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Abstract

This paper develops methods to describe the conjugacy classes of GL(n,R) on Rn×n for a
serial ring R of length two. The main result is a reduction to a computation in the matrix
algebra over the residue class field of R, which in some cases can be done theoretically without
any actual computation.

1 Introduction

Whereas the normal forms of matrices over F2 of degree n are easily enumerated via Jordan
or Frobenius normal forms (modulo the knowledge of irreducible polynomials of degree up to n
over F2), there seems to be no classification available for normal forms of matrices over Z/4Z. On
the other hand, A. Kerber pointed out to us that it is desirable to have access to the conjugacy
classes of GL(n,Z/4Z) for the enumeration of codes over Z/4Z (cf. [BBF+06]). The present
paper develops some methods to deal with these problems.
Since Z/4Z can be replaced by any commutative uniserial ring R of length two, we formulate
our results for that more general case.

Notation. Let R be a commutative uniserial ring of length two with generator π of the non-
trivial ideal; k := R/πR denotes the residue class field of R with natural epimorphism ν : R → k.
Set A := kn×n and B := Rn×n with the unit groups A∗ = GL(n, k) and B∗ = GL(n,R). The
induced epimorphisms B → A and B∗ → A∗ are also denoted by ν.

Our main result is a reduction of the determination of B∗-conjugacy classes in B to a certain
computation in the algebra A over the field k:

Theorem 1. Let a ∈ A. Then the set of B∗-conjugacy classes in B intersecting ν−1({a})
non-trivially is in 1-1 correspondence with CA(a)

#/CA∗(a), the set of orbits of CA(a)
# =

Homk(CA(a), k) under CA∗(a), where CA∗(a) acts on CA(a) by conjugation and CA(a)
# is the

dual module.

In particular, the parameterization and the lengths of the GL(n,R)-conjugacy classes of Rn×n

depend only on the residue class field k of R, not on the ring R itself; cf. also Singla [Sin10],
who proves that the number of conjugacy classes only depend on the residue class field, if it is
finite.
Note, by general principles, the number of orbits of CA∗(a) on CA(a) is the same as the number
of orbits of CA∗(a) on CA(a)

#, in case k is finite, although the orbits might differ in size. This
follows from a well-known argument by R. Brauer, cf. [Hup67, Satz 13.5]: By Burnside’s Lemma,
the number of orbits is determined by the number of fixed points of the elements of CA∗(a).
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Since CA∗(a) acts linearly, the fixed points form the eigenspace to the eigenvalue 1. But the
dimensions of the eigenspaces of a linear map and its dual are the same.
The 1-1 correspondence in Theorem 1 however is natural, modulo the choice of one fixed preimage
b ∈ B of a under ν.
Two special cases of our result are worthwhile to mention here already.

Corollary 2 (The semi-simple case). Let a ∈ A such that its minimal polynomial µ is irreducible

of degree d. Set F := k[x]/〈µ〉. Then CA(a)
#/CA∗(a) can be identified with Fm×m/GL(m,F )

for m = n/d, which again can be enumerated by Jordan normal forms.

In concrete terms: Let Γ ∈ kd×d be the companion matrix of µ; then the representation F =
k[x]/〈µ〉 → kd×d : x 7→ Γ induces a representation ρ : Fm×m → kn×n. For X ∈ Fm×m denote
an arbitrary preimage of ρ(X) in Rn×n again by ρ(X). Then if b ∈ B is an arbitrary preimage
of a, the conjugacy classes of B∗ on B intersecting ν−1({a}) non-trivially are represented by the
elements

b+ πρ(J),

where J runs through all Jordan normal forms of Fm×m.
The following corollary has also been proved by Nechaev in [Nec83] for a more general class of
rings.

Corollary 3 (The cyclic case). Let a ∈ A such that the minimal polynomial is the characteristic

polynomial, denoted by χ. Then the relevant B∗-conjugacy classes on B are represented by the

companion matrices in Rn×n of all possible monic lifts of χ to R[x].

For square matrices over a field, the classification of conjugacy classes can be reduced to matrices
where the characteristic polynomial is a power of an irreducible polynomial; for the general case
one takes block diagonal matrices of this form. The next remark shows that we can assume
block diagonal form for the matrices in B as well, cf. also [Nec83].

Remark 4. Let a ∈ A be in block diagonal form a = diag(a1, . . . , aℓ) with ai ∈ kmi×mi , such

that the characteristic polynomials are pairwise coprime, and let b̃ ∈ ν−1(ã). Then there exists a

conjugate b of b̃ in block diagonal form b = diag(b1, . . . , bℓ) with ν(bi) = ai. Furthermore, every

element c ∈ CB(b) is of block diagonal form c = diag(c1, . . . , cℓ) with ci ∈ CRmi×mi (bi).

