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Let k be a perfect field and G be a finite subgroup of GLn(k).
The aim of this paper is to study the following question: Is it
possible to find a subgroup of GLn(k), conjugate to G , with a set
of fundamental polynomial invariants whose coefficients lie in the
field k? Using the Brauer–Clifford group introduced by Turull this
question is split into two natural parts. The first part is to recognize
elements in the Brauer–Clifford group and the second part is to
decide a field theoretic question involving Galois cohomology. For
the first part a subgroup of the Brauer–Clifford group, which can
be identified with a subdirect product of the Brauer group and
a second cohomology group, is introduced. The main question is
answered completely if G is an absolutely irreducible subgroup of
GLn(Q) and isomorphic to PSL2(Fq). Furthermore, if k is the real
field or a finite field then a satisfactory treatment is possible for
any finite group.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nineteenth century mathematicians like Klein, Fricke, Maschke and Valentiner constructed rep-
resentations of finite groups like PSL2(7), SL2(5) or 3.A6 and calculated fundamental polynomial
invariants. It often turned out that these fundamental invariants are polynomials with rational co-
efficients whereas the matrices of the representations have irrational entries. More recently J. Michel
and I. Marin observed this phenomenon when studying automorphisms of complex reflection groups
in [10].

Let k be a perfect field, K a finite extension of k and G a finite subgroup of GLn(k). This paper is
centered around the question: Is it possible to find a subgroup of GLn(K ), conjugate to G in GLn(k),
with a set of fundamental polynomial invariants whose coefficients lie in the field k? More precisely,
find necessary and sufficient conditions on the field K to decide this question.
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The important observation, discussed in section two, is that if G is a finite subgroup of GLn(K ),
then there exists a set of fundamental invariants whose coefficients lie in the field k if and only if the
Galois group of the Galois closure of K acts on G as group automorphisms. This defines a special
action of a subgroup U of the automorphism group of G on the enveloping algebra of the natural
representation of G as k-algebra automorphisms. In general, algebras with a finite group U acting
on them appear in Clifford theory and can be studied via the Brauer–Clifford group, a group
introduced by Alexandre Turull in [18].

Some natural operations on the Brauer–Clifford group are introduced in the beginning of Sec-
tion 3. Those operations lead to the notion of an equivariant splitting field. Assuming that G is an
absolutely irreducible matrix group, the main Theorem 3.11 says: The answer to the main question is
affirmative if and only if K is an equivariant splitting field of the enveloping algebra of the natural
representation of G , considered in a certain way as an element of the Brauer–Clifford group. This
element admits an intrinsic definition using the group algebra. Hence the main question is split into
two parts. The first part is to recognize elements in Brauer–Clifford group and the second part is to
decide if a field K is an equivariant splitting field. One result is that both problems can be reduced to
the case that the finite group U is a p-group.

Section 4 treats a subgroup of the Brauer–Clifford group which can be identified with a subdirect
product of the Brauer group and a second cohomology group. Given an element of this group, it is
possible to calculate necessary and sufficient conditions on a field K to be an equivariant splitting
field. If k is a number field, those conditions are given in terms of Hasse invariants of a certain crossed
product algebra. So the main question can be answered if k is a number field and the element of the
Brauer–Clifford group, associated to the finite matrix group G , lies in this particular subgroup.

The case that G is a subgroup of GLn(Q) and isomorphic to PSL2(q) where q is a power of an
odd prime is treated completely in the last section. It is shown that G is conjugate to a subgroup
of GLn(Q(χ)), where χ is the natural character of G , with a set of fundamental invariants whose
coefficients lie in the minimal possible subfield of Q(χ). After that, the cases of finite fields and the
real field R are considered for any finite group. In those cases the main question admits a satisfactory
treatment. Furthermore, this provides another proof of a result of [8] concerning twisted Frobenius–

Schur indicators.

2. Invariant theory and forms of finite groups

Assume that k is a perfect field and k its algebraic closure. Let G be a finite subgroup of GLn(k).
Then there is a natural action of G on V := kn×1 and also on the dual space V ∗ by gω := ω ◦ g−1.
Choosing a basis x1, . . . , xn of V ∗ , one can identify the ring of polynomial functions on V with
k[x1, . . . , xn] and gets an action of G on k[x1, . . . , xn]. The ring of invariants is denoted by k[x1, . . . , xn]G .

Viewing GLn(k) as an algebraic group turns G into a (totally disconnected) algebraic group. If G is
defined over k then G is called a k-form. Let K be a finite extension of k and a subfield of k. If G is a
subgroup of GLn(K ) and defined over k then G is called a (K/k)-form. A finite matrix group G ′ is said
to be a (K/k)-form of G if G ′ is a (K/k)-form and conjugate to G in GLn(k).

It is well known from invariant theory that a set of fundamental invariants uniquely determines
the corresponding matrix group (as an algebraic group). Hence, given a set of fundamental invariants
whose coefficients lie in k the corresponding matrix group is a k-form.

Assume that G is a (K/k)-form and let Γ be the Galois group of the Galois closure of K . Then
Γ acts on G as group automorphisms by applying the elements of Γ to the entries of the matrices
g ∈ G .

The natural action of Γ on K induces an action on K [x1, . . . , xn]. Combine this action with the
action of Γ on G to see that Γ acts on the ring of polynomial invariants as semilinear K -algebra
automorphisms. This leads to the converse of the statement that k-forms can be constructed from
fundamental invariants whose coefficients lie in k.

Theorem 2.1. Let G � GLn(K ) be a finite matrix group. Then G is a (K/k)-form if and only if there exists a set
of fundamental polynomial invariants with coefficients in k.
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Proof. Replacing K by its Galois closure, it is possible to assume that (K/k) is a Galois extension
with Galois group Γ . Define R := K [x1, . . . , xn] and denote by RG

�d the finite dimensional vector
space over K of polynomial invariants of degree at most d. By the reasoning made above the Γ -
action on RG

�d is semilinear, and so we can apply Galois descent for finite dimensional vector spaces.

Using the Speiser lemma [4, Lemma 2.3.8] it follows that RG
�d = (RG

�d)
Γ ⊗k K and it is clear that the

elements of (RG
�d)

Γ are polynomials with coefficients in k. If d is big enough this shows that it is

possible find a set of fundamental invariants in (RG
�d)

Γ . �
Example 2.2. Let k = Q, G = Q 8 and 〈a,b | a4,a2b2,abab−1〉 a presentation of G . A faithful matrix
representation of G is given by:

�(a) =
(

i 0
0 −i

)
, �(b) =

(
0 −1
1 0

)

A set of fundamental invariants can be chosen as {x2
1x2

2, x4
1 + x4

2, x1x5
2 − x2x5

1}. Hence the matrix group
�(G) is a (Q[i],Q)-form. Applying complex conjugation to the entries of the matrices induces an
injective homomorphism Gal(Q[i]/Q) → Aut(G). The image of this homomorphism is the group gen-
erated by the inner automorphism given by conjugation with �(b).

It is possible to construct a series of k-forms geometrically.

