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Abstract

LetG be a discrete group and letX be aG-finite, properG-CW-complex.
We prove that Kasparov’s equivariant K-homology groups KKG∗ (C0(X),C)

are isomorphic to the geometric equivariant K-homology groups of X that
are obtained by making the geometric K-homology theory of Baum and
Douglas equivariant in the natural way. This reconciles the original and
current formulations of the Baum-Connes conjecture for discrete groups.

Dedicated with admiration and affection to
Alain Connes on his 60th birthday.

1 Introduction
In the original formulation of the Baum-Connes conjecture [BC00], the topolog-
ical K-theory of a discrete group G (the “left-hand side” of the conjecture) was
defined geometrically in terms of proper G-manifolds. Later, in [BCH94], the
definition was changed so as to involve Kasparov’s equivariant KK-theory. The
change was made to accommodate new examples beyond the realm of discrete
groups, such as p-adic groups, for which the geometric definition was not conve-
nient or adequate. But it left open the question of whether the original and revised
definitions are equivalent for discrete groups. This is the question that we shall
address in this paper.
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via the German Initiative of Excellence
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In a recent article [BHS07], we gave a complete proof that the (non-equi-
variant) geometric K-homology theory of Baum and Douglas [BD82] agrees with
Kasparov’s K-homology on finite CW-complexes. Here we shall show that our
techniques extend to show that the original and revised definitions of topological
K-theory for a discrete group agree—provided that those techniques are supple-
mented by a key result of Lück and Oliver about equivariant vector bundles over
G-finite, proper G-CW-complexes [LO01].

Lück and Oliver prove that if X is a G-finite, proper G-CW-complex, then
there is a rich supply of equivariant vector bundles on X. It follows that the
Grothendieck group K0G(X) of complexG-vector bundles is the degree zero group
of a Z/2Z-graded cohomology theory on X, and it is essentially this fact that we
shall need to carry over the arguments of [BHS07] to the equivariant case.

We shall show that the Lück-Oliver theorem is equivalent to the assertion that
the crossed productC∗-algebraC∗(X,G) associated to the action ofG on X has an
approximate identity consisting of projections. As a result K0G(X) is isomorphic
to the K0-group of the crossed product C∗-algebra. This has some further benefits
for us—for example it makes it clear that each complex G-vector bundles on a
G-compact properG-manifold has a unique smooth structure, up to isomorphism.

Returning to the Baum-Connes conjecture, the assertion that the old and the
revised versions are the same is a consequence of the assertion that the natural
G-equivariant development of the Baum-Douglas K-homology theory, which we
shall write as KG∗ (X), is isomorphic to Kasparov’s group KKG∗ (C0(X),C) for any
G-finite, proper G-CW-complex X. There is a natural map

µ : KG∗ (X) −→ KKG∗ (C0(X),C)

which is defined using the index of Dirac operators, and we shall prove that it
is an isomorphism. What makes this nontrivial is that the groups KG∗ (X) do not
obviously constitute a homology theory. We shall address this problem by in-
troducing groups kG∗ (X) that manifestly do constitute a homology theory and by
constructing a commuting diagram

kG∗ (X) // KG∗ (X)

µ

��
kG∗ (X) µ

// KKG∗ (C0(X),C).

We shall prove that the map from kG∗ (X) to KKG∗ (C0(X),C) is an isomorphism
when X is a G-finite, proper G-CW-complex and that map from kG∗ (X) to KG∗ (X)
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is surjective. This proves that the map from kG∗ (X) to KKG∗ (C0(X),C) is an iso-
morphism.

A more general, but less concrete model for equivariant K-theory, based on
correspondences, is given by Emerson and Meyer in [EM08]. They describe in
the end a bivariant K-theory for spaces with proper groupoid actions. Their theory
does not always coincide with KK-theory, but when their theory overlaps with
ours the two coincide.

In [BOOS09] it is shown that for compact Lie groups the result corresponding
to the main result in this paper holds (a direct construction is given of an inverse to
the transformation µ). The basis of the theorem is again the fact that for compact
Lie group actions there are “enough” equivariant vector bundles.

2 Proper Actions
Throughout the paper we shall work with a fixed a countable discrete groupG. By
a G-space we shall mean a topological space with an action of G by homeomor-
phisms. We shall be concerned in the first place with proper G-CW-complexes.
These are G-spaces with filtrations

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

such that Xk is obtained from Xk−1 by attaching equivariant cells of the form
Dk × G/H along their boundaries, where H is any finite subgroup of G. See
[Lüc05, Section 1] for more details.

The Baum-Connes conjecture as formulated in [BCH94] involves universal
proper G-spaces. In the context of proper G-CW-complexes, these may be char-
acterized as follows:

2.1 Theorem ([Lüc05, Theorem 1.9]). There is a properG-CW-complex EG with
the property that if Y is any proper G-CW-complex, then there is a G-equivariant
continuous map from Y into EG, and moreover this map is unique up to equivari-
ant homotopy.

Clearly the G-CW-complex EG is unique up to equivariant homotopy. The
universal space used in the formulation of the Baum-Connes conjecture is defined
a bit differently (see [BCH94, Section 1]), but by the results of [Lüc05, Section 2]
the same conjecture results if the above version of EG is used. Compare also
Theorem 2.3 below.
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A proper G-CW-complex is said to be G-finite if only finitely many equivari-
ant cells are used in its construction. These are G-compact properG-spaces in the
sense of the following definition.

2.2 Definition. We shall say that a G-space X is a G-compact, proper G-space if

(a) X is locally compact and Hausdorff.

(b) The quotient space X/G is compact and Hausdorff in the quotient topology.

(c) Each point of X is contained in an equivariant neighborhood U that maps
continuously and equivariantly onto some proper orbit space G/H (where H
is a finite subgroup of G).

Apart fromG-finiteG-CW-complexes, we shall also be concerned with smooth
manifolds (with smooth actions of G) that satisfy these conditions. We shall call
them G-compact proper G-manifolds.

The following result is a consequence of [Lüc05, Theorem 3.7] (the final state-
ment reflects a simple feature of the CW-topology on EG).

2.3 Theorem. If X is any G-finite proper G-space, then there is a G-equivariant
map from X to EG. It is unique up to equivariant homotopy, and its image is
contained within a G-finite subcomplex of EG.

3 Equivariant Geometric K-Homology
In this section we shall present the equivariant version of the geometric K-hom-
ology theory of Baum and Douglas [BD82]. The definition presents no difficulties,
so we shall be brief. The reader is referred to [BD82] or [BHS07] for treatments
of the non-equivariant theory.

We shall work with principal bundles, rather than with spinor bundles as in
[BD82] or [BHS07]. To fix notation, recall the following rudimentary facts about
Clifford algebras, Spinc-groups and Spinc-structures. Denote by Cliff(n) the
Z/2Z-graded complex ∗-algebra generated by skew-adjoint degree-one elements
e1, . . . , en such that

eiej + ejei = −2δijI.

We shall consider Rn as embedded into Cliff(n) in such a way that the standard
basis of Rn is carried to e1, . . . , en.
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Denote by Spinc(n) the group of all even-grading-degree unitary elements in
Cliff(n) that map Rn into itself under the adjoint action. This is a compact Lie
group. The image of the group homomorphism

α : Spinc(n) −→ GL(n,R)

given by the adjoint action is SO(n) and the kernel is the circle group U(1) of all
unitaries in Cliff(n) that are multiples of the identity element.

