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Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek
online verfügbar.



ii



Abstract

Let k be a perfect field, K/k a finite Galois extension with Galois group Γ
and G a finite subgroup of GLn(k). Viewing GLn(k) as an algebraic group turns
G into an algebraic group. A first result in this thesis is that G has fundamental
invariants whose coefficients lie in k if and only if G is defined over k. Three
guiding questions arise naturally.
Existence: If the finite matrix group G is not defined over k, can we transform
G into a finite matrix group G′ which is defined over k? Reasonably, such a G′

will be called a k-form of G, and if additionally G′ is a subgroup of GLn(K), a
(K/k)-form respectively.
Classification: If G is defined over k and a subgroup of GLn(K), how many
non equivalent, i.e. not conjugate by an element of GLn(k), (K/k)-forms of G
are there?
Arithmetic: If G is defined over k, what are the arithmetic features of G beside
the fact that there exists a set of fundamental invariants whose coefficients lie
in k?

It is shown that the classification of K/k-forms can be answered by count-
ing the embeddings Γ → Aut(G) up to conjugation inside Aut(G) and some
restrictions on the induced Γ-action.

Using Brauer-Clifford theory necessary and sufficient conditions on the
field K to admit a (K/k)-form of G are deduced and those conditions are good
enough to answer the case of k being a finite field or the real numbers completely.

Turning to the arithmetic theory of (K/Q)-forms, a correspondence between
(K/Q)-forms of G and modules over some special skew group rings K ∗ (GoΓ)
is proved. Introducing complex characters of K ∗(GoΓ), an explicit correspon-
dence between those and the irreducible complex characters of G is obtained.
The Schur index is defined and character induction and restriction are devel-
oped.

If K admits a central canonical conjugation, we define a canonical involution
on K ∗ (GoΓ) and show that this involution is the anti adjoint automorphism
of a symmetric positive definite bilinear form.
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Zusammenfassung

Sei k ein perfekter Körper, K/k eine endliche Galois Erweiterung mit Ga-
lois Gruppe Γ und G eine endliche Untergruppe von GLn(k). Als endliche
Untergruppe der algebraischen Gruppe GLn(k), ist auch G eine algebraische
Gruppe. Es zeigt sich, dass der Invariantenring von G genau dann Erzeuger
mit rationalen Koeffizienten besitzt, wenn G über k definiert ist. Die Arbeit
konzentriert sich nun auf die folgenden drei fundamentalen Fragen:
Existenz: Falls G nicht über k definiert ist, ist es möglich G in eine über k
definiert Gruppe G′ zu transformieren? Eine solche Gruppe G′ wird eine k-
Form von G genannt. Falls G′ zusätzlich eine Untergruppe von GLn(K) ist, so
heißt G′ eine (K/k)-Form von G.
Klassifikation: Wie viele nicht äquivalente, das heißt über GLn(k) nicht kon-
jugierte, (K/k)-formen von G gibt es?
Arithmetik: Welche arithmetischen Eigenschaften besitzt eine über k-definierte
endliche Matrixgruppe G?

Die Klassifikation der (K/k)-Formen von G ist im Wesentlichen durch die
bis auf Konjugation in Aut(G) verschiedenen Einbettungen Γ→ Aut(G) beant-
wortet. Hinzu kommen einige technische Voraussetzungen an die Γ-Operation
auf G.

Mithilfe der Brauer-Clifford Theorie werden für die Existenz einer (K/k)-
Form von G hinreichende und notwendige Bedingungen an den Körper K
hergeleitet. Diese sind ausreichend, um die Existenzfrage für endliche Körper
und die reellen Zahlen vollständig zu entscheiden.

Die arithmetische Theorie der (K/k)-Formen von G basiert auf einer Korre-
spondenz zwischen ebensolchen Formen und Moduln über speziellen getwisteten
Gruppenringen K ∗ (Go Γ). Die Begriffe des (komplexen) Charakters und des
Schur Index werden auf getwistete Gruppenringe verallgemeinert. Desweit-
eren werden Induktion und Restriktion für komplexe K ∗ (G o Γ)-Charaktere
entwickelt. Falls der Körper K eine kanonische komplexe Konjugation besitzt,
so existiert eine kanonische Involution auf K ∗ (Go Γ).
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Chapter 1

Introduction

Nineteenth century mathematicians like Klein, Fricke, Maschke and Valen-
tiner constructed representations of finite groups like PSL2(7), SL2(5) or 3.A6

and calculated fundamental polynomial invariants. A variety of geometric
methods was used, most prominently the theory of Riemannian surfaces and
Klein’s line geometry cf. [Kle99], [Kle72]. It often turned out that these in-
variants are polynomials with rational coefficients whereas the matrices of the
representations have irrational entries.

The objective of this thesis is to study this phenomenon systematically
within a modern algebraic and arithmetic framework.

Let k be a perfect field, K/k a finite Galois extension with Galois group
Γ and G a finite subgroup of GLn(k). Viewing GLn(k) as an algebraic group
turns G into an algebraic group. Theorem (2.1.7) states that G has fundamental
invariants whose coefficients lie in k if and only if G is defined over k i.e. that
G is given by polynomial equations whose coefficients lie in k. Three guiding
questions arise naturally.

1. If the finite matrix group G is not defined over k, can we transform G
into a finite matrix group G′ which is defined over k? Reasonably, such
a G′ will be called a k-form of G and if additionally G′ is a subgroup of
GLn(K) a (K/k)-form respectively. (Existence)

2. If G is defined over k and a subgroup of GLn(K), how many non equiv-
alent, i.e. not conjugate by an element of GLn(k), (K/k)-forms of G are
there? (Classification)

3. If G is defined over k, what are the arithmetic features of G beside the
fact that there exists a set of fundamental invariants whose coefficients lie
in k? (Arithmetic)

Existence and classification of K/k-forms

If G is irreducible, the classification of K/k-forms admits the following rather
simple answer.

Theorem 1.0.1 (Preliminary). Let K/k be a Galois extension with group Γ,
G a finite irreducible subgroup of GLn(K) defined over k. The number of non

1



2 CHAPTER 1. INTRODUCTION

equivalent K/k-forms of G equals the number of homomorphism Γ → Aut(G)
up to conjugation inside Aut(G) and some restrictions on the induced Γ-action
on G.

The main observation regarding the existence question is that if G is de-
fined over k and lies in GLn(K), then Γ acts on G as group automorphisms.
This action extends k-linearly to the enveloping algebra ∆(kG) of the natural
representation of G and turns it into a central simple Γ-algebra in the sense
of [Tur94a]. Turull defines a equivalence relation on those algebras, which is
very similar to the equivalence relation on central simple algebras leading to
the Brauer-group. He also establishes a group structure on the equivalence
classes [Tur94b] and this group is called the Brauer-Clifford group. Some
natural operations on the Brauer-Clifford group are introduced, most no-
tably a group homomorphism induced by Γ-equivariant scalar extension. The
main theorem, as stated in the second chapter, says:

Theorem 1.0.2. Let K/k be a Galois extension with group Γ, G a finite
subgroup of GLn(K) with natural representation ∆. There exists a (K/k)-form
of G if and only if the equivalence class of ∆(kG) in the Brauer-Clifford
group lies in the kernel of the scalar extension homomorphism.

The benefit of this theorem is that the equivalence class depends only on
the Galois group Γ as an abstract group and can be defined independently
of K. Hence, all Galois extensions K/k with Galois group isomorphic to Γ
are considered at once. Necessary and sufficient conditions on the field K to
admit a (K/k)-form of G are deduced and those conditions are good enough to
answer the case of k being a finite field or the real numbers completely. Those
results are a part of the publication [Jon11].