Example 2.3. Let X ⊂ Pn be a projective algebraic hypersurface defined over k and assume that the
group G of projective motions of X is finite. Identify G with a subgroup of PGLn+1(k) and let p ∈
k[x1, . . . , xn+1] be a homogeneous polynomial defining X . Then it is easy to see that the stabilizer S
of p in GLn+1(k) is finite and defined over k. Note that S is a central extension of G .

Remark 2.4. If X is a plane projective algebraic curve defined over k and of genus greater than 1
then by Hurwitz theorem [6] the automorphism group of X is finite. Let k be the field of rational
numbers, then the Klein quartic [9] and the Valentiner sextic [1] are examples of such curves.
Applying 2.3 one obtains the three dimensional complex representations of PSL2(7) and 3.A6 with a
set of fundamental invariants whose coefficients are integers.

Recall that if G is a (K/k)-form, then the Galois group of the Galois closure of K acts on G as
group automorphisms. Replacing K , if necessary, by a subfield, it can be assumed that this action
induces an injective group homomorphism from Gal(K/k) to Aut(G). Let U be the image of this
homomorphism, then G is called a (K/k, U )-form. The problem with this definition is that it is hard
to say what is meant by a (K/k, U )-form of a given finite subgroup G . This is because of U depending
on the (K/k)-form of G and not on G . To solve this problem representations are used in the next
definition.

Definition 2.5. Let G be a finite subgroup of GLn(k), (K/k) a Galois extension with Galois group Γ

and U a subgroup of the automorphism group of G . A representation � : G → GLn(K ) is a (K/k, U )-
representation of G if

1. the representation � is equivalent to the natural representation of G ,
2. there exists an isomorphism − : U → Γ such that �(u(g)) = u(�(g)) for all g ∈ G .

Remark 2.6. The main question can now be rephrased as: Given a finite subgroup G of GLn(k) is it
possible to find a subgroup U of Aut(G) and a Galois extension K/k such that there exists a (K/k, U )-
representation of G?
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Assume that the answer of this question is affirmative for a Galois extension (K/k) and a subgroup
U of Aut(G). Then it also affirmative for a certain set of subgroups related to U .

Remark 2.7. Let G be a finite subgroup of GLn(k), U a subgroup of Aut(G) and � : G → GLn(K ) a
(K/k, U )-representation of G . Assume that ϕ is an automorphism of G , with the property that the
representation � ◦ ϕ−1 is equivalent to �. Then the representation

Θ : G → GLn(K ) : g �→ �
(
ϕ−1(g)

)
is a (K/k, ϕU )-representation of G .

From the definition of a (K/k, U )-representation of G one obtains an obvious necessary condition
on the natural character.

Remark 2.8. For the existence of a (K/k, U )-representation of G it is necessary that there exists an
isomorphism − : U → Gal(K/k) with the property that u ◦ χ = χ ◦ u for all u ∈ U .

Let � be the natural representation G and χ the natural character. Assume that � is a (K/k, U )-
representation, then this has the following consequence on the enveloping algebra �(kG).

Remark 2.9. The natural U -action on G can be uniquely extended to an action of U on the enveloping
algebra �(kG) as k-algebra automorphisms.

From now on we will restrict ourselves to the case that G is an absolutely irreducible finite matrix
group. An important observation is that absolutely irreducible representations, of a given degree, of a
finite group are, up to equivalence, uniquely determined by their characters (cf. [7]).

Proposition 2.10. Let G be a finite group, K a field and �,Θ : G → GLn(K ) absolutely irreducible represen-
tations. Then � is equivalent to Θ if and only if Tr(�(g)) = Tr(Θ(g)) for all g ∈ G.

The next lemma shows that if the condition of Remark 2.8 is satisfied, then the natural U -action
on G can be uniquely extended to an action of U on �(kG) as k-algebra automorphisms.

Lemma 2.11. Let (K/k) be a finite Galois extension, G a finite absolutely irreducible subgroup of GLn(K ),
� : G → GLn(K ) the natural representation of G, χ the natural character and U a subgroup of Aut(G). Assume
that there exists an isomorphism − : U → Gal(K/k) with the property that u◦χ = χ ◦u for all u ∈ U . Then the
natural action of U on G can be uniquely extended to an action on the enveloping algebra �(kG) as k-algebra
automorphisms. Furthermore, let U act on K via the isomorphism − , then the inclusion Z(�(kG)) → K is
U -equivariant.

Proof. Proposition 2.10 implies that for every u ∈ U there exists a matrix Xu ∈ GLn(K ) such that

u(g) = Xuu(g)X−1
u for all g ∈ G (1)

Then it is easy to see that the natural U -action on G can be extended uniquely to a U -action on
�(kG) as k-algebra automorphisms.

Since G is absolutely irreducible the elements of Z(�(kG)) are scalar matrices with values in K .
Hence there is a natural inclusion Z(�(kG)) → K . Use (1) to obtain the U equivariance of this
map. �
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3. The Brauer–Clifford group, equivariant splitting fields and forms of finite groups

Let U be a finite group. The following reviews shortly the theory of central simple U -algebras.
More details can be found in the work of Turull (cf. [16]). A U -algebra A is a finite dimensional
associative k-algebra together with a U -action on A as k-algebra automorphisms. The U -algebra A is
a simple U -algebra if it has only the trivial two sided U -invariant ideals, and A is called central if k is
the fixed field of the U -action restricted to the center of A. Two U -algebras are U -isomorphic if there
exist a U -equivariant k-algebra isomorphism and this is denoted A ∼=U B . A U -algebra A is trivial if
there exists a kU -module M such that A ∼=U Endk(M) with U acting on Endk(M) by conjugation. Two
central simple U -algebras A and B are equivalent if there exist trivial U -algebras E1 and E2 such that
A ⊗k E1 ∼=U B ⊗k E2. Let L be a central simple commutative U -algebra, then A is a central simple
U -algebra over L if Z(A) is isomorphic to L as a central simple U -algebra. The notion of equivalence of
central simple U -algebras defines an equivalence relation on the set of all central simple U -algebras
over L. If A is a central simple U -algebra over L, denote by [A] its equivalence class. The Brauer–

Clifford group is defined as follows.

Definition 3.1. Let L be a commutative central simple U -algebra. As a set, the Brauer–Clifford group
BrCliff(U , L) consists of all equivalence classes of central simple U -algebras over L. The group struc-
ture is given by:

BrCliff(U , L) × BrCliff(U , L) → BrCliff(U , L) : ([A], [B]) �→ [A ⊗L B]

For more details, especially proofs of the statements implicit in the definition, see [18].
Now through, the commutative central simple U -algebra L is a field and hence there exists an

epimorphism − : U → Gal(L/k). In particular, L is a U -field meaning that U acts on L as field auto-
morphisms.

Some natural operations on the Brauer–Clifford group need to be introduced. The first operation
is “forgetting the U -action” (cf. [18, Theorem 8.2])

Remark 3.2. There exists a natural homomorphism κ : BrCliff(U , L) → Br(L)Gal(L/k) . Denote by
FMBrCliff(U , L) the kernel of κ , then there is the following exact sequence:

1 FMBrCliff(U , L) BrCliff(U , L) Br(L)Gal(L/k)

Note that FMBrCliff(U , L) consists of the equivalence classes of those central simple U -algebras which
are isomorphic, as central simple L-algebras, to matrix algebras over L.