There is a natural complex conjugation operation on Cliff(n) (since the re-
lations defining the Clifford algebra involve only real coefficients) and the map
u 7→ uū∗ is a homomorphism from Spinc(n) onto U(1). The combined homo-
morphism

Spinc(n) −→ SO(n)×U(1)

is a double covering.
Let M be a smooth, proper G-manifold and let V be a smooth, real G-vector

bundle overM of rank n. AG-Spinc-structure on V is a homotopy class of reduc-
tions of the principal frame bundle of V (viewed as aG-equivariant right principal
GL(n,R)-bundle) to a G-equivariant principal Spinc(n)-bundle. In other words
it is a G-homotopy class of commuting diagrams

Q
ϕ //

��

P

��
M M

of smooth G-manifolds, where P is the bundle of ordered bases for the fibers of
V , Q is a G-equivariant principal Spinc(n)-bundle, and

ϕ(qu) = ϕ(q)α(u)

for every q ∈ Q and every u ∈ Spinc(n). A G-Spinc-structure on V determines
a G-invariant orientation, and a specific choice of Q within its homotopy class
determines a Euclidean structure.

3.1 Example. EveryG-equivariant complex vector bundle carries a natural Spinc-
structure because there is a (unique) group homomorphism U(k) → Spinc(2k)
that lifts the map

U(k) −→ SO(2k)×U(1)

given in the right-hand factor by the determinant.
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A G-Spinc-vector bundle is a smooth real G-vector bundle with a given G-
Spinc-structure. The direct sum of two G-Spinc-vector bundles carries a natural
G-Spinc-structure. It is obtained from the diagram

Spinc(m)× Spinc(n)

��

// Spinc(m+ n)

��
GL(n,R)×GL(m,R) // GL(m+ n,R)

that is in turn obtained from the inclusions of Cliff(m) and Cliff(n) into Cliff(m+

n) given by the formulas ek 7→ ek and ek 7→ em+k, respectively. In addition, if V
and V ⊕W carry G− Spinc-structures, then there is a unique G− Spinc-structure
onW whose direct sum, as above, with the G− Spinc-structure on V is the given
G − Spinc-structure on the direct sum. This is the two out of three principle for
Spinc-structures.

If M is a smooth G-manifold, then a G-Spinc-structure on M is a G-Spinc-
structure on its tangent bundle, and a G-Spinc-manifold is a smooth G-manifold
together with a given G-Spinc-structure.

3.2 Definition. Let X be any G-space. An equivariant K-cycle for X is a triple
(M,E, f) consisting of:

(a) A G-compact, proper G-Spinc-manifoldM without boundary.1

(b) A smooth complex G-vector bundle E overM.

(c) A continuous and G-equivariant map f : M → X.

The geometric equivariant K-homology groups KG∗ (X) will be obtained by
placing a certain equivalence relation on the class of all equivariant K-cycles. Be-
fore describing it, we give constructions at the level of cycles that will give the
arithmetic structure of the groups KG∗ (X).

If (M,E, f) and (M ′, E ′, f ′) are two equivariant K-cycles for X, then their
disjoint union is the equivariant K-cycle (M tM ′, E t E ′, f t f ′). The operation
of disjoint union will give addition.

Let V be a G-Spinc-vector bundle with a G-Spinc-structure ϕ : Q → P. Fix
an orientation-reversing isometry of Rn. Since it preserves the inner product, τ
induces an automorphism of Cliff(n), and hence of Spinc(n), that we shall also
denote by τ. Consider the map ϕτ : Qτ → P, where:

1The manifold M need not be connected. Moreover different connected components of M
may have different dimensions.
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(a) Qτ is equal toQ as a G-manifold, but has the twisted action q ·τ u = q · τ(u)

of the group Spinc(n).

(b) φτ(q) = φ(q)τ.

It defines the opposite G-Spinc-vector bundle −V . Applying this to manifolds,
we define the opposite of an equivariant K-cycle (M,E, f) to be the equivariant K-
cycle (−M,E, f). This will give the operation of additive inverse in the geometric
groups KG∗ (X).

IfM is a Spinc-G-manifold, then its boundary ∂M inherits a Spinc-G-structure.
This is obtained from the pullback diagram

Spinc(n−1)

��

// Spinc(n)

��
GL(n−1,R) // GL(n,R)

associated to the lower-right-corner embedding of GL(n−1,R) into GL(n,R)

and the inclusion of Cliff(n−1) into Cliff(n) that maps the generators ek to ek+1.
Using the outward-pointing normal first convention, the bundle of frames for T∂M
maps to the restriction to the boundary of the bundle of frames for TM. A pullback
construction gives the required reduction to Spinc(n−1).

3.3 Definition. An equivariantK-cycle forX is a boundary if there is aG-compact,
properG-Spinc-manifoldW with boundary, a smooth, Hermitian equivariant vec-
tor bundle E over W and a continuous equivariant map f : W → X such that the
given cycle is isomorphic to (∂W,E|∂W, f|∂W). Two equivariant K-cycles for X,
(M1, E1, f1) and (M2, E2, f2) are bordant if the disjoint union of one with the
opposite of the other is a boundary.

The most subtle aspect of the equivalence relation on equivariant K-cycles
that defines geometric K-homology involves certain sphere bundles over Spinc-
manifolds. To describe it we begin by considering a single sphere.

View Sn−1 as the boundary of the unit ball in Rn. The frame bundle for Rn can
of course be identified with Rn × GL(n,R) since the columns of any invertible
matrix constitute a frame for Rn. We can therefore equip Rn with the trivial
Spinc-structure Rn × Spinc(n).

According to the prescription given prior to Definition 3.3, the associated
Spinc-structure on the sphere Sn−1 is given by the right principal Spinc(n−1)-
bundle Q whose fiber at v ∈ Sn−1 is the space of all elements u ∈ Spinc(n)
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whose image in SO(n) is a matrix with first column equal to v. Observe that Q
is Spinc(n)-equivariant for the left action of Spinc(n) on the sphere given by the
projection to SO(n).

Let us now assume that n = 2k + 1. We are going to fix a certain Spinc(n)-
equivariant complex vector bundle F on S2k. The key property of F is that the
Spinc(n)-equivariant index of the Dirac operator (discussed in the next section)
coupled to F is equal to the rank-one trivial representation of Spinc(n). An ex-
plicit calculation, given in [BHS07], shows that the dual of the positive part of the
spinor bundle for Sn−1 has the required property. It follows easily from the Bott
periodicity theorem that F is essentially unique (up to addition of trivial bundles,
any two F are isomorphic). For what follows, any choice of F will do. The bundle
F and the trivial line bundle together generate K(S2k), and for that reason we shall
call it the Bott generator.

Following these preliminaries, we can describe the “vector bundle modifica-
tion” step in the equivalence relation defining geometric K-homology.

Let V be a G-Spinc-vector bundle of rank 2k over a G-Spinc-manifoldM and
denote by M̂ the sphere bundle2 of the direct sum vector bundle R ⊕ V . The
manifold M̂ may be described as the fiber bundle

M̂ = Q×Spinc(2k+1) S
2k,

where Q is the principal G-Spinc(2k+1)-bundle associated to R ⊕ V . Its tan-
gent bundle is isomorphic to the pullback of the tangent bundle of M, direct sum
the fiberwise tangent bundle Q ×Spinc(2k+1) TS

2k. Both carry natural G-Spinc-
structures, and so M̂ is a G-Spinc-manifold.

Form the G-equivariant complex vector bundle

Q×Spinc(2k+1) F,

from the Bott generator discussed above. We shall use the same symbol F for this
bundle over M̂.

3.4 Definition. Let (M,E, f) be an equivariant K-cycle and let V be a rank 2k
G-Spinc-vector bundle over M. The modification of (M,E, f) associated to V is
the equivariant K-cycle

(M,E, f) ^ =
(
M̂, F⊗ π∗(E), f ◦ π

)
,

where:
2Strictly speaking, to form the sphere bundle we need a metric on V and so a specific choice of

principal bundle Q within its homotopy class. Of course, any two sphere bundles will be bordant.
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(a) M̂ is the total space of the sphere bundle of R ⊕ V , equipped with the G-
Spinc-structure described above;

(b) π is the projection from M̂ ontoM; and

(c) F is the G-equivariant complex vector bundle on M̂ described above.

