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THE ŝl(n)k-WZNW FUSION RING: A COMBINATORIAL

CONSTRUCTION AND A REALISATION AS QUOTIENT OF QUANTUM

COHOMOLOGY

CHRISTIAN KORFF AND CATHARINA STROPPEL

ABSTRACT. A simple, combinatorial construction of the bsl(n)k-WZNW fusion
ring, also known as Verlinde algebra, is given. As a byproduct of the construc-
tion one obtains an isomorphism between the fusion ring and a particular quo-
tient of the small quantum cohomology ring of the Grassmannian Grk,k+n. We
explain how our approach naturally fits into known combinatorial descriptions
of the quantum cohomology ring, by establishing what one could call a ‘Boson-
Fermion-correspondence’ between the two rings. We also present new recursion
formulae for the structure constants of both rings, the fusion coefficients and the
Gromov-Witten invariants.
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1. INTRODUCTION

Given k, n ∈ N natural numbers, we can associate the following two rings:

The quantum cohomology ring qH•(Grk,n+k). Let Grk,n+k be the Grassmannian of
k-planes in Ck+n, considered as an algebraic variety. Then the quantum cohomology
ring qH•(Grk,n+k) is a deformation of the ordinary (integral) cohomology ring
H•(Grk,n+k) of Grk,n+k. The latter has a basis given by the Schubert classes [Ωλ],
indexed by partitions λwhose Young diagram fits into a bounding box of size k×n.
The structure constants are just intersection numbers, the so-called Littlewood-
Richardson coefficients. The quantum cohomology can be viewed as the free Z[q]-

module with the same basis, but the structure constants
∑
d C

ν∗,d
λ,µ q

d are now the

so-called 3-point genus 0 Gromov-Witten invariants, which count the number of
rational curves of degree d passing through generic translates of the involved three
Schubert cells. By a theorem of Siebert and Tian [40], there is an isomorphism of
rings qH•(Grk,k+n) ∼= Z[q]⊗Z Z[e1, e2, . . . , ek]/

〈
hn+1, . . . , hn+k−1, hn+k + (−1)kq

〉
,

where ei, 1 ≤ i ≤ k denotes the ordinary ith elementary symmetric polynomial and

hr, r ≥ 1, denotes the rth complete symmetric function in k variables.

The fusion ring F(ŝl(n))k. The fusion ring F = F(ŝl(n))k of integrable highest

weight representations of ŝl(n) at level k has a natural basis indexed by integrable

highest weights λ̂ ∈ P+
k of level k which can be identified with partitions λ whose

Young diagram fits into a bounding box of size (n − 1) × k. The structure con-
stants in this ring can be described in various ways, for instance via characters
of the Lie algebra sl(n) (Verlinde formula), in terms of combinatorics of the affine
Weyl group (Kac-Walton formula), geometrically as dimensions of certain moduli
spaces of generalised theta functions etc.

To motivate our discussion we recall the following theorem due to Witten [47],
based on earlier work of Gepner [19] and Vafa [44] and Intrilligator [23] which
states that there is an isomorphism of rings

F(ĝl(n))k ∼= qH•(Grn,k+n)q=1
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between the level k fusion ring of ĝl(n) (resp. û(n)) and the specialisation at q = 1
of the quantum cohomology ring. (A mathematical proof seems to be contained
in the unpublished, unfortunately not anymore available, work [1].)

The main goal of this paper is to give a (mathematically rigorous) realisation of

F(ŝl(n))k as a quotient of qH•(Grk,k+n) with the defining relations explained via
Bethe Ansatz equations of a quantum integrable system.

Either of the two rings will be also be described combinatorially in terms of
symmetric polynomials (Schur polynomials) in pairwise non-commuting variables.
These variables will be interpreted in either case in two ways: as particle hopping
operators of a certain quantum integrable system and as generators of some alge-
bra naturally appearing in representation theory. A crucial observation here is that
the generating function of the elementary symmetric polynomials turns out to be
the transfer matrix of the quantum integrable system. This is the starting point of
our analysis of the two rings.

As a consequence we obtain a simple particle formulation of both rings leading
to novel recursion formulae for the structure constants of the fusion ring as well
as for the Gromov-Witten invariants. Certain symmetries in these constants arise
also naturally from our quite elementary description of both rings.

The Verlinde formula naturally emerges from our approach and in particular
equips the combinatorial fusion algebra with a natural PSL(2,Z)-action (see Re-
mark 6.14), a structural data of the abstract Verlinde algebras as introduced in [12,
0.4.1].

An abstract isomorphism of the two rings as mentioned above could be of
course also obtained much more directly, since both rings are (after complexifica-
tion) semisimple, and hence it is enough to compare their spectra (see for instance
[3] for a description). The interesting new aspect here is our connection with Bethe
Ansatz techniques of quantum integrable systems ‘in the crystal limit’.

Outline of the results and methods of the paper. Let Hk denote the underlying vector
space of the fusion ring F . Any basis vector of Hk can be realised as a partition,
or alternatively as an n-tuple (m0,m1, . . . ,mn−1) of non-negative integers which
sum up to k. We therefore can consider it as a particle configuration on the circular
lattice with n sites and study this underlying integrable model by viewing Hk as
the space of k-particle states. (Details are explained in Section 2.)

We have the obvious operations of particle creation and annihilation ϕ∗
i , ϕi at

site i and particle hopping ai = ϕ∗
i+1ϕi; see Figure 1.1. The endomorphisms ai of H

form an interesting algebra which we call the local affine plactic algebra or the generic
affine Hall algebra, since it generalises the plactic algebra introduced originally by
Lascoux and Schützenberger [31] and Fomin and Greene [15], with its geometric
incarnation as generic Hall algebra introduced by Reineke [36]. These algebras
can be viewed as the q = 0 crystal limit of the positive part Uq(n

+) of the quantised

universal enveloping algebra of ŝl(n). The action of the ai’s sends a basis vector
to a basis vector or zero and defines a crystal isomorphic to the crystal of the k-

symmetric power of the natural representation of Uq(ŝl(n)). (Details can be found
in Section 3 and 4).

We then define elementary symmetric functions er(a0, a1, . . . an−1) in these non-
commuting generators and get the following first result:
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FIGURE 1.1. The dominant integral weight (m0,m1, . . . ,mn−1) =
(0, 3, 2, 1, 0, 1, 2) of level k = 9 as particle configuration on a circle;
the processes of creating and annihilating, and hopping applied
to it.

Theorem 1.1. The spaceHk of states can be equipped with the structure of an associative
unital algebra Fcomb by defining the (combinatorial) fusion product

λ⊛ µ = sλ(a0, a1, . . . an−1)µ.

This combinatorially defined fusion product coincides with the fusion product in the Ver-

linde algebra, hence Fcomb
∼= F(ŝl(n))k.

Here sλ(a0, a1, . . . , an−1) denotes the (noncommutative) Schur polynomials de-

fined via the usual Jacobi-Trudi formula sλ = det
(
eλt

i−i+j

)
. To ensure that this

statement makes sense, we have to show that the e’s pairwise commute. Instead
of giving a purely combinatorial proof of this fact [39] we construct a simultane-
ous eigenbasis for the action of the sλ(a0, a1, . . . , an−1)’s using the algebraic Bethe
Ansatz and prove:

Theorem 1.2. (1) The generating function for the noncommutative elementary sym-
metric functions er(a0, a1, . . . an−1) is given by the transfer matrix T (u) associ-
ated with a known quantum integrable system, known as phase model.

(2) This system is integrable in the sense that [T (u), T (v)] = 0 for any u, v ∈ C, in
particular, the er(a0, a1, . . . an−1)’s commute, and the sλ(a0, a1, . . . an−1)’s are
well-defined.

(3) The Bethe vectors (6.1) form an orthogonal eigenbasis for the action of the non-
commutative Schur-functions sλ(a0, a1, . . . an−1).

(4) The transformation matrix between the standard basis and the basis of Bethe vec-
tors can be expressed in terms of Weyl characters evaluated at certain (n + k)th
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roots of unity. The combinatorial fusion product satisfies the Verlinde formula
(6.40) expressed in the entries of the modular S-matrix.

Let Λ(k) = Z[e1, . . . , ek] be the ring of symmetric polynomials in k variables. We
get the following main theorem, connecting the fusion algebra with the quantum
cohomology (note that the algebra structure on the left hand side is defined in
terms of noncommutative Schur polynomials whereas the right hand side is in
terms of ordinary commutative Schur polynomials):

Theorem 1.3. The assignment P+
k ∋ λ̂ 7→ sλt defines an isomorphism of rings

Fcomb = F(ŝl(n),Z) ∼= Z[e1, . . . , ek]/〈hn − 1, hn+1, . . . , hn+k−1, hn+k + (−1)kek〉,
hence, the fusion ring is isomorphic to the quotient of qH•(Grk,n+k) obtained by imposing
the additional relations q = ek and hn = 1.

Note that by Lemma 6.3, the defining relations of the ring coincide exactly with
the Bethe Ansatz equations (6.2). The case n = 3, k = 1 is worked out in detail in
Example 6.22.

In the second part of the paper we develop the integrable system for the quan-
tum cohomology with the resulting combinatorial description of the ring using
now noncommutative Schur functions in the generators of the affine nil-Temperley-
Lieb algebra, reproving a result of Postnikov [35] with our methods. The defining
relations are then the Bethe Ansatz equations (10.5) of a free Fermion system. The
resulting basis of Bethe vectors agrees with a basis introduced by Rietsch [37] in
her comparison of the quantum cohomology with the coordinate ring of Peterson
varieties. By applying our method of deducing the Verlinde formula on the fu-
sion ring side once more on the quantum cohomology side, gives the celebrated
Bertram-Vafa Intrilligator formula (10.16) expressed in terms of Schur polynomi-
als evaluated at roots of unity (as first developed by Rietsch). Employing our free
fermion formulation we present new identities relating Gromov-Witten invariants
at different dimensions k leading to an inductive algorithm which starting from
k = 0 allows one to compute and relate the entire hierarchy of structure constants
for all k > 0; see Remark 11.5. We will provide an explicit example. This algo-
rithm differs from the known rim-hook algorithms in [6] and [41] (see also [9] and
references therein) which compute Gromov-Witten invariants for fixed k only.

The paper finishes with Part III, where we summarize the parallel construction
in what we shall call Boson-Fermion correspondence in the present context because
of its close analogy with the well-known case (see e.g. [33] and [28]). A detailed
study of this correspondence from a representation theory point of view will ap-
pear in a forthcoming paper.

Acknowledgement: The first author thanks Michio Jimbo, Ulrich Krähmer, Eu-
gene Mukhin, Jonathan Nimmo, Arun Ram and Simon Ruijsenaars for helpful dis-
cussions. He would like to express his special gratitude to Alastair Craw for his
insightful comments, support and advice. The second author would like to thank
Evgeny Feigin, Konstanze Rietsch, Christoph Schweigert and Ivan Cherednik for
helpful discussions. Both authors are grateful to Ken Brown, Rinat Kedem and
Anne Schilling for sharing knowledge and many ideas. Most of the collaboration
took place during stays by both authors at the Isaac Newton Institute in Spring
2009. We thank the INI staff and both, the Discrete Integrable Systems and the
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General conventions. In the following vector spaces are always defined over the
complex numbers C, by an algebra we mean an associative unital algebra over C,
and we will abbreviate⊗ = ⊗C, End = EndC. To avoid confusion with indices, we
denote the imaginary complex number (0, 1) by ι.

PART I: THE FUSION RING: BOSONS ON A CIRCLE

2. THE AFFINE DYNKIN DIAGRAM AND THE VECTOR SPACE OF STATES

2.1. The Lie algebra ŝl(n), weights and partitions. We start by setting up the no-

tation and basics needed from the (untwisted) affine Lie algebra ŝl(n) (see e.g. [26],
[46] for the general theory).

Let g = sl(n) be the Lie algebra of complex traceless n × n matrices with its
standard Cartan subalgebra h given by the diagonal matrices. If C[t, t−1] denotes
the ring of formal Laurent series in twe have the loop algebra g⊗C[t, t−1] with Lie
bracket [x ⊗ P, y ⊗Q] = [x, y] ⊗ PQ for x, y ∈ g, P,Q ∈ C[t, t−1]. This Lie algebra

has a unique central extension g ⊗ C[t, t−1]⊗ CC, and ĝ := ŝl(n) is then obtained
by adding an extra exterior derivative D = t ddt , in formulae

ŝl(n) = sl(n)⊗ C[t, t−1]⊕ CC ⊕ CD .

with Lie bracket [D,C] = 0, [D, x ⊗ P ] = x ⊗ d
dtP where x ∈ g, P ∈ C[t, t−1].

Consider the extended Cartan subalgebra ĥ := h ⊕ CC ⊕ CD and let δ, ω̂0 ∈ ĥ∗

such that δ(D) = 1, δ(C) = δ(h) = 0 and ω̂0(C) = 1, ω̂0(D) = ω̂0(h) = 0, for h ∈ h.

Let {εi}ni=1 ∈ h∗ ⊂ ĥ∗ be the linear function which picks out the ith diagonal
entry of an element h ∈ h. The elements αi = εi − εi+1 for i = 1, . . . , n− 1 form a
basis of h∗ and can be identified with the simple roots of sl(n). Viewed as elements

of ĥ∗ (by extending trivially by zero), together with α0 = εn − ε1 + δ ∈ ĥ∗ they

form exactly the simple roots of ĝ. The Z-span of {αi}n−1
i=0 is the affine root lattice

Q. Let α∨
i , 0 ≤ i ≤ n, be the dual roots α∨

i ∈ h defined by 〈αi, α∨
j 〉 = ai,j , the (i, j)th

entry in the Cartan matrix A.

We denote by Γ the Dynkin diagram of ŝl(n), which we view as a circle with
n equidistant marked points. We name these points 0, 1, . . . , n − 1 in clockwise
direction (see Figure 1.1).

There is a unique non-degenerate bilinear pairing on h∗ given by (εi, εj) = δi,j
and we have the fundamental weights

(2.1) ωi = ε1 + ε2 + · · ·+ εi −
i

n

n∑
j=1

εj , i = 1, . . . , n− 1

for g characterized by
2(ωi,αj)
(αj ,αj)

= 〈ωi, α∨
i 〉 = δi,j for i = 1, . . . , n− 1. Let Pfin denote

the corresponding integral weight lattice, that is the Z-span of the fundamental
weights, with its positive cone P+

fin given by the Z≥0-span. Set ω̂i = ωi + ω̂0 for
1 ≤ i ≤ n− 1.
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Then we have the (affine) integral weight lattice P = Pfin ⊕ Zω̂0 ⊕ Cδ. Now fix
k ∈ Z>0 and γ ∈ C and consider

P+
k =

{
λ̂ =

n−1∑

i=0

miω̂i + γδ

∣∣∣∣∣
n−1∑

i=1

mi = k , mi ∈ Z≥0

}
,(2.2)

the set of integral dominant weights of level k. Since (up to a grading induced by the
action of δ) the integrable highest weight modules are independent of the choice
of γ, the particular choice will not be important for us and we therefore assume
from now on γ = 0. The mi appearing here are often called Dynkin labels and will

also be denoted mi(λ̂) in the following. For λ̂ = λ + kω̂0 ∈ P+
k we call λ the finite

part of λ̂. Note that λ =
∑n−1

i=1 miωi.
It is convenient to encode affine and non-affine weights in terms of partitions.

For any two integers r, c ∈ Z≥0 let

P≤r,c = {µ = (µ1, . . . , µr, 0, 0, . . .) | µi ∈ Z≥0, µi ≥ µi+1, µ1 ≤ c}
which is the set of all partitions whose associated Young diagram has at most r
rows and c columns, i.e. they fit into a boundary box of height r and width c.
Hereby we use the English notation to denote Young diagrams, often just write
(µ1, . . . , µr) instead of (µ1, . . . , µr, 0, 0, . . .) and use the symbol ∅ to denote the
(unique) partition of zero; so for instance

P≤2,3 = {∅, (1), (2), (3), (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}(2.3)

corresponds to
{
∅, , , , , , , , ,

}
(2.4)

The following Lemma passes between weights and partitions. For instance, it

identifies the Young diagrams in (2.4) via the map P−1 in (2.5) with the weights

3ω̂0, 2ω̂0+ω̂1, ω̂0+2ω̂1, 3ω̂1, 2ω̂0+ω̂2, ω̂0+ω̂1+ω̂2, ω̂0+2ω̂2, 2ω̂1+ω̂2, ω̂1+2ω̂2, 3ω̂2.

Lemma 2.1. (1) With the notation from (2.2), there is a bijection of sets

P : P+
k −→ P≤n−1,k

λ̂ 7−→ (µ1, . . . , µn−1, 0, . . .) with µi − µi+1 = mi.(2.5)

(The associated Young diagram has then exactly mi columns of length i.)
(2) There is an injective map

P̂ : P+
k −→ P≤n,k

λ̂ 7−→ (µ1 +m0, . . . , µn−1 +m0,m0, 0, . . .), with µi − µi+1 = mi.(2.6)

(The Young diagram P̂(λ̂) is obtained from P(λ̂) by adding m0 = k −∑i>0mi

columns with n boxes.)

Given λ̂ ∈ P+
k we also denote by λ̂ the associated Young diagram as in (2.6) and

with λ the Young diagram associated to the finite part λ of λ̂ as in (2.5). Given µ ∈
P≤n,k one can remove all columns of length n and obtain a partition µ̃ ∈ P≤n−1,k.

We denote by µ′ = P−1(µ̃), the preimage under P. In the following we identify the
elements from {0, 1, . . . , n− 1}with the elements from Zn := Z/nZ.
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2.2. Diagram automorphisms and the vector space of states. The group of Dynkin
diagram automorphisms of Γ is generated by the rotation rot of order n which
sends vertex i to vertex i + 1 modulo n and the diagram automorphism flip com-

ing from the non-affine Dynkin diagram which fixes the 0th vertex and otherwise
maps vertex i to vertex n− i. There are corresponding automorphisms P+

k → P+
k :

λ̂ =
∑
i∈Zn

miω̂i 7−→ rot(λ̂) :=
∑
i∈Zn

miω̂i−1(2.7)

λ̂ = kω̂0 +
n−1∑
i=1

miωi 7−→ flip(λ̂) := kω̂0 +
n−1∑
i=1

miωn−i(2.8)

In terms of partitions (via (2.5)) the rotation corresponds to adding a row of k boxes
and then removing all columns which contain n boxes. The action of flip is best
described in terms of taking complements of partitions: for a partition µ fitting
into a box of height n and width k we denote by µ∨ the complementary partition

of µ in this box. Then flip(λ̂) gets mapped to the elements

(2.9) λ̂
∗

:= P̂(flip(λ̂)) = (P(λ̂))∨ and λ∗ := P(flip(λ̂)) = (P̂(λ̂))∨ .

For a partition λ we denote by λt its transpose partition (in terms of Young dia-
grams it just means we reflect the diagram in the diagonal).

2.3. The vector space of states and the phase algebra. We now introduce what we
call the vector space of states. Instead of considering only a fixed level k it turns
out to be more convenient to allow k ranging over the positive integers. That is,
we consider the infinite-dimensional vector space

(2.10) H =
⊕

k∈Z≥0

Hk, Hk = CP+
k ,

with H0 = C{∅} = C. For each 0 ≤ i ≤ n− 1 we define linear endomorphisms of
H by the following assignment on basis vectors

ϕ∗
i : P+

k → P+
k+1 ϕ∗

i λ̂ = λ̂+ ω̂i(2.11)

ϕi : P+
k → P+

k−1 ∪ {0} ϕiλ̂ =

{
λ̂− ω̂i, if λ̂− ω̂i ∈ P+

k−1,

0, otherwise
(2.12)

In terms of partitions the map ϕ∗
i acts on the Young diagram associated with λ

by adding a column with i boxes in the appropriate place. In contrast, ϕi is the
map which deletes from λ a column with i boxes or, if it has none, sends λ to zero.
For i = n the corresponding maps simply increase or decrease the width of the
bounding box by one provided this is allowed by the shape of the diagram.

With the notation from (2.2) and 0 ≤ i ≤ n−1 letNi be the linear endomorphism

of H which multiplies every basis vector by mi, in formulae: Niλ̂ = mi(λ̂)λ̂. The
subalgebra of EndH generated by {ϕi, ϕ∗

i , Ni} has been introduced previously in
the physics literature and is called the phase algebra; compare with [7]. The op-
erators ϕi and ϕ∗

i can be interpreted as respectively particle annihilation and cre-
ation operators at site i of a circular lattice which coincides with the Dynkin dia-

gram of ŝl(n). The Dynkin label mi(λ̂) is the occupation number at site i and thus
N =

∑
iNi is the total particle number operator, and the subspaceHk corresponds to

the physical states which contain k particles. The map πi = 1− ϕ∗
iϕi projects onto

the subspace where no particle is sitting at site i. In the following we will denote
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ϕ0 also by ϕn, and similarly ϕ∗
0 also by ϕ∗

n. We refer to Section 4 for the so-called
phase model and to Figure 1.1 for an illustration.

3. THE PHASE ALGEBRA AND THE QUANTUM YANG-BAXTER-ALGEBRA AND

THEIR CONNECTION TO INTEGRABLE SYSTEMS

3.1. The phase algebra (creation and annihilation of particles).

Proposition 3.1 (Phase algebra). The ϕi generate a subalgebra Φ̂ of End(H) which can
be realized as the algebra Φ with the following generators and relations for 0 ≤ i 6= j ≤
n− 1:

ϕiϕj = ϕjϕi, ϕ∗
iϕ

∗
j = ϕ∗

jϕ
∗
i , NiNj = NjNi(3.1)

Niϕj − ϕjNi = −δijϕi, Niϕ
∗
j − ϕ∗

jNi = δijϕ
∗
i ,(3.2)

ϕiϕ
∗
i = 1, ϕiϕ

∗
j = ϕ∗

jϕi,(3.3)

Ni(1− ϕ∗
iϕi) = 0 = (1− ϕ∗

iϕi)Ni.(3.4)

The algebra Φ has a basis B of the form

{Bb,a,c := ϕ∗
0
b0ϕ∗

1
b1 · · ·ϕ∗

n−1
bn−1ϕa0

0 ϕ
a1
1 · · ·ϕ

an−1

n−1 N
c0
0 N c1

1 · · ·N
cn−1

n−1 },(3.5)

where ai, bi, ci ∈ Z≥0, aibici = 0 for 0 ≤ i ≤ n − 1. If we introduce the scalar product
on the vector spaceH by

〈αλ̂, βµ̂〉 = αβ
n−1∏
i=0

δmi(λ̂),mi(µ̂),

for α, β ∈ C, then 〈ϕ∗
i λ̂, µ̂〉 = 〈λ̂, ϕiµ̂〉 .

Remark 3.2. One can easily check that with πi = 1−ϕ∗
iϕi the following (probably

better known) relations hold: πiϕ
∗
i = ϕiπi = 0, π2

i = πi.