Character theory and arithmetic theory of K/k-forms

Turning to the arithmetic theory of (K/k)-forms, we assume that k = Q. It
turned out to be sensible to fix the finite Galois extension K together with
the embedding − : Γ → Aut(G) and to look at K-linear representations ∆ :
G→ GLl(K) with the property

∆(σ(g)) = σ(∆(g)) for all g ∈ G and σ ∈ Γ

Such a representation will be called a (K/k,−)-representation of G. By the work
of Shoda on semilinear representation theory special skew group rings enter
the picture, cf. [Sho38a], [Sho38b], [NS36]. These skew group rings, denoted
K ∗ (G o Γ) in the following, are constructed from the Γ-action on G and the
natural Γ-action on K. We rediscover the following theorem, which can be
easily extracted from the work of Shoda.

Theorem 1.0.3. Let G be a finite group, K/k be a finite Galois extension
with group Γ and − : Γ → Aut(G) an embedding. There exists a one to one
correspondence between K ∗ (Go Γ)-modules up to isomorphism and (K/k,−)-
representations of G up to conjugation with matrices in GLn(k).
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As a first approximation A := C⊗QK ∗ (Go Γ)-modules respectively their
characters are studied. The main result is the following explicit correspondence
between the characters of A-modules and the absolutely irreducible complex
characters of G.

Theorem 1.0.4. Let K/k be a finite Galois extension with group Γ, − : Γ→
Aut(G) an embedding, χ an irreducible complex character of G and choose a
complex embedding of K into C. Define χ̂ : K ∗ (G o Γ) → C as the Q-linear
extension of

χ̂(yg) =

{∑
σ∈Γ σ(y)χ(σ(g)) if g ∈ G,

0 if g /∈ G.

with y ∈ K and g ∈ Go Γ. Denote the C-linear extension of χ̂ by χ̃.
Then χ̃ is an irreducible character of A and the map χ 7→ χ̃ defines a one to

one correspondence between the irreducible complex characters of G and those
of A.

To measure the amount of information loss passing from K ∗ (Go Γ) to A,
the Schur index of a irreducible character of A is introduced and it is shown
that the Schur index equals the order of the scalar extension of the equivalence
class of the enveloping k-algebra in the Brauer-Clifford group.

If K has a central canonical complex conjugation σ, that is an element of
center of Γ which induces complex conjugation in every embedding of K into C,
a canonical involution on ισ on K ∗ (GoΓ) is defined. Restricted to GoΓ this
involution inverts the elements and restricted to K it is the canonical complex
conjugation. For any Q-linear representation ∆ : K ∗ (GoΓ)→ Qn×n we show
the following theorem.

Theorem 1.0.5. Let ισ be the canonical involution on K ∗ (Go Γ). For every
Q-linear representation ∆ : K ∗ (G o Γ) → Qn×n there exists a symmetric
positive definite matrix Φ ∈ Qn×n such that

∆(ισ(x)) = Φ−1∆(x)trΦ

for all x ∈ K ∗ (Go Γ).

For the natural involution invariant Z-order ZK ∗ (G o Γ) in K ∗ (G o Γ)
this leads to a situation very similar to integral representation theory of finite
groups. With the numerous and powerful methods developed by Plesken
and Nebe [NP95] on lattices and integral representation theory, ZK ∗ (Go Γ)
structures on various interesting Euclidean lattices are obtained.

Coming back to where we started, we rediscover the beautiful represen-
tations mentioned in the beginning from ZK ∗ (G o Γ)-structure on various
interesting lattices. Most prominently, Klein’s 3-dimensional representation
of PSL2(7) realized over Q(ζ7) comes from a Z[ζ7] ∗ (PSL2(7)oΓ) structure on
an 18-dimensional 7-modular lattice corresponding to an irreducible maximal
finite subgroup of GL18(Q). Moreover, various other lattices such as the Leech-
lattice, the root lattice E8 and Nebe’s recently discovered 72-dimensional, ex-
tremal even unimodular lattice Λ72 [Neb] turn up.

The last part of this thesis is about the following theorem, which was pro-
posed by Plesken.



4 CHAPTER 1. INTRODUCTION

Theorem 1.0.6. Let K be an algebraically closed field, G a finite subgroup
of GLn(K) with natural module V := Kn, p a point in Kn and assume that
the characteristic of K does not divide |G|. The rank of the Jacobian matrix,
evaluated at p, of any system of fundamental polynomial invariants equals the
dimension of the subspace of fixed points under the stabilizer Gp of p in G.

This theorem is then applied to study the orbit stratification of V .

Outline

Chapter 2 provides the necessary formal definitions to study k-forms of finite
groups. The existence question is addressed briefly and the work of Shoda
on semilinear representation theory is reviewed. Furthermore, the classification
theorem is proved.

The chapters 3 and 4 consists mainly of the paper ”The Brauer-Clifford
group and rational forms of finite groups” [Jon11]. Brauer-Clifford theory
is reviewed and the main theorem (1.0.2) is proved. This theorem is applied to
the cases of finite fields, the real numbers and number fields with the additional
assumption that G is isomorphic to PSL2(q) where q is an arbitrary prime
power.

Chapter 5 studies the character theory of C⊗QK ∗ (Go Γ) and introduces
a modified character table. The proof of theorem (1.0.4) is given via a detailed
study of the central primitive idempotents of C⊗QK∗(GoΓ). The Schur index
and its properties are discussed and induction and restriction of K ∗ (G o Γ)-
modules is introduced.

Chapter 6 defines the canonical involution on K ∗ (GoΓ) and provides the
necessary arithmetic theory to study lattices over the natural Z-order ZK ∗(Go
Γ) in K ∗ (G o Γ). Putting everything together, a procedure to calculate nice
(K/Q)-forms of G is given.

In chapter 7 this procedure is applied to a variety of different groups and
fields.

Fairly independent of the rest of the thesis, chapter 8 studies the quotient
map of finite matrix groups.

General assumptions

If not stated otherwise, k will be a perfect field and K/k a finite Galois
extension with Galois Γ.

Acknowledgment

I would like to express my gratitude to several people; first of all I would like to
thank Prof. Plesken for teaching me about this topic and for the numerous dis-
cussions, secondly my family for without them this thesis would not be possible.
Furthermore I would like to thank Wolfgang Krass for proof-reading and my
colleagues at Lehrstuhl B for creating a nice working atmosphere. This work
was partially supported by the SPP 1388 of the German Science Foundation
(DFG).



Chapter 2

Forms of finite groups

Let k be a perfect field and K/k a finite Galois extension with group Γ. In
[Ser02, Chapter III] Serre mentions the following general principle underlying
the theory of forms: ”Let X be an ”object defined over k”, we shall say that
an object Y , defined over k, is a K/k-form of X if Y becomes isomorphic to X
when the ground field is extended to K.”

Hence, the existence and classification question mentioned in the introduc-
tion can be asked for general algebraic objects for which it makes sense to speak
of something ”defined over k”. If X is either a vector space with tensors, that is
for example a central simple algebra, or a semisimple algebraic group, we can re-
fer to a good amount of literature on both questions cf. [Sat71], [Ser79], [Ser02].
Little is known when it comes to finite groups and even less for representations.