Several authors studied the similarity classes of matrices in (Z/pℓZ)n×n or, more generally, of
matrices in Rn×n, where R is a commutative uniserial ring of length ℓ with residue class field k,
for various n and ℓ: Pomfret [Pom73] decides similarity for matrices in a special class, namely for
those matrices b ∈ Rn×n where R is finite and the order of ν(b) ∈ kn×n is coprime to the charac-
teristic of k. Nobs [Nob77] classifies the similarity classes for n = 2 and arbitrary ℓ, and Pizarro
[Piz83] and Avni et. al. [AOPV09] do the same for n = 3 and arbitrary ℓ. Nechaev [Nec83] and
Appelgate and Onishi [AO83] treat the problem to decide whether two given matrices in Rn×n

or SL(n,R) are conjugate, respectively.
The present paper focuses on the case of ℓ = 2 and arbitrary n. Theorem 1 gives a structural
description of the decomposition of the conjugacy classes and is of theoretical interest in itself,
but it also provides means to efficiently compute representatives and lengths of all conjugacy
classes for moderately sized n (cf. Section 4).

2 Proof of the theorem

We will prove the theorem in several steps by a series of lemmas. First note that, instead of
considering the whole action of B∗ on B, it is enough to consider the action of the full preimage
of the centralizer of a in A∗ under ν on the full preimage of a in B under ν, i.e., the action of
C̃ := ν−1(CA∗(a)) on ν−1({a}).
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As usual, the calculation of the orbits can be done in two steps: First, calculate the orbits of a
normal subgroup N of C̃, and second, act on these orbits with the factor group C̃/N . In our
case, we will choose N := ker(ν)EB∗.

2.1 Action of the kernel

In this first step we describe the orbits of N := ker(ν)EB∗ on ν−1({a}).

Lemma 5. For a ∈ A define δa : k
n×n → kn×n : x 7→ xa−ax. Then there is a 1-1 correspondence

between coker(δa) and the orbits of N on ν−1({a}).

Proof. Fix b ∈ ν−1({a}). Then ν−1({a}) = {b + πx |x ∈ B}. For b + πx ∈ ν−1({a}) and
1 + πy ∈ C̃, the conjugation action gives

(1 + πy)(b+ πx)(1− πy) = b+ π(x+ yb− by),

and since x and y can be chosen arbitrarily in B, there is a 1-1 correspondence between
ν−1({a})/N and coker(δb), where δb : πB → πB is defined analogously to δa. Note that the R-
module πB can be regarded as k-vector space, since π ∈ R is in the kernel of the action; the vector
space isomorphism πB → A : πx 7→ ν(x) induces an isomorphism coker(δb) ∼= coker(δa).

2.2 Action of the factor group

For the second step, we have to study the action of C := CA∗(a) = C̃/N on ν−1({a})/N . The
bijection in the last lemma gives an induced action of C on coker(δb), so we can study this action
instead. This action however depends on the chosen preimage b of a. The main observation in
this section is that we can assume that C acts linearly on coker(δb) by conjugation. This relies
on the fact that we can construct preimages b such that CB∗(b) is well-behaved:

Lemma 6. Let a ∈ A. Then there exists a lift b ∈ B of a, such that the map CB(b) → CA(a)
induced by ν is an epimorphism.

In particular, any element in CA∗(a) has a preimage in CB∗(b).

Proof. We can assume that a is given in Frobenius normal form, so a is in block diagonal
form, where the blocks are companion matrices of polynomials µ1, . . . , µℓ ∈ k[x] with µi|µi+1.
Choose monic lifts µ̃1, . . . , µ̃ℓ ∈ R[x] with µ̃i|µ̃i+1 and deg µ̃i = degµi, and let b be the block
diagonal matrix where the blocks are the companion matrices of the µ̃i. The result now follows
by the usual argument to describe the endomorphism ring of a finitely generated module over
a principal ideal domain: Let Mi := R[x]/〈µ̃i〉. Then Rn×1 is an R[x]-module via the action
of b isomorphic to M := M1 ⊕ · · · ⊕ Mℓ, and CB(b) ∼= EndR[x](M) ∼=

⊕
i,j HomR[x](Mi,Mj).