Proof. Straightforward calculations show that the asserted relations hold in the

algebra Φ̂. Hence, Φ surjects canonically onto Φ̂. The commutator relations, the
relation ϕiϕ

∗
i = 1 and (3.4) imply that the elements in the proposed basisB at least

span Φ. To see that they are linearly independent, we look at their action on H.

For the following argument we write a basis vector λ̂ of H (see (2.2)) as a tuple

λ̂ = (m0,m1, . . . ,mn−1) = m. Assume we have a finite linear combination

Z :=
∑

b,a,c

γb,a,cBb,a,c = 0(3.6)

with all γb,a,c ∈ C non-zero. We have to produce a contradiction. Obviously,

Zλ̂ = 0 for any λ̂ = m. If we choose the mi’s big enough then

Zλ̂ =
∑

b,a,c

γ
b,a,cm

c0
0 m

c1
1 . . .m

cn−1

n−1 (m0−a0+b0,m1−a1+b1, . . . ,mn−1−an−1+bn−1).

The coefficient of (m0−x0,m1−x1, . . . ,mn−1−xn−1) for fixed x = (x0, x1, . . . , xn−1)
is equal to

∑

(b,a,c)∈X

γb,a,cm
c0
0 m

c1
1 . . .m

cn−1

n−1(3.7)
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where the sum runs over the set X of all triples with a − b = x. All these coeffi-
cients have to be zero. In other words, the polynomial

P (t0, t1, . . . , tn−1) =
∑

(b,a,c)∈X

γb,a,ct
c0
0 t

c1
1 . . . t

cn−1

n−1(3.8)

satisfies P (m0,m1, . . . ,mn−1) = 0 whenever the mi’s are big enough. Now con-

sider P as a polynomial P̃ in t0 by putting fixed values ti = mi for i > 0. Then

P̃ has infinitely many zeroes (all the big enough m0), so it is constant zero, and
each coefficient of tc00 for fixed c0 has to be zero. Repeating this argument finally
implies that P is the zero polynomial. (Alternatively, P vanishes on the set of all
the m’s for big enough mi’s. They form a Zariski dense set in the affine space An,
hence P has to be the zero polynomial). In particular we can fix c, consider the set
X(c) of all triples (b,a, c) in X with c our fixed choice and get

∑

(b,a,c)∈X(c)

γ
b,a,c = 0.(3.9)

In case the components ci of c are all non-zero, then the condition aibici = 0 im-
plies that for any i, ai = 0 or bi = 0, and so there is a unique element in X(c)
(namely xi = bi, ai = 0 if xi ≥ 0 and xi = ai, bi = 0 if xi ≤ 0), because ai, bi ≥ 0.
Therefore, γ

b,a,c = 0. Hence all the in Z occurring c’s contain at least one zero.
For γ

b,a,c occurring in Z we let l(γ
b,a,c) be the number of zeroes in c. Let l be the

minimum of all these l(γb,a,c). From above we know l > 0.
Now we choose some c occurring in Z with exactly l zeroes. Call it c̃. Without

restriction we may assume c̃0 = c̃1 = . . . = c̃l−1 = 0. Consider the γb,a,c̃’s appear-
ing in (3.6). Amongst these pick the ones with a0, call it ã0, minimal. Amongst
these γb,a,c̃ with a0 = ã0 choose a1 minimal, call it ã1, etc. Carrying on like this
defines ãi for 0 ≤ i ≤ l−1. Set m = (ã0, ã1, . . . , ãl−1,ml, . . . ,mn−1) and abbreviate

M(a,b, c) = (ã0−a0+b0, . . . ãl−1−al−1+bl−1,ml−al+bl, . . . ,mn−1−an−1+bn−1).

If we choose the mi’s big enough then

0 = Zm =
∑

b,a,c

γb,a,cã
c0
0 . . . ã

cl−1

l−1 m
cl

l . . .m
cn−1

n−1 M(a,b, c),

where the sum runs over all triples with the extra condition ai ≤ ãi for 0 ≤ i ≤
l − 1. As in (3.7) we consider the coefficient of a fixed basis vector λ̂ and use the
polynomial argument from (3.8) to deduce that

∑

b,a,c∈X(c̃,ai≤ãi)

ãc00 ã
c1
1 . . . ã

cl−1

l−1 γb,a,c = 0,(3.10)

where the set X(c̃, ai ≤ ãi) consists of all triples with ai ≤ ãi for 0 ≤ i ≤ l − 1 and
ci = c̃i for l ≤ i ≤ n − 1 as well as a − b = x fixed. The minimality of l implies
however that γb,a,c 6= 0 and ci = c̃i for l ≤ i ≤ n− 1 forces c = c̃, and so we must
have c = c̃. Now (3.10) refines (3.9) in the following sense

∑

(b,a,c̃)∈X(c̃)

γ
b,a,c = 0,(3.11)

with ai ≤ ãi for 0 ≤ i ≤ l − 1. The minimality property of the ãi and the choice
of c allows to replace the above condition ai ≤ ãi by ai = ãi for 0 ≤ i ≤ l − 1.
The conditions ci 6= 0 for l ≤ i ≤ n − 1 and aibici = 0 imply that for any such i,
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ai = 0 or bi = 0. Therefore, the sum (3.11) has only one summand γb,a,c and we
get γ

b,a,c = 0. This is a contradiction. Therefore the elements of B are linearly
independent and (3.5) is in fact a basis of Φ. The action of Φ on H is therefore

faithful and factors through Φ̂. Hence the composition Φ
can→→ Φ̂ →֒ End(H) is

injective, hence can is an isomorphism. Finally the last claim of the proposition
follows directly from the definitions. �

3.2. The quantum Yang-Baxter algebra and Pieri rules. Using the phase algebra
we want to describe a solution to the quantum Yang-Baxter equation arising in [7].
To calculate with endomorphisms of C2 ⊗H we use the abbreviation
(
f1 f2
f3 f4

)
:=

(
1 0
0 0

)
⊗f1 +

(
0 1
0 0

)
⊗f2 +

(
0 0
1 0

)
⊗f3 +u

(
0 0
0 1

)
⊗f4,

for endomorphisms of C2⊗H, where the left hand side is a 2×2 matrix with entries
in End(H). It is straightforward to check that the composition of endomorphisms
corresponds to the usual matrix multiplication.

For i ∈ {1, 2, . . . , n}, the ith Lax matrix or L-operator Li = Li(u) is the following
one-parameter family of endomorphisms of C2 ⊗H

(3.12) Li(u) =

(
1 uϕ∗

i

ϕi u1

)
∈ End(C2 ⊗H) .

The complex variable u ∈ C is called the spectral parameter. The monodromy matrix
is defined as

(3.13) M(u) = Ln(u) · · ·L1(u) =

(
A(u) B(u)
C(u) D(u)

)
∈ End(C2 ⊗H).

If we identify C4 with C2⊗C2 by mapping the standard basis e1, e2, e3, e4 to e1⊗e1,
e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2, then we get

Lemma 3.3 (cf. [7]). The monodromy matrix is a solution to the following RTT -relation

(3.14) R12(u/v)M1(u)M2(v) = M2(v)M1(u)R12(u/v), u, v, x ∈ C, u 6= v 6= 0,

with

(3.15) R(x) =




x
x−1 0 0 0

0 0 x
x−1 0

0 1
x−1 1 0

0 0 0 x
x−1


 ∈ End C4 ∼= End(C2 ⊗ C2) .

Proof. It is easy to check that the equation holds when we replace M by any Li.
The definition ofM and the fact that the Li pairwise commute imply the claim. �

For F from A,B,C,D as in (3.13) we introduce the power series decomposition
F (u) =

∑
r≥0 Fru

r with respect to the spectral parameter u. Note that it follows
from (3.12) and (3.13) that Ar, Br, Cr, Dr = 0 for r > n.

Lemma 3.4. The monodromy matrix elements are explicitly given by

A(u) =
∑

0≤r≤n/2

∑
u|j1−i1|+···+|jr−ir |ai1,j1 · · · air ,jr , C(u) = ϕnA(u),

D(u) =
∑

0≤r≤n/2

∑
un−|j1−i1|−···−|jr−ir |aj1,i1 · · ·ajr ,ir , B(u) = D(u)ϕ∗

n,

where ai,j = ϕiϕ
∗
j , and the not specified sums run through the set of tuples 0 ≤ i1 < j1 <

. . . < ir < jr ≤ n− 1.
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Proof. For n = 2 (or n = 1) this formula is clear by (3.13). In general it follows from
an easy induction on n. �

Definition 3.5. The quantum Yang-Baxter algebra is the algebra B generated by the
{Ar, Br, Cr, Dr}r≥0 subject to the commutation relations (3.14) via the decompo-
sitions F (u) =

∑
r≥0 Fru

r.

Remark 3.6. The Yang-Baxter algebra can be equipped with a bialgebra structure
with comultiplication ∆(A) = A⊗A+C⊗B, ∆(B) = B⊗A+D⊗B, ∆(C) = A⊗
C+C⊗D, ∆(D) = B⊗C+D⊗D and co-unit ε(A) = ε(D) = 1, ε(C) = ε(B) = 0.
The above construction resembles the RTT-construction of Yangians. However, in
our case the Li(0) are not invertible, so that for instance the usual construction [34,
(1.27)] of the antipode is not applicable. One can in fact show that the bialgebra
structure does not extend to a Hopf algebra structure.

Remark 3.7. The term ‘quantum’ Yang-Baxter algebra has its origin in the phys-
ical interpretation of the integrable model which is underlying our construction.
By forming the state space H of particle configurations on a circle we allow for
their complex linear superpositions which is the hallmark of a quantum mechan-
ical system in physics. The adjective ‘quantum’ sets our construction apart from
algebraic constructions connected with the so-called classical Yang-Baxter equa-
tion which differs from relation (3.14).

Expanding the quantum Yang–Baxter equation (or RTT-equation) leads for in-
stance to the identities

(u− v)A(u)B(v) = vB(u)A(v) − vB(v)A(u),(3.16)

(u− v)D(u)B(v) = uB(v)D(u)− vB(u)D(v)

C(u)B(v) =
v

u− v [A(v)D(u) −A(u)D(v)] .(3.17)

The action of the phase algebra on the state space H induces an action of the
Yang-Baxter algebra. We describe this action again combinatorially. Let λ and µ be
partitions which we identify with their Young diagrams. Assume that the diagram
λ contains the diagram µ. Then the skew diagram λ/µ is obtained by removing µ
from λ. It is a vertical strip if it contains at most 1 box in each row, or equivalently
if 0 ≤ λi − µi ≤ 1. We call it a vertical r-strip, denoted (1r), if it is a vertical strip
containing exactly r boxes. Horizontal strips are defined analogously.

Proposition 3.8 (Pieri-type formulae). The space of states H can be be turned into a
B-module such that the action of the generators on the basis is given as follows:

Arµ̂ =
∑

λ̂−µ̂=(1r)

λ̂∈Hk

λ̂, Brµ̂ =
∑

λ̂−µ̂=(1r)

λ̂∈Hk+1

λ̂ , Crµ̂ =
∑

µ̂−λ̂=(1r)

λ̂∈Hk−1

λ̂, Drµ̂ =
∑

µ̂−λ̂=(1r)

λ̂∈Hk

λ̂ .

In particular, B increases, whereas C decreases the level.

Proof. The claim can be checked easily by induction using the comultiplication in
Remark 3.6. Alternatively one may use the explicit formulae from Lemma 3.4. �

The above action of the Yang-Baxter algebra on H can be described in terms of
skew Schur functions. We first recall the necessary notions to explain the result
and refer to [17] or [32] for more details. Given a Young diagram λ a semi-standard
standard tableau (or just tableau) is a filling of the boxes of λ with the numbers
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from {1, 2, . . . , n} such that the entries are strictly increasing downwards along
the columns and weakly increasing to the right along the rows. Given a tableau
T we have the associated monomial xT := xq11 x

q2
2 x

q3
3 . . . xqn

n where qi denotes the
number of boxes filled with i. The Schur polynomial sλ is then the sum

∑
xT ,

where T runs through all semi-standard tableaux of shape λ.

Corollary 3.9. Let µ̂ ∈ P≤n,k be the partition associated with an affine weight of level k
via (2.6). For any x1, . . . , xℓ complex numbers or invertible formal variables we have

A(x1) · · ·A(xℓ)µ̂ =
∑

λ̂∈P+
k

s
λ̂

t
/µ̂t(x1, . . . , xℓ)λ̂,

B(x1) · · ·B(xℓ)µ̂ =
∑

λ̂∈P+
k+ℓ

s
λ̂

t
/µ̂t(x1, . . . , xℓ)λ̂,

C(x1) · · ·C(xℓ)µ̂ = (x1 · · ·xℓ)n
n∑

λ̂∈P+
k−ℓ

s
µ̂t/λ̂

t(x−1
1 , . . . , x−1

ℓ )λ̂,

D(x1) · · ·D(xℓ)µ̂ = (x1 · · ·xℓ)n
∑

λ̂∈P+
k

s
µ̂t/λ̂

t(x−1
1 , . . . , x−1

ℓ )λ̂ .

Note that for µ̂ = ∅ we get the usual Schur polynomials

(3.18) B(x1) · · ·B(xℓ)µ̂ =
∑

λ̂∈P+
ℓ

s
λ̂

t(x1, . . . , xℓ)λ̂ .

Proof. Each semi-standard tableau T determines uniquely a sequence of partitions

µ = λ(1), λ(2), . . . , λ(ℓ) = λ where µi is obtained from λ by removing all boxes in T

filled with a number greater than i. Semi-standardness implies that λ(r+1)/λ(r) is a
horizontal strip. Conversely, every sequence of partitions differing by horizontal
strips arise from a semi-standard tableau in this way. Applying Proposition 3.8
yields the desired result. �

4. TRANSFER MATRICES AND THE PHASE MODEL

We now employ the quantum Yang-Baxter algebra to define a discrete quantum
integrable system, called the phase model in [7] due to its similarity to constructions
in quantum optics. Our approach is motivated by this physical model with the
so-called transfer matrix playing a central role in our combinatorial construction:
as we will see below it is the generating function of the cyclic noncommutative
elementary symmetric polynomials (Proposition 5.13).

First we extend scalars of the vector space of states from C to C[z], the ring of
polynomials in one variable and denote it H[z] := C[z] ⊗C H. In Section 8, when
the quantum cohomology comes into the picture, z will play a role analogous to
the deformation parameter q in the small quantum cohomology ring. In physical
applications it is a magnetic flux parameter (or number) related to quasi-periodic
boundary conditions. It enters the following definition of the one-parameter fam-
ily of row-to-row transfer matrices,

(4.1) T (u) =
∑

r≥0

Tru
r = A(u) + zD(u) .
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The term ‘transfer matrix’ has its origin in yet another physical interpretation of
the phase model. Namely, consider an m × n square lattice with periodic bound-
ary conditions in both directions, i.e. a toroidal lattice. Fix a particle configuration
of our circular lattice with n sites by choosing a partition. Then the operator T
maps, ‘transfers’, this configuration into a linear combination of other configura-
tions weighed with its matrix elements which for a special value of the spectral
parameter are interpreted as Boltzmann weights, i.e. statistical probabilities that
a particular configuration occurs. Taking the mth power of the transfer matrix
we end up with a cylinder of height m and by taking its trace we compute the
so-called partition function,

Z(u) = TrH[z]T (u)m ,

which is the sum over all allowed configuration on the torus and which is the
central physical object when interpreting the phase model as a system in statistical
mechanics rather than quantum mechanics.

Employing the Yang-Baxter equation one easily shows (the original idea of the
proof goes back to Baxter, but the argument can also be found in e.g. [16, §3,
Lemma 2]) that

(4.2) [T (u), T (v)] = 0

for any pair of spectral parameters u, v ∈ C. Hence the model is integrable, as it
possesses an infinite number of conserved quantities.

Alternatively, one can define a quantum system in terms of the Hamiltonian

(4.3) H = −T1 + Tn−1

2
= −1

2

n∑

i=1

(
ϕiϕ

∗
i+1 + zϕ∗

iϕi+1

)
,

where ϕn+1 = z−1ϕ1 and ϕ∗
n+1 = zϕ∗

1, i.e. one considers particles moving on a
circle of n sites. More generally, we can define higher Hamiltonians, conserved
charges by setting,

(4.4) H±
r = −Tr ± Tn−r

2
.

The latter are in involution, [H±
r , H

±
r′ ] = 0 for any 1 ≤ r, r′ ≤ (n− 1)/2, and again

we have an integrable model. However, it is not the existence of these integrals of
motions, but rather the quantum Yang-Baxter algebra which allows one to solve
the model explicitly, i.e. to compute the eigenstates and eigenvalues of the Hamil-
tonian and the conserved charges.

5. PLACTIC ALGEBRAS, UNIVERSAL ENVELOPING ALGEBRAS AND CRYSTAL

GRAPHS

In the previous section we have largely reviewed well-known algebraic struc-
tures from the physics literature on quantum integrable systems. In this section we
introduce tools from algebraic combinatorics and Lie theory and show their rela-
tions with the phase model. These connections are novel results and are crucial for
our setup.
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5.1. The (local affine) plactic algebra. We start by defining an algebra Pl(A), mo-
tivated by the plactic algebra introduced by Lascoux and Schützenberger in [31]
with the following natural quotient studied for instance in [15]:

Definition 5.1. The local plactic algebra Plfin is the free algebra generated by the ele-
ments of {a1, a2, . . . , an−1} modulo the relations

aiaj = ajai, if |i− j| > 1,(5.1)

ai+1a
2
i = aiai+1ai, a2

i+1ai = ai+1aiai+1,(5.2)

whenever the expressions are defined.

Recall from [31] the plactic monoid M defined by the Knuth relations. The
Robinson-Schenstedt algorithm gives a bijection between the equivalence classes
of the monoid M and the set T of tableaux with filling from {1, 2, . . . , n− 1} [17].
Given a tableau T we obtain the corresponding word by reading the columns from
left to right and bottom to top, replacing each number i by the generator ai. These
words form then in particular a basis of the monoid algebra C[M ]. The local plactic
algebra is the quotient of C[M ] with the additional local relations (5.1). In the
following we summarize a few properties of the local plactic algebra:

Proposition 5.2 (Local plactic algebra).

(1) Let N = (n−1)n
2 , then the words of the form

aα1
1 (a2a1)

α2(a2)
α3(a3a2a1)

α4(a3a2)
α5(a3)

α6 . . . (an−1an−2)
αN−1(an−1)

αN

where the α’s run through the nonnegative integers form a basis B of Plfin.
(2) The Robinson-Schenstedt correspondence defines a bijection betweenB and the set
Tstr of tableaux in T , where the number of j’s appearing in row i is smaller or equal
the number of j− 1’s appearing in row i− 1 for any i > 1, j ∈ {1, 2, . . . , n− 1}.

(3) There is a 2-parameter deformation U+
r,s (with generic r and s) of the universal

enveloping algebra U+ of the strictly upper triangular matrices of sl(n) such that
the specialisation U+

q,q−1 is isomorphic to the usual Drinfeld-Jimbo quantisation

U+
q of U+ (with generic q) and U0,1 is isomorphic to Plfin. The basis above is a

specialisation of both, a canonical basis and a PBW-basis.

Proof. For (2) we indicate the bijection for the case n = 4. The general case is
completely analogous. Note that the Robinson-Schenstedt algorithm transfers
a word aiai−1ai3 . . . aj with i ≥ j into a tableau consisting of a single column
with entries j, j + 1, . . . , i − 1, i (starting from the top). Then more generally, the
word aα1

1 (a2a1)
α2(a2)

α3(a3a2a1)
α4(a3a2)

α5(a3)
α6 is mapped under the Robinson-

Schensted algorithm to the tableau where the first row contains α1 +α2 +α4 ones,
α3 + α5 twos and α6 threes, the second row contains α2 + α4 twos and α5 threes,
the last row contains α4 threes. In particular, the tableau is in Tstr and the map is
injective on B. On the other hand varying the α′s provides all possible tableaux
in Tstr. Hence (2) follows. Part (1) follows from part (3) or from the explicit algo-
rithm in the next subsection. Part (3) goes back to [42] where Takeuchi defined a
C[r, s]-algebra U+

r,s with generators Ei, 1 ≤ i ≤ n and relations EiEj if |i − j| > 1
and

E
2
i+1Ei − (r + s)Ei+1EiEi+1 + rsEiE

2
i+1, Ei+1E

2
i − (p + q)EiEi+1Ei + pqE

2
i Ei+1.

Setting r = 0 and s = 1 gives exactly the relations (5.1) and (5.2). Setting r = q and
s = q−1 gives the well-known quantum Serre relations (see e.g. [24, 4.3,4.6,4.12b]).
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Using standard arguments (see e.g. [24, §8]) one can show that this algebra is a
free C[r, s]-module, with a basis given by the elements

Eα1
1 (E2E1)

α2(E2)
α3(E3E2E1)

α4(E3E2)
α5 . . . (En−1En−2)

α (n−1)n−2
2 (En)

α (n−1)n
2 ,

that is the PBW basis associated with the special reduced expression

w0 = s1(s2s1)s2(s3s2s1)(s3s2) . . .

of the longest element of Weyl group (i.e. the symmetric group) Sn of sl(n) (here si
denotes the elementary transposition (i, i+ 1)). The existence of a canonical basis
for U+

r,s is proved in [36] with the property that it specialises to the basis in (1). �

Remark 5.3. • The quantised universal enveloping algebra U+
q is isomor-

phic to (a twisted version of) Ringel’s Hall algebra [38]. In this context, the
plactic algebra appears as the Hall algebra with multiplication defined us-
ing generic extensions, hence a generic Hall algebra [36]. Reineke also de-
fines the Hall algebra version of U+

r,s.
• In Section 11 we give an explicit algorithm which turns an arbitrary tableau

into a tableau in Tstr using the relations of the local plactic algebra.

Definition 5.4. Let A = {a0, a1, a2, . . . an−1}. The affine local plactic algebra Pl =
Pl(A) is the free algebra generated by the elements of Amodulo the relations

aiaj − ajai = 0, if |i− j| > 1 mod n,(5.3)

ai+1a
2
i = aiai+1ai, a2

i+1ai = ai+1aiai+1,(5.4)

where in (5.4) all variables are understood as elements inA by taking indices mod-
ulo n.

Example 5.5. If n = 3 then the defining relations are a2a
2
1 = a1a2a1, a0a

2
2 = a2a0a2,

a2
2a1 = a2a1a2, a2

0a2 = a0a2a0. (Note that a2 and a0 do not commute.)