We are now ready to define the geometric equivariant K-homology groups.

3.5 Definition. Denote by KG(X) the set of equivalence classes of equivariant
K-cycles over X, for the equivalence relation generated by the following three
elementary relations:

(a) If (M,E1, f) and (M,E2, f) are two equivariantK-cycles with the same proper,
G-compact G-Spinc-manifoldM and same map f : M → X, then

(M tM,E1 t E2, f t f) ∼ (M,E1 ⊕ E2, f).

(b) If (M1, E1, f1) and (M2, E2, f2) are bordant equivariant K-cycles then

(M1, E1, f1) ∼ (M2, E2, f2).

(c) If (M,E, f) is an equivariant K-cycle, if V is an even-rank G-Spinc-vector
bundle over M, and if (M,E, f) ^ is the modification of (M,E, f) associated
to V , then

(M,E, f) ∼ (M,E, f) ^ .

The set KG(X) is an abelian group with addition given by disjoint union. De-
note by KGev(X) and KGodd(X) the subgroups of KG(X) composed of equivalence
classes of equivariant K-cycles (M,E, f) for which every connected component
of M is even-dimensional or odd-dimensional, respectively. Then KG(X) ∼=
KGev(X)⊕ KGodd(X).

4 Equivariant Kasparov Theory
In this section we shall define a natural transformation from geometric equivari-
ant K-homology to Kasparov’s equivariant K-homology. Once again, this is a
straightforward extension to the equivariant context of the Baum-Douglas theory
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that was reviewed in detail already in the paper [BHS07]. Therefore we shall be
brief.

Fix a second countable G-compact proper G-space X, for example a G-finite
proper G-CW-complex. The second countability assumption is made for consis-
tency with Kasparov’s theory, which applies to second countable locally compact
spaces, or separable C∗-algebras.

We shall denote byKKGn(C0(X),C) the Kasparov groupKKG
(
C0(X),Cliff(n)

)
(the action of G on Cliff(n) is trivial). See [Kas88, Section 2]. There are canoni-
cal isomorphisms

KKGn(C0(X),C) ∼= KKGn+2(C0(X),C)

coming from the periodicity of Clifford algebras. Compare [BHS07]. As a result
we may form the 2-periodic groups KKGev / odd(C0(X),C).

The natural transformation

µ : KGev / odd(X) −→ KKGev / odd(C0(X),C)

into Kasparov theory is defined by associating to an equivariant K-cycle (M,E, f)

a Dirac operator, and then constructing from the Dirac operator a cycle for Kas-
parov’s analytic K-homology group.

The vector space Cliff(n) carries a natural inner product in which the mono-
mials ei1 · · · eik form an orthonormal basis. If M is a G-compact, proper G-
Spinc-manifol, and if Q is a lifting to Spinc(n) of the frame bundle of M, then
the Z/2Z-graded Hermitian vector bundle

S = Q×Spin(n) Cliff(n)

that is formed using the left multiplication action of Spinc(n) on Cliff(n) carries
a right action of the algebra Cliff(n) and a commuting left action of TM as odd-
graded skew-adjoint endomorphisms such that v2 = −‖v‖2I. This is called the
action of TM on the spinor bundle S by Clifford multiplication.

4.1 Remark. There are other versions of the spinor bundle that do not carry a
right Clifford algebra action. The bundle used here has the advantage of allowing
a uniform treatment of both even and odd-rank bundles V . In addition the real
case may be treated similarly (although we shall not consider it in this paper).

4.2 Definition. Let M be a G-compact proper G-Spinc-manifold. Fix an associ-
ated principal Spinc-bundle over M, and let S be the spinor bundle, as above. Let
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E be a smooth, Hermitian G-vector bundle over M. We shall call an odd-graded,
symmetric, first-order G-equivariant linear partial differential operator D acting
on the sections of S ⊗ E a Dirac operator if it commutes with the right Clifford
algebra action on the spinor bundle and if

[D, f]u = grad(f) · u,

for every smooth function f onM and every section u of S⊗E, where grad(f) ·u
denotes Clifford multiplication on S by the gradient of f.

Dirac operators in this sense always exist, and basic PDE theory gives the
following result:

4.3 Proposition. The Dirac operator D, considered as an unbounded operator
on L2(M,S ⊗ E) with domain the smooth compactly supported sections is es-
sentially self-adjoint. The bounded G-equivariant Hilbert space operator F =

D(I+D2)−1/2 commutes, modulo compact operators, with multiplication opera-
tors from C0(M). Moreover the product of I−F2 with any multiplication operator
from C0(M) is a compact operator.

Now the Hilbert space L2(M,S ⊗ E) carries a right action of Cliff(n) that
commutes with D and the action of C0(M). It also carries a unique Cliff(n)-
valued inner product 〈 , 〉Cliff such that

〈s1, s2〉 = τ
(
〈s1, s2〉Cliff

)
where on the left is the L2-inner product, and on the right is the state τ on Cliff(n)

that maps all nontrivial monomials ei1 · · · eip to zero. Using it we place a Hilbert
Cliff(n)-module structure on L2(M,S⊗ E).

Proposition 4.3 implies that the operator F = D(I+D2)−1/2, viewed as an op-
erator on the Hilbert Cliff(n)-module L2(M,S⊗E), yields a cycle for Kasparov’s
equivariant KK-group KKG(C0(M),Cliff(n)) (see [Kas88, Definition 2.2]).

4.4 Definition. We shall denote by [M,E] ∈ KKGn(C0(M),C) the KK-class of the
operator F = D(I+D2)−1/2.

The first main theorem concerning the classes [M,E] is as follows:

4.5 Theorem. The correspondence that associates to each equivariant K-cycle
(M,E, f) the KK-class

f∗[M,E] ∈ KKGev / odd(C0(X),C)
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gives a well-defined homomorphism

µ : KGev / odd(X) −→ KKGev / odd(C0(X),C).

The non-equivariant case of the theorem is proved in [BHS07]. The proof for
the equivariant case is exactly the same and therefore will not be repeated.

Our aim in this paper is to prove the second main theorem concerning the
classes [M,E].

4.6 Theorem. If X is any proper, G-finite G-CW-complex, then the index map

µ : KGev / odd(X) −→ KKGev / odd(C0(X),C)

is an isomorphism.

The non-equivariant version of the theorem is due to Baum and Douglas, and
is proved in detail in [BHS07]. Although the proof of the equivariant result is the
same in outline, new issues must also be resolved having to do with the properties
of equivariant vector bundles on G-compact proper G-spaces. These we shall
consider next.

5 Equivariant Vector Bundles
Throughout this section we shall use the term G-bundle as an abbreviation for
G-equivariant complex vector bundle. We shall review the basic theory of G-
bundles over G-compact proper G-spaces, mostly as worked out by Lück and
Oliver in [LO01]. In the next section we shall recast their results in the language
of C∗-algebra K-theory.

5.1 Theorem. Let X be a G-compact, proper G-space. There is a G-bundle E
over X such that for every x ∈ X, the fiber Ex is contained in a multiple of the
regular representation of the isotropy group Gx.

Proof. This is proved for G-finite proper G-CW-complexes in [LO01, Corol-
lary 2.8]. That result extends to more general X by pulling back along the map
supplied by Theorem 2.3.

5.2 Corollary (Compare [LO01, Lemma 3.8]). Let Z be a G-compact proper G-
space and let X be a closed, G-invariant subset of Z. If F is any G-bundle on X,
then there is a G-bundle E on Z such that F embeds as a summand of E|X.
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Proof. Fix a G-bundle E on Z, as in Theorem 5.1. There are G-invariant open
subsets U1, . . . , Un of X such that:

(a) The sets cover X.

(b) For each j there is a finite subgroup of Fj ⊆ G and an equivariant map
πj : Uj → G/Fj.

(c) F|Uj
is isomorphic to a bundle pulled back along πj.