In the first section some basic definition from the theory of algebraic groups
are given and k-forms of finite matrix groups G, respectively representations
thereof, are defined. Theorem (2.1.7) shows that the ring of polynomial invari-
ants of those forms is generated by a set of polynomials whose coefficients lie
in k.

The existence of (K/k)-forms of G, where K/k is a finite Galois extension,
is addressed briefly in the second section. Some obvious necessary conditions
on the natural character of G are obtained, which imply that the automorphism
group of G acts transitively on the Galois conjugates on the natural character
of G. Considering the Ree group 2F4(2)′ in dimension 26 shows that this
condition is not sufficient.

An easy, nevertheless important, observation is that if those necessary con-
ditions are fulfilled, the enveloping k-algebra of the natural representation of
G is equipped with a Γ-action as k-algebra automorphisms. This will be the
starting point for further investigations of the existence question in the third
chapter.

Section three basically reviews the work of Shoda, who established a cor-
respondence between k-forms of finite matrix groups, up to conjugation with
matrices in GLn(k), and modules over certain skew group rings.

The classification question is answered using elementary group theory in the
last section.

5



6 CHAPTER 2. FORMS OF FINITE GROUPS

2.1 Definitions and first properties

We have to recall some basic definitions from algebraic group theory. The book
[Sat71] of Satake will be the main source.

Definition 2.1.1. Let N ∈ N, a subset X of k
N

is called an (affine) algebraic

set if there exists a subset J ⊆ k[x1, ..., xN ] such that X = {x ∈ kN | f(x) =
0 for all f ∈ J}. Denote by I(X) := {f ∈ k[x1, ..., xN ] | f(x) = 0 for all x ∈ X}
the ideal corresponding to X. If I(X) is generated by elements of k[x1, ..., xN ]
we say that X is defined over k.

The following basic proposition can be found in the book of Satake.

Proposition 2.1.2. [Sat71, Prop. 1.1.1] For an algebraic set X, the following
conditions are equivalent:

1. X is defined over k

2. σX := {σ(x) = σ(xi) | x ∈ X} = X for all σ ∈ Gal(k/k).

Definition 2.1.3. Let X be an algebraic set in k
N

. A polynomial func-
tion (defined over k) on X is the restriction to X of a function defined by a
polynomial in k[x1, ..., xN ] (resp., k[x1, ..., xN ]).

For an algebraic set A, denote by k[A] (resp., k[A]) the ring of polynomial
functions on A (defined over k).

Definition 2.1.4. Let A and B be algebraic sets in k
n

and k
m

respectively. A
polynomial map ϕ from A to B is a mapping given by ϕ = (ϕ1, ...., ϕm), ϕi ∈
k[A]. We say the ϕ is defined over k if ϕi ∈ k[A].

Now we can define algebraic groups.

Definition 2.1.5. G is called an (affine) algebraic group if

1. G is an abstract group

2. G is an algebraic set in k
N

3. The mapping G×G→ G , (x, y) 7→ x−1y is a polynomial map.

G is defined over k if G as an algebraic set is defined over k, and the mapping
in 3. is defined over k.

Let n be an integer and G a finite subgroup of GLn(k). Viewing GLn(k) as
an algebraic group, turns G into a (totally disconnected) algebraic group. We
say that G is defined over k if it is defined over k as an algebraic group.

To establish a connection with invariant theory we need the following lemma
which goes back to Speiser.
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Lemma 2.1.6 (Speiser). Let K/k be a finite Galois extension with group Γ,
and V a K-vector space equipped with a semi-linear Γ-action i.e. a Γ-action
satisfying

σ(λv) = σ(λ)σ(v) for all σ ∈ Γ, v ∈ V and λ ∈ K.

Then the natural map V Γ ⊗k K → V is an isomorphism.

Proof. [GS06, Lemma 2.3.8]

We come to the first main theorem.

Theorem 2.1.7. For a finite subgroup G of GLn(k) the following are equiva-
lent:

1. The algebraic group G is defined over k.

2. The ring of polynomial invariants of G is generated by elements whose
coefficients lie in k.

3. The absolute Galois group of k acts naturally on G and induces a group
homomorphism − : Gal(k/k)→ Aut(G)

Proof. The equivalence of 1) and 3) is immediate by proposition (2.1.2).

2) ⇒ 1) : From invariant theory of finite groups it is clear that a set of
generating invariants uniquely determines G as an algebraic group. Since it is
possible to choose such fundamental invariants with coefficients in k, the group
G is defined over k.

3)⇒ 2) : Without loss of generality we can assume that G lies in GLn(K),
where K/k is a finite Galois extension with Galois group Γ. Let Γ act
on K[x1, ..., xn] by applying an element σ ∈ Γ to the coefficients. This is a
semilinear action and using 3) one checks that this induces a semi-linear action
on the invariant ring K[x1, ..., xn]G. Using lemma (2.1.6) it follows that for
every degree d ∈ N we can find a k-basis of K[x1, ..., xn]G≤d. By Noethers
bound we only have to look up to degree |G| to find fundamental invariants.
Hence there exists a set of fundamental invariants with coefficients in k.

The following example illustrates the theorem.

Example 2.1.8. Consider the matrix group

Q8 :=

〈(
i 0
0 −i

)
,

(
0 −1
1 0

)〉
isomorphic to the quaternion group of order 8. The group Q8 is defined over Q,
since the ring of polynomial invariants is generated by x2

1x
2
2, x

4
1+x4

2, x1x
5
2−x2x

5
1.

Applying the complex conjugation to the entries of the matrices induces an in-
jective homomorphism Gal(Q(i)/Q)→ Aut(Q8). The image of this homomor-
phism is the group generated by the inner automorphism given by conjugation
with the second generator.

We now define the notion of a k-form of a finite matrix group G.
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Definition 2.1.9. Let G be a finite subgroup of GLn(k), then a subgroup G̃
of GLn(k) is called a k-form of G if G̃ is defined over k and conjugates to G
inside GLn(k). It is a (K/k)-form of G if additionally G̃ lies in GLn(K). We
say that two (K/k)-forms of G are equivalent if they are conjugate to each
other by an element of GLn(k).

Note that those definitions differ slightly from the theory of k-forms of
algebraic groups, since we use conjugation rather than polynomial maps.

Examples of finite subgroups of GLn(k) defined over k appear as stabilizers
of a single polynomial with coefficients in k.

Example 2.1.10. Let n, d ∈ N and Hn,d a hypersurface of degree d in (n+ 1)-
dimensional projective space P(n+1)(C), defined by an equation p(x0, ..., xn+1) =
0 of degree d with p ∈ Q[x0, ..., xn+1]. The algebraic group GLn+2(C) acts on
C[x0, ..., xn+1].

1. If Hn,d is non singular and n ≥ 2, d ≥ 3, then by [MM64] the stabilizer of
p in GLn(C) is finite and defined over Q.

2. Let p = x3
0x1 + x3

1x2 + x3
2x0, then its stabilizer in GL3(C) is finite and

isomorphic to C4×PSL2(7). Klein’s famous three dimensional represen-
tation of PSL2(7) [Kle99] can be constructed this way.

The next remark shows that it is enough to work with finite Galois exten-
sions K/k rather than k.

Remark 2.1.11. If G is defined over k there exists a Galois extension K of
k with Galois group Γ, such that G lies in GLn(K) and the map − of (2.1.7)
restricts to an injective homomorphism − : Γ→ Aut(G).

A more precise definition of a k-form is given by adding the field K and the
homomorphism − : Γ→ Aut(G).