5.2. The generalised Robinson-Schensted algorithm. An n-multi-partition is an

n-tuple π = (π(0), . . . , π(n−1)) of partitions (resp. Young diagrams). A multi-
partition is aperiodic if for any positive number l there is at least one Young dia-
gram which does not have a column of height l. An aperiodic multi-tableau or just
a multi-tableau is given by taking an aperiodic multi-partition π and putting the

number i+ r − 1 (modulo n) into the boxes in the rth row of π(i).
Given a word in the local affine monoid, Deng and Du [13] assign (following

ideas of Lusztig and Ringel) a multi-partition by the following algorithm: given

a multi-partition π = (π(0), . . . , π(n−1)) and i ∈ {0, . . . , n − 1} then aiπ is the

multi-partition obtained from π by adding to π(i) an extra box in the first row if

π(i+1) = ∅, and otherwise remove the first column, c, of π(i+1) and place a column

of length one box longer than c in the partition π(i). (The indices are again taken
modulo n). The multi-partition π associated to a word w ∈ Pl is then defined as
π = w(∅, . . . , ∅). One can easily see that this multi-partition is aperiodic. There is
also an explicit way to read off a word from a multi-partition as follows: first we
convert the multi-partition into a multi-tableau (there is a unique way to do this),
then we draw the multi-partitions as a diagram as indicated in Figure 5.1 by push-
ing down all the columns to a common baseline. Considering only the numbers
on top of a column, remove all those 0’s appearing higher than all 1’s. Considering
again only the numbers on top of a column, remove all those 1’s appearing higher
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FIGURE 5.1. An example of an aperiodic multipartition,
((4, 2, 2, 2), (3, 1, 1, 0), (4, 4, 2, 2)). Displayed are its multi-tableau
and the multi-tableau with all columns pushed down which then
corresponds to the word a2

0a
4
2a

5
1a

6
0a

3
2a

2
1a

3
0a

2
2.

0 0 0 0
1 1
2 2
0 0 ,

1 1 1
2
0 ,

2 2 2 2
0 0 0 0
1 1
2 2  

0 0
1 1
2 2
0 0 0 0

1
2
0 1 1

2 2
0 0
1 1
2 2

2
0

2
0

than all 2’s etc. Repeat this procedure (with the cyclic ordering) as long as possi-
ble. The aperiodicity guaranties that this process can be carried on until there are
no boxes left. The order in which the numbers got removed defines a word w(π)
in the local affine plactic algebra. We call these words standard words.

Proposition 5.6. [13, Theorem 4.1 and its proof]

(1) The two algorithms are inverse to each other, i.e. π(w(π)) = π and w(π(w)) is
equivalent to w in the local plactic monoid.

(2) The standard words associated to aperiodic multi-partitions (resp. multi-tableau)
form a basis of Pl.

(3) If we replace the letters in the standard words by the usual Chevalley generators
Ei, 0 ≤ i ≤ n − 1 of the positive part U+ of the universal enveloping algebra

U(ŝl(n)) then we obtain a monomial basis of U+.

Remark 5.7. For a 2-parameter deformation of U+ and a monomial basis in terms
of Lyndon words we refer to [22].

Proposition 5.8 (Faithfulness). There is a homomorphism of algebras Ψfin : Plfin → Φ
such that

aj 7→ ϕ∗
j+1ϕj , j = 1, ..., n− 1

In particular, the representation (2.12) of the phase algebra Φ lifts to a representation
of the local plactic algebra Plfin. This representation is faithful. Moreover, it lifts to a
representation of Pl on H[z] by mapping a0 = an to zϕ∗

1ϕ0 and the aj as above. This
representation is again faithful.

Explicitly, the action onHk in terms of the basis vectors given by affine weights
reads for i > 0

ai : P+
k → P+

k ∪ {0}, λ̂ 7→





λ̂+ ω̂i+1 − ω̂i if λ̂+ ω̂i+1 − ω̂i ∈ P+
k

0 otherwise.

In terms of Young diagrams, the endomorphism ai adds a box in the (i + 1)th

row of the Young diagram P̂(λ̂) (see Lemma 2.1) provided the result is again a
Young diagram. For i = n it removes an n-column (if there is none, the result is
zero), adds a box in the first row and multiplies with z. Note that these actions
physically correspond to moving single particles by one site in clockwise direction
on the affine Dynkin diagram (see Figure 1.1).
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Remark 5.9. The set P+
k with the action of the local (affine) plactic generators ai

(and the obvious weight function) has the structure of an abstract crystal. This
crystal is known (see [25]) to be isomorphic to the crystal of the kth symmetric tensor
representation of the vector representation of the corresponding quantized universal
enveloping algebra of adjoint type (in the sense of [24, 4.5]).

Proof of Proposition 5.8. The existence of this morphism follows directly from the
definitions. That the representationH is faithful follows from Proposition 5.2 and
Remark 5.9, but we give an explicit argument here. Let X =

∑
cbb be a finite lin-

ear combination of basis elements b ∈ B (see Proposition 5.2) in the plactic algebra
Pfin. Assume X acts by zero on H. Applying this to the partition containing only
one box implies that cb = 0 for all basis vectors b which only consist of a single
monomial of the form (arar−1 . . . a1) for arbitrary r. More generally, applying X
to a column of height i, the partition (1i), then implies that cb = 0 for all basis vec-
tors consisting of one monomial of the form (arar−1 . . . ai+1ai). In order to single
out basis words consisting of two monomials consider next the partition (2, 1). Be-
cause of the special structure of the basis vectors application ofX then implies that
cb = 0 for all summands b which now consist of two monomials, one of the form
(arar−1 . . . a1) for arbitrary r and the other of the form (asas−1 . . . a2) for arbitrary
s. Continuing with the partition (3, 1) implies that cb = 0 for all basis vectors b
consisting of two monomials of the form (arar−1 . . . a1) for arbitrary r and one
factor of the form (asas−1 . . . a2) etc. Carrying on like this gives the faithfulness.
The faithfulness of the second representation follows then from Proposition 5.6

and the definition of the affine Lie algebra ŝl(n).
�

Henceforth, we shall always identify the local affine plactic algebra Pl with its
image in EndH[z].

5.3. Noncommutative polynomials. Mimicking the case of the ordinary local plac-
tic algebra we now introduce noncommutative polynomials in the generators {ai}
of Pl which are (noncommutative, affine) analogs of the ordinary elementary and
complete symmetric functions. (This approach is similar to [15], but unfortunately
does not satisfy their assumption, so that we cannot use their results directly.) We

need the notion of cyclically ordered products
∏�

i∈I ai and
∏	

i∈I aj . A monomial
ai1ai2 · · · air in the variables A is clockwise cyclically ordered (respectively anticlock-
wise cyclically ordered) if for any two indices ij , ik with ik = ij + 1 modulo n, the
variable aij occurs to the left (to the right) of aik . The origin of the name becomes
obvious if we identify ai with the corresponding point on the Dynkin diagram
Γ: there are two circle segments connecting the two points. If they are not of the
same length we choose the shorter one and the (anti-)clockwise order is the same
as the intuitively defined anti-clockwise order with respect to this segment. For
any monomial ai1ai2 · · · air not containing all the generators ai, there is a unique
clockwise (resp. anti-clockwise) cyclically monomial which differs only by a per-

mutation of the variables. We denote it by
�∏

1≤j≤r
aij , respectively

	∏
1≤j≤r

aij .
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Definition 5.10. For 1 ≤ r ≤ n − 1 we define cyclic noncommutative elementary
symmetric polynomials as the following elements of Pl

(5.5) er(A) =
∑

|I|=r

	∏
i∈I

ai

where the sum runs over all sets I = {i1, . . . , ir} with is 6= it for s 6= t.

Example 5.11. If n = 4 then

e2(A) = a2a1 + a3a1 + a1a4 + a3a2 + a4a2 + a4a3 .

Remark 5.12. To define the noncommutative elementary symmetric polynomials
we had to make a choice for the cyclic order. The other choice would give just the
adjoint operators with respect to scalar product 〈 , 〉 onH from Proposition 3.1.

We will denote by er(A)k the images of the cyclic noncommutative polynomials
(5.5) in EndHk[z]. Similarly, A(u)k, B(u)k, C(u)k, D(u)k will denote the restriction
of the generators of the quantum Yang-Baxter algebra to Hk[z]. The following re-
sult realizes the transfer matrix as the generating function of the elementary sym-
metric polynomials:

Proposition 5.13 (Generating function). Let T (u) denote the transfer matrix of the
phase model as before. Then

(5.6) T (u) = A(u) + zD(u) =

n∑

r=0

er(A)ur,

where we define e0(A) = 1 and en(A) = z 1.

Proof. The proof uses the explicit form of the transfer matrix in terms of the phase
algebra stated in Lemma 3.4, Tr = Ar + zDr with

Ar =
∑

0≤s≤min{r,n/2}

∑

i1<j1<···<is<js
|j1−i1|+···+|js−is|=r

ai1,j1 · · · ais,js

and
Dr =

∑

0≤s≤min{n/2,n−r}

∑

i1<j1<···<is<js
|j1−i1|+···+|js−is|=n−r

aj1,i1 · · · ajs,is .

For j > i, the identities ai,j = aj−1aj−2 · · · ai and aj,i = z−1ai−1 · · · a1a0an−1 · · · aj
are easily verified. The asserted equality between Tr and er(A) follows. �

Corollary 5.14. The cyclic noncommutative elementary symmetric functions pairwise
commute,

(5.7) [er(A), er′(A)] = 0, 0 ≤ r, r′ ≤ n .
and generate a commutative subalgebra Asym of A.

Proof. The first part is a direct consequence of (5.6) and the integrability (4.2). The
second part then follows from Proposition 5.8. �

Thanks to Corollary 5.14, the following definition makes sense1:

1Note also the stronger (independent) result of Theorem 6.7, namely the construction of a simulta-

neous eigenbasis.
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Definition 5.15. Given a partition λ, the Jacobi-Trudy formula

(5.8) sλ(A) = det
(
eλt

i−i+j
(A)
)
.

gives well-defined polynomials (in the generators of the affine plactic algebra),
which we call the cyclic noncommutative Schur polynomials.

In further analogy with the commutative case we also introduce noncommuta-
tive versions of the complete symmetric polynomials.

Definition 5.16. Define the set of cyclic noncommutative complete symmetric polyno-
mials via

(5.9) hr(A) = det(e1−i+j(A))1≤i,j≤r .

In particular, we have for λ = (r), a horizontal r-strip, that sλ=(r)(A) = hr(A)
analogous to the commutative case.

6. BETHE ANSATZ AND THE ISOMORPHISM OF RINGS

Employing the algebraic Bethe Ansatz (or Quantum Inverse Scattering Method)
one can compute the eigenvectors of the transfer matrix (4.1), which according to
(5.6) generates the cyclic noncommutative elementary symmetric functions. Al-
gebraic Bethe Ansatz calculations for the phase model were first undertaken by
Bogoliubov et al. [7]. We shall give here a far more detailed analysis of the solu-
tions to the Bethe Ansatz equations and generalize their discussion from periodic
(z=1) to quasi-periodic (z generic) boundary conditions. The important novel as-
pect of our work with regard to the discussion of the phase model in [7] is the
connection with representation theory and finally the identification of the abelian
algebra generated by the commuting transfer matrices of this integrable system
with the Verlinde algebra (by showing that the so-called Bethe vectors are given in
terms of Weyl characters).

6.1. Bethe vectors. We introduce the following notation for the special vector al-
ready discussed in (3.18)

(6.1) b(x) := B(x−1
1 ) · · ·B(x−1

k )∅ =
∑

λ̂∈P+
k

s
λ̂

t(x−1
1 , ..., x−1

k )λ̂ .

The vectors b(x) are by definition in Hk. We first like to find precise condi-
tions on x, ensuring that b(x) is an eigenvector of the transfer matrix T (u), and
hence a simultaneous eigenvector of the noncommutative elementary symmetric
functions er and then also for the whole algebra of noncommutative symmetric
functions. We will show that the Bethe vectors form an orthogonal basis of Hk.
The Ansatz for the algebraic form of the eigenvectors (the first identity in (3.18))
and the derivation of the resulting conditions on x, usually called Bethe Ansatz
equations, exploiting the quantum Yang-Baxter algebra, is standard in the physics
literature, (see for example [8]). The following proposition states the result of the
algebraic Bethe Ansatz. For convenience we sketch its proof:

Proposition 6.1. (1) For the vector b(x) depending on invertible indeterminates x =
(x1, . . . , xk) to be an eigenvector for the transfer matrix T (u), x must obey the
Bethe Ansatz equations

(6.2) xn+k
1 = · · · = xn+k

k = (−1)k−1zek(x1, . . . , xk),
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where ek(x) =
∏k
i=1 xi is the (ordinary) kth elementary symmetric polynomial.

(2) Given a solution x = (x1, . . . , xk) of the Bethe Ansatz equations (6.2), b(x) is an
eigenvector of the transfer matrix (4.1) and of the integrals of motionH±

r (4.4) for
the phase model. The eigenvalues are given by

(6.3) T (u)b(x) =
[
1 + (−1)kzek(x)u

n+k
] k∏

i=1

1

1− uxi
b(x)

and

(6.4) H±
r b(x) = −hr(x1, . . . , xk)± zhr(x−1

1 , . . . , x−1
k )

2
b(x) ,

where er, hr is the rth ordinary (commutative) elementary and complete symmet-
ric polynomials, respectively.

Sketch of proof: It is easy to verify A(u)∅ = ∅ and D(u)∅ = un∅. One can show via
induction on k that

T (u)B(x−1
1 )...B(x−1

k )∅ =

(
k∏

i=1

1

1− uxi
+ zun

k∏

i=1

uxi
uxi − 1

)
B(x−1

1 )...B(x−1
k )∅

+

k∑

i=1

Fi(u) B(x−1
1 )...B(x−1

i−1)B(x−1
i+1)...B(x−1

k )∅,

where Fi is given by

Fi(u) =
1

1− uxi


∏

j 6=i

xi
xi − xj

− zx−ni
∏

j 6=i

xj
xj − xi




=
xk−1
i

1− uxi
(
1 + z(−1)kx−n−ki ek(x)

)∏

j 6=i

1

xi − xj

(The case k = 1 is immediate from the commutation relation (3.16)). The second
sum is referred to as the unwanted terms which have to vanish in order to turn the
Bethe vector into an eigenstate of the transfer matrix. This leads to the condition

1 + z(−1)kx−n−ki ek(x) = 0 , i = 1, 2, . . . , k,

which are the Bethe Ansatz equations. Hence b(x) is an eigenvector if and only if x
satisfies the Bethe Ansatz equations. The eigenvalues can now be simply deduced
by a series expansion in the spectral parameter u and using Lemma 6.2 below. �

Lemma 6.2. Assume x := (x1, x2, . . . xn) satisfies the Bethe equations (6.2). Then

hn−r(x1, x2, . . . xn) = zhr(x
−1
1 , . . . , x−1

k )(6.5)

for any 0 ≤ r ≤ n.

Proof. We use zek(x) = (−1)k−1xn+k
i and calculate

hn−r(x1, . . . , xk) =
∑k

i=1 x
n−r
i

∏
j,j 6=i

xi

xi−xj
=
∑k

i=1 x
n−r+(k−1)
i

∏
j,j 6=i

1
xi−xj

= z
∑k
i=1 x

−r−1
i ek(x)

∏
j,j 6=i

1
xj−xi

= z
∑k

i=1 x
−r−1
i ek(x)

∏
j,j 6=i

x−1
i x−1

j

x−1
i −x−1

j

= z
∑k
i=1 x

−r
i

∏
j,j 6=i

x−1
i

x−1
i −x−1

j

= zhr(x
−1
1 , . . . , x−1

k ),
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where only the first and last equality need some explanation. Following [32, page
209] we define gs(x1, . . . , xk; q) through the formula

(6.6)
∏

i

1− uq xi
1− u xi

=
∑

s≥0

gs(x1, . . . , xk; q)u
s

In particular, g0 = 1. In case s > 0, gs(x1, . . . , xk; q) = (1 − q)P(s)(x1, . . . , xk; q)
where P(s)(x1, . . . , xk; q) is the so-called Hall-Littelwood polynomial, explicitly

gs(x1, . . . , xk; q) = (1 − q)
k∑

i=1

xsi
∏

j 6=i

xi − qxj
xi − xj

.

Our two formulae in questions follow then from the specialisation q 7→ 0. �

The Bethe Ansatz equations (6.2) can be reformulated as follows

Lemma 6.3. The equations (6.2) are equivalent to the conditions

(6.7) hn+1(x) = · · · = hn+k−1(x) = hn+k(x) + (−1)kzek(x) = 0,

where the hr are again the ordinary complete symmetric polynomials.

Proof. Assume the equations (6.2) hold. Integrability, property (4.2), implies that
the transfer matrix T (u) has a simultaneous (i.e. independent of u) eigenspace
decomposition. The definition of the transfer matrix (4.1) implies that the eigen-
values in (6.3) must be polynomial in the spectral parameter u and at most of de-
gree n. The eigenvalues in (6.3) are of the form (1+(−1)kzek(x)u

n+k)H(u), where
H(u) is the generating function of the complete symmetric polynomials. The co-
efficients of uj for j > n have to vanish, hence 0 = hn+j(x) for 1 ≤ j ≤ k − 1
and hn+k+j(x) + (−1)kzek(x)hj(x) = 0 for j ≥ 0 which of course implies (6.7)
(it is in fact equivalent, because hn+k+j(x) + (−1)kzek(x)hj(x) = 0 implies 0 =

(
∑k

i=1 xi)(hn+k+j(x) + (−1)kzek(x)hj(x)) = hn+k+j+1(x) + (−1)kzek(x)hj+1(x)).
Conversely if we assume (6.7) holds, then (6.3) is a polynomial in u (of degree n).
If we choose a generic point x, fix xi and formally replace u by u − x−1

i , then (6.3)

turns into p(u)q(u)ux−1
i , where p(u) is a polynomial, and q(u) is a formal power

series in u. Since this has to be a polynomial in u again, its residue, which is a

multiple of 1 + (−1)kzek(x)hj+1(x)x
−(n+k)
i , must be zero and the equations (6.2)

hold. �

To state the explicit form of the Bethe roots, i.e. solutions to (6.2), we for-
mally want to allow nth roots of z and also inverses, hence work in the ring R =

C[z∓1, z∓
1
n ] = C[z∓

1
n ]. We extend the complex conjugation to R by setting z :=

z−1. The expansion (6.1) into Schur polynomials shows that the Bethe vectors
b(x) do not really depend on the tuple x = (x1, x2, . . . , xk), but only on the set
{x1, x2, . . . , xk} or its Sk-orbit. Furthermore, in case xi = xj for some i 6= j we get
b(x) = 0. Therefore we denote

Sol(n, k) := {x ∈ Rk | x solves (6.2) and the xi are pairwise distinct}

and want to describe the orbit space ̂Sol(n, k) := Sol(n, k)/Sk.
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Theorem 6.4 (Solutions of the Bethe Ansatz). There is a bijection

P≤n−1,k
∼= ̂Sol(n, k),

σ 7→ xσ := z
1
n ζ

|σ|
n

(
ζI1 , . . . , ζIk

)
,(6.8)

where ζ = exp 2πi
k+n and

(6.9) I = I(σt) :=
(
k+1
2 + σtk − k, . . . , k+1

2 + σt1 − 1
)
.

Moreover, ̂Sol(n, k) decomposes into the disjoint union of orbits under the Zn-action given

by ℓ.x := e
2πιℓ

n x with ℓ ∈ Z, x ∈ ̂Sol(n, k).

Proof. It is easy to check that σ 7→ I(σt) defines a bijection between P≤n−1,k and
the following set of tuples of (half)-integers

In−1,k :=
{
(I1, ..., Ik) | −k−1

2 ≤ I1 < · · · < Ik ≤ n− 1 + k−1
2 , Ij ∈ k+1

2 + Z, ∀j
}
.

For instance, P≤2,3 from (2.3) gets identified with the tuples

{(−1, 0), (−1, 1), (−1, 2), (−1, 3), (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} .
Hence it is enough to show that the xσ as in (6.8) with I ∈ In−1,k are a full list of

representatives for ̂Sol(n, k).
Assume x ∈ Rk solves (6.2). First we describe the dependence on z. Let si be

the highest exponent of z in xi. Then the highest exponent in xn+k
i is si(n+ k). In

particular, si = sj for any 1 ≤ i, j ≤ n and then also si(n + k) = 1 + ksi, hence
sin = 1. The same argument also applies to the lowest exponent, hence any xi
is a monomial in z

1
n . In the following it will be enough to consider therefore the

special case z = 1.
First note that (6.2) implies that all xj are of norm 1, hence of the form xj =

e2πιαj for some αj ∈ R. Then the Bethe Ansatz equations (6.2) for the phase model
can be rewritten (by taking the logarithm) as

(6.10) αj =
Jj

k + n− 1
+

1

k + n− 1

∑

l 6=j

αl

with the Jj being half-integers in case k is even, and integers in case k is odd.
For each fixed generic configuration J = (J1, . . . , Jk) one easily checks (using our
general assumption n + k > 2) that there is precisely one solution to this system
of linear equations, namely αj = 1

(k+n) (
n+1
n Jj + 1

n

∑
l 6=j Jl) = 1

(k+n) (Jj + 1
n ||J ||)

with ||J || =∑k
l=1 Jl). Let x(J) = z

1
n ζ

||J||
n (ζJ1 , . . . , ζJk) with ζ = e

2πι
k+n be the corre-

sponding element in Sol(n, k). The choice Jj := Ij(σ
t) gives x(J) = x(I(σt)) = xσ .

Hence we get all the solutions xσ predicted in the theorem, but have to show there
are not more (up to permutations).

The assumption xj 6= xi for j 6= i implies αi /∈ αj + Z and then Ji 6≡ Jj
mod (n + k). Therefore, modulo n + k, the (half)-integers Ji are contained in the

interval [−k−1
2 , n + k−1

2 ] and are distinct. Since k < n + k there is at least one
(half)-integer m in the interval which does not occur amongst the Ji’s. Hence we
can find some l ∈ Z such that J ′ = J + (l, l, . . . , l) and all the (half)-integer J ′

i are

contained in the interval [−k−1
2 , n−1+ k−1

2 ] modulo n+k (in other words we shift
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the ’gap’ m to the end of the interval). The two operations (taking J modulo n+ k
and adding some (l, l, . . . , l)) however only rescale the solutions, because

x(J1, . . . , Jj + k + n, . . . , Jk) = z
1
n ζ

||J||
n

+ k+n
n (ζJ1 , . . . , ζJk) = e

2πι
n x(J)

x(J1 + 1, . . . , Jk + 1) = z
1
n ζ

||J||
n

+ k
n

+1(ζJ1 , . . . , ζJk) = e
2πι
n x(J)

Therefore, it is enough to show that multiplication with η := e
2πι
n preserves the set

X := {x(I(σt))}, in other words we have to show that

ηx = z
1
n ζ

||I||+k

n (ζI1+1, . . . , ζIk+1) = z
1
n ζ

||I′||
n (ζI

′
1 , . . . , ζI

′
k) ∈ X

with I ′j = Ij+1 for 1 ≤ j ≤ k. In case Ik < n−1+ k−1
2 there is nothing to do, hence

assume Ik = n − 1 + k−1
2 . Now note that x(I ′) = ηx(I ′1, . . . , I

′
k−1, I

′
k − (n+ k)) =

ηx(I ′k − (n+ k), I ′1, . . . , I
′
k−1) = η−1ηx(I ′k − (n+ k) + 1, I ′1 + 1, . . . , I ′k−1 + 1). Since

n + k − 1 > k, applying these two equations repeatedly, we finally obtain an

element x = x(I ′) ∈ X . Hence the elements in ̂Sol(n, k) are all of the form as

claimed. This proves that we have a bijection of sets P≤n−1,k
∼= ̂Sol(n, k) and that

̂Sol(n, k) decomposes into disjoint sets whose elements are obtained by rescaling
with an nth root of unity. �

Before deducing interesting consequences we collect well-known formulae (see
e.g. [37], [11, Proposition 38.2]):

Lemma 6.5. Let µ = λ̂ ∈ P≤n,k, σ ∈ P≤n−1,k. With the notation from Theorem 6.4
and Section 2.1 we have the following identities

(1) sµ(ζ
I(σ)) = sµt(ζ−I(σ

t))

(2) sµ(ζ
I(σ)) = en(ζ

I(σ))mn(µ)sµ̃(ζ
I(σ)), where mn(µ) = |µ|−|µ̃|

n .