(d) E|Uj
is also isomorphic to a bundle pulled back along πj.

Replacing E by a direct sum E ⊕ · · · ⊕ E, if necessary, we find that F|Uj
may be

embedded as a summand of E|Uj
, for every j. Making a second replacement of

E by an n-fold direct sum E ⊕ · · · ⊕ E and using a standard partition of unity
argument, we may now embed F into E, as required.

More generally, if f : X → Z is a map between G-compact proper G-spaces,
and if F is a G-bundle on X, then the same argument shows that F is isomorphic to
a summand of the pullback along f of some G-bundle on Z.

5.3 Definition. If S is any set, then denote by C[S] the free vector space on the
set S, equipped with the standard inner product in which the elements of S are
orthonormal. If S is equipped with an action of G, then we shall consider C[S] to
be equipped with the corresponding permutation action of G.

We are interested primarily in the case where S = G, which we shall view as
equipped with the usual left translation action of G.

5.4 Definition. A standard G-bundle on a G-compact proper G-space X is a G-
invariant subset E of X×C[G] with the property that for every compact subset
K ⊆ X there is a finite subset S ⊆ G such that the intersection of E with K×C[G]

is a (nonequivariant) complex vector subbundle of K× C[S].

5.5 Remark. We require that the restriction of E to K, as above, be a topological
vector subbundle of the finite-dimensional trivial bundle K×C[S]. This fixes the
topology on E and determines a G-bundle structure.

It follows from a standard partition of unity argument that every G-bundle on
X is isomorphic to a standard G-bundle. We are going to prove the following
result, which gives the set of standard G-bundles a useful directed set structure.
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5.6 Theorem. Any two standard G-bundles are subbundles of a common third.
Moreover the union of all standard G-bundles is X×C[G].

5.7 Remark. In Section 8 we shall modify Definition 5.4 very slightly by replac-
ing G with a countable disjoint union G∞ = G t G t . . . (thought of as a left
G-set). Theorem 5.6 remains true, with the same proof.

Since the theorem is obvious if G is finite, we shall assume G is infinite until
the proof of Theorem 5.6 is concluded.

5.8 Lemma. If S is a finite subset of G, if K is a compact subset of X, and if E is
any G-bundle over X, then there is a standard G-bundle E1 that is isomorphic to
E and whose restriction to K is orthogonal to K×C[S].

Proof. Let E1 be any standard bundle that is isomorphic to the equivariant vector
bundle E. If g ∈ G, then set

E1 · g = { (x, e · g) : e ∈ E1,x }

is also standard G-bundle. Here, in forming the vectors e · g we are using the
right translation action of G on itself and hence on C[G]. The bundle E1 · g is
isomorphic to E1, and hence to E. If we enlarge S, if necessary, so that E1|K ⊆
K×C[S], and if we choose g ∈ G so that S∩Sg = ∅, then (E1 ·g)|K is orthogonal
to K×C[S], as required.

5.9 Lemma. Let E be a G-bundle on X and let E2 be a standard G-bundle. There
is a standard G-bundle that is isomorphic to E and orthogonal to E2.

Proof. Let K be a compact subset of X whose G-saturation is X, and let S be a
finite subset ofG such that E2|K ⊆ K×C[S]. Now apply the previous lemma.

5.10 Lemma. Let U be a G-invariant open subset of X, and let Y and Z be G-
invariant closed subsets of X such that

Z ⊆ U ⊆ Y ⊆ X.

Let F be a standard G-bundle over Y. There is a standard G-bundle E1 over X
such that F|Z ⊆ E1|Z. Moreover given a standard G-bundle E2 over X such that
E2|Y is orthogonal to F, the standardG-bundle E1 may be chosen to be orthogonal
to E2.
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Proof. According to Corollary 5.2, there is a G-bundle E over X such that F em-
beds in E|Y . Any complement of the image of F in E|Y may be embedded as a
standard G-bundle F ′ on Y that is orthogonal to F⊕ E2|Y .

We can choose an isomorphismΦ : E|Y → F⊕F ′. Next, there is an embedding
Ψ of E as a standardG-bundle onX such thatΨ[E] is orthogonal to E2 andΨ[E]|Y is
orthogonal to F (by a slight elaboration of Lemma 5.9). If we choose aG-invariant
scalar function ϕ on X such that ϕ = 1 on Z and ϕ = 0 outside of U, and if we
set ψ = 1−ϕ, then E1 = (ϕΦ+ψΨ)[E] has the required properties.

5.11 Lemma. Let K be any compact subset of X, and let S be a finite subset of G.
There is a standard G-bundle that contains K× C[S].

Proof. The compact set K may be written as a finite union of compact sets

K = K1 ∪ · · · ∪ Kn

where each Kj is included in a G-invariant open set that maps equivariantly onto
some proper coset space G/Hj, in such a way that Kj maps to the identity coset.
We shall use induction on n.

Let E2 be a standard G-bundle that contains the set(
K1 ∪ · · · ∪ Kn−1

)
× C[S].

There is a G-compact subset Y ⊆ X that contains a G-invariant neighborhood U
of Kn and over which there is a standard G-bundle L such that

Kn×C[S] ⊆ L|Kn and E2|Y ⊆ L.

Indeed we may choose Y so that it maps equivariantly to G/Hn, and if Yn is the
inverse image of the identity coset, then we may form

L =
⋃
g∈G

gYn × C[Sng],

where Sn is a sufficiently large finite and right Hn-invariant subset of G.
Now apply the previous lemma to the standard G-bundle F = L 	 E2|Y (the

orthogonal complement of E2|Y in L) to obtain a standard G-bundle E1 on X such
that E1 is orthogonal to E2 and

L|Kn 	 E2|Kn ⊆ E1|Kn .

The standard G-bundle E1 ⊕ E2 then contains K×C[S], as required.
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Proof of Theorem 5.6. Since there is a standard G-bundle that contains any given
K× C[S], it is clear that the union of all standard G-bundles is X× C[G]. Let E1
and E2 be standard G-bundles on X. Choose a compact set K whose G-translates
cover X and choose a finite set S ⊆ G such that the E1|K, E2|K ⊆ K×C[S]. If E is
a standard G-bundle containing K×C[S], then it contains E1 and E2.

6 C*-Algebras and Equivariant K-Theory
6.1 Definition. If S is any set, then denote by M[S] the ∗-algebra of complex
matrices [Ts1s2 ] with rows and columns parametrized by the set S, all but finitely
many of whose entries are zero.

We shall be interested in the case where S = G. In this case the group G acts
onM[G] by automorphisms via the formula (g · T)g1,g2

= Tg−1g1,g−1g2
.

6.2 Definition. Let X be a G-compact proper G-space. Let us call a function
F : X → M[G] standard if its matrix element functions

Fg1,g2
: x 7→ F(x)g1,g2

are continuous and compactly supported, and if for every compact subset K of X
all but finitely many of them vanish outside of K. We shall denote by C(X,G) the
∗-algebra of all standard, G-equivariant functions from X toM[G].

Note that if P is a projection in the ∗-algebra C(X,G), then the range of P (that
is the bundle over X whose fiber of x ∈ X is the range of the projection operator
P(x) in C[G]) is a standard G-bundle in the sense of Section 5. In fact every
standard G-bundle is obtained in this way, which explains our interest in C(X,G).
In fact we are even more interested in the following C∗-algebra completion of
C(X,G).

6.3 Definition. Let X be a G-compact proper G-space. Denote by C∗(X,G) the
C∗-algebra of G-equivariant, continuous functions from X into the compact oper-
ators on `2(G).