Definition 2.1.12. Let G be a finite subgroup of GLn(k), K/k a Galois ex-
tension with Galois group Γ and − : Γ→ Aut(G) an injective homomorphism.
A representation ∆ : G → GLn(K) is a (K/k,−)-representation of G, if for
all g ∈ G and σ ∈ Γ one has σ(∆(g)) = ∆(σ(g)).

Remark 2.1.13. Choosing K = k in the last definition one gets back the
definition of k-linear representations of G.

2.2 Existence question

A precise version of the existence question for (K/k)-forms of finite groups is
given in the next remark.

Remark 2.2.1. Given a finite subgroup G of GLn(k) is it possible to find a
Galois extension K/k with group Γ and an embedding − : Γ→ Aut(G), such
that there exists a (K/k,−)-representation of G which is GLn(k) conjugate to
the natural representation of G?
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Assuming that (2.2.1) has a positive answer for G, one obtains an obvious
necessary condition involving the natural character of G.

Remark 2.2.2. For the existence of a (K/k,−)-representation of G it is nec-
essary that the embedding − : Γ→ Aut(G) has the property that σ ◦χ = χ ◦ σ
for all σ ∈ Γ.

One might conjecture, that if Aut(G) acts transitively on the set of Galois
conjugate characters of the natural character χ, then there exists a (K/k)-form
of G. The next example shows this is not the case. It was found by an inspection
of the ATLAS [CCN+85] and does not provide much structural insight.

Example 2.2.3. Let k = R, Γ = Gal(C/R) and G be the Ree group 2F4(2)′.
Use the ATLAS to see that there are two characters χ1, χ2 of degree 26 which
have values in C and are Galois conjugates of each other. Check that the
automorphism group of G acts transitively on {χ1, χ2}. Assume that there
exists a subgroup of GL26(C) which is defined over R, isomorphic to G and has
χ1 or χ2 as its natural character. Hence there exists an embedding − : Γ →
Aut(G) with χ1 ◦ σ = σ ◦ χ1 = χ2. Use the ATLAS again to see that such an
embedding cannot exist, more precisely that there is no automorphism of order
2 of G interchanging χ1 and χ2.

Let ∆ be the natural representation G and χ the natural character. As-
sume that ∆ is a (K/k,−)-representation of G, then this has the following
consequence on the enveloping algebra ∆(kG).

Remark 2.2.4. If ∆ is a (K/k,−)-representation of G, then

Γ×∆(kG)→ ∆(kG) : (σ,X) 7→ σ(X)

is a well defined Γ-action as k-algebra automorphisms. On ∆(G) it is given by
σ(∆(g)) = ∆(σ(g)) for all g ∈ G.

For the rest of this section we will restrict ourselves to the case that G is
an absolutely irreducible finite matrix group. An important observation is that
absolutely irreducible representations, of a given degree, of a finite group are,
up to equivalence, uniquely determined by their characters. Most certainly this
result was known to Brauer and in the following form is found in [Jam].

Proposition 2.2.5. Let G be a finite group, K a field and ∆,Θ : G→ GLn(K)
absolutely irreducible representations. Then ∆ is equivalent to Θ if and only if
Tr(∆(g)) = Tr(Θ(g)) for all g ∈ G.

The next lemma shows that the condition on natural character of remark
(2.2.2) implies that the Γ-action on G via (σ, g) 7→ σ(g) extends uniquely to a
Γ-action on ∆(kG) as k-algebra automorphisms.

Lemma 2.2.6. Let (K/k) be a finite Galois extension with group Γ, G an
absolutely irreducible finite subgroup of GLn(K), ∆ : G→ GLn(K) the natural
representation of G and χ the natural character. Assume that − : Γ→ Aut(G)
is an embedding with the property that σ ◦χ = χ◦σ for all σ ∈ Γ. The Γ-action
Γ× kG→ kG : (σ,

∑
g∈G agg) 7→

∑
g∈G agσ(g) induces an Γ-action on ∆(kG)

as k-algebra automorphisms.
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Proof. Since ∆ is absolutely irreducible it induces an absolutely irreducible rep-
resentation of the semisimple algebra kG/rad(kG). The two sided ideal rad(kG)
is Γ invariant under the given Γ-action on kG, hence Γ acts on kG/rad(kG).
This representation is uniquely defined by its character by proposition (2.2.5)
and one checks that the condition σ ◦ χ = χ ◦ σ for all σ ∈ Γ implies that the
central primitive idempotent of kG/rad(kG) corresponding to ∆ is Γ invariant.
This proves the lemma.

The following remark is immediate from the proof of the last lemma.

Remark 2.2.7. If the characteristic of K is coprime to |G|, the assumption of
G being absolutely irreducible in the last lemma is redundant.

Hence, for a positive answer to the existence question (2.2.1) it is necessary
that Γ acts as k-algebra automorphisms on the enveloping algebra ∆(kG). This
will be the starting point of chapter three.

2.3 Skew group rings

In this section we introduce skew group rings into the picture. We assume that
the Galois extension K/k with group Γ and the embedding − : Γ → Aut(G)
are given, hence we take a slightly different point of view from the last section.
The objective is to consider all possible (K/k,−)-representations at once. Most
of this section reviews Shoda’s work on semilinear representation theory cf.
[NS36], [Sho38a] and [Sho38b]. Recall the definition of a skew group ring.

Definition 2.3.1. Let R be a ring, G a finite group and Θ : G → Aut(R) a
group homomorphism. The skew group ring R ∗ G = ⊕x∈GRx is defined to
be the free R-module with basis {x}x∈G and multiplication defined by

rxxryy = rxΘ(x)(ry)xy for all x, y ∈ G and rx, ry ∈ R

Assume the situation of remark (2.1.11) that K/k is a Galois extension
and − : Γ → Aut(G) an injective homomorphism. Use the Γ-action on G via
(σ, g) 7→ σ(g) to define the semidirect product Go Γ and let Θ : Go Γ→ Γ be
the natural epimorphism. Construct the skew group ring K ∗ (GoΓ) and note
that it is a k-algebra.

Remark 2.3.2. The natural embeddings induce the following commutative
diagram:

k //

��

kΓ //

��

k(Go Γ)

��
K // K ∗ Γ // K ∗ (Go Γ)

Hence K ∗ (G o Γ) is build from the group ring k(G o Γ), incorporating the
group theoretic action of Γ on G and the crossed product algebra K ∗Γ, which
incorporates the arithmetic action of Γ on K.



2.3. SKEW GROUP RINGS 11

The objective is to prove the following main theorem, which could be easily
extracted from the work of Shoda.

Theorem 2.3.3. Let G be a finite group, K/k be a finite Galois extension
with group Γ and − : Γ → Aut(G) an embedding. There exists a one to one
correspondence between K ∗ (Go Γ)-modules up to isomorphism and (K/k,−)-
representations of G up to conjugation with matrices in GLn(k).

This theorem sheds some light on the connection to invariant theory given
in theorem (2.1.7).

Remark 2.3.4. Let M be a K ∗(GoΓ)-module and view M∗ := Hom(M,k) as
a K-vectorspace. The group GoΓ acts K-semilinearily on M∗ via gω := ω◦g−1

for all g ∈ G o Γ and ω ∈ M∗. This extends to a K-semilinear action on the
symmetric algebra. Choose a k-basis x1, ..., xn of (M∗)Γ and view it as a K-
basis of M∗. Hence, the group Go Γ acts on the polynomial ring K[x1, ..., xn]
by applying Γ to the coefficients and using the natural G-action. This action
is K-semilinear, preserves the natural grading and turns K[x1, ..., xn] into an
infinite dimensional K ∗ (G o Γ)-module. Lemma (2.1.6) shows that for every
degree r ∈ G a k-basis of K[x1, ..., xn]GoΓ

≤r is a K-basis of K[x1, ..., xn]G≤r.