(3) sµ(ζ
I(σ)) = en(ζ

I(σ))ksµ∨(ζ−I(σ)).

(4) Suppose mn(µ) = 0 then srot(µ)(ζ
I(σ)) = ζ |σ|sµ(ζ

I(σ)).

Proof. Statement (1) follows directly from the formulae

(6.11) er(ζ
I(σ)) = hr(ζ

−I(σt)) and hr(ζ
I(σ)) = er(ζ

−I(σt)) .

of [37]. From (6.8) and (6.7) it follows

hn+1(ζ
I(σt)) = · · · = hn+k−1(ζ

I(σt)) = hn+k(ζ
I(σt)) + (−1)k = 0

If µ = µ̃ then there is nothing to do in (2). So assume that µt1 = n. By expanding

the determinant of the Jacobi-Trudy formula sµ(y) = det(hµi−i+j(y)) for y = ζI(σ
t)

with respect to the first row together with (6.7) implies

sµ(ζ
I(σt)) = hn(ζ

I(σt))s(µt
2,...,µ

t
k
)(ζ

I(σt))

Repeating the same step until all parts of size n are removed, we obtain the as-
serted identity (2). Now (3) follows from the general formula ([37, (4.3)])

(6.12) s(µ∨)t(y−1
1 , . . . , y−1

k ) = s(µt)∨(y−1
1 , . . . , y−1

k ) =
sµt(y1, . . . , yk)

s(nk)(y1, . . . , yk)
.

To obtain (4) we employ the Pieri formula to find

srot(µ)(ζ
I(σt)) = ek(ζ

I(σt))sµ(ζ
I(σt)) = ζ

k+n
n

|σ|sµ(ζ
I(σt)) .

and then apply (1) once more. �



A COMBINATORIAL APPROACH TO FUSION RINGS 25

We need another Schur function identity which we will frequently use in what
follows.

Lemma 6.6. Adopting the notation from Theorem 6.4 we set x̃ = ζ|σ|/nζI(σ
t) and ỹ =

ζ|σ|/nζ−I(σ), where σ ∈ P≤n−1,k. Then we have for any λ ∈ P≤n−1,k the identities

(6.13) sλt(x̃) = sλ(ỹ) and sλ(ỹ) = sλ(ỹ
−1) = sλ̂∗(ỹ)

Proof. The first equality is immediate from Lemma 6.5 (1). Employing Lemma 6.5

(3) and the following identities en(ζ
I(σ))k = ζ |σ|k from (6.9) and |λ∨| = |λ̂∗| =

kn− |λ| (see Section 2.2) we calculate

sλ(ζ
−

|σ|
n ζI(σ)) = ζ−

|σ||λ|
n en(ζ

I(σ))ksλ∨(ζ−I(σ))(6.14)

= sλ̂∗(ζ
|σ|
n ζ−I(σ)) = sλ(ζ

|σ|
n ζ−I(σ))

which proves the assertion. �

6.2. Eigenbasis and Weyl characters. In this section we show that the Bethe vec-
tors form a complete set of pairwise orthogonal eigenvectors, determine their
eigenvalues in terms of Weyl characters.

Given g ∈ GL(k,C) diagonalisable with eigenvalues t1, . . . , tn and χλ the char-
acter of the finite dimensional irreducible module corresponding to the partition
λ, we have the equality χλ(g) = sλ(t1, . . . , tn). We consider for ξ ∈ Zn the values

χλ(ξ) := sλ(e
2πιξ1
k+n , . . . , e

2πιξk
k+n )

(where e denotes here the usual exponential function). Recall the scalar product
〈 , 〉 onH from Proposition 3.1.

Theorem 6.7. (1) For each k ∈ Z≥0 the Bethe vectors b(xσ), σ ∈ P≤n−1,k, form a
complete set of pairwise orthogonal eigenvectors for the action of the cyclic non-
commutative symmetric functions on Hk[z]. The eigenvalues are given by the
following formulae

er(A)b(xσ) =

{
hr(xσ)b(xσ) if r 6= n,

hn(xσ)b(xσ) = zb(xσ) if r = n.
(6.15)

sλ(A)b(xσ) = sλt(xσ)b(xσ) = z
|λ|
n χλ(ξσ)b(xσ).(6.16)

(2) The norm of the Bethe vectors is given by the following formula

〈bσ, bσ〉 =
n(n+ k)n−1

|Vanσ |2
,(6.17)

where Vanσ denotes the Vandermonde determinant
∏

1≤i<j≤n

(ζIi(σ) − ζIj(σ)).

Proof. Thanks to (6.3) and (5.6) we have for any solution x of (6.2) the explicit
formula for the eigenvalues er(A)b(x) = hr(x)b(x) for r 6= n and en(A)b(x) =
zb(x) and zb(x) = hn(x) by (6.5).

The (noncommutative versus the commutative) Jacobi-Trudy formula implies
then sλ(A)b(x) = sλt(x)b(x). Using (6.8) and Lemma 6.5(1) we get sλt(xσ) =

z
|λ|
n sλ(ζ

|σ|
n ζI1(σ), . . . , ζ

|σ|
n ζIn(σ)) and (6.16) follows then from the definition of χλ.

Now consider the action of the commutative algebraAsym (from Corollary (5.14))
on Hk. It decomposes the Hk into simultaneous generalised eigenspaces, and the
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Bethe vectors are simultaneous eigenvectors with the eigenvalues as computed
above. To show that they form a complete eigenbasis it is enough to see that they
are in different eigenspaces, because we have previously established that there are
dimHk solutions to the Bethe Ansatz equations. Assume er(A)b(xσ) = er(A)b(xτ )
for all r.

Then hr(xσ) = hr(xτ ) for all r. Now the hr generate the ring of symmetric
functions in k variables which in turn can be identified with the (polynomial) ring
of regular functions on the orbit space Ck/Sk of the symmetric group Sk acting on
Ck by permuting the variables. In particular, hr(xσ) = hr(xτ ) for all r implies that
xσ lies in the same Sk orbit as xτ . Because of definition (6.9) this is only possible if
σ = τ .

Next we claim that 〈bσ, bτ 〉 = 0 if σ 6= τ . The adjointness of ϕi with ϕ∗
i from

Proposition 3.1 and the definition of the elementary symmetric functions implies
that en−r(A) has adjoint z−1er(A). In particular,

0 = 〈en−r(A)b(xσ), b(xτ )〉 − 〈b(xσ), z−1er(A)b(xτ )〉
= (hn−r(xσ)− z−1hr(xτ )〈b(xσ), b(xτ )〉
= (z−1hr(xσ)− z−1hr(xτ ))〈b(xσ), b(xτ )〉.

where we used Lemma 6.2 for the last equality. The claim follows then as above.
To compute the norm, note that the ordinary Schur polynomials can be ex-

pressed (see e.g. [11, Theorem 38.1]) as a ratio

sλ(x1, x2, . . . , xn) =
Dλ(x1, x2, . . . , xn)

Van(x)
,

where Van denotes the Vandermond determinant and

Dλ(x1, x2, . . . , xn) = det




xλ1+n−1
1 xλ1+n−1

2 . . . xλ1+n−1
n−1 xλ1+n−1

n

xλ2+n−2
1 xλ2+n−2

2 . . . xλ2+n−2
n−1 xλ2+n−2

n
...

... . . .
...

...

x
λn−1+1
1 x

λn−1+1
2 . . . x

λn−1+1
n−1 x

λn−1+1
n

xλn

1 xλn

2 . . . xλn

n−1 xλn
n




Let λ ∈ P≤n,k. Then λ ∈ P≤n−1,k if and only if λn = 0 which is if and only if the
last row of Dλ = Dλ(x1, x2, . . . , xn) consists of 1’s only. Let us assume this is the

case and expand Dλ with respect to the last row to obtain Dλ =
∑n
r=1(−1)rD

(r)
λ

where the D
(r)
λ denotes the determinant of the matrix obtained by removing the

rth column and the nth row. On the other hand, for fixed r, 1 ≤ r ≤ n, we get

Dλ(x1, x2, . . . , xn)xr=0 =

{
0 if λn 6= 0,

(−1)rD
(r)
λ if λn = 0.

(6.18)

Thanks to (6.1) and Proposition 6.5(1) we have

〈bσ, bσ〉 =
∑

λ∈P≤n−1,k

ζ
|σ|−|σ|

n
|λ|sλt(ζ−I(σ

t))sλt(ζI(σ
t)) =

∑

λ∈P≤n−1,k

sλ(ζ
I(σ))sλt(ζI(σ

t))

Recall the Cauchy identity
∑

λ∈P≤n,k
sλ(z1, z2, . . . zn)sλt(w1, w2, . . . wk) =

∏n
i=1

∏k
j=1(1+

ziwj).Rietsch [37, (4.5)] showed that for (z1, z2, . . . zn) = ζI(σ) and (w1, w2, . . . wk) =
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ζI(σ
t) it is |Van(ζI(σ))|2∏k

j=1(1 + ziwj) = (n + k) for any 1 ≤ i ≤ n. Putting ev-

erything together we get

|Vanσ |2
∑

λ∈P≤n−1,k

sλ(ζ
I(σ))sλt(ζI(σ

t))

= Vanσ
∑

λ∈P≤n−1,k

Dλ(ζ
I(σ))sλt(ζI(σ

t))

= Vanσ
∑

λ∈P≤n−1,k

n∑

r=1

(−1)rD
(r)
λ (ζI(σ))sλt(ζI(σ

t))

=
∑

λ∈P≤n−1,k

n∑

r=1

(−1)rD
(r)
λ (ζI(σ))Dλt(ζI(σ

t))

(6.18)
=

∑

λ∈P≤n−1,k

n∑

r=1

(−1)rDλ(y
(r)
1 , y

(r)
2 , . . . y(r)

n )Dλt(ζI(σ
t))

(6.18)
=

∑

λ∈P≤n,k

n∑

r=1

(−1)rDλ(y
(r)
1 , y

(r)
2 , . . . y(r)

n )Dλt(ζI(σ
t))

=

n∑

r=1

∑

λ∈P≤n,k

(−1)rDλ(y
(r)
1 , y

(r)
2 , . . . y(r)

n )Dλt(ζI(σ
t))

where y
(r)
i = ζ

I(σ)
i if i 6= r and y

(r)
r = 0, and with Rietsch’s formula gives

〈bσ, bσ〉 =
∑

λ∈P≤n−1,k

sλ(ζ
I(σ))sλt(ζI(σ

t)) = |Vanσ |−2
n∑

r=1

(n+ k)n−1

= |Vanσ |−2n(n+ k)n−1.

Hence the formula follows. �

Corollary 6.8. The known determinant formulae from the ring of commutative functions
are also true for the cyclic noncommutative functions, in particular

sλ(A) = det(hλi−i+j(A))1≤i,j≤n .

The cyclic noncommutative Schur polynomials pairwise commute.

Proof. Specialising in (6.16) to a horizontal r-strip it follows from Definition 5.9
that

hr(A)b(x) = det(e1−i+j(A))1≤i,j≤rb(x)

= det(h1−i+j(x))1≤i,j≤rb(x) = er(x)b(x) .(6.19)

Employing the familiar relations form the ring of commutative symmetric func-
tions we therefore have

sλ(A)b(x) = sλt(x)b(x) =

det(eλi−i+j(x))1≤i,j≤nb(x) = det(hλi−i+j(A))1≤i,j≤nb(x) .

According to Theorem 6.7 the Bethe vectors (6.1) form a basis in each subspace
Hk[z] for any k ∈ Z≥0 and, hence, the last identity implies the assertion. �
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Corollary 6.9. For 0 ≤ r ≤ n− 1 the complete symmetric polynomials hr(A) defined in
(5.9) have the following explicit, simpler form

(6.20) hr(A) =
∑

|J|=r

�∏
j∈J

aj ,

where the sum runs over all multisets J = {j1, . . . , jr} (i.e. s 6= t does not necessarily
imply that js 6= jt).

Example 6.10. If n = 4 then

h3(A) = (
4∑

i=1

a3
i ) + a2

1a2 + a1a
2
2 + a2

1a3 + a1a
2
3 + a2

4a1 + a4a
2
1 + a2

2a3 + a2a
2
3

+ a2
2a4 + a2a

2
4 + a2

3a4 + a3a
2
4 + a1a2a3 + a4a1a2 + a2a3a4 .

Proof. Because of Theorem 6.7 it suffices to show that for any k ∈ Z≥0 the Bethe
vectors are eigenvectors of the polynomials defined on the right hand side of equa-
tion (6.20) and have eigenvalues er(x) for 0 ≤ r ≤ n − 1. We will make repeated

use of the maps P̂ and P defined in Section 2.1 and employ the expansion of the
Bethe vector b(x) into Schur functions; see the second equation in (6.1). Let us

start by describing the action of the polynomial in (6.20) on a weight λ̂. Given a
composition p = (p1, ..., pn) of r < n, there must be at least one pi = 0 and, hence,
we may rewrite the polynomial in (6.20) as

(6.21)
∑

|J|=r

�∏
j∈J

aj =
∑

p⊢r

�∏
1≤j≤n

a
pj

j ,
�∏

1≤j≤n

a
pj

j

pi=0
= a

pi+1

i+1 · · ·apn
n ap11 · · · a

pi−1

i−1 .

For simplicity let us first assume that pn = 0 and set µ̂ = ap11 · · · a
pn−1

n−1 λ̂. Since each

aj acts on λ̂ by adding a box in the (j + 1)th row of the associated Young diagram

P̂(λ̂), it is not difficult to see that either µ̂ is the null vector or P̂(µ̂)/ P̂(λ̂) = (r)
with pj−1 boxes in the jth row.

Now assume that pn > 0 and some other pi = 0. Then apn
n acts by removing pn-

columns of height n (if possible), adding pn boxes in the first row and multiplying

with zpn . Thus, the weights µ̂ = a
pi+1

i+1 · · · apn
n ap11 · · · a

pi−1

i−1 λ̂ and λ̂ are now related

in terms of Young diagrams as follows (we assume a
pi+1

i+1 · · · apn
n ap11 · · · a

pi−1

i−1 λ̂ 6= 0):

consider the Young diagram P(λ̂) under the bijection P : P+
k → P≤n−1,k, then add

the unique horizontal strip with the prescribed number of pj boxes in the (j + 1)th

row and finally add pn = µ1 − λ1 columns of height n to obtain a Young diagram

in P̂(P+
k ) ⊂ P≤n,k which has width k. Putting both results, for pn = 0 and pn > 0,

together we arrive at the formula

(6.22)
∑

|J|=r

( �∏
j∈J

aj
)
b(x) =

∑

λ̂∈P+
k

∑

µ∈P≤n,k

µ/λ=(r)

zµ1−λ1s
λ̂

t(x−1)µ̂,

where µ̂ is the weight whose Young diagram P̂(µ̂) is obtained by adding k − µ1

columns of height n to µ.
Let us now compare this result with multiplying the Bethe vector b(x) in (6.1)

by er(x). Using the well-known Pieri formula for commutative Schur functions and



A COMBINATORIAL APPROACH TO FUSION RINGS 29

the identity (6.13) we compute

er(x)b(x) =
∑

λ̂∈P+
k

er(x)sλ̂t(x−1)λ̂ =
∑

λ̂∈P+
k

z−
|λ̂|−r

n er(x̃)s(λ∗)t(x̃)λ̂(6.23)

=
∑

λ̂∈P+
k

z−
|λ̂|−r

n

∑

µ/λ∗=(r)

sµt(x̃)λ̂,(6.24)

where x̃(σ) = ζ
|σ|
n ζI(σ

t) are the Bethe roots (6.8) with the z-dependence removed.
Note that the complement µ∨ ∈ P≤n,k is well-defined, since sµt(x̃) = 0 if µ1 > k

and λ∗ ∈ P≤n−1,k. Furthermore, because λ̂ = (λ∗)∨, it easy to see that µ/λ∗ = (r)

is equivalent to λ̂/µ∨ = (r). Thus, we can rewrite the last expression as

∑

λ̂∈P+
k

z−
|λ̂|−r

n

∑

µ/λ∗=(r)

sµt(x̃)λ̂ =
∑

λ̂∈P+
k

∑

P̂(λ̂)/µ∨=(r)

z−
|µ∨|

n s(µ∨)t(x̃−1)λ̂

=
∑

λ̂∈P+
k

∑

λ̂/µ∨=(r)

s(µ∨)t(x−1)λ̂ .(6.25)

We wish to compare with the above result (6.22). To this end we now construct
for each µ∨ ∈ P≤n,k an associated weight µ̂∨ ∈ P+

k and show that there exists a

partition λ̃ such that λ̃/µ̃ = (r) with µ̃ = P(µ̂∨). Recall that the image of P+
k under

the map P̂ : P+
k → P≤n,k consists of all partitions ν ∈ P≤n,k with ν1 = k. Noting

that µ∨
1 = k − µn, we can conclude that by adding µn = k − µ∨

1 columns of height

n to µ∨ we have µ∨ ∈ P̂(P+
k ). Denote by µ̂∨ ∈ P+

k the corresponding weight
and set µ̃ = P (µ̂∨), i.e. µ̃ is obtained by removing all n-columns in the Young
diagram of µ∨. Let mn(µ

∨) be the number of n-columns in the Young diagram of

µ∨. Then set λ̃ to be the partition obtained by removing mn(µ
∨) columns of height

n in the Young diagram of λ̂. The partition λ̃ is well-defined, since µ∨ ⊂ P̂(λ̂)

and hence mn(λ̂) ≥ mn(µ
∨). Furthermore, since we subtract the same number

of n-columns from P(λ̂) and µ∨ it is obvious that P(λ̂)/µ∨ = (r) is equivalent to

λ̃/µ̃ = λ̃/P(µ̂∨) = (r). With these definitions of λ̃, µ̃ and µ̂∨ in place, we may write

er(x)b(x) =
∑

λ̂∈P+
k

∑

λ̂/µ∨=(r)

s(µ∨)t(x−1)λ̂

=
∑

µ̂∨∈P+
k

∑

λ̃∈P≤n,k

λ̃/µ̃=(r)

zλ̃1−µ̃1s(µ̂∨)t(x−1)λ̂,(6.26)

where we have used that the Bethe ansatz equations imply s(µ∨)t(x̃−1) = s(µ̂∨)t(x̃−1)

(as both partitions, µ∨ and µ̂∨, only differ by columns of length n); compare with

(6.5) implying hn(x̃
−1) = hn(x̃) = 1 and Lemma 6.5, (1) and (2). The z-dependence

then follows by observing that the Schur polynomial sν is homogeneous of degree
|ν| and that

|µ̂∨| = |µ∨|+ n(k − µ∨
1 )

= |µ∨|+ n(λ̂1 −mn(µ
∨)− µ∨

1 +mn(µ
∨))

= |µ∨|+ n(λ̃1 − µ̃1) .
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Thus, upon renaming the summation variables in (6.26) we obtain (6.22) and the
assertion now follows from Theorem 6.7 and (6.19). �

The last corollary prompts us to introduce the following counterpart of the
transfer matrix. Namely, we set

(6.27) Q(u) =
∑

r≥0

hr(A)ur

as the generating operator for the noncommutative complete symmetric functions
where, similar as before, we choose the convention h0(A) = 1. Note that this oper-
ator is well-defined since upon restricting to a subspace Hk[z] with fixed particle
number k only the first (k+1) terms in the sum (6.27) do not vanish, i.e. hr(A)k = 0
for r > k. Moreover, the operator hr=k(A)k becomes the cyclic translation opera-
tor corresponding to the Dynkin diagram automorphism rot if we specialise z = 1.
Thus, withQ(u)k being a polynomial in u of degree k the result (6.3) can be rewrit-
ten as the following functional equation,

(6.28) T (u)kQ(−u)k =
[
Q(−uq)k + zunqkQ(−uq−1)k

]
q=0

.

This equation is the ‘crystal limit’ of what is known as Baxter’s TQ-equation in the
literature on quantum integrable systems. In particular, it is immediate from our
results that for any pair u, v ∈ C we have

(6.29) [Q(u), Q(v)] = [Q(u), T (v)] = 0 .

The operatorQ(u) can therefore be identified as the analogue of Baxter’s Q-operator
for the XYZ and XXZ models [2]; further details will be presented in a forthcoming
paper [30].

6.3. The combinatorial fusion ring and Verlinde algebra. Employing the cyclic
noncommutative symmetric functions generated from the transfer matrix of the
phase model, we now show that the k-particle space Hk[z] can be turned into a
commutative, associative and unital algebra. To explicitly compute its structure
constants we first need the following result:

Proposition 6.11 (Transformation matrix). Let σ̂ ∈ P+
k and σ = P(σ̂) the correspond-

ing partition. Let ξσ = σ + ρ, where ρ = (n+1
2 − 1, . . . , n+1

2 − n). Then we have the
identity

〈λ̂, b(xσ)〉 = z−
|λ̂|
n sλ(ζ

− |σ|
n ζI(σ)) = z−

|λ̂|
n χλ(ξσ) = z−

|λ̂|
n χλ∗(ξσ).(6.30)

Proof. From the definition (6.1) we have 〈λ̂, b(xσ)〉 = s
λ̂

t(x−1
σ ). We claim that

(6.31) s
λ̂

t(x−1
σ ) = hn(x

−1
σ )mn(λ̂)sλt(x−1

σ ) = z−mn(λ̂)sλt(x−1
σ ) = z−

|λ̂|−|λ|
n sλt(x−1

σ ).