Similarly, set Ni := k[x]/〈µi〉. Then kn×1 is a k[x]-module via the action of a, isomorphic to
N := ν(M) = N1 ⊕ · · · ⊕Nℓ, and CA(a) ∼= Endk[x](ν(M)) ∼=

⊕
i,j Homk[x](Ni, Nj). It therefore

suffices to show that the induced map HomR[x](Mi,Mj) → Homk[x](Ni, Nj) is surjective. So let
α ∈ Homk[x](Ni, Nj); then α is induced by a homomorphism k[x] → k[x] : 1 7→ f for some f ∈

k[x] such that µj |µif . We construct a preimage of α as follows: If µj |µi, take any preimage f̃ ∈

R[x] of f . Then the map R[x] → R[x] : 1 7→ f̃ induces a homomorphism α̃ ∈ HomR[x](Mi,Mj),
and α̃ is a preimage of α. If µi|µj , set g := µif/µj and let g̃ ∈ R[x] be a preimage of g. Define

f̃ := g̃µ̃j/µ̃i. Then α̃ is a preimage of α again.

Corollary 7. For a ∈ A choose a preimage b ∈ B as in Lemma 6, so that every centralizer

element in C = CA∗(a) lifts to an element of CB∗(b). Then the action of C on coker(δa) induced
by the bijection in Lemma 5 is the linear action induced by conjugation of C on A.
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Proof. Let c ∈ CA∗(a), and choose a preimage c̃ ∈ CB∗(b). Then

c̃(b+ πx)c̃−1 = b+ πc̃xc̃−1.

As in Lemma 5, we can identify coker(δb) with coker(δa), and under this identification the
representative πc̃xc̃−1 maps onto the representative cxc−1.

2.3 Intrinsic description of the orbits

The previous two steps give a 1-1 correspondence between the conjugacy classes of B∗ on B
intersecting ν−1({a}) non-trivially, and the orbits coker(δa)/CA∗(a). The final step is to replace
coker(δa) by an object with an intrinsic connection to CA∗(a):

Lemma 8. Let a ∈ A and C := CA∗(a). Then (ker δa)
# and coker δa are isomorphic as kC-

modules, where C acts by conjugation on ker δa and coker δa, and (ker δa)
# denotes the dual

module.

Proof. Let δtra : (kn×n)# → (kn×n)# : ϕ 7→ ϕ ◦ δa denote the dual map of δa. Then

α1 : coker(δa) → ker(δtra )
# : X + im δa 7→ (ϕ 7→ ϕ(X))

is an isomorphism of k-vector spaces, as can be seen using the standard pairing of kn×n and
(kn×n)# (cf. e.g. [Coh82, Section 8.2]). Furthermore, the pairing T : kn×n×kn×n → k : (X,Y ) 7→
trace(XY tr) gives a natural isomorphism kn×n ∼= (kn×n)#, which restricts to the isomorphism

α2 : ker(δa) → ker(δtra ) : X 7→ T (−, Xtr).

Thus coker(δa) and ker(δtra )
# are isomorphic as k-vector spaces. But ker(δtra ) is a kC-module

via cϕ = (X 7→ ϕ(c−1Xc)) for c ∈ C and ϕ ∈ ker(δtra ), and it is easy to verify that the maps α1

and α2 are isomorphisms of kC-modules, which proves the lemma.

We remark for computational purposes that the isomorphism coker δa → (ker δa)
# is given by

γ : coker δa → (ker δa)
# : X + im δa 7→ (Y 7→ trace(XY )).

Proof of Theorem 1. Choose a preimage b ∈ B of a as in Lemma 6 so that CB(b) → CA(a) is
surjective, and for each orbit CA∗ (a)c ∈ CA(a)

#/CA∗(a) let xc + im δa = γ−1(c) ∈ coker δa, and
denote a preimage of xc in B again by xc. Then the B∗-conjugacy classes in B intersecting
ν−1({a}) non-trivially are represented by the elements b + πxc, where c runs over a system of
representatives of the orbits CA(a)

#/CA∗(a).

Note that it is in fact not important which preimage b of a we choose: each choice will give a 1-
1 correspondence. However, if we want to calculate the centralizers, then the choice is important
(see Corollary 9).

2.4 Proof of the corollaries

Proof of Corollary 2. The k[x]-module kn×1 is semi-simple, isomorphic to F ⊕ · · · ⊕ F . Hence
CA(a) ∼= Fm×m, which is self-dual as GL(m,F )-module.