The next operation is scalar extension by a U -field. A U -field K is a U -field extension of L if it is
a field extension of L and the inclusion L → K is U -equivariant. Assume that A is a central simple
U -algebra over L and K is a U -field extension of L, then scalar extension of A by a U -field K is the
U -algebra A ⊗L K with U acting diagonally. It is clear that this is a simple U -algebra over K .

Since the fixed field of the U -action on K might be a proper extension of k, scalar extension of A
by a U -field K might not be central over k. To avoid this problem, one views scalar extension of A by
a U -field K as an algebra over the fixed field of K under U .

To carry the concept of scalar extension with a U -field over to the Brauer–Clifford group, one
has to look at the trivial U -algebras. The next proposition deals with those U -algebras.

Proposition 3.3. Let F be a U -field extension of k, M a kU -module and consider M ⊗k F as an F U -module.
There exists a natural U -equivariant F -algebra isomorphism between the scalar extension of the trivial U -
algebra Endk(M) by F and the U -algebra EndF (M ⊗k F ) where U acts by conjugation.
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Proof. Consider

Endk(M) ⊗k F → EndF (M ⊗k F ) : ψ ⊗ c �→ c(ψ ⊗ id)

with ψ ∈ Endk(M) and c ∈ F . �
The next lemma defines the scalar extension map on the Brauer–Clifford group.

Lemma 3.4. Let K be a U -field extension of L. Then scalar extension by K induces a group homomorphism:

extK/L : BrCliff(U , L) → BrCliff(U , K ) : [A] �→ [A ⊗L K ]

Proof. We have to show that this map is well defined. Let F be the fixed field of K under U . Assume
that A and B are equivalent central simple U -algebras over L and let M1, M2 be kU -modules such
that A ⊗k Endk(M1) ∼=U B ⊗k Endk(M2). Consider EndF (Mi ⊗ F ) for i = 1,2 as trivial U -algebras. Use
Proposition 3.3 to calculate:

(A ⊗L K ) ⊗F EndF (M1 ⊗k F ) ∼=U A ⊗L K ⊗F
(
Endk(M1) ⊗k F

)
∼=U

(
A ⊗k Endk(M1)

) ⊗F K

∼=U
(

B ⊗k Endk(M2)
) ⊗F K

∼=U (B ⊗L K ) ⊗F EndF (M2 ⊗k F )

Hence A ⊗L K is equivalent to B ⊗L K as central simple U -algebras over K and extK/L is well defined.
The homomorphism property is obvious. �

The following remark considers a sequence of U -field extensions.

Remark 3.5. Let K be a U -field extension of L and L be a U -field extension of k, then extK/k =
extK/L ◦extL/k .

Another natural map of the Brauer–Clifford group can be obtained via restriction to subgroups
of U .

Lemma 3.6. Let N be a subgroup of U , then the map resN : BrCliff(U , L) → BrCliff(N, K N L) : [A] �→ [A ⊗L

K N L] is a group homomorphism.

Proof. Analogous to the proof of 3.4. �
Using the operations introduced so far, it is possible to define the notion of an equivariant splitting

field of a central simple U -algebra.

Definition 3.7. Let A be a central simple U -algebra over L. The U -field extension K of L is an equiv-
ariant splitting field of A, if [A] is in the kernel of the map extK/L : BrCliff(U , L) → BrCliff(U , K ).

It is obvious that if K is an equivariant splitting field of a central simple U -algebra A, then
extK/L([A]) lies in FMBrCliff(U , K ). For this reason it is important to identify FMBrCliff(U , L) with
a more tractable group. In [17] Turull shows that FMBrCliff(U , L) is isomorphic to a second cohomol-
ogy group. The next theorem is a special case of [17, Theorem 3.10].
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Theorem 3.8. Let A be a central simple U -algebra over L such that [A] ∈ FMBrCliff(U , L) and ι : A → kl×l

a k-algebra embedding with Ckl×l (ι(A)) = ι(L). Then there exists a map F : U → kl×l : u �→ F (u) such that
F (u)ι(a)F (u)−1 = ι(u(a)) for all a ∈ A. Fix such maps ι, F then

h(A) : U × U → L : (s, t) �→ F (s)F (t)F (st)−1

is a 2-cocycle with values in L∗ . This construction induces a group isomorphism h : FMBrCliff(U , L) →
H2(U , L∗) : [A] �→ h(A).

There exists an alternative way to calculate the cocycle h(A). Recall that with a central simple
U -algebra L comes an epimorphism − : U → Gal(L/k).

Proposition 3.9. Let A be a central simple U -algebra over L such that [A] ∈ FMBrCliff(U , L). Identify A with
Ln×n, then there exists a collection of matrices {Xu}u∈U in GLn(L) with the property u(a) = Xuu(a)X−1

u for all
u ∈ U and a ∈ Ln×n. Define the map

λ : U × U → L : (s, t) �→ Xss(Xt)X−1
st

Then λ is a 2-cocycle with values in L∗ . Furthermore λ and h(A) (cf. 3.8) define the same cohomology class in
H2(U , L∗).

Proof. Identify A with Ln×n . Because U acts on A as semilinear L-algebra automorphisms, the exis-
tence of the matrices {Xu}u∈U is clear. We show that it is possible to choose ι, F as in 3.8 with the
property that the resulting cocycle h(A) is given by h(A)(s, t) = λ(s, t) for all s, t ∈ U .

Restriction of scalars provides a k-algebra embedding ι : A → kl×l with Ckl×l (ι(A)) = ι(L). De-
fine u(a1, . . . ,an)t := (u(a1), . . . , u(an))t , then this turns Ln×1 into a kU -module. Hence there ex-
ists a corresponding matrix representation U → kl×l : u �→ Hu . Use this representation to see that
Huι(a)H−1

u = ι(u(a)) for all a ∈ A. For u ∈ U define F (u) := ι(Xu)Hu then a short calculation shows
F (u)ι(a)F (u)−1 = ι(u(a)) for all a ∈ A. So ι and F fulfill the requirements of 3.8. Furthermore it is
easy to see that h(A)(s, t) = λ(s, t) for all s, t ∈ U . Hence λ is a 2-cocycle and it defines the same
cohomology class as h(A). �
Corollary 3.10. Let A be a central simple U -algebra over L such that [A] ∈ FMBrCliff(U , L) and dimL(A) = n2 .
Then the order of [A], as an element of BrCliff(U , L), divides n and |U |.

Proof. Since h : FMBrCliff(U , L) → H2(U , L∗) is an isomophism, the order of [A] is the same as the
order of h(A). Then it is a well-known fact in group cohomology, that the order of h(A) divides |U |.
Consider the equation λ(s, t) = Xss(Xt)X−1

st of 3.9. Taking determinants on both sides shows that λn is
a coboundary. This implies that the order of λ as an element of H2(U , L∗) divides n. Hence the order
of h(A) divides n. �

Recall the reformulation of the main question in 2.6. Given a finite and absolutely irreducible
subgroup G of GLn(K ) and a subgroup U of Aut(G), decide if there exists a (K/k, U )-representation
of G . The main theorem states that this can be decided by considering the enveloping algebra of G as
an element of the Brauer–Clifford group.