The first equality here is just Lemma 6.5 (2) and (6.11). The identity hn(x
−1
σ ) =

z−1h0(xσ)−1 = z−1 = hn(xσ)−1 holds by Lemma 6.2 and (6.15). Since the Schur
function sλ is a homogeneous polynomial of degree |λ|, Lemma 6.5 (1) and the

explicit form of the Bethe roots (6.8) imply sλt(x−1
σ ) = z−

|λ|
n sλ(ζ

− |σ|
n ζI(σ)). Hence,

〈λ̂, b(xσ)〉 = z−|λ̂|/nsλ(ζ
− |σ|

n ζI(σ)).(6.32)

Finally we use the identity (6.13). �

The main theorem of this section is the following ring structure onHk[z]:
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Theorem 6.12 (Combinatorial fusion ring). Fix k ∈ Z≥0 and consider the k-particle
subspaceHk[z] ⊂ H[z]. The assignment

(6.33) (λ̂, µ̂) 7→ λ̂⊛ µ̂ := sλ̂(A)µ̂

for basis elements λ̂, µ̂ ∈ P+
k turns Hk[z] into a commutative, associative and unital

C[z]-algebra Fcomb.

Proof. The unit element is obviously given by the weight corresponding to the
empty partition as s∅(A) = 1Hk[z]. We have to check the commutativity and asso-
ciativity of the product. To achieve this we compute the matrix elements

(6.34) sλ̂(A)µ̂ =
∑

ν̂∈P+
k

〈ν̂, sλ̂(A)µ̂〉ν̂

in the eigenbasis of Bethe vectors {b(xσ)}σ∈P≤k,n−1
. Note that (6.31) together with

Theorem 6.7 implies the identity

(6.35) sλ̂(A) = z
|λ̂|−|λ|

n sλ(A).

Moreover, thanks to Theorem 6.7 and Proposition 6.11 we have

〈ν̂, sλ̂(A)µ̂〉 =
∑

σ∈P≤n−1,k

〈ν̂, sλ̂(A)b(xσ)〉〈b(xσ), µ̂〉
〈b(xσ), b(xσ)〉

=
z

|λ̂|+|µ̂|−|ν̂|
n

n(k + n)n−1

∑

σ∈P≤k,n−1

ζ |σ|
|λ|+|µ|−|ν|

n
sλ(ζ

−I(σ))sµ(ζ
−I(σ))sν(ζ

I(σ))
∏n
i<j |ζIi(σ) − ζIj(σ)|−2

(6.36)

from which it is obvious that the product is commutative as the matrix element is

invariant under exchanging λ̂ and µ̂. Associativity is also clear:

λ̂⊛ (µ̂⊛ ν̂) =
∑

ρ̂∈P+
k

〈ρ̂, sµ̂(A)ν̂〉λ̂⊛ ρ̂ =
∑

ρ̂,ρ̂′∈P+
k

〈ρ̂′, sλ̂(A)ρ̂〉〈ρ̂, sν̂(A)µ̂〉ρ̂′

=
∑

ρ̂′∈P+
k

〈ρ̂′, sλ̂(A)sν̂(A)µ̂〉ρ̂′ =
∑

ρ̂′∈P+
k

〈ρ̂′, sν̂(A)sλ̂(A)µ̂〉ρ̂′

=
∑

ρ̂,ρ̂′∈P+
k

〈ρ̂′, sν̂(A)ρ̂〉〈ρ̂, sλ̂(A)µ̂〉ρ̂′ =
∑

ρ̂∈P+
k

〈ρ̂, sλ̂(A)µ̂〉ν̂ ⊛ ρ̂

=
∑

ρ̂∈P+
k

〈ρ̂, sλ̂(A)µ̂〉ρ̂⊛ ν̂ = (λ̂⊛ µ̂)⊛ ν̂ ,

where in the first and last line we have exploited commutativity of the product
and in the second line we used the non-degeneracy of the bilinear form and the
commutativity of the polynomials sλ̂(A), sν̂(A) (see Corollary 6.8). �

Definition 6.13. For λ̂, µ̂, σ̂ ∈ P+
k we abbreviate S0,σ̂ = 1√

n(n+k)n−1
|Vanσ | and

define Sλ̂σ̂ = S0σ̂χλ(ξσ) with ξσ = −(P(σ) + ρ). We call the matrix S := Sλ̂,µ̂ with

columns and rows indexed by P+
k (or by P≤n−1,k via (2.5)) the modular S-matrix.

Remark 6.14. From Theorem (6.7) it follows directly that the matrix S is unitary,
i.e.

∑
λ̂∈P+

k

Sλ̂σ̂S̄λ̂ρ̂ = δσ̂,ρ̂. From Lemma 6.5 (4) it follows that S is almost ro-

tation invariant: Srot(λ̂)µ̂ = e−
2πι
n

|µ|Sλ̂µ̂. Moreover, we have the duality Sλ̂µ̂ =
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√
k/ne

2πι
kn

|λ||µ|S
λ̂

t
µ̂t and charge conjugation formula S̄λ̂µ̂ = Sλ̂∗

µ̂. Let T be the di-

agonal matrix with entries e2πιm(λ̂) where m(λ̂) := |λ+ρ|2

2(k+n) −
|ρ|2

2n is the so-called

modular anomaly. Then S =
(

0 −1
1 0

)
7→ S, T = ( 1 1

0 1 ) 7→ T provides a representa-

tion of PSL(2,Z), while S 7→ S̄, T 7→ T yields a representation of SL(2,Z). Thus,
together with complex conjugation this turns Fcomb into an abstract Verlinde alge-
bra in the sense of [12, 0.4.1]. While defined here in a combinatorial setting these
actions of the modular group correspond to the familiar modular invariance in the
context of conformal field theory; see e.g. [14, Chapters 10, 14 and 16].

The following key result relates our combinatorial fusion ring to the ŝl(n)k Ver-
linde algebra and what is usually called the modular S-matrix in the literature. It
states that our modular S- matrix satisfies the famous Kac-Peterson formula [27].

Proposition 6.15 (Kac-Peterson formula). Let λ̂, σ̂ ∈ P+
k . Then (in the notation of

Section 2.1)

Sλ̂σ̂ =
eιπn(n−1)/4

√
n(k + n)n−1

∑

w∈Sn

(−1)ℓ(w)e−
2πι
k+n

(σ+ρ,w(λ+ρ))

Here λ̂ = kω̂0 +λwith finite part λ =
∑n
i=1(λi−|λ|/n)εi and ρ =

∑n
i=1

(
n+1

2 − i
)
εi .

Remark 6.16. Using Weyl’s denominator formula one can also deduce an explicit
expression

S0σ̂ =
1√

n(k + n)n−1

∏

α>0

2 sin
π(ρ+ σ, α)

k + n
(6.37)

=
eιπn(n−1)/4

√
n(k + n)n−1

∑

w∈Sn

(−1)ℓ(w)e−
2πι
k+n

(σ+ρ,wρ) .(6.38)

Remark 6.17 (Uniqueness theorem). Goodman and Wenzl ([21, Theorem 3.2], see
also [20]) established a characterisation of the fusion ring F by the data of its basis

P+
k , the associativity and the explicit formulae for λ̂⊛ µ̂ = µ̂⊛ λ̂ where λ̂, µ̂ ∈ P+

k

with µ̂ of the form (1r). Theorem 6.12 and the Pieri-type formulae from Propo-
sition 3.8 can then be used to verify the assumption of [21] and so to deduce an
isomorphism of rings Fcomb

∼= F . We will establish such an isomorphism (in The-
orem 6.18) in a different way, involving the Verlinde formula and the modular
S-matrix.

Proof of Proposition 6.15. Let δ = (n− 1, n− 2, . . . , 1, 0) and for j = 1, . . . , n set

yj = e−
2πι
k+n

(σ+ρ,εj) = ζ
|σ|
n

−Ij(σ), yµ = y
µ1
1 y

µ2
2 · · · yµn

n .

Using (6.32), with z = 1, and relating Schur polynomials with Weyl’s character

formula [32, p.40 in particular (3.1)] we get that the term 〈b(xσ), λ̂〉 equals

sλ(ζ
|σ|
n ζ−I(σ)) =

∑

w∈Sn

(−1)ℓ(w)w(yλ+δ)

∑

w∈Sn

(−1)ℓ(w)w(yδ)
=

∑

w∈Sn

(−1)ℓ(w)e−
2πι
k+n

Pn
j=1(x,εj)(n+λj−j)

∑

w∈Sn

(−1)ℓ(w)e−
2πι
k+n

Pn
j=1(x,εj)(n−j)

with x = w(σ + ρ). On the other hand (w(x), ǫj) (n+ λj − j) equals
(
w(x),

(
λj −

|λ|
n

)
ǫj

)
−
(
w(x),

(
j − n+ 1

2

)
ǫj

)
+

(
w(x),

(
n− 1

2
+
|λ|
n

)
ǫj

)
.
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From the definitions, and using
∑

j Ij(σ) = |σ|, we get

〈b(xσ), λ̂〉 =

∑
w∈Sn

(−1)ℓ(w)e−
2πι
k+n

(σ+ρ,w(ρ+λ))

∑
w∈Sn

(−1)ℓ(w)e−
2πι
k+n

(σ+ρ,wρ)

The assertion then follows from (6.38). �

6.4. The Verlinde algebra and the modular S-matrix. The Verlinde algebra is
the fusion algebra of the integrable highest weight modules of level k. It plays
a prominent role in conformal field theory (for details see e.g. [14], [26], [27]).

More precisely, the Verlinde algebra Vk = Vk(ŝl(n),C) = C⊗Z F is the C-algebra
with basis indexed by the elements from P+

k together with the multiplication
(called fusion product)

(6.39) λ̂ ∗ µ̂ :=
∑

ν̂∈P+
k

N (k),ν̂

λ̂µ̂
ν̂,

where the structure constants, known as fusion coefficients are given in terms of the
Verlinde formula [45]

(6.40) N (k),ν̂

λ̂µ̂
=
∑

σ̂∈P+
k

Sλ̂σ̂Sµ̂σ̂Sν̂∗σ̂

S0σ̂

and the Sλ̂σ̂ are given by the Kac-Peterson formula (precisely the formula from
Proposition (6.15)). We already saw that one could alternatively define Sλ̂σ̂ =
S0σ̂χλ(ξσ), ξσ = −(P(σ̂) + ρ), with S0σ̂ as above.

Theorem 6.18 (Combinatorial description of the Verlinde algebra). The combinato-
rial algebra F specialises to the integral Verlinde (or fusion) algebra, i.e.

(6.41) Fcomb/〈z − 1〉 ∼= F .
In particular, we have for z = 1 the following equalities

(6.42) λ̂ ∗ µ̂ = λ̂⊛ µ̂ = sλ̂(A)µ̂ = sλ(A)µ̂, ∀λ̂, µ̂ ∈ P+
k .

identifying the fusion product (6.39) with the combinatorially defined product (6.33).

Proof. We relate the matrix elements of the cyclic noncommutative Schur functions
to the fusion constants:

〈ν̂, sλ̂(A)µ̂〉 =
z

|λ̂|+|µ̂|−|ν̂|
n

n(k + n)n−1

∑

σ∈P≤k,n−1

χλ(ξσ)χµ(ξσ)χν∗(ξσ)∏k
i<j |ζIi(σ) − ζIj(σ)|−2

(6.43)

= z
|λ̂|+|µ̂|−|ν̂|

n

∑

σ̂∈P+
k

Sλ̂σ̂Sµ̂σ̂Sν̂∗σ̂

S0σ̂
=z

|λ̂|+|µ̂|−|ν̂|
n N (k),ν̂

λ̂µ̂
.

The first equality here holds thanks to (6.36), (6.32) and (6.13), the second by Defi-
nition 6.13, and the last one is the Verlinde formula (6.40). Specialising z 7→ 1 and
employing (6.35) gives the result. �

Remark 6.19. Note that it is known that the fusion coefficients N (k),ν̂

λ̂µ̂
are non-

negative integers which coincide with the dimension of certain moduli spaces of
generalized θ-functions [3]. From the combinatorial nature of the affine plactic al-
gebra we can conclude completely combinatorially that 〈ν̂, sλ̂(A)µ̂〉 ∈ Z. A purely
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combinatorial proof of non-negativity seems to be missing. First steps in this di-
rection will appear in a forthcoming paper.

Theorem 6.20. Let Λ(k) = Z[e1, . . . , ek] be the ring of symmetric polynomials in k

variables. The assignment λ̂ 7→ sλt defines an isomorphism of rings

(6.44) F = F(ŝl(n))k ∼= Z[e1, . . . , ek]/〈hn− 1, hn+1, . . . , hn+k−1, hn+k + (−1)kek〉,

where hr denotes the rth complete symmetric function in k variables.

Remark 6.21. We will see later (Corollary 8.2) that Vk(ŝl(n),Z) is a quotient of
the quantum cohomology ring of the Grassmannian by factoring out the extra
relations q = ek and hn = 1.

Proof. The notation Λ(k) = Z[e1, . . . , ek] makes sense, since Λ(k) is generated by the

ei’s and they are algebraically independent ([11, Prop. 35.1]). Let Λ
(k)
C = C⊗Z Λ(k)

be the complexification. Denote by I be the ideal generated by fi, 0 ≤ i ≤ k, where

f0 = hn − 1, fk = hn+k + (−1)kek and fi = hn+i otherwise; and let R := Λ
(k)
C /I be

the quotient, which is of course exactly the complexification of the right hand side
of (6.44).
Claim 1: I is a radical ideal, i.e I =

√
I .

First note that we could also write Λ(k) = Z[h1, . . . , hk] [11, Prop. 35.1], in partic-

ular ek ∈ Z[h1, . . . , hk]. Now consider Λ = lim←−Λ(k) = Z[e1, e2, . . .] = Z[h1, h2, . . .],

the ring of symmetric functions with its natural projection p : Λ→→Λ(k). Set h̃i =

hi ∈ Λ if i 6∈ {n, n+ k}, h̃n = hn − 1 and h̃n+k = hn+k + (−1)kek. For µ a partition

define h̃µ = h̃µ1
h̃µ2

. . .. The hi, i ∈ {1, 2, . . . , k, n, n+1, . . . , n+ k} are algebraically

independent, and therefore also the corresponding h̃i. Consequently, the h̃µ’s form

a linearly independent subset of Λ. Assume now f ∈ Λ(k) ⊂ Λ is not in the ideal

I ′ generated by the h̃i, n ≤ i ≤ n+ k. If we expand f in the h̃µ’s there must appear

some h̃µ where µj 6∈ {n, n+ 1, . . . , n+ k} for all j. Let s be a positive integer. Then

fs must contain h̃µs in its basis expansion, where µs is the partition which contains
each part µj exactly s times. In particular fs 6∈ I ′ for any s. Now one can use the
projection p to deduce the result.
Claim 2: Let f, g ∈ Λ. Then f = g ∈ R if and only if f(x)− g(x) = 0 for any solution x
of the Bethe Ansatz equations (6.2).
Using the alternative version (6.7) of (6.2) (with z = 1), together with the formula
hn(xσ) = 1 from (6.15), the claim is a direct consequence of Claim 1 and Hilbert’s
Nullstellensatz, since then I equals the vanishing ideal of the zero set of I .

Claim 3: Sending λ̂ to the class of sλt in R defines a ring homomorphism

F : Vk(ŝl(n),C)→ R.

It is enough to show that for any λ̂, µ̂ ∈ P+
k we have F (λ̂ ∗ µ̂) = F (λ̂)F (µ̂) (thanks

to (6.42)). Let b(x) = b(xσ) be a (non-zero) Bethe vector. Using (6.1) and (6.13) for
z = 1 we expand b(x) =

∑
ν̂∈P+

k
sνt∗(x)ν̂ and obtain from Theorem 6.7

sλ(A)b(x) = sλt(x)b(x) =
∑

µ̂∈P+
k

sλt(x)sµt(x)µ̂∗ =
∑

µ̂,ν̂∈P+
k

〈µ̂∗, sλ(A)ν̂∗〉sνt(x)µ̂∗ .
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Comparing coefficients of each basis element in the last two terms we obtain

(6.45) sλt(x)sµt(x) =
∑

ν̂∈P+
k

〈µ̂∗, sλ(A)ν̂∗〉sνt(x) =
∑

ν̂∈P+
k

〈ν̂, sλ(A)µ̂〉sνt(x)

Note that our convention s(1n)(A) = en(A) = 1 (with z = 1) precisely corresponds
under F to the extra imposed relation sn = hn = 1. To see the equality of the
matrix elements recall from Section 2.2 that

〈µ̂∗, sλ(A)ν̂∗〉 = 〈ν̂, (flip ◦sλ(A)∗ ◦ flip)µ̂〉,
where sλ(A)∗ denotes the right adjoint of sλ(A). One easily verifies that flip ◦ai ◦
flip = a∗n−i which implies flip ◦er(A)∗ ◦ flip = er(A) and, thus, flip ◦sλ(A)∗ ◦ flip =
sλ(A). Together with the reality of the matrix elements, which is immediate from
the action of the affine plactic algebra this gives the desired identity (6.45).

Now, fom the definition of F one obtains

A := F (λ̂ ∗ µ̂) = F (sλ(A)µ̂) = F


 ∑

ν̂∈P+
k

〈ν̂, sλ(A)µ̂〉ν̂


 =

∑

ν̂∈P+
k

〈ν̂, sλ(A)µ̂〉sνt ,

whereas

B := F (λ̂)F (µ̂) = sλtsµt .

By (6.45) we have A(x) = B(x) for any Bethe root x = xσ or any other in the
Sk-orbit of xσ . Moreover, A(x) = B(x) for any Bethe root where not all the entries
are different, since both sides of the equality just vanish. Hence A(x) = B(x) for
any solution of the Bethe Ansatz equations. The Claim follows now from Claim 2.
Claim 4: F is an isomorphism. Since via (2.5) the λ ∈ P≤n−1,k form a basis of the

complexification of Vk(ŝl(n),Z) it is enough to show that the sλt , λ ∈ P≤n−1,k form

a basis ofR/I . Recall that the the h̃µ’s form a basis of Λ(k), if µ runs through the set

of partitions with at most k parts [17, p 73]. In particular, the h̃µ’s with µ ∈ P≤n−1,k

span R/I . To see the linearly independence assume that
∑

µ∈P≤n−1,k
aµh̃µ = 0 in

R/I for some aµ ∈ C, equivalently
∑
µ∈P≤n−1,k

aµh̃µ =
∑n+k

i=n rih̃i for some ri ∈ R.

Expanding this equality in the basis of the h̃µ’s we see that the basis vectors on the

left hand side are all of the form h̃µ, where µ ∈ P≤n−1,k, whereas the basis vectors

on the right hand side are all of the form h̃µ with µ 6∈ P≤n−1,k. In particular, aµ = 0

for all µ ∈ P≤n−1,k and so the h̃µ form a basis. Moreover, h̃µ = hµ in this case.
Now the transformation matrix between the hµ’s and the sµ’s is triangular with
1’s on the diagonal [17, p 75 (4)], hence the linearly independence follows.

Since all the constructions are defined over the integers, F induces an isomor-
phism for the integral version as well. �

Example 6.22. Consider the case n = 3 and k = 1. The ring C[e1]/〈h4 + e1〉 is
isomorphic to C[e1]/〈e41 − e1〉 (since h4 = e41 − 3e2e

2
1 + 2e3e1 + e22 evaluated at x =

(x1, 0, 0, 0, . . .) gives h4(x) = e41(x)), and has basis 1, e1, e
2
1, e

3
1 = h3. If we impose

the additional relation h3 = 1, we get a ring on basis 1, e1, e
2
1 and multiplication

e1e1 = e21, e1e
2
1 = e31 = 1. Under the map Φ, the three partitions ∅, (1), (12) are

mapped to s∅ = 1, s(1) = h1 = e1, s(2) = h2 = e21, and the multiplication in the
combinatorial fusion ring is precisely the given one.
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7. APPLICATIONS

7.1. Symmetries of fusion coefficients. The following symmetry formulae for the
fusion coefficients are now easily verified using (6.42):

Proposition 7.1. For λ̂, µ̂, ν̂ ∈ P+
k set Nλ̂µ̂ν̂ := N (k),ν̂∗

λ̂µ̂
then

(i) Nπ(λ̂)π(µ̂)π(ν̂) = Nλ̂µ̂ν̂ for any permutation π ∈ S3 of (λ̂, µ̂, ν̂)

(ii) Nrot(λ̂)µ̂ν̂ = Nλ̂ rot(µ̂)ν̂ = Nλ̂µ̂ rot(ν̂)

(iii) Nλ̂µ̂ν̂ = Nλ̂∗
µ̂∗ν̂∗ = Nλ̂µ̂ν̂

Proof. According to (6.43) and (6.36) (with ν̂ replaced by ν̂∗) we have

Nλ̂µ̂ν̂ =
1

n(k + n)n−1

∑

σ∈P≤n−1,k

ζ|σ|
|λ|+|µ|+|ν|

n
sλ(ζ

−I(σ))sµ(ζ
−I(σ))sν(ζ

−I(σ))
∏n
i<j |ζIi(σ) − ζIj(σ)|−2

,

and the statement (i) follows. The fusion coefficients do not depend on z, therefore
we may set z = 1 and calculate

Nrot(λ̂)µ̂ν̂

(i)
= Nµ̂ν̂ rot(λ)

(6.43)
= 〈rot(λ̂)∗, sµ(A)ν̂〉 = 〈rot−1(λ̂

∗
), sµ(A)ν̂〉

(†)
= 〈λ̂∗, sµ(A) rot(ν̂)〉 (6.43)

= Nµ̂ rot(ν̂)λ
(i)
= Nλ̂µ̂ rot(ν̂),

(where (†) follows from Corollary 6.8 using the fact that rot = hk(A)k when z = 1)
and then apply again part (i) repeatedly to deduce Nrot(λ̂)µ̂ν̂ = Nλ rot(µ̂)ν̂ as well.

To prove (iii) we make once more use of the relation flip ◦sλ(A)∗ = sλ(A) ◦ flip
already discussed when deriving (6.45). Together with sλ(A)∗ = sλ∗(A), which
follows from (6.16) and (6.13) and the definitions in Section 2.2, we calculate

Nλ̂∗
µ̂∗ν̂∗ = 〈ν̂, sλ∗(A)µ̂∗〉 = 〈ν̂∗, flip ◦sλ(A)∗ ◦ flip µ̂〉 = 〈ν̂∗, sλ(A)µ̂〉 = Nλ̂µ̂ν̂ .

�

7.2. Noncommutative Cauchy identities. Exploiting the combinatorial definition
(6.42) of the fusion product, we now state new identities for the fusion coefficients.