6.4 Remark. The C∗-algebra C∗(X,G) is isomorphic to the crossed product C∗-
algebra C0(X) oG. If Eg1,g2 denotes the matrix with 1 in entry (g1, g2) and zero
in every other entry, then the formula

f [g] 7→ ∑
h

h(f)Eh,hg
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gives an isomorphism from C0(X) oG to C∗(X,G), and the formula

F 7→ ∑
g∈G

Fe,g [g]

gives its inverse. Since the action of G on X is proper, the maximal and reduced
crossed products are equal. Indeed there is a unique C∗-algebra completion of the
∗-algebra C(X,G).

6.5 Lemma. Assume that G is infinite and X is a G-compact proper G-space.
The correspondence between projections in C(X,G) and their ranges induces bi-
jections among the following sets:

(a) Equivalence classes of projections in C(X,G).

(b) Equivalence classes of projections in C∗(X,G).

(c) Isomorphism classes of standard G-bundles on X.

(d) Isomorphism classes of hermitian G-bundles on X.

If X is a G-compact proper G-manifold, then there is in addition a bijection with
(e) Isomorphism classes of smooth hermitian G-bundles on X.

Proof. Recall that two projections P and Q in a ∗-algebra are equivalent if and
only if there is an element U such that U∗U = P and UU∗ = Q. The inclusion
of C(X,G) into C∗(X,G) is a simple example of a holomorphically closed subal-
gebra, and as a result the inclusion induces a bijection between the sets in (a) and
(b). Compare [Bla98, Sections 3 and 4]. The sets in (a) and (c) are in bijective cor-
respondence virtually by definition. The sets in (c) and (d) are in bijection thanks
to Lemma 5.8, which in particular shows that every G-bundle is isomorphic to a
standard bundle, if G is infinite.

If X is a manifold, then the inclusion of the smooth functions in C(X,G) into
C∗(X,G) is also a holomorphically closed subalgebra, and this gives the final
part of the lemma since equivalence classes projections in the algebra of smooth
functions correspond to isomorphism classes of (the obvious concept of) smooth
standard G-bundles.

6.6 Remark. If G is finite, then the lemma remains true if C(X,G) and C∗(X,G)

are replaced by direct limits of matrix algebras over themselves.
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6.7 Theorem. The C∗-algebra C∗(X,G) has an approximate identity consisting
of projections.

Proof. We claim that for every finite set of elements F1, . . . , Fn in C(X,G) there
is a projection P in C(X,G) such that

Fj = PFj = FjP

for all j = 1, . . . n. Indeed the orthogonal projection onto any standard G-bundle
is a projection in C(X,G) (and conversely). But on any compact set K, all but
finitely many matrix coefficients of the Fj|K are zero. So by Lemma 5.11 the
images of Fj and F∗j are contained in a (standard) G-bundle. The theorem follows
since C(X,G) is dense in C∗(X,G).

6.8 Theorem. LetX be aG-compact properG-space. The bijections in Lemma 6.5
determine a natural isomorphism between the Grothendieck group of G-bundles
on X and the K0-group of the C∗-algebra C∗(X,G).

Proof. If A is any C∗-algebra with an approximate unit consisting of projections,
then the natural map from the Grothendieck group of projections in matrix al-
gebras over A into K0(A) is an isomorphism. So the theorem follows from the
previous result.

6.9 Definition. If X is a G-compact proper G-space, and j ∈ Z/2Z, then denote
by KjG(X) the Kj-group of the C∗-algebra C∗(X,G). If Y is a G-invariant closed
subset of X, then denote by KjG(X, Y) the K0-group of the ideal in C∗(X,G) con-
sisting of functions that vanish on Y.

By the above, K0G(X) is the Grothendieck group of isomorphism classes of
G-bundles on X.

The relative groups KjG(X, Y) satisfy excision (of the strongest possible type,
that KjG(X, Y) depends only on X \ Y). Elementary K-theory provides functorial
coboundary maps

∂ : KjG(Y) −→ K
j+1
G (X, Y),

and these give the groups KjG(X, Y) the structure of a Z/2Z-graded cohomology
theory onG-compact properG-spaces, in the sense that that they fit into functorial
long exact sequences

. . . // K
j
G(X) // K

j
G(Y) // K

j+1
G (X, Y) // K

j+1
G (X) // . . .
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Although we have accessed this fact using C∗-algebra K-theory, this is also the
main result of [LO01].

We conclude by reviewing the Gysin maps in equivariant K-theory that we
shall need in the next section. Let E be a complex G-bundle over a G-compact
proper G-manifoldM. As we noted earlier, E carries a canonical Spinc-structure.
Form the sphere bundle M̂ of the real bundle R⊕E, as in Section 3. The manifold
M is equivariantly embedded as a retract in M̂ using the section

M 3 m 7→ (1, 0) ∈ R⊕ Em,

and associated to the embedding is a short exact sequence of K-theory groups

0 −→ K0G(M̂,M) −→ K0G(M̂) −→ K0G(M) −→ 0.

Let F be the complex G-bundle over M̂ that we defined in Section 3, and denote
by F0 the complex G-bundle obtained by restricting F to M, then pulling back
the restriction to M̂ using the projection from M̂ down to M. Because of the
above exact sequence the difference [F] − [F0] defines an element of K0G(M̂,M).
The relative group is a module over K0G(M) via pullback and tensor product, and
multiplication against [F] − [F0] gives the Thom homomorphism

K0G(M) −→ K0G(M̂,M).

The complement M̂ \M identifies with the total space of E via the map

E 3 e 7→ 1
1+‖e‖2 (1, e) ∈ R⊕ E.

If ι : M → N is an embedding of G-compact proper G-manifolds, and if the
normal bundle to the embedding is identified with E, then the Gysin map

ι! : K
0
G(M) → K0G(N)

is the composition

K0G(M)
Thom // K0G(M̂,M)

∼= // K0G(N,N ′) // K0G(N),

where N ′ ⊆ N is the complement of a tubular neighborhood and the middle map
is given by excision and the identification of the tubular neighborhood with E.

The Gysin map is functorial for compositions of embeddings. It is well-
defined for embeddings of manifolds with boundary, as long as the embedding
is transverse to the boundary ofN, and carries the boundary ofM into the bound-
ary of N.
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7 The Technical Theory
In this section we shall construct the homology groups kG∗ (X) that were described
in the introduction. They are obtained as direct limits of certain bordism groups.

7.1 Definition. Let Z be a proper G-space and let E be a G-bundle on Z. A stable
(Z, E)-manifold is a G-compact proper G-manifold M (possibly with boundary)
together with an equivalence class of pairs (h,ϕ), where:

(a) h : M → Z is a continuous and G-equivariant map.

(b) ϕ is an isomorphism of topological real G-bundles

ϕ : Rr ⊕ TM −→ Rs ⊕ h∗E,

for some r, s ≥ 0. Here Rr and Rs denote the trivial bundles of ranks r and s
(with trivial action of G on the fibers).

The equivalence relation is stable homotopy: (h0, ϕ0) and (h1, ϕ1) are equivalent
if there is a homotopy h : M× [0, 1] → Z between h0 and h1 and an isomorphism
of real G-bundles overM× [0, 1]

ϕ : Rr ⊕ TM −→ Rs ⊕ h∗E,

with r ≥ r0, r1, that restricts to Ir−r0 ⊕ϕ0 and Ir−r1 ⊕ϕ1 at the two endpoints of
[0, 1].

If M is a stable (Z, E)-manifold with boundary, then its boundary may be
equipped with a stable (Z, E)-structure by forming the composition

Rr ⊕ R⊕ T∂M ∼=
// Rr × TM

∣∣
∂M ϕ

// Rs ⊕ f∗E,

in which R ⊕ T∂M is identified with TM|∂M by the “exterior normal first” con-
vention.

7.2 Definition. Let X be a G-finite proper G-CW-complex and let Y be a G-
subcomplex of X. For j = 0, 1, 2, . . . we define Ω(Z,E)

j (X, Y) to be the group of
equivalence classes of triples (M,a, f), where

(a) M is a smooth, proper, G-compact G-manifold of dimension j with a stable
(Z, E)-structure.
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(b) a is a class in the group K0G(M).