Theorem 3.11. Let (K/k) be a finite Galois extension, G � GLn(K ) a finite and absolutely irreducible matrix
group, � the natural representation of G, �(kG) the enveloping algebra of the natural representation, L the
center of �(kG) and U a subgroup of Aut(G). Assume that the natural action of U on G can be uniquely
extended to a U -action on �(kG) as k-algebra automorphisms. This turns �(kG) into a central simple U -
algebra over L. Assume further, there exists an isomorphism − : U → Gal(K/k) such that, considering K as a
U -field via this isomorphism, the natural embedding L → K is U -equivariant. Then there exists a (K/k, U )-
representation of G if and only if K is a U -equivariant splitting field of �(kG).
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Proof. Assume that there exists a (K/k, U )-representation of G . By replacing G with the image of this
representation it can be assumed that G is a (K/k, U )-form. Scalar extension of �(kG) by the U -field
K is the central simple U -algebra K n×n , where U acts by applying u to the entries of the matrices.
It is easy to see that this central simple U -algebra is equivalent to the central simple U -algebra K .
Since K represents the trivial element of FMBrCliff(U , K ) it follows that [�(kG)] is in the kernel of
the scalar extension map extK/L . Hence K is an equivariant splitting field of �(kG).

For the “if” part assume that K is an equivariant splitting field of �(kG). Via the natural map
�(kG) ⊗L K → K n×n identify the scalar extension of �(kG) by the U -field K with K n×n . By 3.9 there
exists a collection of matrices {Xu}u∈U in GLn(K ) with

u(a) = Xuu(a)X−1
u for all a ∈ K n×n and u ∈ U (2)

We prove that it is possible to choose such a collection with the additional property Xst = Xss(Xt)

for all s, t ∈ U .
Let {Xu}u∈U be a collection of matrices in GLn(K ) such that (2) is valid. Define the 2-cocycle

λ : U × U → K ∗ : (s, t) �→ Xss(Xt)X−1
st . Proposition 3.9 implies that cohomology classes of λ and

h(extK/L([�(kG)])) are the same in H2(U , K ∗). Because K is an equivariant splitting field of �(kG),
the latter is trivial. Therefore λ is a coboundary and there exists a map b : U → K ∗ with λ(s, t) =
bss(bt)b

−1
st for s, t ∈ U . For u in U define X̃u := 1

bu
Xu , then the collection { X̃u}u∈U clearly fulfills (2)

and an easy calculation shows X̃st = X̃ss( X̃t) for all s, t ∈ U .
Given such a collection of matrices the generalized Hilbert 90 theorem [13, p. 151] says there

exists a matrix Y ∈ GLn(K ) such that Xu = Y u(Y −1), for all u ∈ U . Define the representation Θ : G →
GLn(K ) : g �→ Y −1 gY and use (2) to calculate:

u
(
Θ(g)

) = u
(
Y −1)u(g)u(Y )

= Y −1(Xuu(g)X−1
u

)
Y

= Y −1u(g)Y

= Θ
(
u(g)

)
Hence, Θ is a (K/k, U )-representation of G . �

Some remarks should be made about the main theorem.

Remark 3.12.

1. The proof of Theorem 3.11 is constructive in the sense that it provides an explicit construction of
a (K/k, U )-representation of G . Nevertheless the actual computations are non-trivial and involve
computations in the second cohomology group and computational class field theory.

2. Lemma 2.11 implies that the assumptions of 3.11 can be checked using the natural character χ .
Specifically they are fulfilled if and only if the natural character fulfills the condition of 2.8.

3. Consider the group algebra kG , then the natural action of U on G can be uniquely extended
to an action of U on kG as k-algebra automorphisms. Furthermore, this induces a U -action on
kG/ rad(kG) because rad(kG) is U -invariant. If the assumptions of the main theorem are fulfilled,
then the map � induces a U -equivariant k-algebra homomorphism kG/ rad(kG) → �(kG). Since
kG/ rad(kG) is semisimple, it is easy to see that �(kG) is U -isomorphic to a simple component
of kG/ rad(kG). Therefore, the central simple U -algebra �(kG) can be defined intrinsically using
the group algebra.

To recognize elements of the Brauer–Clifford group and to decide if a U -field K is an equivariant
splitting field come up as natural problems. A first reduction will be a restriction to certain subgroups
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of U . For this reason it is important to study the interplay of the scalar extension map extK/L and the
subgroup restriction map of 3.6.

Let BrCliff(U , L, K ) be the set of equivalence classes of central simple U -algebras over L for which
K is a splitting field (as a central simple L-algebra). Clearly, this is a subgroup of BrCliff(U , L).

Given a U -field K and a subgroup N of U , the inclusion map N → U induces a natural map
res : Hn(U , K ∗) → Hn(N, K ∗) on the cohomology. This map is called the restriction homomorphism.
For further details see [13].

Lemma 3.13. Let N be a subgroup of U and K a U -field extensions of L. Denote by extK/L , resN and h the
maps of 3.4, 3.6 and 3.8. Then the following diagram is commutative.

BrCliff(U , L, K )
extK/L

resN

FMBrCliff(U , K )

resN

h
H2(U , K ∗)

res

BrCliff(N, K N L, K )
extK/K N L

FMBrCliff(N, K )
h

H2(N, K ∗)

Proof. A verification. �
The idea is to use the following fact from group cohomology: An element λ of H2(U , K ∗) is trivial

if and only if λ is in the kernel of res : H2(U , K ∗) → H2(U p, K ∗) for all Sylow p-subgroups of U .
Combining this fact with Lemma 3.13 leads to the following theorem, which shows that it is possible
to restrict oneself to the case that U is a p-group.

Theorem 3.14. Let K be a U -field extension of L and A be a central simple U -algebra such that [A] is an
element of BrCliff(U , L, K ). Then [A] is in the kernel of the map extK/L if and only if it is in the kernel of
extK/K U p L ◦ resU p for all Sylow p-subgroups of U .

4. A tractable subgroup

Assume that K and L are Galois extensions of k and L is a subfield of K . Let U be the abstract
finite group corresponding to Gal(K/k) and − : U → Gal(K/k) the natural isomorphism. Now through,
view K and L as U -fields via the natural action of U .

Consider a central simple k-algebra as a central simple U -algebra over k with trivial action of
U . This provides an injective homomorphism Br(k) → BrCliff(U ,k). Use this homomorphism to iden-
tify the Brauer group Br(k) with a subgroup of BrCliff(U ,k). Then the scalar extensions map extL/k
(cf. 3.4) is a homomorphism Br(k) → BrCliff(U , L). We will show that this map is injective, hence it is
possible to identify the Brauer group with a subgroup of the Brauer–Clifford group.

Denote by Br(K |k) the set of equivalence classes of central simple k-algebras, for which K is a
splitting field. This is a subgroup of the Brauer group Br(k). In [13, Chapter X] Serre obtains an
isomorphism δ : Br(K |k) → H2(U , K ∗) via descent theory.