Corollary 7.2 (Noncommutative Cauchy identities). Let ℓ ∈ {1, . . . , n− 1}, ui ∈ C

for 1 ≤ i ≤ ℓ and k ∈ Z>0. Recalling the analogue of Baxter’s Q-operator from (6.27) and
the transfer matrix (4.1) we have the following equalities of endomorphisms ofHk:

Q(u1)k · · ·Q(uℓ)k =
∑

λ∈P≤ℓ,k

sλ(u1, . . . , uℓ)sλ(A)k,(7.1)

T (u1)k · · ·T (uℓ)k =
∑

λ∈P≤n,ℓ

sλt(u1, . . . , uℓ)sλ(A)k .(7.2)

In particular,

hα1
(A)k · · ·hαℓ

(A)k =
∑

λ∈P≤ℓ,k

Kλαsλ(A)k(7.3)

eα1
(A)k · · · eαℓ

(A)k =
∑

λ∈P≤n,ℓ

Kλtαsλ(A)k,(7.4)

with Kλα being the Kostka numbers, i.e. the number of semi-standard tableau of shape λ
and weight α = (α1, . . . , αℓ) ∈ Zℓ>0.
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Proof. We employ once more the eigenbasis of Bethe states; see Theorem 6.7. The
formula (7.1) is a consequence of the Cauchy-identity

∑
λ sλ(x)sλt(y) =

∏
i,j(1 +

xiyj) for commutative Schur functions. Namely, the definition of the Q-operator

in (6.27) together with (6.19) gives Q(u)b(x) =
∏k
j=1(1 + uxj)b(x) for any Bethe

state b(x) ∈ Hk. Therefore, it follows that

Q(u1) · · ·Q(uℓ)b(x) =

ℓ∏

i=1

k∏

j=1

(1 + uixj)b(x) =
∑

λ∈P≤ℓ,k

sλ(u)sλt(x)b(x)

=
∑

λ∈P≤ℓ,k

sλ(u)sλ(A)b(x) .

Since the Bethe states form a basis of Hk (Theorem 6.7), we have proved (7.1).
To derive (7.3), recall the well-known expansion sλ(u) =

∑
αKλαmα(u) with mα

being the basis of symmetric monomial functions (see e.g. [32, Chapter I, Section
6, Table 1 and (6.4)]). Expanding both sides of (7.1) with respect to the basis of
symmetric monomial functions, we obtain the asserted formula (7.3).
The proof of (7.2) and (7.4) is completely analogous to the known one for the ring
of commutative symmetric functions, since we have shown in Corollary 6.8 that
the cyclic noncommutative Schur polynomials satisfy all the familiar relations of
their commutative counterparts. �

As an application of the generalised Cauchy identities we now derive novel
identities for the fusion coefficients. Let ℓ and α be as in Corollary 7.2 and µ, ν ∈
P≤n−1,ℓ. Then denote by µ̂, ν̂ and (̂αi), (̂1αi) the affine weights in P+

k correspond-
ing to the pre-images of µ, ν and a horizontal and vertical strip of length αi under
the bijection (2.5).

Corollary 7.3 (Kostka numbers and fusion coefficients). Given a sequence S = (ν =

µ(0), µ(1), . . . , µ(ℓ) = µ) of partitions in P≤n−1,ℓ set Ni(S) = N (k)µ̂(i−1)

d(αi)
dµ(i)

and N ′
i (S) =

N (k)µ̂(i−1)

(̂1αi ) dµ(i)
. Then we have the identities

∑

S

N1(S)N2(S) . . .Nℓ(S) =
∑

λ∈P≤n−1,ℓ

KλαN (k)ν̂

λ̂µ̂
(7.5)

∑

S

N ′
1(S)N ′

2(S) . . .N ′
ℓ(S) =

∑

λ∈P≤n,ℓ

KλtαN (k)ν̂

λ̂µ̂
.(7.6)

where the left sums run through the set of all sequences S as above and λ̂ ∈ P+
k is the

pre-image of (2.5). If λ ∈ P≤n,ℓ we first delete all columns of length n.

Proof. Consider the matrix element 〈ν̂, hα1
(A) · · · hαℓ

(A)µ̂〉 with µ̂, ν̂ ∈ P+
k . Em-

ploying (7.3) we obviously have

〈ν̂, hα1
(A) · · · hαℓ

(A)µ̂〉 =
∑

λ∈P≤n−1,ℓ

Kλα〈ν̂, sλ(A)µ̂〉

and (7.3) now follows from (6.43). The second equality is proved along the same
lines by considering the matrix element 〈ν̂, eα1

(A) · · · eαℓ
(A)µ̂〉 and applying the

identity (7.4). �
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Using the phase algebra generators we now derive a relation between fusion
coefficients of level k and level k + 1. Such a recursion relation is new and is a
direct consequence of our combinatorial particle description of the fusion ring.

Corollary 7.4 (Recursion relation for fusion coefficients). Adopt the same conventions
as in the previous corollary. Choose any integer vector j = (j1, . . . , jℓ) ∈ Zℓn and define for

level k+ 1 the fusion coefficientsN ′
i (S, j) = N

(k+1)ϕj∗
i
µ̂(i−1)

(̂1αi )ϕj∗
i

dµ(i)
, then we have the recursion

relation

(7.7)
∑

S

N ′
1(S, j)N ′

2(S, j) . . .N ′
ℓ(S, j) =

∑

λ∈P≤n,ℓ

KλtαN (k)ν̂

λ̂µ̂
.

In particular, for α = (r, 0, . . . , 0) we simply have

(7.8) N (k+1) ϕ∗
j ν̂

d(1r)ϕ∗
j µ̂

= N (k) ν̂
d(1r) µ̂

for any j ∈ Zn.

Proof. Employing Lemma 3.4 one easily verifies the following relations between
the generators of the Yang-Baxter and the phase algebra,

A(u)ϕ1 = ϕ1A(u), ϕ1D(u) = uC(u), D(u) = uC(u)ϕ∗
1 .

From the latter identities one now obtains for the transfer matrix (4.1),

ϕ1T (u)ϕ∗
1 = ϕ1A(u)ϕ∗

1 + zϕ1D(u)ϕ∗
1 = A(u)ϕ1ϕ

∗
1 + zuC(u)ϕ∗

1 = T (u).

But since for z = 1 one has rot ◦T (u) = T (u) ◦ rot, this is obvious as each er(A) is
invariant under a cyclic rotation when z = 1, we must have

ϕiT (u)ϕ∗
i = T (u)

for all i = 0, 1, . . . , n− 1. Therefore, we have ϕier(A)ϕ∗
i = er(A) and the assertion

follows from (7.4),

〈ν̂, eα1
(A) · · · eαℓ

(A)µ̂〉 = 〈ν̂, ϕj1eα1
(A)ϕ∗

j1 · · ·ϕjℓeαℓ
(A)ϕ∗

jℓ
µ̂〉

=
∑

λ∈P≤n,ℓ

KλtαN (k)ν̂

λ̂µ̂
.

�

Example 7.5. Let n = 3 and k = 2. Choose ℓ = k = 2 and set µ = (2, 1). Then
it is not difficult to compute, using the combinatorial formula (6.42), the fusion
product

∗ = + ∅ .

Fixing ν = ∅ and making the choices α = (1, 1, 1), j = (2, 3, 1) one finds that on
the left hand side of (7.7) only two sequences S contribute, namely

(
ν = ∅, , , = µ

)
and

(
ν = ∅, , , = µ

)
.

Again one computes combinatorially

N (k+1)ϕ∗
2 ∅̂

c(1)ϕ∗
2 (̂1,1)

= N (k+1) ϕ∗
3 (̂1,1)

c(1)ϕ∗
3 (̂1,0)

= N (k+1)ϕ∗
3 (̂1,1)

c(1)ϕ∗
3 (̂2,2)

= N (k+1)ϕ∗
1 (̂1,0)

c(1)ϕ∗
1 µ̂

= N (k+1) ϕ∗
1 (̂2,2)

c(1)ϕ∗
1 µ̂

= 1
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leading to the identity
∑

S

N ′
1(S, j)N ′

2(S, j)N ′
3(S, j) = 2 .

The only possible semi-standard tableaux of weight α lying within the bounding

box of size 3 × 2 are
1

2

3

and 1 2

3
, 1 3

2
. Obviously, N (k)∅̂

∅̂µ̂
= 0 and, thus, we compute

for the right hand side of (7.7)

∑

λ∈P≤n,k

KλtαN (k)ν̂

λ̂µ̂
= 2N (k)∅̂

(̂2,1)µ̂
= 2

which yields the desired equality.

PART II: THE QUANTUM COHOMOLOGY RING: FERMIONS ON A CIRCLE

8. FREE FERMION FORMULATION OF THE SMALL QUANTUM COHOMOLOGY RING

We want to develop structures parallel to the ones discussed before for the fu-
sion ring, but now for the quantum cohomology ring and finally connect the two
sides. Building on earlier results of for instance Bertram [5], Rietsch [37], and Post-
nikov [35] we present a free fermion formulation of the small quantum cohomol-
ogy ring qH•(Grk,k+n) of the complex Grassmannian. Here k and n are analogous
to the level and rank in the context of the fusion ring.

More precisely, let n, k ∈ Z+ and denote N = k + n. Let Grk,n+k be the
Grassmannian of k-planes inside CN = Cn+k. The integral cohomology ring
H•(Grk,k+n) can explicitly be described using Schubert calculus (see for exam-
ple [17, 9.4]): the Schubert classes [Ωλ] form a basis, the structure constants are the
intersection numbers, which coincide with the Littlewood-Richardson coefficients.
(Here λ runs through P≤k,n.)

The small quantum cohomology qH•(Grk,n+k) is a deformation of the usual
(singular) cohomology. More precisely, it is a Z[q]-algebra which is isomorphic
to Z[q] ⊗Z H

•(Grk,n+k) as a Z[q]-module. The Schubert classes give a Z[q]-basis
{1 ⊗ [Ωλ]}. This module can be equipped (in a non-obvious way) with a ring

structure where the structure constants Cνλ,µ(q) =
∑
Cν,dλ,µq

d are given by the so-

called 3-point, genus 0 Gromov-Witten invariants Cd,ν
∨

λ,µ which count the number

of rational curves of degree d passing through generic translates of Ωλ, Ωµ, Ων .
(In the cases |λ| + |µ| + |ν| 6= kn + d(k + n), where the number of curves could

be infinite, one just puts Cd,νλ,µ = 0.) For a general overview we refer to [18] and

[29]. Note that for q = 0 we obtain the ordinary cohomology H•(Grk,n+k), with
the ring structure given by the cup or intersection product. For a description of
the quantum cohomology ring from the Schubert calculus point of view we refer
to [5], [9], [10], [43].

In the rest of the paper we will develop a combinatorial (fermionic model) for
the quantum cohomology similar to our combinatorial description of the fusion
algebra.

8.1. 01-words, partitions and Schubert cells. Throughout our discussion we will
use the following well-known bijections between 01-words of length N and parti-
tions (see e.g. [35]) as well as the basis vectors of the wedge space

∧
CN .
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Definition 8.1. Let w = w1w2 · · ·wN be a word with N letters wi which are either
0 or 1. The weight of w is the sum

∑
i wi = k. Let

Wk,N =

{
w = w1w2 · · ·wN

∣∣∣∣ |w| :=
∑
i

wi = k

}

be the set of words of weight k. Let ni(w) := w1 + · · ·+ wi the number of 1-letters
wj for j in the closed interval [0, i].

For w ∈ Wk,N denote by 1 ≤ ℓ1 < . . . < ℓk ≤ N the positions of the 1-letters in
w counting from the left. Then there is obviously a bijection P≤k,n → Wk,N given
by

λ 7→ w(λ) = 0 · · · 01
ℓ1

0 · · · 01
ℓk

0 · · · 0,

where the positions ℓi of the letters 1 are determined according to the formula

(8.1) ℓi = λk+1−i + i .

We shall denote the inverse image under this bijection w 7→ λ(w). Graphically this
correspondence is simply assigning to each λ the path which is traced out by its
Young diagram in the k×n rectangle. Namely, starting from the left bottom corner
in the k×n rectangle each move by a box to the right corresponds to a letter 0 and
each move by a box up to a letter 1. For instance, the partitions displayed by the
Young diagrams from (2.3) correspond under this bijection to the set of words

{11000, 10100, 10010, 10001, 01100, 01010, 00110, 010001, 00101, 00011}.

Recall the well-known correspondence (see e.g. [17], [35]) between 01-words of
weight k and Schubert classes in qH•(Grk,N ): fix a full standard flag C ⊂ C2 ⊂
· · · ⊂ CN and assign to each word w the Schubert cell

(8.2) Ω◦
w = {V ∈ Grk,N | dim(V ∩ Ck) = wN + wN−1 · · ·+ wN+1−k} .

The associated Schubert class [Ωw] is the fundamental cohomology class of the
Schubert variety Ωw (i.e. the closure of the Schubert cell.)

Siebert and Tian [40] gave an explicit presentation of qH•(Grk,N ) in terms of the
ring of symmetric polynomials:

(8.3) qH•(Grk,N ) ∼= Z[q]⊗Z Z[e1, e2, . . . ek]/
〈
hn+1, . . . , hN−1, hN + (−1)kq

〉

where the ei’s are the (commutative) elementary symmetric functions in k vari-
ables and the hi’s are the corresponding complete symmetric functions. A Z[q]-
basis is given by the images of the Schur polynomials sλ for λ ∈ P≤k,n. The
following is then a direct consequence of Theorem 6.20:

Corollary 8.2 (Verlinde algebra as a quotient of qH•).

The Verlinde algebra Vk(ŝl(n),Z) is isomorphic to the quotient of the quantum cohomol-
ogy ring qH•(Grk,k+n) by imposing the extra relations q = ek and hn = 1.

Finally the words of weight k (or the partitions from P≤k,n) are also in bijection
to basis vectors of

∧
CN by sending a partition λ to the vector λi = k− 1− i. (This

will turn out to be a small ‘shadow’ of the so-called Fock space which appears in
the Fermion-Boson correspondence [26], [28]; see the table in Part III.)
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8.2. State space and fermions. Paralleling our previous discussion for the fusion
ring we now introduce a vector space of states for qH•(Grk,N ) which will again
lead to a description of the ring structure in terms of quantum particles hopping
on circle but now withN sites. Choose N = n+k ∈ Z>0 to be fixed and define the
vector space

(8.4) F =
N⊕
k=0

Fk, Fk = CP≤k,N−k = CWk,N

with F0 = C{∅} as before. If we denote the basis vector in Fk given by the empty
partition by ∅ = ∅k, then ∅0 has the physical interpretation of the vacuum, i.e.
no particles in the system. Note that in contrast to the fusion ring we are now
considering a finite-dimensional vector space.

We want to construct an analogue of the phase algebra for our vector space F .
For 1 ≤ i ≤ N define the following linear endomorphisms ψ∗

i , ψi of F :

ψ∗
i (w) :=

{
(−1)ni−1(w)w′, if wi = 0. Here w′ differs from w only by w′

i = 1

0 if wi 6= 0

ψi(w) :=

{
(−1)ni−1(w)w′, if wi = 1. Here w′ differs from w only by w′

i = 0

0 if wi 6= 1.

The associated Young diagram ψ∗
i λ is obtained by adding the top row of the

Young diagram λ to itself (thereby increasing its height) and then subtracting a
boundary ribbon starting in the (i − k)-diagonal and ending in the top row. In
contrast ψiλ is the Young diagram which is obtained from λ by subtracting the
top row (thereby decreasing the height) and then adding a boundary ribbon with
same start and end points as in the previous case.

Example 8.3. To visualize the action of ψ∗
i consider the special case n = k = 4

and µ = (4, 3, 3, 1): ψ∗
3µ is depicted in the figure below, where the entries in the

diagram label the diagonals. The (3−k) = −1-diagonal determines the start of the
boundary ribbon (the shaded boxes) which has to be subtracted:

Proposition 8.4 (Fermion/Clifford algebra). (1) The endomorphismsψi, ψ
∗
i : Fk →

Fk±1 create a subalgebra C ⊂ EndF isomorphic to a 22N -dimensional Clifford
algebra with the following defining relations:

ψiψj + ψjψi = ψ∗
iψ

∗
j + ψ∗

jψ
∗
i = 0, ψiψ

∗
j + ψ∗

jψi = δij .

(2) If we introduce the following scalar product on F , 〈αw, βw′〉 = αβδw,w′ =∏N
i=1 δwi,w′

i
, then 〈ψiλ, λ′〉 = 〈λ, ψ∗

i λ
′〉.
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(3) If we introduce a grading on C by putting ψi in degree −1 and ψ∗
i in degree 1,

we get a triangular decomposition C = C− ⊕C0 ⊕C+. Then C− annihilates the
vacuum vector ∅0, and F is a free C+-module of rank 1, with graded decompo-
sition F = ⊕kFk. In particular, F becomes an irreducible lowest weight Verma
module module for the Clifford algebra C.

Proof. All assertions can be easily verified by straightforward calculations. �

If we consider a word w as an N -tuple of integers, similar to the phase algebra
the maps ψ∗

i , ψi have the interpretation of particle creation and annihilation oper-
ators at site i of a circular lattice but this time of size N = n + k. Moreover, they
now describe free fermions which obey the Pauli exclusion principle, i.e. only one
particle per site is allowed. The dimension (level) k is again the total number of

particles which is given by the operator K =
∑N

i=1Ki,Ki = ψ∗
iψi. The codimen-

sion n = N − k is the number of unoccupied sites, i.e. holes in the system. Again
we scalar extend our phase space (8.4)) to

(8.5) F [q] = C[q]⊗C F ,
because later on we introduce quasi-periodic boundary conditions on the circle
ψ∗
N+1 = qψ∗

1 and ψN+1 = q−1ψ1.
Note that our interpretation of F [q] as state space of a quantum mechanical par-

ticle system is also valid when setting q = 0. In particular setting q = 0 does not
correspond to the classical limit of our particle system (in the physical sense) but
simply alters the boundary conditions. The adjective quantum in quantum cohomol-
ogy is in our context simply synonymous with q-deformed and has nothing to do
with its physical meaning.

8.3. Discrete symmetries: parity and time reversal, particle-hole duality, shift.
We now introduce a number of mappings which arise naturally in the context of
the physical particle picture. Later on we relate them to symmetries of Gromov-
Witten invariants.

Parity Reversal/Poincare duality: We introduce the parity reversal operator
P (an involution) which reverses the order of letters in a word by setting,

Pw = w∨, w∨ := wNwN−1 · · ·w1 .

This operator corresponds to Poincaré duality, since w(λ∨) = w(λ)∨. The
transformation property of the fermion operators under parity reversal is

(with the notation eιπK(?) = (−1)K(?))

(8.6) PψiP = eιπKψN+1−i, Pψ∗
iP = eιπKψ∗

N+1−i .

Time reversal/complex conjugation: In continuum quantum physics time re-
versal is related to complex conjugation of the wave function through the
Schrödinger equation. In the present context of a discrete system we gen-
eralize this notion in terms of the antilinear involution

T ∑
w
αww =

∑
w
ᾱww

with q = q−1. In particular,

(8.7) T ψiT = ψi, T ψ∗
i T = ψ∗

i .
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Particle-Hole Duality/transpose: This involution, which we shall denote by
the symbol C, is associated with the bijection P≤k,n → P≤n,k or to the
swapping of the letters in each word w: 0-letters become 1-letters and vice
versa. In terms of partitions we define

(8.8) Cλ = (λ∨)t = (λt)∨,

i.e. we take the transpose and the Poincaré dual. The transformation prop-
erties for the Clifford algebra generators are

(8.9) CψiC = (−1)i−1ψ∗
i , Cψ∗

i C = (−1)i−1ψi .

Together with parity reversal this gives the known isomorphism of rings

(8.10) ω : qH•(Grk,N )→ qH•(Grn,N), 1⊗ [Ωλ] 7→ 1⊗ [Ωλt ] ,

which in the language of symmetric functions just amounts to swapping
the bases of elementary and complete symmetric functions, ω : er 7→ hr.

Shift operator: There is an analogue Rot of the cyclic shift operator rot for
the fusion ring and defined on words as follows

(8.11) Rot(w) = w2 · · ·wNw1 .

This operator appears already in the context of Gromov-Witten invariants
in [35]. In terms of Young diagrams its action corresponds to shifting the
entire diagram within the k × n bounding box by one column to the left if
w1 = 0 and by one row down if w1 = 1. Expressed in formulae this means,

(8.12) Rot(λ) =

{
(λ1 − 1, . . . , λk − 1), if w1(λ) = 0
(n, λ1, λ2, . . . , λk−1), if w1(λ) = 1

.

Under the identification of partitions with particle configurations on a cir-
cle via (2.5) it simply rotates the particle positions on the N -circle, alias the

Dynkin diagram, but this time of ŝl(N).

9. THE AFFINE NIL-TEMPERLEY-LIEB ALGEBRA AND NONCOMMUTATIVE

POLYNOMIALS

Mimicking the passing from the phase algebra to the local plactic algebra we
define the following weight preserving endomorphism of F :

ui = ψ∗
i+1ψi , if 1 ≤ i ≤ N − 1, uN 7→ −qeιπ nNψ∗

1ψN .(9.1)

Proposition 9.1. Let N ≥ 2.

(1) The subalgebra Efin of End(F) generated by the ui’s 1 ≤ i ≤ N−1 is isomorphic
to the nil-Temperley-Lieb algebra 0-TLN .

(2) The subalgebra Eaff of End(F [q]) generated by the ui’s 1 ≤ i ≤ N is isomorphic

to the affine nil-Temperley-Lieb algebra 0-T̂ LN .

Proof. Recall (see e.g. [15], [35]) that 0-T̂ LN is the unital associative algebra with
generators {û1, . . . , ûN} and relations

(9.2) û2
i = ûiûi+1ûi = ûi+1ûiûi+1 = 0, ûiûj = ûj ûi if i− j 6= ±1 modN

where all indices are understood modulo N . The subalgebra generated by the
ûi, i > 0 is the ordinary nil-Temperley-Lieb algebra 0-TLN . Using the Clifford
relations it is straight-forward to check that the ui’s satisfy the nil-Temperley-Lieb
relations, hence ûi 7→ ui defines surjective algebra morphisms 0-TLN→→Efin and
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0-T̂ LN→→Eaff . By [4, Proposition 2.4.1], F is a faithful representation of 0-TLN
from which one easily deduces that F [q] is a faithful representation of 0-T̂ LN . �

In the following we will consider the nil-Temperley algebras as algebras of en-
domorphisms and will not distinguish in the notation between ui and ûi.

Remark 9.2 (Fermion hopping). In terms of our particle description the operators
ui simply correspond to one fermion hopping in clockwise direction on the cir-
cle. The action of the affine nil-Temperley-Lieb algebra leaves the k-particle space
invariant, i.e. uiFk[q] ⊂ Fk[q]. In terms of Young diagrams ui adds a box in the
(i − k)th-diagonal for i = 1, . . . , N − 1. (The pth-diagonal of a Young diagram is
formed by all squares (i, j) with content p = j − i). The action of the affine gen-
erator uN corresponds to removing (adding) a rim hook of size N − 1. If either of
these actions is not allowed the image is 0; see [35] for details.

Lemma 9.3. We have the following transformation properties of the affine nil-Temperley-
Lieb generators, 1 ≤ i ≤ N − 1, where u∗i = ψ∗

iψi+1 denotes the right adjoint of ui:

PuNP = −qeιπ nNψ∗
Nψ1, PuiP = u∗N−i

T uNT = −q−1eιπ nNψ∗
1ψN , T uiT = ui,

CuNC = −qeιπ nNψ∗
Nψ1, CuiC = u∗i .