Proof of Corollary 3. In this case, the k[x]-module kn×1 is isomorphic to k[x]/〈χ〉. The endo-
morphism ring is commutative, so the unit group acts trivially by conjugation, and the orbits
are parameterized by coker δa. We can assume that a is the companion matrix of χ. Then the
elementary matrices ei,n ∈ kn×n with 1 in position (i, n) and zero everywhere else are a system
of representatives of coker δa. This can be seen for example by using the isomorphism γ above
together with the fact that the powers of a form a k-basis of ker δa.
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Proof of Remark 4. Let kn×1 = km1×1⊕· · ·⊕kmℓ×1 be the decomposition of kn×1 corresponding
to the block diagonal form of a, and let δ1, . . . , δℓ ∈ Endk(k

n×1) be the corresponding idempo-
tents, which can be written as polynomials in a. These idempotents can be lifted to idempotents
ε1, . . . , εℓ ∈ EndR(R

n×1) as polynomials in b̃ such that εi = δi (cf. [Jac80, Proposition 7.14]),
yielding a decomposition Rn×1 = Rm1×1⊕· · ·⊕Rmℓ×1. Choose a basis of Rn×1 adjusted to this
decomposition which maps onto the standard basis of kn×1, then the desired b can be chosen to
be b̃ with respect to this basis.
The statement about the centralizer is immediate, since the εi can also be written as polynomials
in b, which shows that the Rmi×1 are invariant under every c ∈ CB(b).

3 Centralizers

The description of the orbits of a group on a set is not complete without a description of the
stabilizers.

Corollary 9. Let the orbit of x ∈ B in the 1-1 correspondence of Theorem 1 be represented

by the orbit of an element c ∈ CA(a)
#, where a = ν(x). Then the centralizer of x in B∗ is an

extension of CA(a) by StabCA∗ (a)(c), that is, an extension of the additive group of the centralizer

of a in A by the stabilizer of c in CA∗(a) under the transposed conjugation.

4 Examples

We first describe the conjugacy classes of R2×2, where R is a finite uniserial ring of length
two. This has been done in [Nob77] and [AOPV09] in greater generality for rings of arbitrary
lengths. We will however use this example to show how to apply Theorem 1 purely theoretically.
Furthermore, we will give the extension type of the centralizers of each conjugacy class.

Example 10 (Conjugacy classes of GL(2, R)). We assume that k = Fq is a finite field with q
elements in order to determine the number and sizes of conjugacy classes.
Every element of A = k2×2 is either a scalar matrix or a cyclic element. If a is cyclic, then the
centralizer CA(a) is isomorphic to Fq2 , Fq[x]/〈x

2〉, or Fq⊕Fq, depending on whether the minimal
polynomial has zero, one, or two distinct roots in Fq. The conjugacy classes are parameterized by
the companion matrices (cf. Corollary 3), and since the stabilizers are abelian, the action of their
unit groups is trivial. Hence the centralizers are extensions of CA(a) by CA∗(a) (cf. Corollary 9).
Note that there are (q2 − q)/2 choices for monic polynomials with zero or two roots in Fq, and
q choices for monic polynomials with one root.
If a ∈ A is scalar, then the orbits are parameterized by Jordan normal forms α of k2×2 (cf. Corol-
lary 2). The stabilizers are extensions of A by CA∗(α).
In total, there are seven different types of conjugacy classes, which are listed in Table 1.

number size extension type of centralizer

q2(q2 − q)/2 q2(q2 − q) Fq2 by F
∗
q2

q2(q2 − q)/2 q2(q2 + q) Fq ⊕ Fq by (Fq ⊕ Fq)
∗

q3 q2(q2 − 1) Fq[x]/〈x
2〉 by (Fq[x]/〈x

2〉)∗

q2 1 GL(2, R)
q(q2 − q)/2 q2 − q F

2×2
q by F

∗
q2

q(q2 − q)/2 q2 + q F
2×2
q by (Fq ⊕ Fq)

∗

q2 q2 − 1 F
2×2
q by (Fq[x]/〈x

2〉)∗

Table 1: Size and type of conjugacy classes in GL(2, R)
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Our initial motivation was the description of the conjugacy classes of GL(n,Z/4Z), so we give
another examples in this context. But note that it is just as simple to construct the conjugacy
classes of GL(n,Z/4Z) on (Z/4Z)n×n, or to replace Z/4Z by an arbitrary uniserial ring R of
length two.