Let B be a central simple k-algebra of dimension n2, for which K is a splitting field. View B
as a central simple U -algebra with trivial action of U on B . Since K is a splitting field of B , the
scalar extension of B by the U -field K can be identified with K n×n . Via this identification view K n×n

as a central simple U -algebra over K . Applying Proposition 3.9 there exists a collection of matrices
{Xu}u∈U with the property

Xuu(x)X−1
u = u(x) for all x ∈ K n×n (3)

Note that B is isomorphic, as k-algebras, to the fixed algebra of K n×n under U . Then use (3) to see that
this fixed algebra is given by {x ∈ K n×n | Xuu(x)X−1

u = x}. A 2-cocycle, representing the cohomology
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class of δ(B), is U ×U → K ∗ : (s, t) �→ Xss(Xt)X−1
st [13, Example 2, p. 159]. This cocycle also represents

the cohomology class of h(extK/k([B])) by 3.9. Going over to the Brauer–Clifford group yields the
following lemma.

Lemma 4.1. The diagram

Br(K |k)
δ

extK/k

H2(U , K ∗)

FMBrCliff(U , K )

h

is commutative.

Note that h and δ in Lemma 4.1 are isomorphisms. Since the kernel of extK/k : Br(k) →
BrCliff(U , K ) is contained in Br(K |k) the map extK/k is injective. Furthermore, the factorization
extK/k = extK/L ◦extL/k implies that extL/k is injective.

Now look at the subgroup of BrCliff(U , L) generated by FMBrCliff(U , L) and extL/k(Br(k)). De-
note this group by ExFMBrCliff(U , L). It is easy to see that the intersection of extL/k(Br(k)) and
FMBrCliff(U , L) is isomorphic to Br(L|k). Identify the Brauer group Br(k) with extL/k(Br(k)), then
the next remark describes the structure of ExFMBrCliff(U , L).

Remark 4.2. The group ExFMBrCliff(U , L) is a subdirect product of Br(k) with FMBrCliff(U , L) over
Br(L|k). Note that FMBrCliff(U , L) is isomorphic to a second cohomology group.

The group ExFMBrCliff(U , L) is interesting for two reasons. Firstly, its elements can be recognized
via cohomological methods and hence it is a tractable group. Secondly, in a number of cases it coin-
cides with Brauer–Clifford group. For example this happens if (L/k) is a cyclic extension.

Theorem 4.3. If (L/k) is cyclic, then BrCliff(U , L) = ExFMBrCliff(U , L).

Proof. Let [A] ∈ BrCliff(U , L), H := Gal(L/k) and κ : BrCliff(U , L) → Br(L)H as in 3.2. Denote by res
the map Br(k) → Br(L) : C �→ C ⊗k L. The following exact sequence is due to Teichmüller [15]

H2(H, L∗) Br(k)
res

Br(L)H H3(H, L∗)

Cohomology of cyclic groups yields that H3(H, L∗) is trivial. Hence there exists a B ∈ Br(k) such that
res(B) = κ([A]). Therefore extL/k(B)−1[A] is an element of FMBrCliff(U , L). This proves the theo-
rem. �

Choosing L = k yields [17, Corollary 3.13].

Corollary 4.4. If L = k, then BrCliff(U ,k) ∼= Br(k) × FMBrCliff(U ,k).

Remark 4.5. For the last theorem and the corollary the assumption on K can be dropped. The only
assumption needed, implicit in the definition of the Brauer–Clifford group, is that U acts on L as
field automorphisms and k is the fixed field of this action.

Let ExFMBrCliff(U , L, K ) be the group generated by FMBrCliff(U , L) and extL/k(Br(K |k)). The next
problem is to find necessary and sufficient conditions on K to be an equivariant splitting field of a
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central simple U -algebra A over L with [A] ∈ ExFMBrCliff(U , L). In particular if K is an equivariant
splitting field of A, then K is a splitting field of A considered as a central simple L-algebra. This
provides some necessary conditions on K and we can assume that [A] ∈ ExFMBrCliff(U , L, K ).

It is clear that there exists a, not unique, factorization of [A] as:

[A] = extL/k
([B])[C] with [B] ∈ Br(K |k) and [C] ∈ FMBrCliff(U , L)

The next step is to calculate h(extK/L([A])). Use Lemma 4.1 to see:

h
(
extK/L

([A])) = h
(
extK/k

([B]))h
(
extK/L

([C]))
= δ

([B])h
(
extK/L

([C]))
The next proposition shows that it is possible to calculate h(extK/L([C])) from h([C]).

Proposition 4.6. The inclusion L → K is U -equivariant and induces a map τL,K : Hn(U , L∗) → Hn(U , K ∗) on
the cohomology. Then h(extK/k([C])) = τL,K (h([C])) for all [C] ∈ FMBrCliff(U , L).

Proof. Directly from 3.9 and the natural embedding Ln×n → K n×n . �
Summing up gives:

Lemma 4.7. Let [A] ∈ ExFMBrCliff(U , L, K ), [B] ∈ Br(K |k) and [C] ∈ FMBrCliff(U , L) such that [A] =
[extL/k([B])][C], then

h
(
extK/k

([A])) = δ
([B])τL,K

(
h
([C])) in H2(U , K ∗)

Since [B] and h([C]) do not depend on K , Lemma 4.7 can be used to obtain necessary and suffi-
cient conditions on K to be an equivariant splitting field.

If k is a number field, this can be concretized. First of all, recall some constructions from the
theory of central simple algebras. Given a 2-cocycle in Z2(U , K ∗), it is possible to construct a crossed
product algebra. This construction induces an isomorphism between H2(U , K ∗) and Br(K |k).

Let B be a central simple k-algebra B , for which K is a splitting field. The crossed product algebra
defined by the 2-cocycle δ(B) is equivalent to the opposite algebra Bo of B (cf. [13, p. 159]).

Recall the theorem of Brauer–Hasse–Noether, which says that the sequence

1 Br(k)
⊕

p Br(kp)
inv

Q/Z (4)

is exact, where p runs through all primes of the field k. The map inv is called the Hasse invariant map,
computed locally on each component: inv = ∑

invkp
. The maps invkp

are called Hasse invariants. For
more details on Hasse invariants and central simple algebras see [12].

We saw that there exists a factorization of [A] as

[A] = [
extL/k

([B])][C] with [B] ∈ Br(k) and [C] ∈ FMBrCliff(U , L)

Let τL,K : H2(U , L∗) → H2(U , K ∗) be the map of 4.6 and DL,K the crossed product algebra correspond-
ing to the cocycle τL,K (h([C])). Lemma 4.7 implies that K is an equivariant splitting field of A if and
only if the 2-cocycle δ([B])τL,K (h([C])) is a coboundary. This is the case if and only if [Bo][DL,K ] is
trivial in the Brauer group. Using sequence (4), this is equivalent to

invp

([
Bo]) + invp

([DL,K ]) = 0 ∈ Q/Z for all primes p of k
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Hence K is an equivariant splitting field of A if and only if the crossed product algebra DL,K is
equivalent to B . Note that B is independent of K . The next example will illustrate this strategy.