(9.3)

Analogously to Section 5.3, we again consider noncommutative symmetric poly-
nomials:

Definition 9.4. For r = 1, 2, . . . , N − 1 let

(9.4) er(U) =
∑

|I|=r

�∏
i∈I

ui, hr(U) =
∑

|I|=r

	∏
i∈I

ui.

We also set eN (U) = −qeιπ nN and hN (U)|FN [q] = q. Note that we have hN (U)|Fk[q] = 0
for k < N and hr(U) = 0 for r > N . For λ ∈ P≤N,N define the noncommutative Schur
polynomial

(9.5) sλ(U)
(1)
= det(eλt

i−i+j
(U))1≤i,j≤N

(2)
= det(hλi−i+j(U))1≤i,j≤N .

Remark 9.5. The definition of sλ(U) only makes sense after we have proved that
the er(U) resp. hr(U) pairwise commute (see Corollary 10.7 below). We also have
to show that the two definitions from (9.5) agree (Theorem 10.6). However, we
would like to accept the definitions and draw a few consequences first. We also
want to point out that both, the definitions (9.4) as well as Corollary 10.7 are due
to Postnikov [35]. Our approach provides a new point of view of these results.

Lemma 9.6. We have the following transformation properties

PCer(U) = hr(U)PC, PCsλ(U) = sλt(U)PC(9.6)

Proof. Using (9.3) and PCuNPC = uN one verifies that each clockwise cyclically
ordered monomial is transformed into an anti-clockwise cyclically ordered one

and vice versa, PC∏�

i∈I uiPC =
∏	

i∈I ui. The first assertion follows then from
(9.4), the second from the first with (9.5) �
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10. CONSTRUCTION OF A COMMON EIGENBASIS

We now construct a common eigenbasis for the polynomials er(U), hr(U), then
define the algebra U sym of noncommutative symmetric functions and establish in
this way Postnikov’s result that the noncommutative Schur polynomial sλ(U) are
well-defined. Our construction and discussion of the eigenbasis will naturally lead
to the Bertram-Vafa-Intrilligator formula for Gromov-Witten invariants allowing
us to make contact with the results in [37] and also set it in parallel to the Verlinde
formula (6.43).

Analogous to the definition of the Bethe vectors in the context of the fusion

ring we now introduce (free) k-Fermion states b̃(x) through the following identity
which resembles equation (6.1).

Lemma 10.1. Let y = (y1, . . . , yk) ∈
(
C[q±

1
N ]
)k

and set ψ̂
∗
(yi) =

∑N
p=1 y

−p
i ψ∗

p. Then

we have the identity

(10.1) b̃(y) := η(y) ψ̂
∗
(y1) · · · ψ̂

∗
(yk)∅0 =

∑

λ∈P≤k,n

sλ(y
−1
1 , . . . , y−1

k ) λ,

where the normalisation factor η(y) is given by

η(y) =
(−1)

k(k−1)
2 ek(y)∏

i<j(y
−1
i − y−1

j )
.

Proof. Inserting the definition of the creation operators ψ̂
∗
(yi) one derives the ex-

pansion

b̃(y) = η(y) ψ̂
∗
(y1) · · · ψ̂

∗
(yk)∅0

= η(y)
∑

π∈Sk

(−1)ℓ(π)
∑

ℓ1<...<ℓk

y−ℓ1π(1) · · · y
−ℓk
π(k)ψ

∗
ℓ1 · · ·ψ

∗
ℓk
∅0(10.2)

=
∑

π∈Sk

(−1)ℓ(π)+ k(k−1)
2

∑

ℓ1<...<ℓk

y−ℓ1+1
π(1) · · · y−ℓk+1

π(k)∏
i<j(y

−1
i − y−1

j )
ψ∗
ℓ1 · · ·ψ

∗
ℓk
∅0 .

Recalling the relationship (8.1) between the particle positions and the associated
partition, ℓk+1−j − 1 = k+ λj − j the statement follows after applying the permu-
tation w0 = (k . . . 21) from the following determinant formula for Schur functions
(see e.g. [32]),

sλ(y
−1) =

det(y
−k−λj+j
i )1≤i,j≤k∏
i<j(y

−1
i − y−1

j )
.

�

In the context of the fusion ring we used the relations of the quantum Yang-
Baxter algebra to derive the Bethe Ansatz equations; see Proposition 6.1 and the
sketched proof. For the quantum cohomology ring we will employ the Clifford
algebra relations from Proposition 8.4 (1) and (10.2) to derive a set of conditions on

y = (y1, . . . , yk) such that the vector b̃(y) is an eigenvector of the noncommutative
symmetric functions.

Lemma 10.2. Provided y = (y1, . . . , yk) is a solution to the equations

(10.3) yN1 = · · · = yNk = (−1)k−1q
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the associated vector b̃(y) from (10.1) is a common eigenvector of the noncommutative
elementary and complete symmetric polynomials (9.4). In particular, the eigenvalues are
of the following form,

(10.4) er(U)b̃(y) = er(y)b̃(y) and hr(U)b̃(y) = hr(y)b̃(y) .

Proof. To prove our claim, we first compute the action of er(U) on b̃(y) and then

show that the result matches with multiplying b̃(y) by er(y) if we impose the con-

ditions (10.3). We employ once more the expansion (10.2) of the vector b̃(y). Define
vℓ1,...,ℓk = ψ∗

ℓ1 · · ·ψ
∗
ℓk
∅0 with vℓ1,...,ℓk = 0 if and only if ℓi = ℓj for i 6= j because of

the Clifford algebra relations. From equation (9.1) it follows that

uNvℓ1,...,ℓk−1,N = (−1)k+1ψ∗
1ψN vℓ1,...,ℓk−1,N =

− qψ∗
1ψ

∗
ℓ1 · · ·ψ

∗
ℓk−1

ψNψ
∗
N∅0 = −qv1,ℓ1,...,ℓk−1

,

whence we have the quasi-periodic boundary conditions

vℓ1,...,ℓk−1,N+1 = −qv1,ℓ1,...,ℓk−1
.

For convenience, we define in addition v0,ℓ2,...,ℓk := −q−1vℓ2,...,ℓk,N . The compu-

tation is further simplified by introducing the idempotent Ak =
∑

π∈Sk
(−1)ℓ(π) π

which projects onto the totally antisymmetric subspace; it allows us to rewrite
(10.2) as follows,

b̃(y) = η(y)Ak

∑

0≤ℓ1<···<ℓk≤N

y−ℓ11 · · · y−ℓkk vℓ1,...,ℓk .

Without loss of generality we may restrict to r ≤ k, since er(U)k = 0 for r > k. Via
induction one then shows that for i1 < · · · < ir (in the cyclic sense) one has

ui1 · · ·uirvℓ1,...,ℓk =
∑

1≤j1<···<jr≤k

δi1ℓj1 · · · δirℓjr
vℓ1,...,ℓj1+1,...,ℓjr +1,...,ℓk ,

Hence, we arrive at the following expression

(10.5) er(U)ψ̂
∗
(y1) · · · ψ̂

∗
(yk)∅0 =

Ak

∑

0≤ℓ1<···<ℓk≤N

y−ℓ11 · · · y−ℓkk

	∑

i1<···<ir

ui1 · · ·uirvℓ1,...,ℓk =

Ak

∑

0≤ℓ1<···<ℓk≤N

y−ℓ11 · · · y−ℓkk

∑

1≤j1<···<jr≤k

vℓ1,...,ℓj1+1,...,ℓjr +1,...,ℓk .

In comparison, multiplication of b̃(y) by er(y) yields the formula

(10.6) er(y)ψ̂
∗
(y1) · · · ψ̂

∗
(yk)∅0 =


 ∑

1≤j1<···<jr≤k

yj1 · · · yjr




Ak

∑

0≤ℓ1<···<ℓk≤N

y−ℓ11 · · · y−ℓkk vℓ1,...,ℓk


 =

Ak

∑

0≤ℓ1<···<ℓk≤N
1≤j1<···<jr≤k

y−ℓ11 · · · y−ℓj1+1 · · · y−ℓjr +1 · · · y−ℓkk vℓ1,...,ℓk .

Notice that the summands for which ℓja + 1 = ℓja+1 vanish under multiplication
with yja due to the antisymmetrizer. This ensures compatibility with the Clifford
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algebra relations which imply vℓ1,...,ℓk = 0 if two indices are equal. Comparing
coefficients in both expressions, (10.5) and (10.6), we are led to the equations, yNi =
(−1)k−1q.

The proof for hr(U) is slightly more complicated, since now shifts in the particle
positions larger than one can occur, but follows along similar lines. We therefore
omit it. �

Remark 10.3. The vectors (10.1) are well-known in the physics literature: via a
Jordan-Wigner transformation they diagonalize the Hamiltonian HXX = e1(U) +
e1(U)∗ of the so-called XX spin-chain, mapping it to a free fermion system. Our
computation shows that the eigenvectors of HXX are also eigenvectors of the al-
gebra of noncommutative functions U sym.

We use analogous conventions and notation as in Theorem 6.4 and denote by
̂Sol(n, k)fermi the solutions y ∈

(
C[q±

1
N ]
)k

of (10.3) up to permutation and giving

rise to non-trivial b̃(y). In particular, we assume the yi’s to be pairwise distinct as
(10.1) shows that the eigenvector vanishes otherwise.

Proposition 10.4. Let ζ = exp 2πι
k+n . Then there is a bijection

P≤n,k
∼= ̂Sol(n, k)fermi

σ 7→ yσ := q
1
N

(
ζI1 , . . . , ζIk

)
,(10.7)

where I = I(σt) :=
(
k+1
2 + σtk − k, . . . , k+1

2 + σt1 − 1
)
.(10.8)

Proof. In contrast to the the Bethe Ansatz equations (6.2) we discussed in the con-
text of the fusion ring, the equations (10.3) are decoupled and we simply have to

take the N th root in each of the k equations. The q dependence is obvious. Thus,
for each single equation there are N solutions. Since we are only interested in so-
lutions y = (y1, . . . , yk) where the components are pairwise distinct and identify

solutions up to permutation, we are left with
(
N
k

)
= |P≤n,k| = |P≤k,n| = dimFk

possible solutions to (10.3). Proceeding similar to the case of the fusion ring we
define a bijection, (10.8), but this time from P≤n,k into the set of integers

In,k :=
{
(I1, ..., Ik) | −k−1

2 ≤ I1 < · · · < Ik ≤ n+ k−1
2 , Ij ∈ k+1

2 + Z, ∀j
}
.

Taking the N th power of each component in (10.7) one verifies that these indeed

solve (10.3) giving rise to
(
N
k

)
distinct solutions. �

Remark 10.5. The solutions to (10.3) are discussed in [37] in the context of the
Bertram-Vafa-Intrilligator formula. Employing the well-known recursion relation
hr(y1, . . . , yk) = hr(y1, . . . , yk−1)+ykhr−1(y1, . . . , yk) one can show (compare with
Lemma 6.3) that the system of equations (10.3) is equivalent to

(10.9) hN−k+1(y) = · · · = hN−1(y) = hN(y) + (−1)kq = 0.

This provides a new perspective: the set of equations (10.3) coincide with the Bethe
Ansatz equations of free fermions on a circular lattice with quasi-periodic bound-
ary conditions. The integers I correspond to the momenta pr of the individual

particles via pr = 2πIr/N and the total momentum P =
∑k

r=1 pr is simply given
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by

(10.10) P =
2π

N

k∑

r=1

Ir(σ) =
2π|σ|
N

.

Theorem 10.6. (1) The Bethe vectors b̃(yσ), σ ∈ P≤k,n, form a complete set of pair-
wise orthogonal eigenvectors for the action of the cyclic noncommutative symmet-
ric functions on Fk[q]. The eigenvalues are given by the following formulae

er(U)b̃(yσ) =

{
er(yσ)b̃(yσ) if r 6= N ,

0 if r > k.
(10.11)

hr(U)b̃(yσ) =

{
hr(yσ)b̃(yσ) if r 6= N ,

−qeιπkb̃(yσ) if r = N .
(10.12)

(2) The norm of the Bethe vectors is given by the following formula

〈b̃σ, b̃σ〉 =
n(n+ k)n

|Vanσ |2
,(10.13)

where Vanσ denotes the Vandermonde determinant
∏

1≤i<j≤n

(ζIi(σ) − ζIj(σ)).

Proof. The eigenvalue expressions for er(U), hr(U) follow from Lemma 10.2. The
special cases er(U), r > k and hN (U) are immediate from the fact that there are
only k-particles in the system and (10.9), respectively.

Orthogonality and the norm of the Bethe vectors follows from (10.1) and the
summation identity for Schur functions in [37]; see Proposition 4.3 (3) therein. �

We arrive at the following statement, compare with [35] where the commuta-
tivity of {er(U), hs(U)} was shown by different methods.

Corollary 10.7. The elements in the set {er(U), hs(U)} pairwise commute. Thus, the
noncommutative Schur polynomials sλ(U) are well defined and one has the eigenvalue
equation

(10.14) sλ(U)b̃(yσ) = sλ(yσ)b̃(yσ) = q
|λ|
N sλ(ζ

I(σ))b̃(yσ).

Hence, both determinant formulae in (9.5) for sλ(U) are valid.

Proof. Theorem 10.6 and Proposition 10.4 imply that if we formally set q · q̄ =
q · q−1 = 1 then the non-zero vectors (10.1) form a complete set of pairwise or-
thogonal eigenvectors, hence an eigenbasis of the noncommutative polynomials
er(U), hs(U). The eigenvalue equation for the noncommutative Schur polynomial
is then immediate from the definition (1) in (9.5). Moreover, the equality (2) in (9.5)
is then deduced from the corresponding equality in the commutative case. �

Theorem 10.8 (Combinatorial quantum cohomology ring). Fix k ∈ Z≥0 and con-
sider the k-particle subspace Fk[q] ⊂ F [q]. The assignment

(10.15) (λ, µ) 7→ λ ⋆ µ := sλ(U)µ

for basis elements λ, µ ∈ P≤k,n turns Fk[q] into a commutative, associative and unital
C[q]-algebra H•

comb.

Proof. The proof is completely analogous, with the obvious replacements, to the
one of Theorem 6.12. �
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Define the structure constants Cν,dλ,µ ∈ Z of H•
comb through

λ ⋆ µ =
∑

ν∈P≤k,n,d∈Z

Cν,dλ,µq
dν.

Corollary 10.9. The following formula describes the structure constantsCν,dλ,µ for λ, µ, ν ∈
P≤k,n:

(10.16) Cν,dλ,µq
d =

q
|λ|+|µ|−|ν|

N

Nk

∑

σ∈P≤k,n

sλ(ζ
I(σ))sµ(ζ

I(σ))sν∨(ζ−I(σ))

ζk|σ|
∏k
i<j |ζIi(σ) − ζIj(σ)|−2

In particular, Cν,dλ,µ = 0 unless |λ|+ |µ| − |ν| = dN and d ≥ 0.

Proof. From (9.1) and (10.15) we can conclude that d is non-negative as the non-
commutative Schur polynomial sλ(U) is polynomial in the generators of the affine
nil-Temperley-Lieb algebra; see (9.5). According to (10.15) the coefficients in the
product expansion λ ⋆ µ are given by the matrix elements of sλ(U) which we com-
pute in the eigenbasis (10.1), completely analogous to the derivation of (6.36). �

We illustrate the last formula by an example:

Example 10.10. Consider the case k = 4 and n = 3, henceN = 7. Set λ = (3, 3, 2, 1)

and µ = (2, 2, 1, 0). Then we have |λ| + |µ| = 9 + 5 = 14 and therefore Cν,dλ,µ = 0

unless 7d+ |ν| = 14. Therefore d ∈ {0, 1, 2}. The case d = 0 gives a partition ν with
14 boxes which is impossible, d = 2 implies ν = ∅ and d = 1 implies that ν has 7
boxes, hence we get a formula of the form

⋆ = a1q + a2q + a3q + a4q + a5q
2∅ .

for some ai ∈ Z. We used a computer to evaluate the formula (10.9) and obtained
ai = 1 except for a2 = 2.

The following reproves a result of Postnikov [35], and at the same time connects
his approach with the results of Rietsch [37]:

Theorem 10.11. The map sλ(U) 7→ sλ defines an isomorphism of rings H•
comb

∼=
qH•(Grk,N ). In particular,

(10.17) H•
comb

∼= Z[q]⊗Z Z[e1, e2, . . . ek]/
〈
hn+1, . . . , hn+k−1, hn+k + (−1)kq

〉

and the Gromov-Witten invariants are given by the matrix elements of the noncommuta-
tive Schur function,

(10.18) qdCν,dλ,µ = 〈ν, sλ(U)µ〉 .

Proof. The expansion (10.16) is the celebrated Bertam-Vafa-Intrilligator formula for
Gromow-Witten invariants. In the stated form it has appeared in [37]. The isomor-
phism (10.17) follows then from Remark 10.5 by the same arguments as explained
in detail in the proof of Theorem 6.20. The remaining statements are then direct
consequences from the presentation (8.3) of the quantum cohomology ring. �
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Remark 10.12. We want to point out here that the definitions and basic properties
of the combinatorial ring H•

comb only rely on (10.15). From there one derives in
an elementary way the associativity, the Bertram-Vafa-Intrilligator formula (10.16)
and the presentation (10.17). All of these are non-trivial results in the quantum
cohomology of the Grassmannian.

11. SYMMETRIES, RECURSION FORMULAE AND AN ALGORITHM FOR

GROMOV-WITTEN INVARIANTS

The combinatorial description of the quantum cohomology ring can be exploited
to derive in a very simple manner non-trivial identities, referred to as ‘symme-
tries’, between Gromov-Witten invariants. The main idea is to employ the com-
binatorial description (10.15) of the product and then exploit certain invariance or
transformation properties of the noncommutative Schur polynomials.

To explain our approach in more detail, assume we have a linear endomor-
phism F of F [q]. For notational convenience we shall abbreviate throughout this
section Sλ = sλ(U). In general we cannot expect the endomorphism F to be com-
patible with the product structure in the sense that Sλ ◦ F = F ◦ Sλ. However,
we might be able to choose F such that Sλ ◦ F =

∑
µ Fµ ◦ S′

µ for certain (well-

understood) endomorphisms Fµ and S′
µ = Sµ at least after replacing q by q′ = −q

or q−1. Applying this equality to a basis vector in F [q] we obtain identities of
Gromov-Witten invariants by comparing coefficients in the respective product ex-
pansions,

∑

ν

qdCν,dλ,F (σ)ν = Sλ(F (σ)) =
∑

µ

Fµ(S
′
µ(σ)) =

∑

ν

∑

µ

(q′)dCν,dµ,σFµ(ν) .

In case that the endomorphisms F, Fµ preserve the dimension k and q′ = q, we
obtain relations between structure constants of the same quantum cohomology
ring. Our standard examples are the discrete symmetry operators from Section
8.3. In this way we deduce in particular (mostly well-known) symmetry prop-
erties of Gromov-Witten invariants, albeit providing simpler and shorter proofs
(Proposition 11.1 below). By choosing for F particle generation and annihilation
operators ψi and ψ∗

i we obtain, however, more interesting (new) results, namely
formulae relating Gromov-Witten invariants from different quantum cohomology
rings. In particular, one obtains an explicit recursion formula and an inductive
algorithm to compute all the structure constants.

We start with the following (apart from (3) probably) well-known symmetry
formulae:

Proposition 11.1. Let Cλ,µ,ν(q) = qdCν
∨,d

λ,µ with d = |λ|+|µ|+|ν|−kn
N , then we have the

following identities:

(1) S3 symmetry: for any p ∈ S3 we have Cλ,µ ν(q) = Cp(λ),p(µ),p(ν)(q) .
(2) Level-rank duality: Cλ,µ,ν(q) = Cλt,µt,νt(q).
(3) Rotation invariance: let R = Rot be as in (8.12) and extend the definition of ni

from Section 8.1 to any i ∈ Z by setting ni+N = ni+k. Then

CRa(λ),µ,ν(q) = qna(µ)−na(λ)Cλ,Ra(µ),ν(q) = qna(ν)−na(λ)Cλ,µ,Ra(ν)(q),

and in particular for a+ b+ c = 0 we have

CRa(λ),Rb(µ),Rc(ν)(q) = qna(λ)+nb(µ)+nc(ν)Cλ,µ,ν(1) .
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(4) Postnikov’s ‘curious duality’:

CRa(λ),Rb(µ),Rc(ν)(q) = qna(λ)+nb(µ)+nc(ν)Cλ∨,µ∨,ν∨(q−1)

with a+ b+ c = N − k.

Proof. The first identity is obvious from the Bertram-Vafa-Intrilligator formula (10.16).
The second equality is easily obtained by employing parity-reversal and particle-
hole duality,

Cλ,µ,ν(q) = 〈ν∨, Sλµ〉 = 〈
(
νt
)∨
,PCSλPCµ〉 = 〈

(
νt
)∨
, Sλtµt〉 = Cλt,µt,νt(q) .

To prove statement (3) we first specialise to q = 1, denoting the corresponding

noncommutative Schur polynomial by S̃λ. Under this condition the noncommu-
tative elementary and symmetric polynomials in (9.4) become invariant under a
cyclic permutation of the letters ui. Together with (9.5) this implies

(11.1) R ◦S̃λ = S̃λ ◦ R .

Hence, the following equalities hold true

〈ν∨,R ◦S̃λ(µ)〉 = 〈ν∨, S̃λ(Rµ)〉 = 〈ν∨,R ◦S̃λ(µ)〉 =

〈ν∨,R ◦S̃µ(λ)〉 = 〈ν∨, S̃µ(Rλ)〉 = 〈ν∨,R ◦S̃µ(λ)〉

Using the S3-symmetry from (1) statement (3) follows for q = 1. Because of
Corollary 10.9 it suffices to compute the difference in the degrees of the respective
Gromov-Witten invariants in order to treat the case of generic q. The respective
degrees in (3) can be deduced with help of the general formula

(11.2) |Ra(µ)| = |µ|+N na(µ)− ak ,

which is easily verified using the action of R on Young diagrams as described in
(8.12). For instance, the degrees for the last equality in (3) follow from the compu-
tation

|Ra(λ)|+ |Rb(µ)|+ |Rc(ν)| =
|λ|+ |µ|+ |ν|+N(na(λ) + nb(µ) + nc(ν)) + (a+ b+ c)k

and, hence, we arrive at the asserted identity under the stated assumption that
a+ b+ c = 0.