Example 11 (Conjugacy classes of GL(6,Z/4Z)). There are 60 conjugacy classes of GL(6, 2),
giving 60 possibilities for the element a. After decomposition into blocks, there are only 15
elements left which have a block which is neither semi-simple nor cyclic. We will take a closer
look at those elements; the other 45 elements can be dealt with theoretically, as in the last
example (they give 3386 conjugacy classes in GL(6,Z/4Z)).
For an irreducible polynomial µ ∈ F2[x] of degree d and a partition λ = (λ1, . . . , λℓ) of m ∈ N, let
Φ(µ, λ) ∈ F

md×md
2 be the Frobenius normal form with elementary divisors µλ1 , . . . , µλℓ (so the

semi-simple case corresponds to the partition λ = (1, . . . , 1), while the cyclic case corresponds
to the partition λ = (m)). Furthermore, let Γ(µ) := Φ(µ, (1)) be the companion matrix of µ.
The 15 elements are then the matrices

• diag(Φ(x − 1, (2, 1)),Γ(µ3)), where µ3 is one of the two irreducible polynomials of de-
gree 3, (here, diag(M1,M2) means the block diagonal matrix with the matrices Mi on the
diagonal),

• diag(Φ(x − 1, λ),Γ(x2 + x + 1)), where λ is one of the three non-trivial partitions of 4,
(that is, λ 6= (1, 1, 1, 1), (4)),

• Φ(x− 1, λ), where λ is one of the nine non-trivial partitions of 6, and

• Φ(x2 + x+ 1, (2, 1)).

We use GAP ([GAP08]) to compute the orbits CA(a)
#/CA∗(a), where a runs through the 15

matrices. For example, the preimage of Φ(x − 1, (2, 1, 1, 1, 1)) gives 300 conjugacy classes in
GL(6,Z/4Z).
In total, GL(6,Z/4Z) has 6018 conjugacy classes.

The algorithm mentioned in the last example is implemented in GAP and can be downloaded
from [Jam11]. We give here a rough outline of the main task of the algorithm, namely to compute
the orbits of CA∗(a) on CA(a)

# for a given a ∈ A. By Remark 4 we are reduced to the case where
the characteristic polynomial of a is a power of an irreducible polynomial µ ∈ k[t], so we have
to compute the orbits of Autk[x](M) on Endk[x](M), where M ∼= k[x]/〈µd1〉 ⊕ · · · ⊕ k[x]/〈µdℓ〉,

for some d1 ≤ · · · ≤ dℓ. This reduces to the case N ∼= K[x]/〈xd1〉⊕ · · · ⊕K[x]/〈xdℓ〉, where K is
the field k[t]/〈µ(t)〉 as follows: Each Mi := k[x]/〈µdi〉 is an algebra with factor algebra K. Since
K is finite, it is in particular separable, so by Wedderburn’s Principal Theorem (cf. [Alb61,
Theorem 3.23]), K is a subfield of Mi. This shows that Mi is a K-algebra isomorphic to
K[x]/〈xdi〉. Furthermore, every element of Homk[x](Mi,Mj) is induced by right multiplication
with an element of Mj (cf. proof of Lemma 6), which proves that Homk[x](Mi,Mj) is a K[x]-

module isomorphic to HomK[x](K[x]/〈xdi〉,K[x]/〈xdj 〉). Finally note that

Endk[x](M) ∼=
⊕

i,j

Homk[x](k[x]/〈µ
di〉, k[x]/〈µdj 〉),

hence Endk[x](M) ∼= EndK[x](N).
The remaining problem is a technical one, namely to represent EndK[x](N) and AutK[x](N) on

the computer. For f ∈ K[x] with xdj |xdif let αf ∈ HomK[x](K[x]/〈xdi〉,K[x]/〈xdj ) denote the
induced homomorphism. Set e := max(0, dj − di), then (αxe , αxe+1 , . . . , α

x
dj−1) is a basis of

HomK[x](Ni, Nj). This gives a basis of EndK[x](N), and each of these basis elements can easily
be described by matrices over K.
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As for AutK[x](N), note that α ∈ EndK[x](M) is invertible if and only if it is invertible modulo
the radical. But EndK[x](M)/ rad(EndK[x](M)) is isomorphic to a direct sum of matrix algebras
over K, and its unit group is isomorphic to a direct product of general linear groups. Generators
of general linear groups can be easily computed, and lifting generators of this group together
with generators of the kernel gives generators of AutK[x](M), again as matrices over K.
The representation AutK[x](M) → GL(EndK[x](M)) can be computed by choosing the genera-
tors of AutK[x](M) and a basis of EndK[x](M); transposing gives the contragredient representa-

tion. Now the GAP functions can be used to compute the orbits of AutK[x](M) on EndK[x](M)#

together with their stabilizers.
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