Example 4.8. Let k = Q, G = Q 8, 〈a,b | a4,a2b2,abab−1〉 a presentation of G . Then

�(a) =
(

i 0
0 −i

)
, �(b) =

(
0 −1
1 0

)

defines a faithful representation of G . Let u be the inner automorphism of G induced by conjugation
with �(b) and U the group generated by u. Extend the natural action of U on �(G) to an action
on the enveloping algebra �(QG) as Q-algebra automorphisms. View �(QG) as a central simple U -
algebra over Q. Since BrCliff(U ,Q) is a direct product of FMBrCliff(U ,Q) and Br(Q) by 4.4, there
exists a unique factorization

[
�(QG)

] = [B][C] with [B] ∈ Br(k) and [C] ∈ FMBrCliff(U ,Q)

More precisely B is the quaternion algebra Q (
(−1,−1)

Q
) with trivial U -action and C is the matrix

algebra Q2×2, where the U -action is given by u(X) = �(b)X�(b)−1 for X ∈ Q2×2.
Let K be a quadratic extension of Q and view K as a U -field via the isomorphism U → Gal(K/Q).

We want to find necessary and sufficient conditions on K to be an equivariant splitting field of
�(QG).

The Q-algebra B is isomorphic to Bo and the Hasse invariants are

inv2
([B]) = 1

2
, inv∞

([B]) = 1

2
, invp

([B]) = 0 other primes p of Q

It is well known that K is a splitting field of B if and only if

(KP : Q2) = 2 with P|Q = 2 and (K∞ : R) = 2 (5)

Since �(b)2 = −1,

h
([C]) : U × U → Q : (σ , τ ) �→

{−1, if σ = τ = u
1, otherwise

is a cocycle representing the cohomology class of h([C]). Let DQ,K be the crossed product algebra
defined by τQ,K (h([C])). Then the conditions on K to be an equivariant splitting field are (5) and

inv2
([DQ,K ]) = 1

2
, inv∞

([DQ,K ]) = 1

2
, invp

([DQ,K ]) = 0 other primes p of Q

Because DQ,K is a cyclic algebra (K/Q, σ ,−1), with σ a generator of Gal(K/Q), it is possible to give
the conditions on K in a more satisfactory way. Then K is an equivariant splitting field of the central
simple U -algebra �(QG) if and only if K is the splitting field of an Eisenstein polynomial x2 +2ax+b
at prime 2, where a,b ∈ Z have the following properties:

a2 − b < 0,

(−1,a2 − b

2

)
= −1 and

(−1,a2 − b

p

)
= 1

where p runs through all odd primes of Q dividing a2 − b and ( ◦ ,◦
p

) is the Hilbert-symbol [11].
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This classifies all quadratic extensions K of Q with the following property: There exist a (K/Q)-
form G ′ of Q 8 and applying the non-trivial Galois automorphism to the elements of G ′ induces an
inner automorphism of G ′ .

5. Applications and examples

Let k be a number field, K a finite Galois extension of k, G a finite and absolutely irreducible
subgroup of GLn(K ), χ the corresponding natural character, � the natural representation, and U
a subgroup of Aut(G). Assume that the Schur index of χ is one and the condition of 2.8 is satisfied.
In this case it is possible to give sufficient conditions for the existence of a (K/k, U )-representation
of G , depending solely on character theoretic data.

The idea to find such is to look for conditions which imply that the central simple U -algebra
�(kG) (cf. 3.11) represents the trivial element of the Brauer–Clifford group. If this is the case, then
it is easy to see that K is an equivariant splitting field. Hence there exists a (K/k, U )-representation
of G by 3.11. Denote the Schur index of χ over k by mk(χ).

Lemma 5.1. Assume there exists an irreducible complex character ζ of the semidirect product G � U with

k(ζ ) = k, mk(ζ ) = 1 and ζ|G =
∑
σ∈H

σ ◦ χ where H = Gal
(
k(χ)/k

)

Then there exists a (K/k, U )-representation of G.

Proof. The Schur index of χ is one, so it can be assumed that G is a subgroup GLn(Q(χ)). Because
the condition of 2.8 is satisfied, the natural action of U on G can be extended k-linearly to �(kG).
Consider �(kG) as a central simple U -algebra as in 3.11. We claim that [�(kG)] represents the trivial
element of BrCliff(U ,k(χ)). It is easy to see that [�(kG)] ∈ FMBrCliff(U ,k(χ)), hence it is enough to
show that h(�(kG)) is a coboundary.

Let ι : k(χ)n×n → kl×l be the k-algebra homomorphism induced by restricting scalars. Obviously,
there exists a representation Θ : G � U → GLl(k), affording ζ , with the property Θ(g) = ι(�(g))

for every g ∈ G . Define the map F : U → kl×l : u �→ Θ(u), then ι and F fulfill the requirements of
3.8. Hence h([�(kG)])(s, t) = Θ(s)Θ(t)Θ(st)−1 = 1 for all s, t ∈ U , and this shows that h(�(kG)) is a
coboundary. Therefore K is an equivariant splitting field of �(kG) and the result follows from 3.11. �

Using 3.10, another sufficient condition can be obtained [10, Proposition 8.1].

Corollary 5.2. If |U | is prime to n, the degree of χ , then there exists a (K/k, U )-representation of G.

Assume that G is an absolutely irreducible subgroup of GLn(Q) and isomorphic to PSL2(q), where
q is a power of an odd prime p. Let k be the minimal subfield of Q(χ) with the property that a
subgroup of Aut(G) acts transitively on the set of Galois conjugates of χ over k. The aim is to show
that there exists a (Q(χ)/k)-form of G .

To determine k, identify G with PSL2(q) and consider an arbitrary faithful and irreducible complex
character χ of PSL2(q). Note that every automorphism of PSL2(q) is induced by a unique automor-
phism of SL2(q) [2]. View χ as a character of SL2(q) then it is possible to work with SL2(q). So let χ
be an irreducible complex character of SL2(q).

At first, recall some basic facts about SL2(q). Let ν be a generator of F∗
q and define

1 =
(

1 0
0 1

)
, z =

(−10
0 −1

)
, c =

(
1 0
1 1

)
, d =

(
1 0
ν 1

)

a =
(

ν 0
0 ν−1

)
, b element of order q + 1
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Table 1

1 z c d al bm

1G 1 1 1 1 1 1

ψ q q 0 0 1 −1

χi q + 1 (−1)i(q + 1) 1 1 ρ il + ρ−il 0

Θ j q − 1 (−1) j(q − 1) −1 −1 0 −(σ jm + σ− jm)

ζ1
q+1

2
1
2 ε(q + 1) 1

2 (1 + √
εq ) 1

2 (1 − √
εq ) (−1)l 0

ζ2
q+1

2
1
2 ε(q + 1) 1

2 (1 − √
εq ) 1

2 (1 + √
εq ) (−1)l 0

η1
q−1

2 − 1
2 ε(q − 1) 1

2 (−1 + √
εq ) 1

2 (−1 − √
εq ) 0 (−1)m+1

η2
q−1

2 − 1
2 ε(q − 1) 1

2 (−1 − √
εq ) 1

2 (−1 + √
εq ) 0 (−1)m+1

Table 2

C (1) (z) (c) (d) (al) (bm)

u C (1) (z) (d) (c) (al) (bm)
F C (1) (z) (c) (d) (apl) (bpm)

Then the conjugacy classes of SL2(q) are:

(1), (z), (c), (d), (cz), (dz),
(
al), (bm)

with 1 � l � q − 3

2
and 1 � m � q − 1

2

Let ε := (−1)
q−1

2 , ρ ∈ C a primitive (q − 1)th root of unity and σ ∈ C a primitive (q + 1)th root of
unity. Then the complex character table of SL2(q) is given by Table 1 with 1 � i � q−3

2 and 1 � j �
q−1

2 .
It is well known that Aut(SL2(q)) is isomorphic to the projective semilinear group PΓ L2(q) [2].