(c) f : M → X is a continuous, G-equivariant map such that f[∂M] ⊆ Y.

The equivalence relation is the obvious notion of bordism.

7.3 Remark. Of course, the relation of bordism is arranged to incorporate the
classes a ∈ K0G(M), so that if (M,a, f) is the boundary of (W,b, g), then not only
do we have that M = ∂W and f = g|M, but also the restriction map K0G(W) →
K0G(M) takes b to a. One approach to the concept of bordism between manifolds
with boundary is reviewed in [BHS07, Definition 5.5].

The setsΩ(Z,E)(X, Y) are abelian groups. The group operation is given by dis-
joint union and the additive inverse of (M,a, f) is (−M,a, f). Here the opposite
−M is obtained by composing the bundle isomorphism ϕ with an orientation-
reversing automorphism of Rs. (See Lemma 8.3 for another description of the
inverse.)

The groups Ω(Z,E)
j (X, Y) constitute a homology theory on G-finite proper G-

CW-complexes. Homotopy invariance follows from the bordism relation. The
boundary maps

∂ : Ω
(Z,E)
j (X, Y) −→ Ω

(Z,E)
j−1 (Y)

take (M,a, f) to (∂M,a|∂M, f|∂M). They fit into sequences
(7.1)
. . . // Ω

(Z,E)
j (X) // Ω

(Z,E)
j (X, Y) // Ω

(Z,E)
j−1 (Y) // Ω

(Z,E)
j−1 (X) // . . . .

whose exactness follows from direct manipulations with cycles, as follows. A
cycle (M,a, f) for Ω(Z,E)

j (Y), when mapped to Ω(Z,E)
j (X, Y), represents the zero

class since it is the boundary of (M× [0, 1], a, f ◦prM). Conversely if a cycle for
Ω

(Z,E)
j (X) is a boundary inΩ(Z,E)

f (X, Y), then that boundary is a bordism from the
given cycle to a cycle forΩ(Z,E)

j (Y). So the sequence is exact atΩ(Z,E)
j (X).

Exactness atΩ(Z,E)
j−1 (Y) is evident, as is the fact that the composition of the two

maps through Ω(Z,E)
j (X, Y) is zero. It remains to complete the proof of exactness

at Ω(Z,E)
j (X, Y). If a cycle (M,a, f) for Ω(Z,E)

j (X, Y) maps to zero in Ω(Z,E)
j−1 (Y),

then one can glue to (M,a, f) a null bordism for its image in Ω(Z,E)
j−1 (Y) to lift

(M,a, f) to a cycle for Ω(Z,E)
j (X). The glued manifold carries and evident stable

(Z, E)-structure. As for the lifting of the K-theory class a, we use the fact that if
a1 and a2 are equivariant K-theory classes on manifolds M1 and M2 that restrict
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to a common class on the a common boundary, then there is a K-theory class
on M1 ∪M2 that restricts to a1 and a2. This follows from the Mayer-Vietoris
sequence for equivariant K-theory, and therefore from the results of Lück and
Oliver reviewed in Sections 5 and 6.

A map of pairs of G-CW-complexes φ : (X1, Y1) → (X2, Y2) that is a homeo-
morphism from X1 \ Y1 to X2 \ Y2 induces an isomorphism on relative groups as
follows. The open cells in X1 \Y1 and X2 \Y2 correspond to each other. By induc-
tion on the dimension of cells we can construct open G-invariant neighborhoods
U1 and U2 of Y1 and Y2, respectively, with G-equivariant deformation retractions
Ui → Yi. Using the long exact sequence (7.1) we can replace Yi with Ui. Given
a cycle (M,a, f) for Ω(Z,E)

j (X2, U2) we can, using a G-invariant collar of M, re-
place it by a cycle which omits Y2 and therefore lifts to (X1, U1). Similarly, we
can achieve that a bordism for (X2, U2) of such normalized cycles avoids Y2 nad
therefore lifts to (M1, U1). Together, this implies that φ induces an isomorphism
Ω

(Z,E)
j (X1, Y1) → Ω

(Z,E)
j (X2, Y2).

As they stand, the bordism groupsΩ(Z,E)
j (X, Y) are rather far from equivariant

K-homology groups, most obviously because they are not 2-periodic. We shall
obtain the technical groups kGj (X, Y) by simultaneously forcing periodicity and
removing dependence of the bordism groups on the pair (Z, E).

Let M be a stable (Z, E)-manifold with structure maps h and ϕ, as in Defini-
tion 7.1 and let F be a complex hermitianG-bundle onZ of rank k. The pullback of
F to M has a unique G-invariant smooth structure by Lemma 6.5, and so we may
form the sphere bundle S(R⊕ h∗F), which is a G-compact proper G-manifold. It
is also a stable (Z, E⊕ F)-manifold. Indeed if B(R⊕ h∗F) is the unit ball bundle,
and if p is the projection toM, then

TB(R⊕ h∗F) ∼= R⊕ p∗T ∗M⊕ h∗F

(once a complement to the vertical tangent bundle is chosen). So we obtain an
isomorphism

Rr ⊕ TB(R⊕ h∗F) ∼= Rr ⊕ R⊕ p∗T ∗M⊕ p∗h∗F
∼= Rs ⊕ R⊕ p∗h∗E⊕ p∗h∗F

using the given stable (Z, E)-structure onM. We can then equip the sphere bundle
with the stable (Z, E⊕ F)-structure it inherits as the boundary of the ball bundle.

Suppose now that (M,a, f) is a cycle for the bordism groupΩ(Z,E)
j (X, Y). We

can form from it the cycle (M̂, ι!(a), f ◦ π) for the groupΩ(Z,E⊕F)
j+2k (X, Y), where:
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(a) M̂ is the sphere bundle for R ⊕ h∗F with the stable (Z, E ⊕ F)-structure just
described.

(b) ι : M → M̂ is the inclusion ofM into the sphere bundle given by the formula
m 7→ (1, 0) ∈ R ⊕ Fh(m) and ι! : K0G(M) → K0G(M̂) is the Gysin map, as
described at the end of Section 6.

(c) π is the projection from M̂ toM.

Since this construction may also be carried out on bordisms between manifolds,
we obtain a well-defined map on bordism classes.

7.4 Definition. Let k = dimC(F). Denote by

βF : Ω
(Z,E)
j (X, Y) −→ Ω

(Z,E⊕F)
j+2k (X, Y)

the map determined by the above construction.

7.5 Lemma. If F1 and F2 areG-bundles on Z of ranks k1 and k2 respectively, then

βF2 ◦ βF1 = βF : Ω
(Z,E)
j (X, Y) −→ Ω

(Z,E⊕F)
j+2k (X, Y),

where F = F1 ⊕ F2 and k = k1 + k2.

Proof. Let c = (M,a, f) be a cycle for the bordism group Ω(Z,E)
j (X, Y). The

manifolds M̂0, M̂1 and M̂2 obtained from M by the modification processes un-
derlying βF1 , βF2 ◦ βF1 and βF are fiber bundles over M whose fibers are the
spheres in R ⊕ F1 in the first case, the product of spheres in R ⊕ F1 and R ⊕ F2
in the second and the sphere in R ⊕ F in the third. The product embeds as a
hypersurface in the unit ball of R⊕ F, for example via the map(

(s1, f1), (s2, f2)
)
7→ 1

6

(
(2+ s1)s2, f1, (2+ s1)f2

)
,

and we obtain from this construction a bordism Ŵ between M̂1 and M̂2. The map

j : t 7→ (1
2
(1+ t), 0, 0

)
embedsM×[0, 1] into Ŵ, transversely to the boundary of Ŵ, and on the boundary
components of M×[0, 1] the embedding restricts to the given embeddings of M
into M̂1 and M̂2. The embedding into M̂1 is the composition of the embedding
into M̂0 with the embedding of M̂0 into M̂1. The class a ∈ K0G(M) determines
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a class a ∈ K0G(M×[0, 1]) by homotopy invariance, and the triple (Ŵ, j!(a), f ◦
π) gives a bordism between the cycles representing βF2(βF1(c)) and βF(c), as
required, using functoriality of the Gysin homomorphism to describe βF2(βF1(c))

in terms of the embeddingM ↪→ M̂1.