The last remark can be found in the work of Shoda [Sho38b]. Before we
prove the main theorem, we revisit example (2.1.8).

Example 2.3.5. Let Gal(Q(i)/Q) = Γ and − : Γ → Aut(Q8) be the homo-
morphism mapping the generator σ of Γ to the inner automorphism induced
by conjugation with the second generator of Q8. Consider the skew group ring
Q(i) ∗ (Q8oΓ) and note that a Q-linear representation ∆ of Q(i) ∗ (Q8oΓ) is
completely determined by the images of i, σ, a, b, where a, b are the generators
of Q8. Since the natural representation of Q8 is a (Q(i)/Q,−)-representation,
the last theorem provides a Q(i) ∗ (Q8oΓ) structure on Q(i)2×1. The induced
Q-linear representation is given by:

i 7→


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , σ 7→


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



b 7→


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , a 7→


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


Note that these matrices generate a subgroup of GL4(Q) isomorphic to

(C4 �C2 Q8) o C2, where C4 �C2 Q8 is the central product amalgamated over
C2. With the methods developed later, one sees that Q(i) ∗ (Q8oΓ) has the
Wedderburn decomposition ⊕4

i=1Q2×2⊕Q4×4. Hence it is not isomorphic to
the group ring Q(C4 �C2 Q8)o C2, which decomposes as ⊕16

i=1Q1×1 ⊕Q4×4.

We proceed to prove the main theorem.
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Lemma 2.3.6. Let ∆ : G→ GLn(K) be a (K/k,−)-representation. The action
of G on Kn×1 via ∆ and the componentwise action of Γ turn Kn×1 into an
K ∗ (Go Γ) module.

Proof. Follows from the definition of a (K/k,−)-representation.

Let M be a K ∗ (G o Γ)-module. Note that M is a K-vectorspace and
that Γ acts K-semilinearily on M . Denote by MΓ the k-space of fixed points
of M under Γ. Lemma (2.1.6) implies that a k-basis of MΓ can be considered
as a K-basis of M . Such a basis is used in the next lemma to construct a
(K/k,−)-representation.

Lemma 2.3.7. 1. Let M be a K ∗ (GoΓ) module of K-dimension n and B
a k-basis of MΓ. The K-linear representation ∆M,B : G→ GLn(K) with
respect to the basis B is a (K/k,−)-representation.

2. If M1,M2 are two isomorphic K ∗ (G o Γ)-modules of K-dimension n,
and B, B̃ be Q-bases of MΓ

1 and MΓ
2 respectively, then there exists a Y ∈

GLn(k) such that

Y −1∆M1,B(g)Y = ∆
M2,B̃

(g) for all g ∈ G

Proof. Identify G and Γ with subgroups of G := G o Γ. Let B = (B1, ..., Bn),
then by definition we have g(Bj) =

∑n
i=1 ∆(g)i,jBi for all g ∈ G. Hence

σ(g)(Bj) = (σgσ−1)(Bj)

=
n∑
i=1

σ(∆(g)i,j)Bi

This implies σ(∆(g)) = ∆(σ(g)) for all g ∈ G, that is ∆ is a (K/k,−)-
representation.

For the second part let B, B̃ be k-bases of MΓ
1 ,M

Γ
2 and ϕ : M1 → M2 a

K∗G-module isomorphism. It is clear that ϕ restricts to an isomorphism MΓ
1 →

MΓ
2 , so Y := BϕB̃ lies in GLn(k). Obviously Y has the desired properties.

The second part of the last lemma is a classical result of Shoda [Sho38a].
Summing up, lemma (2.3.6) and (2.3.7) induce mutually inverse maps between
K ∗ (Go Γ)-modules up to isomorphism and (K/k,−)-representations of G up
to conjugation with matrices in GLn(k).

2.4 Classification

From the point of view of invariant theory (K/k)-forms of finite matrix groups
are more appropriate than the rather restrictive (K/k,−)-representations. The
objective is to classify the (K/k,−)-representations leading to the same K/k-
form of a finite matrix group. Those are classified using elementary group
theory and this answers the classification question raised in the introduction of
this chapter.
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Note that for any homomorphism ϕ : Γ→ Aut(G) it makes sense to speak
of a (K/k, ϕ)-representation of G. We will prove the following classification
theorem.

Theorem 2.4.1. Let K/k be a finite Galois extension with group Γ, G a finite
irreducible subgroup of GLn(K) defined over k and

G :={ϕ : Γ→ Aut(G) | There exists a (K/k, ϕ)-representation ∆ of G and

the matrix group ∆(G) is conjugate to G inside GLn(K)}

The group Aut(G) acts on G via

Aut(G)× G → G : (ψ,ϕ) 7→ (Γ→ Aut(G) : σ 7→ ψ ◦ ϕ(σ) ◦ ψ−1)

and the orbits correspond to the equivalence classes of (K/k)-forms of G.

Proof. Since G is defined over k, the natural representation is obviously a
(K/k,−) representations, where − : Γ→ Aut(G) is obtained from the Γ-action
on G mentioned in lemma (2.1.7). Hence G is non empty and one easily checks
that the Aut(G) action on G is well defined.

Let G′ be a (K/k)-form of G. By definition there exists a matrix X ∈
GLn(K) such that XG′X−1 = G. Define ϕG′ : Γ → Aut(G) : σ 7→ (g 7→
Xσ(X−1gX)X−1) and ∆G′ : G→ GLn(K) , g 7→ X−1gX. From

σ(∆G′(g)) = σ(X−1gX) = X−1ϕ(g)X

it follows that ∆G′ is a (K/k, ϕG′)-representation of G.
One easily checks that this defines a map between (K/k)-forms of G up to

conjugation with elements of GLn(k) to G. From the definition of G it is obvious
that this map is surjective. It remains to prove the injectivity.

Note that it is enough to show that if ϕG′ = ϕG, then G′ is conjugate
to G via an element of GLn(k). Assume that ϕG′ = ϕG and XG′X−1 = G
where X ∈ GLn(K), then we can find matrices λσ ∈ CGLn(K)(G) := {Y ∈
GLn(K) | Y gY −1 = g for all g ∈ G} such that

X = λσσ(X) for all σ ∈ Γ

View λσ as a map Γ→ CGLn(K)(G) and check that this defines a 1-cocycle
with values in CGLn(K)(G). Using the proof of the Hilbert 90 theorem [Ser79,
p. 151] and the irreducibility of G, we find that λσ is a coboundary i.e. λσ =
Y −1σ(Y ) for an Y ∈ CGLn(K)(G). Define X̃ := Y X the X̃ ∈ GLn(k) and
conjugates G′ to G.

Remark 2.4.2. Let G be a finite subgroup of GLn(K) where K/k is a Galois
extension with group Γ.

1. Let ϕ1, ϕ2 : Γ → Aut(G) be two embeddings, such that ϕ2(σ) = ψ ◦
ϕ1(σ) ◦ ψ−1 with ψ ∈ Aut(G). The canonical isomorphism between the
semi direct products Goϕ1 Γ and Goϕ2 Γ induces an isomorphism between
the skew group rings K ∗ (Goϕ1 Γ) and K ∗ (Goϕ2 Γ).
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2. In general the set G is hard to compute, but if p ∈ {5, 7}, G ∼= PSL2(p)
and K = Q(ζp) then there exists a unique conjugacy class of elements
of order p − 1 in Aut(G). Hence there exists only one Aut(G) orbit on
G. So, independently of the (irreducible) representation of G all possible
(K/Q)-forms of G are equivalent.