To show the last identity (4) we again specialise to q = 1. Employing the parity
and time reversal operator of Section 8.3 one shows that the eigenvector (10.1)
satisfies

PT b̃(y) =
∑

µ∈P≤k,n

sµ(y)µ
∨ = ek(y)

n
∑

µ∈P≤k,n

sµ∨(y−1)µ∨ = ek(y)
nb̃(y),

see Lemma 6.5 (3). Applying Theorem 10.6, Corollary 10.7 and once more Lemma

6.5 (3) one obtains the identity PT S̃λPT = Rn ◦S̃λ∨ . Thus, we calculate

Cλ,µ,ν = 〈ν∨, S̃λµ〉 = 〈ν,PT S̃λPT µ∨〉 = 〈ν,Rn S̃λ∨µ∨〉 =
〈R−c(ν), S̃Ra(λ∨) R−b(µ)∨〉 = CR−a(λ)∨,R−b(µ)∨,R−c(ν)∨
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for any a, b, c with a + b + c = n = N − k. Here we have used again (11.1) in the
penultimate equality. This proves (4) when q = 1. The general case now follows
by comparing degrees on both sides of (4). We find

Cλ∨,µ∨,ν∨(q) = qdCλ∨,µ∨,ν∨(1), d = −|λ|+ |µ|+ |ν| − 2k(N − k)
N

and

CRa(λ),Rb(µ),Rc(ν)(q) = qd
′

CRa(λ),Rb(µ),Rc(ν)(1)

with

d′ =
|λ|+ |µ|+ |ν| − k(N − k)

N
+ na(λ) + nb(µ) + nc(ν)−

a+ b+ c

N
k

and the proposition follows. �

Example 11.2. Let us illustrate the second equality in the first formula of Proposi-
tion 11.1 (3). Recall from Example 10.10 the product expansion for λ ⋆ µ,

0101011

⋆

1010110

= q

0101110

+ 2q

0110101

+ q

1001101

+ q

1010011

+ q2 ∅
1111000

.

Exploiting that Rot(ν∨) = (Rot−1(ν))∨, Proposition 11.1 (3) can be rewritten as

Rot(λ) ⋆ µ =
∑

ν

Cλ,µ,Rot(ν∨)(q)ν =
∑

ν

qd
′

C
Rot−1(ν),d′

λµ ν

=
∑

ν

qd−k+n1(λ)+n6(Rot(ν))Cν,dλµ Rot(ν) ,

where d′(ν) = d + k − nN−1(ν) + n1(λ) according to the definition of Cλ,µ,ν(q) in
Proposition 11.1 and (11.2). Since, n1(λ) = 0 and Rot(λ) = µ we find by applying
Rot to each diagram in the product expansion

⋆
(8.12)
= q + 2q + + + q .

We now derive recursion formulae for Gromov-Witten invariants. As a pre-
liminary step we need to derive the commutation relations between ψ∗

i , ψi and
the noncommutative Schur polynomials. We start with the elementary symmetric
polynomials and then, once more, make use of the Jacobi-Trudy formula. Hence-
forth let S′

λ and E′
r denote Sλ and Er with q replaced by −q, respectively.

Lemma 11.3. We have the following formula

Erψ
∗
j = ψ∗

jE
′
r + ψ∗

j+1E
′
r−1,

where for j = N we have ψ∗
N+1 = −qeiπKψ∗

1.

Proof. We start from the relations

uiψ
∗
l = ψ∗

l ui + δi,lψ
∗
i+1, i = 1, 2, . . . , N − 1

uN (q)ψ∗
l = ψ∗

l uN (−q) + δN,l qψ
∗
1e
iπK
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which are easily verified. More generally we claim that for any i1 > · · · > ir (with
respect to the cyclic order) the following identity is true,

uir(q) · · ·ui1(q)ψ∗
j = ψ∗

juir(−q) · · ·ui1(−q)

+ ψ∗
j+1

r∑

s=1

δj,isuir (−q) · · · /uis(−q) · · ·ui1(−q) ,

where /u means we leave out the factor u. Assume this is true for r, then multipli-
cation on both sides with uir+1(q) yields

uir+1(q) · · ·ui1(q)ψ∗
j = ψ∗

juir+1(−q) · · ·ui1(−q) + δj,ir+1ψ
∗
j+1uir (−q) · · ·ui1(−q)

+ uir+1(q)ψ
∗
j+1

r∑

s=1

δj,isuir (−q) · · · /uis(−q) · · ·ui1(−q) .

Provided that ir+1 < ir one has uir+1(q)ψ
∗
j+1 = ψ∗

j+1uir+1(−q) which concludes

the induction step and, thus, proves the claim. Noting that ψ∗
j+1uj = 0 the as-

sertion follows from the definition (9.4) of the cyclic noncommutative symmetric
functions. �

Proposition 11.4. The following commutation relations hold true,

Sλψ
∗
i = ψ∗

i S
′
λ +

λ1∑

r=1

ψ∗
i+r

∑

λ/µ=(r)

S′
µ(11.3)

Sλψi = ψiS
′
λ +

ℓ(λ)∑

r=1

(−1)rψi−r
∑

λ/µ=(1r)

S′
µ(11.4)

where we again impose the quasi-periodic boundary conditions ψj−N = −qeiπKψj and

ψ∗
j+N = −qeiπKψ∗

j .

Proof. We start with the first identity and perform an induction on the length of λ
with the previous lemma as starting point. Assume as induction hypothesis that

(11.3) holds true for λ and let λ̃ = (λ0, λ1, λ2, . . .) be λ with an additional row
added to the top. For the induction step we will exploit S

λ̃
t = det(Eλ̃i−i+j

). Ex-

panding with respect to the first column one finds S
λ̃

t =
∑ℓ

i=0(−1)iEλi−iS(λ̃
(i)

)t ,

where λ̃
(0)

= λ and for i > 0 we set λ̃
(i)

= (λ0+1, λ1+1, . . . , λi−1+1, λi+1, . . . , λℓ) .
The induction hypothesis then yields

S
λ̃

tψ∗
j =

ℓ∑

i=0

(−1)iEλi−i

ℓ∑

r=0

ψ∗
j+r

∑

λ̃
(i)
/µ̃=(1r)

S′
µ̃t

=

ℓ∑

i,r=0

(−1)i




(
ψ∗
j+rE

′
λi−i + ψ∗

j+r+1E
′
λi−i−1

) ∑

λ̃
(i)
/µ̃=(1r)

S′
µ̃t




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We now rearrange the sum over r and find

S
λ̃

tψ∗
j = ψ∗

jS
′
λ̃

t+

+

ℓ∑

r=1

ψ∗
j+r

ℓ∑

i=0

(−1)i



E

′
λi−i

∑

λ̃
(i)
/µ̃=(1r)

S′
µ̃ + E′

λi−i−1

∑

λ̃
(i)
/µ̃=(1r−1)

S′
µ̃t





+

ℓ∑

i=0

(−1)iψ∗
j+ℓ+1E

′
λi−i−1S

′
(λ0,λ1,...,λi−1,λi+1−1,...,λℓ−1)t

The two sums in the second line give the two possible contributions when one

subtracts a vertical r-strip from λ̃ with 1 ≤ r ≤ ℓ: either a single box or no box is
deleted in the ith row. The last term is the removal of a vertical (ℓ + 1)-strip from

λ̃. Thus, we arrive at

S
λ̃

tψ∗
j = ψ∗

jS
′
λ̃

t +

ℓ∑

r=1

ψ∗
j+r

∑

λ̃/µ̃=(1r)

S′
µ̃t + ψ∗

j+ℓ+1S
′
(λ0−1,λ1−1,...,λℓ−1)t

which upon taking the transpose in all partitions is the desired result.
The second formula (11.4) now follows from applying the transformations

PCψ∗
jPC = (−1)j−1eiπKψN+1−j and PCSλPC = Sλt

which we proved earlier; see Section 8.3 and Lemma 9.6. �

Remark 11.5 (Algorithm). The above commutation relations imply the following
product formulae

λ ⋆ ψ∗
i (µ) = Sλψ

∗
i (µ) =

λ1∑

r=0

∑

λ/ν=(r)

ψ∗
i+r(ν ⋆′ µ),(11.5)

λ ⋆ ψi(µ) = Sλψi(µ) =

λ1∑

r=0

(−1)r
∑

λ/ν=(1r)

ψi−r(ν ⋆′ µ),(11.6)

where ⋆′ denotes the product where we replace the deformation parameter q with
−q. Thus, one can successively create for k = 0, 1, . . . , N the entire hierarchy
qH•(Grk,N ) of quantum cohomology rings starting with either k = 0 or k = N .

Example 11.6. We illustrate the algorithm by computing the (quite trivial) exam-
ple of projective space and some product in qH•(Gr2,5) starting from the quantum
cohomology of a point. First of all we create the basis vectors of qH•(Gr1,N ) ac-
cording to the formula

cj = ∅
10000

⋆ ψ∗
j ( ∅

00000
) = ψ∗

j (∅) = ︸ ︷︷ ︸
j−1

, j = 1, . . . , N .

Then the product of two arbitrary basis vectors is given by

ci ⋆ cj = ︸ ︷︷ ︸
i

⋆ ψ∗
j ( ∅

00000
) =

i∑

i′=0

ψ∗
i′+j(hi−i′(U ,−q) ∅

00000
) = ψ∗

i+j( ∅
00000

)

= qp ︸ ︷︷ ︸
i+j−pN

,
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where p = 0 if i + j < N = n + 1 and p = 1 otherwise (by invoking the quasi-
periodic boundary conditions ψ∗

N+r = (−1)K+1qψ∗
r). Now we can pass to the case

k = 2 and compute in qH•(Gr2,5) for instance

00101

⋆ ψ∗
2

(

00010

)
=

00101

⋆

01010

= ψ∗
2+2

(
⋆′

)
+ ψ∗

2+3

(
⋆′

)

= −qψ∗
2+2

(

01000

)
− qψ∗

2+3

(
∅

10000

)
= q + q .

Note that the cases k = 3, 4, 5 and N = 5 are obtained via level-rank duality, see
Proposition 11.1 (2).

Using the identity ψ∗
iψi + ψiψ

∗
i = 1 one now derives the corresponding recur-

sion formulae for the Gromov-Witten invariants.

Corollary 11.7 (Recursion formulae). Let j = 1, 2, . . . , N . One has the following
recursion formulae for Gromov-Witten invariants: if ψjµ = 0 then

(11.7) Cν,dλµ (k,N) =

ℓ(λ)∑

r=0

(−1)d+r+nj−1(µ)+nj−r(ν)
∑

λ/ρ=(1r)

C
ψ∗

j−rν,dr

ρ,ψ∗
jµ

(k + 1, N)

else

(11.8) Cν,dλµ (k,N) =

λ1∑

r=0

(−1)d+nj−1(µ)+nj+r−1(ν)
∑

λ/ρ=(r)

C
ψj+rν,d

′
r

ρ,ψjµ
(k − 1, N),

where nj+N = nj +k and

(11.9) dr =

{
d− 1, j < r
d, else

, d′r =

{
d− 1, j + r > N
d, else

.

Proof. We start from the identity

qdCν,dλ,µ(k,N) = 〈ν, Sλµ〉 = 〈ν, Sλψjψ∗
jµ〉+ 〈ν, Sλψ∗

jψjµ〉 .
Only one of the matrix elements on the right hand side of the last equation can be
nonzero. Assume ψjµ = 0, then it follows from the previous proposition that

qdCν,dλ,µ(k,N) = 〈ν, Sλψjψ∗
jµ〉

=

λt
1∑

r=0

(−1)r
∑

λt/ρt=(r)

〈ν, ψj−rS′
ρψ

∗
jµ〉

= qd
ℓ(λ)∑

r=0

(−1)r+d+nj−1(µ)+nj−r−1(ν)
∑

λ/ρ=(1r)

C
ψ∗

j−rν,dr

ρ,ψ∗
jµ

(k + 1, N) .

Here we have used that

|λ| =
k∑

i=1

ℓi −
k(k + 1)

2
and |ψ∗

jλ| = |λ|+ j − k − 1,

from which one deduces that for j − r > 0

|ρ|+ |ψ∗
jµ| − |ψ∗

j−rν| = |λ|+ |µ| − |ν| = dN .
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If j − r < 0 it follows from the quasi-periodic boundary conditions that

〈ν, ψj−rS′
ρψ

∗
jµ〉 = (−1)k−1q〈ν, ψj−r+NS′

ρψ
∗
jµ〉

and the degree is decreased by one. Since we set na+N = na +k the overall sign
works out correctly.

The second case, ψ∗
jµ = 0, leads to the second recursion formula via a similar

computation. To determine the equality of the degrees one now uses the relation
|ψjλ| = |λ| − j + k. �

Example 11.8. Consider once more the product expansion from Example 10.10.

Choose ν = (3, 2, 1, 1), then Cν,1λµ = 2. Since w(µ) = 1010110 and w(ν) = 0110101,

ψ∗
jµ is only non-vanishing for j = 2, 4, 7,

ψ∗
2µ = −(1, 1, 0, 0, 0), ψ∗

4µ = (1, 1, 1, 1, 0), ψ∗
7µ = (2, 2, 2, 1, 0) .

In contrast, ψ∗
j−rν 6= 0 only if j − r = 1, 4, 6,

ψ∗
6ν = −(2, 2, 2, 1, 1), ψ∗

1ν = (2, 1, 0, 0, 0), ψ∗
4ν = (2, 1, 1, 1, 1) ,

whence the only allowed value for j = 2, 7 is r = 3, while for j = 4 we have the
possible values r = 0, 3. The corresponding partitions ρ in the non-trivial skew
diagrams λ/ρ are ρ1 = (2, 2, 1, 1, 0) and ρ2 = (2, 2, 2, 0, 0). We obtain the following
identities between Gromov-Witten invariants, where the first equality in each line
follows from (11.7), while the actual numerical values are calculated with the help
of a computer using (10.16):

j = 2 : Cν,1λµ (4, 7) = C
ψ∗

6ν,0
ρ1ψ

∗
2µ

(5, 7) + C
ψ∗

6ν,0
ρ2ψ

∗
2µ

(5, 7) = 1 + 1 = 2,

j = 4 : Cν,1λµ (4, 7) = C
ψ∗

4ν,1
λψ∗

4µ
(5, 7) + C

ψ∗
1ν,1

ρ1ψ
∗
4µ

(5, 7) + C
ψ∗

1ν,1
ρ2ψ

∗
4µ

(5, 7) = 0 + 1 + 1 = 2,

j = 7 : Cν,1λµ (4, 7) = C
ψ∗

4ν,1
ρ1ψ

∗
7µ

(5, 7) + C
ψ∗

4ν,1
ρ2ψ

∗
7µ

(5, 7) = 1 + 1 = 2 .

Note that for j = 2 we have used the quasi-periodic boundary conditions, ψ−1 =

qψ6e
ιπK to determine the overall sign factor and degree.

PART III: THE ‘BOSON-FERMION-CORRESPONDENCE’

The following table summarizes the analogy of the constructions on both sides.
We call it the ‘Boson-Fermion-correspondence’ (although a precise representation
theoretic statement will appear elsewhere).
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fusion ring F(ŝl(n))k quantum cohomology qH•(Grk,k+n)

integrable system:
(bosonic) configuration of k particles (fermionic) configurations of k particles
on a circle with n sites on a circle with N = n+ k sites

creation and annihilation operators:
phase algebra Clifford algebra

noncommuting variables:
Local affine plactic algebra affine nil-Temperley-Lieb algebra

crystal structure:

Crystal of the kth symmetric power Crystal of the kth exterior power

Bethe Ansatz equations:

xn+k
1 = · · · = xn+k

k = (−1)k−1zek(x1, . . . , xk) yN1 = · · · = yNk = (−1)k−1q.

Bethe roots (ζ = exp 2πi
k+n )

xσ = z
1
n ζ

|σ|
n

(
ζI1 , . . . , ζIk

)
, σ ∈ P≤n−1,k yσ = q

1
N

(
ζI1 , . . . , ζIk

)
, σ ∈ P≤k,n,

ring structure
λ⊛ µ = sλ(a0, a1, . . . an−1)µ λ ⋆ µ = sλ(u0, u1, . . . un−1)
Verlinde formula Bertram-Vafa-Intrilligator formula

APPENDIX: LOCAL PLACTIC ALGEBRA AND TABLEAUX

We found the following explicit algorithm which produces a sequence of (gen-

eralised) tableaux, T ∋ T  T̂  T ′  D(T ) ∈ Tstr (using the notation from
Proposition 5.2 (2)) such that the following statement is true.

Proposition 11.9. The algorithm associates to each tableau T a tableauD(T ) in Tstr with
equivalent column word under the relations (5.1) and (5.2).

In particular, fromD(T ) one can read off the corresponding basis element in B.

Definition 11.10. Assume we are given a tableau T (or any more general diagram, where
the following definition makes sense). We say a columnC of T has property (S) if there are
no two numbers i < j, appearing in C in two consecutive rows and satisfying j − i > 1.
(That means the numbers in C form an increasing sequence of consecutive numbers).

The algorithm:

Step 0. If the tableau is already in Tstr then there is nothing to do.

Step 1: Creating T̂ . Read the tableau T column by column from right to left (and
from top to bottom) until the first column C which has not property (S). Let i, j be
the first pair of numbers destroying property (S).

Now do the following procedure basic procedure P (C, j) (associated with the
pair (C, j)): cross out the number j and consider the column, D, next to C on the
right, deal with the first applicable situation from the following list, where the
term ‘contains’ stands for ‘contains an uncrossed’.
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(1) D is empty. Place j in the first row of D.
(2) D contains j − 1 and j. Do P (D, j).
(3) D contains j− 1, not j. Place j below j− 1, (replacing any crossed out number

there) and pushing down all greater numbers by one row.
(4) D contains j + 1, not j. Then j + 1 is necessarily on the top of D (due to the

choice of i and j). Replace j + 1 by j, and do P (D, j + 1).
(5) D contains j + 1 and j. Do P (D, j).
(6) D contains neither j + 1 nor j − 1 and is not empty.

(a) If it contains just j then insert an extra copy of the column D to the right
of D.

(b) If all entries in D are greater than j then replace the entry, x, in the first
row by j, and do P (D,x).

(c) If all entries in D are less than j do P (D, j).

Since T has a finite number of rows and columns, we are done after applying
finitely many basic procedures. The multi-set of numbers which are not crossed
out will be the same as at the beginning, but some numbers could have been
moved to the right or up. There are no numbers crossed out in the first row.

Now repeat the above rule with all (not crossed out) pairs i, j as long as possi-
ble. The whole procedure stops after finitely many steps, latest when all numbers
which are not crossed out appear in the first row. We claim that this produces a

tableau T̂ with some numbers crossed out (for a proof see below). By construc-
tion, each step does not change the equivalence class of column words (under the
relations (5.1) and (5.2).

Step 2: Creating T ′ and D(T ). Now remove the boxes with crossed out numbers to
obtain T ′. The first row is weakly increasing, the columns are connected and are
increasing sequences i(i+1)(i+2) . . . of consecutive numbers. Thanks to property
(S) the local plactic relations make sure that the corresponding column word is in
the same equivalence class as the column word of T . Finally, the tableau D(T )
is obtained from T ′ by moving all the boxes to the left as far as possible. The
specific shape of T ′ makes sure that D(T ) is in fact a tableau (since the rows are
of course still weakly increasing and the columns are not necessarily sequences
anymore, but definitely strictly increasing). The column word ofD(T ) is obviously
equivalent to the column word of T ′ via the relations (5.1). This is the end of the
algorithm.

Example 11.11. We illustrate the algorithm with an example

T =
1 1 1 2 2 3 3 4 6 10
2 2 3 3 3 4 5 6 7
9

 

1 1 1 2 2 3 3 4 6 6 10
2 2 3 3 3 4 5 �6 7
9

1 1 1 2 2 3 3 4 6 6 10
2 2 3 3 3 4 �5 5 7
9

 

1 1 1 2 2 3 3 3 4 6 6 10
2 2 �3 3 3 4 �5 �5 5 7
9

T̂ =
1 1 1 2 2 3 3 3 4 6 6 9 10
2 2 �3 3 3 4 �5 �5 5 7

�9
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In the first step we applied (5), (6b), (1), then (3), then twice (2) followed by (5) and
(6a), and finally ten times (6c) followed by (4) and (1). Moreover,

T ′ = 1 1 1
2 2

2 2
3 3

3 3 3
4

4
5

6 6 9 10
7

D(T ) = 1 1 1 2 2 3 3 3 4 6 6 9 10
2 2 3 3 4 5 7

The column word for D(T ) is a2a1a2a1a3a1a3a2a4a2a5a3a7a3a3a4a6a6a9a10. Un-
der the local plactic relations, (5.1) and (5.2), the corresponding element in B is
then

a1(a2a1)(a2a1)(a3a2)(a3a2)(a4a3)(a3)(a3)(a5a4)(a6)(a7a6)(a9)(a10),

which is obviously equivalent to D(T ) under the Robinson-Schensted correspon-
dence. We demonstrate the reordering for the subsequence a2a1a2a1a3a1a3a2a4a2 . . .
of the column word: apply (5.1) to obtain a2a1a2a1a1a3a3a2a2a4 . . . and then re-
peatedly (5.2) to arrive at a2a1a1a2a1a3a2a3a2a4 . . . = a1a2a1a2a1a3a2a3a2a4 . . .
Continuing in the same manner one derives the above basis word.

Proof that T̂ is a tableau. We have to show that the rules from Step 1 produce a
tableaux. We do this by carefully examining what happens in the different cases
(1) -(6)(c). So let (i, j) be as in Step 1. The cases (1) and (4) are obvious, there is
nothing to check, since the top entry in C is smaller than j. In case (3) we place
j below j − 1, the last entry in the column thanks to property (S). The entry a to
the left of j − 1 is at most j − 1, hence there must be an entry b ≤ j below a. The
entry a′ to the right of j − 1 is at least j − 1, hence any possible entry b′ below a′

is at least j. Cases (6a) and (6b) are obvious. So placing j always produces a new
tableau, but (disregarding the crossed out ones) possibly one entry removed.

(i) Assume we removed j via case (2) applied to some column C′ which then
has to contain at least j and j − 1. Applying then cases (1), (3), (4) or (6b)
cause no problems. Case (6a) is obviously producing a tableau.

(ii) Assume we removed j + 1 via case (4) from some column C′. Again case
(1) is obvious. Then case (3) is not applicable, since C′ originally contained
j + 1, hence the entry to the right of it is at least j + 1. In case (4) we
originally have j + 1 at the top of column C′ and j + 2 to the right of it.
This gets changed into j and j + 1 which produces a tableau. Case (6a)
is obviously causing no problems. In case (6b) we originally had j + 1 on
the top of C′ and all entries in the column to the right of it are greater than
j + 2. In particular, we can replace the top entry by j + 1.

(iii) Assume we applied case (5) for (C′, j). Then applying (1) is fine. For case
(3) we argue as in (11). For cases (4) and (6b) note that the top entry in C′

is at most j. Case (6a) is clear.
(iv) Assume we applied case (6b) for (C′, j) with j replacing x. Then applying

(1) is fine, because x > j. Case (3) is not applicable. Cases (4) and (6a) are
clear. In case (6b) we originally have x on top of column C′. There might
be some a below it. Let z be to the right of x and possibly some b below
z. Then x gets replaced by j and z by x, hence the first row is still weakly
increasing. Since j < x < a and b > z ≤ x, the columns are still strictly
increasing.
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(v) Assume we applied case (6c). Then place j at the bottom of column C′

and consider only the diagram containing the columns to the right of C′,
including C′. By induction on the number of columns, we are done.

�
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