Now fix a universal space EG as in Section 2. Let Z be a G-finite, G-sub-
complex of EG. In order to cope with the contingency that G might be finite we
shall modify the notion of G-standard bundle as advertised in Remark 5.7, so that
standard G-bundles are now taken to be suitable subbundles of Z× C[G∞].

Let E be a standard G-bundle over Z, as considered in Section 5. Form a
partial order on the set of pairs (Z, E) by inclusion:

(Z1, E1) ≤ (Z2, E2) ⇔ Z1 ⊆ Z2 and E1 ⊆ E2|Z1
.

According to the results of Section 5 this is a directed set.

7.6 Definition. For j ∈ Z define groups kGj (X, Y) to be the direct limits

kGj (X, Y) = lim−→
(Z,E)

Ω
(Z,E)
j+2 rank(E)(X, Y)

over the directed set of all pairs (Z, E), as above.

8 Proof of the Main Theorem
We aim to prove Theorem 4.6, that the geometric equivariant K-homology groups
of Section 3 are isomorphic to the analytic groups of Section 4. We shall do so
by comparing the technical groups of the previous section first to equivariant KK-
theory and then to geometric K-homology.

The equivariant KK-groups determine a homology theory on G-finite proper
G-CW pairs (or indeed on arbitrary second-countable G-compact proper G-CW
pairs) if one defines the relative groups for a pair (X, Y) to be KKGj (C0(X\Y),C).
The boundary maps are provided by the boundary maps of the six-term exact
sequence in KK-theory.

If (M,a, f) is a cycle forΩ(Z,E)(X, Y), then an element of the Kasparov group
KKGj (C0(X \ Y),C) may be defined as follows. Form the Dirac operator D on
the interior of M using the Spinc-structure associated to the given stable (Z, E)-
structure onM. It determines a class

[D] ∈ KKGj (C0(M \ ∂M),C).
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For example we may equip M \ ∂M) with a complete G-invariant Riemannian
metric and then form a KK-class using F = FD(I + D2)− 1

2 as in Section 4 (it
does not depend on the choice of metric). Compare [HR00, Ch. 10], where the
non-equivariant case is handled; theG-compact properG-manifold situation is the
same. We can then form the Kasparov product a⊗ [D] ∈ KKGj (C0(M \ ∂M),C)

and hence the class

f∗(a⊗ [D]) ∈ KKGj (C0(X \ Y),C)

more or less exactly as we did in Section 4.

8.1 Theorem. The correspondence that associates to a cycle (M,a, f) the ele-
ment f∗(a⊗ [D]) above is a natural transformation

µ : kG∗ (X, Y) −→ KKG∗ (C0(X \ Y),C)

between homology theories.

This is a mild elaboration of Theorem 4.5 and the equivariant counterpart
of [BHS07, Theorem 6.1]. The equivariant case may be handled exactly as in
[BHS07].

Our first goal is to show that this natural transformation is an isomorphism
on G-finite proper G-CW-complexes. To do so it suffices to show that it is an
isomorphism on the building blocks X = G/H corresponding to finite subgroups
H of G. The following observation clarifies what needs to be done in this case.

8.2 Lemma. Let H be a finite subgroup of G. There is a commutative diagram

kG∗ (G/H)
µ // KKG∗ (C0(G/H),C)

kH∗ (pt) µ
//

Ind

OO

KKH∗ (C,C)

Ind

OO

in which the vertical maps are isomorphisms.

Proof. The right-hand induction map is defined as follows. If H is a Hilbert space,
or Hilbert module, with unitary H-action, define Ind H to be the space of square-
integrable sections of G ×H H. It carries a natural representation of C0(G/H),
and if F is anH-equivariant Fredholm operator on H, then operator Ind F on Ind H

given by the pointwise action of F determines a cycle for KKGj (C0(G/H),C).
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The inverse to the induction map defined in this way is given by compression
to the range of the projection operator determined by the indicator function of the
identity coset in G/H (this function being viewed as an element of C0(G/H)).

The left-hand induction map is defined in a similar fashion. We choose our
model for EH to be a point, which we can include into EG as an H-fixed 0-cell,
and we use the induced manifolds IndM = G ×H M, which map canonically
to G/H ⊆ EG. Note that any G-manifold that maps to G/H has this form.
The construction of an inverse to induction and the proof that induction is an
isomorphism are immediate upon noting that any G-map f : IndM → EG is G-
equivariantly homotopic to one that factors through G/H ⊆ EG.

It suffices, therefore, to prove that the map

µ : kHj (pt) −→ KKHj (C,C)

is an isomorphism. The right hand group is isomorphic to the representation ring
R(H) when j is even and is zero when j is odd.

8.3 Lemma. Let (M,a, f) be a cycle for kGj (X). If a = a1 + a2 in K0G(M), then

[(M,a, f)] = [(M,a1, f)] + [(M,a2, f)]

in kGj (X).

Proof. Suppose that (M,a, f) ∈ Ω(Z,E)
j+2k (X). Fix a bordism W between S2 and

S2 t S2 by situating two copies of the 2-sphere of radius 1
4

inside the unit sphere.
There are smooth paths I1 and I2 embedded into the bounding manifold W that
connect the north and south poles of the large sphere to the south and north poles
of the small spheres, that meet the spheres transversally, and that have trivial nor-
mal bundles inW.

The class a1 ∈ K0G(M) pulls back to a class ã1 ∈ K0G(M × I1). Similarly, the
class a2 pulls back to a class ã2 ∈ K0G(M× I2). We obtain

ã := ã1 t ã2 ∈ K0G(M× I) = K0G(M× I1)⊕ K0G(M× I2),
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where I = I1 t I2. Now form the class

j!(ã) ∈ K0G(M×W),

where j is the inclusion ofM× I intoM×W. If f̃ : M×W → X is the projection
from M ×W to M, followed by f, then (M×W, j!(ã), f̃) is a bordism between
the images of (M,a, f) and (M,a1, f) t (M,a2, f) under the map

β : Ωj(X)(Z,E) → Ω
(Z,E⊕C)
j+2(k+1)(X).

For this, observe that

β(M,a, f) = (M× S2, iN! (a1 + a2), f) = (M× S2, iN! (a1) + iS! (a2), f)

where iN, iS : M → M× S2 are the north pole inclusion and the south pole inclu-
sion, which are G-homotopic, and the Gysin map is homotopy invariant. Finally,
iN! (a1) = j!(ã1)|M×S2 by the compatibility of the Gysin map with restriction, so
that iN! (a1) + iS! (a2) = j!(ã)|M×S2 .

In view of the definition of kGj (X) the lemma is proved.

8.4 Remark. The lemma shows that −[(M,a, f)] = [(M,−a, f)] in kGj (X).

8.5 Proposition. Let H be a finite group. The homomorphism

µ : kH∗ (pt) −→ KKH∗ (C,C)

is an isomorphism.

Proof. We shall prove that the homomorphism

R(H) −→ kH0 (pt)
a 7→ (pt, a, Id)

is surjective, and that in addition, the group kH1 (pt) is zero. This will suffice since
KKH0 (C,C) ∼= R(H), with the isomorphism being given by the above correspon-
dence and the map µ, while KKH1 (C,C) = 0.