This group is a semidirect product of PGL2(q) with Gal(Fq/Fp). The subgroup of PGL2(q) generated
by the matrix

(−1 0
0 1

)
if q ≡ 3 mod 4 and

(
0 ν

−1 0

)
if q ≡ 1 mod 4 (6)

is a complement of PSL2(q) in PGL2(q) and cyclic of order 2. Hence PGL2(q) is a semidirect product
PSL2(q) � C2.

Let u be the automorphism of SL2(q) induced by conjugation with the matrix of (6) and F the
automorphism induced by the Frobenius automorphism of Fq . Note that the images of u and F
under the natural epimorphism Aut(SL2(q)) → Out(SL2(q)) generate the outer automorphism group.

To study the action of Aut(SL2(q)) on the irreducible complex characters, we have to analyze the
action on the conjugacy classes. It is clear that the automorphism group can be replaced by the group
of outer automorphisms. So it is enough to consider u and F . Since u and F are given explicitly,
Table 2 can be calculated easily.

Table 2 determines the action of Out(SL2(q)) on the conjugacy classes completely. A close look at
the character table reveals the following fact and determines the field k.

Remark 5.3. Assume that the character field of χ is a proper extension of Q. The natural action of
Out(SL2(q)) on the set of irreducible complex characters induces an action on Q(χ) as field automor-
phisms. Let k be the fixed field of this action or, if χ has values in Q, let k = Q. In all cases k is a
minimal subfield of the character field with a subgroup of Aut(SL2(q)) acting transitively on the set
of Galois conjugates of χ over k. Furthermore, Gal(Q(χ)/k) is a cyclic group.
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In case that the character field is a proper extension of Q, there exists a natural epimorphism
π : Aut(SL2(q)) → Gal(Q(χ)/k) with the property π(ϕ) ◦ χ = χ ◦ ϕ for all ϕ ∈ Aut(SL2(q)).

Lemma 5.4. Assume that the character field of χ is a proper extension of Q. Then the natural epimorphism
π : Aut(SL2(q)) → Gal(Q(χ)/k) admits a section.

Proof. Recall that u is the automorphism of SL2(q) induced by conjugation with the matrix of (6) and
F the automorphism induced by the Frobenius. It is easy to see that u has order 2 and F has order
ν where q = pν . Let λ be a generator of the cyclic group Gal(Q(χ)/k). If χ ∈ {ζ1,2, η1,2}, then k = Q
and the map Gal(Q(χ)/Q) → Aut(SL2(q)) : λ �→ u defines a section of π . In case that χ ∈ {χi,Θ j},
then it is easy to see that there exists an l ∈ N such that Gal(Q(χ)/k) → Aut(SL2(q)) : λ �→ F l defines
a section. �

Note that Remark 5.3 and Lemma 5.4 are, mutatis mutandis, true if χ is a complex character of
PSL2(q).

Theorem 5.5. Let G be an absolutely irreducible subgroup of GLn(Q) isomorphic to PSL2(q) and χ the natural
character of G. Then there exists a (Q(χ)/k)-form of G with k given in Remark 5.3.

Proof. Recall that every character of PSL2(q) has Schur index one [14]. Assume that χ has values
in Q, then there exists a subgroup of GLn(Q) conjugate to G . This subgroup is clearly a Q-form of G .

Assume that the character field of χ is a proper extension of Q and identify G with PSL2(q). Take
a section α : Gal(Q(χ)/k) → Aut(G) of π (cf. 5.4) and let U be the image of α. Then π induces an
isomorphism − : U → Gal(Q(χ)/k) such that u ◦χ = χ ◦u for all u ∈ U . This shows that the condition
of 2.8 is fulfilled.

Assume that χ ∈ {η1, η2, ζ1, ζ2}. Recall that in those cases k = Q, U is cyclic of order 2 and n, the
degree of χ , is odd. Then by 5.2 there exists a (Q(χ)/Q, U )-representation of G .

Let 1 � i � q−3
2 , i even and χ = χi . Choose the section of π given in the proof of Lemma 5.4 and

let U be the image of this section. Note that U = 〈F l〉 for an l ∈ N. Use Clifford theory to see that
χG�U is an irreducible complex character of G � U with the following properties:

k
(
χG�U ) = k and

(
χG�U )

|G =
∑
σ∈H

σ ◦ χ where H = Gal
(
k(χ)/k

)

To apply 5.1, it remains to check that the Schur index over k of χG�U is one. View χ as a character
of G = SL2(q) and U as a subgroup of Aut(G), then it is enough to show that the Schur index over k
of χ G�U is one.

Let N := 〈a, x〉 and A := 〈a〉 with

x :=
(

0 −1
1 0

)
, a :=

(
ν 0
0 ν−1

)

and for 1 � k � (q−3)
2 define the characters λk : A → C∗ : a �→ ρk . The proof of [14, Lemma 2.1] shows

that:

〈χk, λk〉A = 3 and 〈χk, λl〉A = 2 if l �= k

In particular, 〈γ ◦ χ,λi〉 = 2 for any non-trivial Galois automorphism γ ∈ Gal(Q(χ)/k). Use this,
Clifford theory and Frobenius reciprocity to see that 〈χ G�U

i , λ
G�U
i 〉 is odd. Assume for the moment

that the character λ
G�U
i is afforded by a representation over k. Since the Schur index of χ G�U over
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k divides 〈χ G�U
i , λ

G�U
i 〉, it has to be odd. Applying the Brauer–Speiser theorem one sees that the

Schur index of χ G�U
i over k has to be one.

It remains to show that there exists a representation over k affording λ
G�U
i . The group N is

obviously U -invariant, hence it is sufficient to show that λ
N �U
i is afforded by a representation over

k. Let a ∈ N act on Q(ρi) as left multiplication with ρ i , x ∈ N by applying complex conjugation and
F l by applying the Galois-automorphism ρ i �→ ρ ipl

. This turns Q(ρ i) into a k(N � U )-module and it
is easy to see that the corresponding representation over k affords λ

N �U
i .

Let 1 � j � (q−1)
2 , j even and χ = Θ j . This case can be treated analogously to the last case. Note

that N has to be replaced by NG (〈b〉) and Lemma (2.2) of [14] by Lemma (2.1). �
Let G be a (K/k)-form and Γ the Galois group of (K/k). The fixed group GΓ is a subgroup of

GLn(k) and is called the subgroup of k-rational points.

