Hence, because
the inclusion N ↪→ B×N has a left inverse (take the projection p2 : B×N → N ), the map

π identifies H∗(M̃ ; Q) with the subspace p∗2(H∗(N ; Q)) ⊂ H∗(B×N ; Q). Since f induces

a map M̃ → M̃ (albeit not a map N → N ), f ∗ preserves this subspace. The induced map

on H∗(M̃ ; Z) defines an automorphism of the lattice H2k(M̃ ; Z) = H2k(Q; Z). Because this
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lattice is positive definite, the map f can induce only finitely many self maps of H2k(M̃ ; Q).

The remaining nonzero rational cohomology of M̃ is concentrated in degrees 0, k , 3k and
4k where it is isomorphic to Q . Hence f ∗ can act only by minus or plus the identity on
these cohomology groups.

We conclude that f ∗ preserves the subspaces p∗1(H∗(Bn; Q)) and p∗2(H∗(N ; Q)) of the
vector space H∗(M ; Q) and can only act as the identity on the first and in finitely many
ways on the second. Because H∗(M ; Q) is generated as a ring by these subspaces, f ∗ is
determined by the action on these subspaces. This shows that AH is indeed finite.

The preceding argument also shows that the induced action of f on H4k(M̃ ; Q) must
be the identity, since a generator of this group can be chosen as the k -th Pontrijagin class

of M̃ by the construction of Q . This and the fact that f ∗ acts trivially on Hn(M ; Q) =
Hn(Bn;Q) (see above) imply that f must act in an orientation preserving fashion on the
manifold M . �
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