Chapter 3

Brauer-Clifford theory

Let k be a perfect field, recall the existence question posed in remark (2.2.1):

Given a finite subgroup G of GLn(k) is it possible to find a Galois exten-
sion K/k with group Γ and an embedding − : Γ → Aut(G), such that there
exists a (K/k,−)-representation of G which is GLn(k) conjugate to the natural
representation ∆ of G?

It was shown that for a positive answer to this question, it is necessary
that the Γ-action Γ × kG → kG : (σ,

∑
g∈G agg) 7→

∑
g∈G agσ(g) induces an

Γ-action on the k-enveloping algebra ∆(kG) as k-algebra automorphisms.

This turns ∆(kG) into a central simple Γ-algebra in the sense of [Tur94a].
Turull defines a equivalence relation for those algebras, which is similar to the
equivalence relation on central simple algebras leading to the Brauer group.
We will recall this relation in the first section. Furthermore, Turull establishes
a group structure on the equivalence classes [Tur94b] and this group is called the
Brauer-Clifford group. Some natural operations on the Brauer-Clifford
group are introduced, most notably, a group homomorphism induced by Γ-
equivariant scalar extension.

The main theorem (3.2.1), as stated in the second section, says: There exists
a (K/k,−)-representation of G if and only if the equivalence class of ∆(kG)
viewed as a central simple Γ-algebra lies in the kernel of this homomorphism.
The main benefit of this theorem is that this equivalence class depends only on
the Galois group Γ as an abstract group and can be defined independently of
K. Hence all Galois extensions K/k with Galois group isomorphic to Γ are
considered at once.

This leaves two problems. The first one is to recognize elements in the
Brauer-Clifford group and the second is to decide if an element of the
Brauer-Clifford group lies in the kernel of the homomorphism coming from
scalar extension with K. One result is that both problems can be reduced to
the case that the Γ is a p-group.

In general it is an open problem to recognize elements in the Brauer-
Clifford group or equivalently, to find a convenient description of it. In
section three we restrict to a subgroup of the Brauer-Clifford group which is
a central product of the Brauer group over k with a second cohomology group
H2(Γ, L∗) where L is a subfield of K and Galois over k. Given an element of

15
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this group, it is possible to calculate necessary and sufficient conditions on a
field K to admit a (K/k,−)-representation of G.

3.1 The Brauer-Clifford group

Let U be a finite group, k a perfect field. The following reviews shortly the
theory of central simple U -algebras. More details can be found in the work
of Turull (cf. [Tur94a]). A U-algebra A is a finite dimensional associative
k-algebra together with a U -action on A as k-algebra automorphisms. The U -
algebra A is a simple U -algebra if it has only the trivial two sided U -invariant
ideals, and A is called central if k is the fixed field of the U -action restricted to
the center of A. Two U -algebras are U -isomorphic if there exist a U -equivariant
k-algebra isomorphism and this is denoted A ∼=U B. A U -algebra A is trivial
if there exists a kU -module M such that A ∼=U Endk(M) with U acting on
Endk(M) by conjugation. Two central simple U -algebras A and B are equiva-
lent if there exist trivial U -algebras E1 and E2 such that A⊗kE1

∼=U B⊗kE2.
Let L be a central simple commutative U -algebra, then A is a central simple
U-algebra over L if the center C(A) of A is isomorphic to L as a central sim-
ple U -algebra. The notion of equivalence of central simple U -algebras defines
an equivalence relation on the set of all central simple U -algebras over L. If A
is a central simple U -algebra over L, denote by [A] its equivalence class. The
Brauer-Clifford group is defined as follows.

Definition 3.1.1. Let L be a commutative central simple U -algebra. As a set,
the Brauer-Clifford group BrCliff(U,L) consists of all equivalence classes
of central simple U -algebras over L. The group structure is given by:

BrCliff(U,L)× BrCliff(U,L)→ BrCliff(U,L) : ([A], [B]) 7→ [A⊗L B]

For more details, especially proofs of the statements implicit in the defini-
tion, see [Tur09b]. Note that the identity element of the Brauer-Clifford
group is the equivalence class [L] where L is viewed as a central simple U -
algebra. Furthermore if U is the trivial group one gets the Brauer group.

Now through this chapter, it is assumed that the commutative central simple
U -algebra L is a field. Hence there exists an epimorphism̂ : U → Gal(L/k).

Some natural operations on the Brauer-Clifford group need to be intro-
duced. The first operation is ”forgetting the U -action” cf. [Tur09b, Theorem
8.2]

Remark 3.1.2. There exists a natural homomorphism κ : BrCliff(U,L) →
Br(L)Gal(L/k). Denote by FMBrCliff(U,L) the kernel of κ, then there is the
following exact sequence:

1 // FMBrCliff(U,L) // BrCliff(U,L) // Br(L)Gal(L/k)

Note that FMBrCliff(U,L) consists of the equivalence classes of those central
simple U -algebras which are isomorphic, as central simple L-algebras, to matrix
algebras over L.
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We introduce the notion of a U -field.

Definition 3.1.3. Let U a finite group, K/L and L/k field extensions and
let U -act on L and K as field automorphisms, then L,K are called U-fields.
If the embedding of L → K is U -equivariant, then K/L is called a U-field
extension.

In particular, if A is a central simple U -algebra over L, then L is a U -field.
The next operation is scalar extension by a U -field.

Definition 3.1.4. Let A be a central simple U -algebra over the field L and K
a U -field extension of L. Then scalar extension of A by a U-field K is the
U -algebra A⊗L K with U acting diagonally.

It is clear that this is a simple U -algebra over K. Since the fixed field of
the U -action on K might be a proper extension of k, scalar extension of A by a
U -field K might not be central over k. To avoid this problem, one views scalar
extension of A by a U -field K as an algebra over the fixed field of K under U .

To carry the concept of scalar extension with a U -field over to the Brauer-
Clifford group, one has to look at the trivial U -algebras. The next proposition
deals with those U -algebras.

Proposition 3.1.5. Let F be a U -field extension of k, M a kU -module and con-
sider M⊗kF as an FU -module. There exists a natural U -equivariant F -algebra
isomorphism between the scalar extension of the trivial U -algebra Endk(M) by
F and the U -algebra EndF (M ⊗k F ) where U acts by conjugation.

Proof. Consider

Endk(M)⊗k F → EndF (M ⊗k F ) : ψ ⊗ c 7→ c(ψ ⊗ id)

with ψ ∈ Endk(M) and c ∈ F

The next lemma shows that scalar extension is well defined on the Brauer-
Clifford group.

Lemma 3.1.6. Let K be a U -field extension of L. Then scalar extension by K
induces a group homomorphism:

extK/L : BrCliff(U,L)→ BrCliff(U,K) : [A] 7→ [A⊗L K]

Proof. We have to show that this map is well defined. Let F be the fixed field of
K under U . Assume that A and B are equivalent central simple U algebras over
L and let M1,M2 be kU -modules such that A⊗kEndk(M1) ∼=U B⊗kEndk(M2).
Consider EndF (Mi ⊗ F ) for i = 1, 2 as trivial U -algebras. Use lemma (3.1.5)
to calculate:

(A⊗L K)⊗F EndF (M1 ⊗k F ) ∼=U A⊗L K ⊗F (Endk(M1)⊗k F )
∼=U (A⊗k Endk(M1))⊗L K
∼=U (B ⊗k Endk(M2))⊗L K
∼=U (B ⊗L K)⊗F EndF (M2 ⊗k F )

Hence A⊗LK is equivalent to B⊗LK as central simple U -algebras over K and
extK/L is well defined. The homomorphism property is obvious.
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The following remark considers a sequence of U -field extensions.