Fix an element of kH0 (pt) and represent it by a cycle (M,a) for Ω(pt,E)
2n (pt)

(we drop the map f : M → pt from our notation here and below). Thus M is a
2n-dimensional Spinc-manifold with a given stable isomorphism from its tangent
bundle to a trivial bundle M×E, where E is a complex representation of H. The
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manifoldMmay be equivariantly embedded in a finite-dimensional complex rep-
resentation V of H. By composing with the subspace embedding V → E⊕V and
by adding to V a multiple of the regular representation, if necessary, we arrive at
an embedding into E⊕V with trivial normal bundle F := M×V .

Using the map
βF : Ω

(pt,E)
2n (pt) −→ Ω

(pt,E⊕V)
2n+2k (pt)

we find that the given element of kH0 (pt) is represented by the cycle (N,b) =

(M̂, ι∗(a)). Here N = M̂ is a codimension one submanifold of E⊕V⊕R and is
the boundary of some compact X (namely the ball bundle associated to M̂). By
enclosing X in a large ball we construct a bordism Y between M̂ and a sphere
S ⊆ V⊕F⊕R. The union of X and Y is the ball bounded by the sphere S, and by
applying the Mayer-Vietoris sequence in H-equivariant K-theory to the decompo-
sition X ∪ Y of the ball, we find that the class b ∈ K0H(N) may be written as a
sum bX + bY , where bX is a the restriction of a class in K0H(X) and bY is a the
restriction of a class in K0H(Y). By the previous lemma,

[(N,b)] = [(N,bX)] + [(N,bY)].

The first class is zero in Ω(pt,E⊕F)
2n+2k (pt), while the second is equal to some class

[(S, c)] thanks to the bordism Y. We have therefore shown that every class in
kH0 (pt) represented by a sphere in some W⊕R, where W is a complex represen-
tation of H.

To complete the proof we invoke Bott periodicity. The class c is a sum c0+ c1
where c0 is represented by a trivial bundle (one that extends over the ball) and c1
is in the image of the Gysin map associated to the inclusion

pt 7→ (0, 1) ∈ S ⊆W × R.

This completes the computation of kH0 (pt).
The proof that kH1 (pt) = 0 is essentially the same. Every cycle is equivalent

to one of the form [(S, c)], where S is the sphere in a complex representaion of H.
But the sphere is odd-dimensional and by Bott periodicity every class in K0H(S)

extends over the ball. So (S, c) is a boundary.

8.6 Corollary. If X is a G-finite proper G-CW-complex, then the map

µ : kG∗ (X) −→ KKG∗ (C0(X),C)

is an isomorphism.
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Next we need to relate the technical groups kGj (X) to the geometric groups
KGj (X).

8.7 Lemma. The class in KGj (X) of an equivariant K-cycle (M,E, f) depends only
onM, f and the class of the G-bundle E in the Grothendieck group K0G(X).

Proof. Fixing M and f, the map that associates to a G-bundle E on M the class
of (M,E, f) in KGj (X) is additive, and so extends to a map from the Grothendieck
group K0G(X) into KGj (X).

Thanks to the lemma, we can attach a meaning to the class in the geometric
groupKGj (X) of any triple (M,a, f), wheneverM is aG-compact properG-Spinc-
manifold, f is an equivariant map from M to X, and a ∈ KG(M). In particular,
we can do so whenM is a stable (Z, E)-manifold. We obtain in this way a natural
transformation

Ω
(Z,E)
j (X) −→ KGj (X)

8.8 Lemma. If F is any G-bundle over Z of rank k, then the diagram

Ω
(Z,E)
j (X) //

βF

��

KGj (X)

Ω
(Z,E⊕F)
j+2k (X) // KGj+2k(X)

is commutative.

Proof. This follows from the definitions of the Gysin homomorphism and vector
bundle modification.

We obtain therefore a natural transformation

kGj (X) −→ KGj (X)

that fits into a commuting diagram

kGj (X) // KGj (X)

µ

��
kGj (X)

µ
// KKGj (C0(X),C).
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8.9 Lemma. For every j the map from kGj (X) into the equivariant geometric K-
homology group KGj (X) is surjective.

Proof. Let (M,a, f) be an equivariant K-cycle for X. The manifold M maps
equivariantly to a G-finite subcomplex Z of the universal space EG via h.

The tangent bundle forM (indeed its complexification) embeds as a summand
of a G-bundle that is pulled back from a standard G-bundle on Z via h : M → Z

(see Corollary 5.2 and the comment following it). Thus there is an isomorphism
of real bundles

TM⊕ F0 ∼= h∗E

where F0 is a real G-bundle on M and E is a complex G-bundle on Z. By adding
a trivial bundle if necessary, we obtain an isomorphism

TM⊕ F1 ∼= h∗E⊕ Rs,

where F1 = F0 ⊕ Rs has even fiber dimension. By the two out of three princi-
ple for Spinc-structures from Section 3, the bundle F1 carries a Spinc-structure
whose direct sum with the given Spinc-structure on TM is the direct sum of the
Spinc-structure on h∗E associated with its complex structure and the trivial Spinc-
structure on R. If we carry out a vector bundle modification using F1, then we
obtain an equivariant K-cycle (M,E, f) ^ that is equivalent to (M,E, f) and for
which M̂ carries a stable (Z, E)-structure compatible with its Spinc-structure.

With this, as we pointed out in the introduction, the proof of Theorem 4.6 is
complete.

9 The Baum-Connes Assembly Map
Let G be a countable discrete group. The essence of the Baum-Connes conjecture
for G is the assertion that every class in the K-theory of the reduced group C∗-
algebra C∗r(G) arises as the index of an elliptic operator on a G-compact proper
G-manifold, and that in addition the only relations among these indexes arise from
geometric relations (such as for example bordism) between the operators. The
conjecture arose from a K-theoretic analysis of Lie groups and of crossed product
algebras related to foliations. However here we shall discuss only the C∗-algebras
of discrete groups.

To make their conjecture precise, Baum and Connes constructed in [BC00]
geometric groups Kj(G) from cycles related to the symbols of equivariant elliptic
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pseudodifferential operators, and an equivalence relation related to the Gysin map
in K-theory. They then defined an index map

µ : Kj(G) −→ Kj(C
∗
r(G))

that they conjectured to be an isomorphism.
Although the Dirac operator on a Spinc-manifold did not play a central role

in [BC00], it is nonetheless a fairly routine matter to identify the geometric group
defined there with the group generated from cycles (M,E), where:

(a) M is a G-compact proper G-Spinc-manifold, all of whose components have
either even or odd dimension, according as j is 0 or 1, and

(b) E is a complex G-bundle onM.

The equivalence relation between cycles is generated by bordism, direct sum/dis-
joint union and vector bundle modification, exactly as in Section 3, except that
here there is no reference space X, nor any map from M to X. Compare [Bau04],
where the conjecture for countable discrete groups is formulated in precisely this
way.

It follows from the universal property of the space EG that there is an isomor-
phism

Kj(G) ∼= lim−→
X⊆EG

KGj (X),

where on the right is the direct limit of the geometric K-homology groups of the
G-finite subcomplexes of the G-CW-complex EG.

In a later paper [BCH94], Baum, Connes and Higson defined an assembly map

µ : lim−→
X⊆EG

KKGj (C(X),C) −→ Kj(C
∗
r(G))

Its relation to the original Baum-Connes map is summarized by the commutative
diagram

Kj(G)
∼= //

µ

��

c lim−→X⊆EG K
G
j (X)

µ // lim−→X⊆EG KK
G
j (C(X),C)

µ

��
Kj(C

∗
r(G)) =

// Kj(C
∗
r(G)),

where the horizontal map labelled (yet again) µ is the one analyzed in this paper,
and shown to be an isomorphism. Because it is an isomorphism, the reformulation
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of the Baum-Connes conjecture in [BCH94] is equivalent to the original in [BC00]
for discrete groups.

Despite the discovery some years ago of counterexamples to various exten-
sions of the Baum-Connes conjecture (see [HLS02]), there is, as of today, no
known counterexample to the conjecture as reviewed here.
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