Remark 5.6. Denote by Fpr � Fq = Fp f the fixed field of the map F l used in the proof of 5.5. The
(Q(χ)/k)-forms constructed in this proof have the following subgroups of k-rational points:

• PSL2(p f ) if χ has values in Q,
• Dq−1 if χ ∈ {η1, η2},
• Dq+1 if χ ∈ {ζ1, ζ2},
• PGL2(pr) if 2r | f and χ is χi or Θ j ,
• PSL2(pr) if 2r � f and χ is χi or Θ j .

A 3-dimensional representation of PSL2(7) over Q(
√−7) which has S3 as the subgroup of Q-rational

points, can be found in [3].

Proof. Identify G with PSL2(q) and obtain U � Aut(G) from the proof of 5.5. Then the group of k-
rational points is the fixed group of PSL2(q) under U . Since the subgroups of PSL2(q) are well known
(cf. [5, Chapter 2, Theorem 8.5]) and due to the explicit description of U , the fixed groups can be
calculated easily. �

Assume that k is a finite field and K a finite Galois extension of k with Galois group Γ . Because
of the fact that H2(Γ, K ∗) is trivial, the main Theorem 3.11 can be simplified.

Corollary 5.7. Let G � GLn(K ) be a finite absolutely irreducible matrix group, � the natural representation
of G, χ the natural character, and U a subgroup of Aut(G) such that there exists an isomorphism − : U →
Gal(K/k). Then there exists a (K/k, U )-representation of G if and only if u ◦ χ = χ ◦ u for all u ∈ U .

Proof. The only non-trivial part is the “if” part. Assume u ◦ χ = χ ◦ u for all u ∈ U . Lemma 2.11
implies that the assumptions of the main Theorem 3.11 are fulfilled. So, consider �(kG) as a central
simple U -algebra over its center L (cf. 3.11). We have to show that K is an equivariant splitting
field of �(kG), and to see this we have to calculate extK/L([�(kG)]). Note that extK/L([�(kG)]) is an
element of FMBrCliff(U , K ), and by 3.8 this group is isomorphic to H2(U , K ∗). Since U acts on K ∗ as
Galois automorphisms, it is well known from Galois cohomology that H2(U , K ∗) is trivial. Hence K
is an equivariant splitting field of �(kG). �
Remark 5.8. In case of finite fields, the condition of 2.8 is necessary and sufficient for the existence
of a (K/k, U )-representation.

Let k be the real field R, G be a finite and absolutely irreducible subgroup of GLn(C) with natural
character χ and natural representation � : G → GLn(C). Furthermore, let U be an order 2 subgroup
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of the automorphism group Aut(G). Assume that χ ◦ u = χ for U = 〈u〉. Hence the enveloping alge-
bra �(RG) can be considered as a central simple U -algebra over R(χ) as in 3.11. Distinguish two
cases:

Case 1. R(χ) = C.

Since C is algebraically closed, one can identify BrCliff(U ,C) and FMBrCliff(U ,C). View the map h
of 3.8 as an isomorphism h : BrCliff(U ,C) → H2(U ,C∗). Because U acts on C∗ as Galois automor-
phisms, H2(U ,C∗) is isomorphic to Br(R) and the latter group is cyclic of order 2. View h as a map
h : BrCliff(U ,C) → Z2. Then

h
(
�(RG)

) =
{

1, if and only if mR(χG�U ) = 1

−1, if and only if mR(χG�U ) = 2

Case 2. R(χ) = R.

Identify BrCliff(U ,R) with Br(R) × FMBrCliff(U ,R) (cf. 4.4). Hence the map

(δ,h) : BrCliff(U ,R) → H2(U ,C∗) × H2(U ,R∗) : [B][C] �→ (
δ(B),h

([C]))
is an isomorphism. Identify H2(U ,C∗) with Z2 as in Case 1. Because U acts trivially on R, the group
H2(U ,R∗) is isomorphic to R∗/R∗2 and the latter is a cyclic group of order 2. View (δ,h) as a map
BrCliff(U ,R) → Z2 × Z2. Use Clifford theory to see that there exists an extension Θ ∈ Irr(G � U ) of
the character χ . This extension is unique up to complex conjugation. Then

(δ,h)
(
�(RG)

) =

⎧⎪⎪⎨
⎪⎪⎩

(1,1), if and only if mR(χ) = 1, R(Θ) = R and mR(Θ) = 1

(1,−1), if and only if mR(χ) = 1, R(Θ) = C and mR(Θ) = 1

(−1,1), if and only if mR(χ) = 2, R(Θ) = R and mR(Θ) = 2

(−1,−1), if and only if mR(χ) = 2, R(Θ) = C and mR(Θ) = 1

The sum ε(χ) = 1
|G|

∑
g∈G χ(g2) is called the Frobenius–Schur indicator. It has the well-known

property that:

ε(χ) =
⎧⎨
⎩

1, if and only if R(χ) = R and mR(χ) = 1

−1, if and only if R(χ) = R and mR(χ) = 2

0, if and only if R(χ) = C

(7)

Observe that all possibilities of the Cases 1 and 2 can be distinguished using the Frobenius–Schur

indicator of the characters χ and Θ . A twisted version of the Frobenius–Schur indicator was defined
in [8] as

εu(χ) = 1

|G|
∑
g∈G

χ
(

gu(g)
)

where u is an order 2 element of Aut(G). The next lemma shows that the twisted Frobenius–Schur

indicator can be calculated from the Frobenius–Schur indicators of χ and Θ .
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Lemma 5.9. Let u be an element of order 2 in Aut(G). Assume that θ is an irreducible complex character of
G � U with 〈θ|G ,χ 〉 �= 0, then:

ε(θ) = 1

2

θ(1)

χ(1)

(
ε(χ) + εu(χ)

)

Proof. Directly from Clifford theory and a calculation. �
Assume we are in Case 2 of the discussion above. Lemma 4.7 implies that the following diagram

is commutative

BrCliff(U ,R)
extC/R

(δ,h)

FMBrCliff(U ,C)

h

Z2 × Z2
(a,b)→ab

Z2

Hence it is easy to decide if C is an equivariant splitting field.
Use the formula of Lemma 5.9 and the property (7) to see that the twisted Frobenius–Schur is 1

if C is an equivariant splitting field and −1 if C is not. Furthermore, the same result is obtained in
Case 1. This shows that if χ ◦ u = χ , then the twisted Frobenius–Schur indicator determines whether
or not there exists a (C/R)-form of G .

Assume χ ◦ u �= χ . Use Clifford theory, (7) and Lemma 5.9 to see that εu(χ) = 0. Summing up,
one gets a theorem due to Kawanaka and Matsuyama.

Theorem 5.10. Let u be an element of order 2 in Aut(G). Then

εu(χ) =
{

1, if and only if χ ◦ u = χ and there exists a (C/R)-form of G
−1, if and only if χ ◦ u = χ and there is no (C/R)-form of G
0, otherwise
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