Remark 3.1.7. Let K be a U -field extension of L and L be a U -field extension
of k, then extK/k = extK/L ◦ extL/k

Another natural map of the Brauer-Clifford group can be obtained via
restriction to subgroups of U .

Lemma 3.1.8. Let N be a subgroup of U , then the map resN : BrCliff(U,L)→
BrCliff(N,L) : [A] 7→ [A⊗L L] is a group homomorphism

Proof. Analogous to the proof of (3.1.6)

Using the operations introduced so far, it is possible to define the notion of
an equivariant splitting field of a central simple U -algebra.

Definition 3.1.9. Let A be a central simple U -algebra over L. The U -field
extension K of L is an equivariant splitting field of A, if [A] is in the kernel
of the map extK/L : BrCliff(U,L)→ BrCliff(U,K).

It is obvious that if K is an equivariant splitting field of a central simple
U -algebra A, then extK/L([A]) lies in FMBrCliff(U,K). For this reason it is
important to find a convenient description of FMBrCliff(U,L). In [Tur09a]
Turull shows that FMBrCliff(U,L) is isomorphic to the second cohomology
group H2(U,L∗). The next theorem recalls this isomorphism and is a special
case of [Tur09a, Theorem 3.10].

Theorem 3.1.10. Let A be a central simple U -algebra over L such that [A] ∈
FMBrCliff(U,L) and ι : A → kl×l a k-algebra embedding with Ckl×l(ι(A)) =
ι(L). Then there exists a map F : U → kl×l : u 7→ F (u) such that
F (u)ι(a)F (u)−1 = ι(u(a)) for all a ∈ A. Fix such maps ι, F , then

h(A) : U × U → L : (s, t) 7→ F (s)F (t)F (st)−1

is a 2-cocycle with values in L∗. This construction induces a group isomorphism
h : FMBrCliff(U,L)→ H2(U,L∗) : [A] 7→ h(A).

There exists an alternative way to calculate the cocycle h(A). Recall that
with a central simple U -algebra L comes an epimorphism̂ : U → Gal(L/k).

Proposition 3.1.11. Let A be a central simple U -algebra over L such that
[A] ∈ FMBrCliff(U,L). Identify A with Ln×n, then there exists a collection
of matrices {Xu}u∈U in GLn(L) with the property u(a) = Xuû(a)X−1

u for all
u ∈ U and a ∈ Ln×n. Define the map

λ : U × U → L : (s, t) 7→ Xsŝ(Xt)X
−1
st

Then λ is a 2-cocycle with values in L∗. Furthermore λ and h(A) (cf. 3.1.10)
define the same cohomology class in H2(U,L∗).
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Proof. Identify A with Ln×n. Because U acts on A as semilinear L-algebra
automorphisms, the existence of the matrices {Xu}u∈U is clear . We show that
it is possible to choose ι, F as in (3.1.10) with the property that the resulting
cocycle h(A) is given by h(A)(s, t) = λ(s, t) for all s, t ∈ U .

Restriction of scalars provides a k-algebra embedding ι : A → kl×l with
Ckl×l(ι(A)) = ι(L). Define u(a1, ..., an)t := (û(a1), ..., û(an))t, then this turns
Ln×1 into a kU -module. Hence there exists a corresponding matrix represen-
tation U → kl×l : u 7→ Hu. Use this representation to see that Huι(a)H−1

u =
ι(û(a)) for all a ∈ A. For u ∈ U define F (u) := ι(Xu)Hu, then a short cal-
culation shows F (u)ι(a)F (u)−1 = ι(u(a)) for all a ∈ A. So ι and F fulfill the
requirements of (3.1.10). Furthermore it is easy to see that h(A)(s, t) = λ(s, t)
for all s, t ∈ U . Hence λ is a 2-cocycle and it defines the same cohomology class
as h(A).

Corollary 3.1.12. Let A be a central simple U -algebra over L such that [A] ∈
FMBrCliff(U,L) and dimL(A) = n2. Then the order of [A], as an element of
BrCliff(U,L), divides n and |U |.

Proof. Since h : FMBrCliff(U,L) → H2(U,L∗) is an isomorphism, the order of
[A] is the same as the order of h(A). Then it is a well known fact in group
cohomology, that the order of h(A) divides |U |. Consider the equation λ(s, t) =
Xss(Xt)X

−1
st of (3.1.11). Taking determinants on both sides shows that λn is a

coboundary. This implies that the order of λ as an element of H2(U,L∗) divides
n. Hence the order of h(A) divides n.

3.2 Main theorem

Recall the existence question of (2.2.1). The main theorem states that this can
be decided by considering the enveloping algebra of the natural representation
of G as an element of the Brauer-Clifford group.

Theorem 3.2.1. Let (K/k) be a finite Galois extension with group Γ, G ≤
GLn(K) a finite and absolutely irreducible matrix group, ∆ the natural repre-
sentation of G, ∆(kG) the enveloping algebra of the natural representation, L
the center of ∆(kG) and − : Γ→ Aut(G) an injective homomorphism. Assume
the Γ action Γ ×∆(G) , (σ,∆(g)) 7→ ∆(σ(g)) on ∆(G) extends to a Γ-action
on ∆(kG) as k-algebra automorphisms. This turns ∆(kG) into a central simple
Γ-algebra over L. View K as a Γ-field via the natural action of Γ, then there
exists a (K/k,−)-representation of G, conjugate to the natural representation
of G in GLn(k), if and only if K is a Γ-equivariant splitting field of ∆(kG).

Proof. Assume that there exists a (K/k,−)-representation of G. By replacing
G with the image of this representation it can be assumed that the natural
representation ∆ of G is a (K/k,−)-representation. Scalar extension of ∆(kG)
by the Γ-field K is the central simple Γ-algebra Kn×n, where Γ acts by applying
its elements entrywise. It is easy to see that this central simple Γ-algebra is
equivalent to the central simple Γ-algebra K. Since [K] represents the trivial
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element of FMBrCliff(Γ,K), it follows that [∆(kG)] is in the kernel of the scalar
extension map extK/L. Hence K is an equivariant splitting field of ∆(kG).

For the ”if” part assume that K is an equivariant splitting field of ∆(kG).
Via the natural map ∆(kG) ⊗L K → Kn×n identify the scalar extension of
∆(kG) by the Γ-field K with Kn×n. Note that we are dealing with two Γ-
actions on Kn×n. To distinguish both actions we write σ̂ for an element σ ∈ Γ
if the entrywise application is meant and σ for the Γ-action coming from the
identification of the central simple Γ-algebra ∆(kG)⊗L K with Kn×n.

By (3.1.11) there exists a collection of matrices {Xs}s∈Γ in GLn(K) with

s(a) = Xsŝ(a)X−1
s for all a ∈ Kn×n and s ∈ Γ(3.1)

We prove that it is possible to choose such a collection with the additional
property Xst = Xsŝ(Xt) for all s, t ∈ Γ.

Let {Xs}s∈Γ be a collection of matrices in GLn(K) such that (3.1) is valid.
Define the 2-cocyle λ : Γ × Γ → K∗ : (s, t) 7→ Xsŝ(Xt)X

−1
st . Proposition

(3.1.11) implies that cohomology classes of λ and h(extK/L([∆(kG)])) are the

same in H2(Γ,K∗). Because K is an equivariant splitting field of ∆(kG), the
latter is trivial. Therefore λ is a coboundary and there exists a map b : Γ→ K∗

with λ(s, t) = bsŝ(bt)b
−1
st for s, t ∈ Γ. For s in Γ define X̃s := 1

bs
Xs, then the

collection {X̃s}s∈Γ clearly fulfills (3.1) and an easy calculation shows X̃st =
X̃sŝ(X̃t) for all s, t ∈ Γ.

Given such a collection of matrices the generalized Hilbert 90 theorem
[Ser79, p. 151] says there exists a matrix Y ∈ GLn(K) such that Xs = Y ŝ(Y −1),
for all s ∈ Γ. Define the representation Θ : G → GLn(K) : g 7→ Y −1gY and
use (3.1) to calculate:

ŝ(Θ(g)) = ŝ(Y −1)ŝ(g)ŝ(Y )

= Y −1(Xsŝ(g)X−1
s )Y

= Y −1s(g)Y

= Θ(s(g))

Hence, Θ is a (K/k,−)-representation of G.

Some remarks should be made about the main theorem.

Remark 3.2.2. Let K/k be a Galois extension with group Γ, G a finite
subgroup of GLn(K) and − : Γ→ Aut(G) an embedding.

1. The group Γ acts on kG via Γ × kG , (σ,
∑

g∈G agg) 7→ agσ(g) and this
induces a Γ-action on kG/ rad(kG) because rad(kG) is Γ-invariant. If
the assumptions of the main theorem are fulfilled, then the the natural
representation ∆ of G induces a Γ-equivariant k-algebra homomorphism
kG/ rad(kG) → ∆(kG). Since kG/ rad(kG) is semisimple, it is easy to
see that ∆(kG) is Γ-isomorphic to a simple component of kG/ rad(kG).
Therefore, the central simple Γ-algebra ∆(kG) does not depend on K and
on Γ solely as an abstract group.
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2. The proof of theorem (3.2.1) is constructive in the sense that it provides
an explicit construction of a (K/k,−)-representation of G. Nevertheless
the actual computations are non trivial and involve computations in the
second cohomology group and computational class field theory.

3. Lemma (2.2.6) implies that the assumptions of (3.2.1) can be checked
using the natural character χ. Specifically they are fulfilled if and only if
the natural character fulfills the condition of (2.2.2).

To recognize elements of the Brauer-Clifford group and to decide if a
U -field K is an equivariant splitting field come up as natural problems. A first
reduction will be a restriction to certain subgroups of U . For this reason it is
important to study the interplay of the scalar extension map extK/L and the
subgroup restriction map of (3.1.8).

Let BrCliff(U,L,K) be the set of equivalence classes of central simple U -
algebras over L for which K is a splitting field (as a central simple L-algebra).
Clearly, this is a subgroup of BrCliff(U,L).

Given a U -field K and a subgroup N of U , the inclusion map N → U
induces a natural map res : Hn(U,K∗)→ Hn(N,K∗) on the cohomology. This
map is called the restriction homomorphism. For further details see [Ser79].

Lemma 3.2.3. Let N be a subgroup of U and K a U -field extensions of L.
Denote by extK/L, resN and h the maps of (3.1.6), (3.1.8) and (3.1.10). Then
the following diagram is commutative.

BrCliff(U,L,K)
extK/L

//

resN
��

FMBrCliff(U,K)

resN

��

h
// H2(U,K∗)

res
��

BrCliff(N,KNL,K)
ext

K/KNL

// FMBrCliff(N,K)
h

// H2(N,K∗)

Proof. A verification

The idea is to use the following fact from group cohomology: An element
λ of H2(U,K∗) is trivial if and only if λ is in the kernel of res : H2(U,K∗) →
H2(Up,K

∗) for all Sylow p-subgroups of U . Combining this fact with lemma
(3.2.3) leads to the following theorem, which shows that it is possible to restrict
oneself to the case that U is a p-group.

Corollary 3.2.4. Let K be a U -field extension of L and A be a central simple
U -algebra such that [A] is an element of BrCliff(U,L,K). Then [A] is in the
kernel of the map extK/L if and only if it is in the kernel of extK/KUpL ◦ resUp
for all Sylow p-subgroups of U .

3.3 A subgroup of the Brauer-Clifford group

In this section we look at a subgroup of the Brauer-Clifford group which
admits a convenient description via cohomological methods.
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Assume that K and L are Galois extensions of k and L is a subfield of
K. Let Γ be the Galois group of K/k and view K and L as Γ-fields via the
natural action of Γ.

Consider a central simple k-algebra as a central simple Γ-algebra over k
with trivial action of Γ. This provides an injective homomorphism Br(k) →
BrCliff(Γ, k). Use this homomorphism to identify the Brauer group Br(k)
with a subgroup of BrCliff(Γ, k). Then the scalar extensions map extL/k (cf.
3.1.6) is a homomorphism Br(k) → BrCliff(Γ, L). We will show that this map
is injective, hence it is possible to identify the Brauer group with a subgroup
of the Brauer-Clifford group.

Denote by Br(K|k) the set of equivalence classes of central simple k-algebras,
for which K is a splitting field. This is a subgroup of the Brauer group Br(k).
In [Ser79, Chapter X] Serre obtains an isomorphism δ : Br(K|k)→ H2(Γ,K∗)
via descent theory.

Let B be a central simple k-algebra of dimension n2, for which K is a
splitting field. View B as a central simple Γ-algebra with trivial action of Γ on
B. Since K is a splitting field of B, the scalar extension of B by the Γ-field
K can be identified with Kn×n. Via this identification view Kn×n as a central
simple Γ-algebra over K. Note that we are dealing with two Γ-actions on Kn×n.
To distinguish both actions we write Γ×Kn×n → Kn×n : (σ, x) 7→ σ(x) if the
entrywise application is meant and Γ ×Kn×n → Kn×n : (σ, x) 7→ σ̂(x) for the
Γ-action coming from the identification of the central simple Γ-algebra B⊗kK
with Kn×n. Applying proposition (3.1.11) there exists a collection of matrices
{Xσ}σ∈Γ with the property

Xσσ(x)X−1
σ = σ̂(x) for all x ∈ Kn×n(3.2)

Note that B is isomorphic, as k-algebras, to the fixed algebra of Kn×n under Γ.
Use (3.2) to see that this fixed algebra is given by {x ∈ Kn×n | Xσσ(x)X−1

σ =
x}. A 2-cocycle, representing the cohomology class of δ(B), is Γ × Γ → K∗ :
(s, t) 7→ Xss(Xt)X

−1
st [Ser79, Example 2, p. 159]. This cocycle also represents

the cohomology class of h(extK/k([B])) by (3.1.11). Going over to the Brauer-
Clifford group yields the following lemma.

Lemma 3.3.1. The diagram

Br(K|k)
δ //

extK/k ((

H2(Γ,K∗)

FMBrCliff(Γ,K)

h
66

is commutative.

Note that h and δ in (3.3.1) are isomorphisms. Since the kernel of extK/k :
Br(k) → BrCliff(Γ,K) is contained in Br(K|k), the map extK/k is injective.
Furthermore, the factorization extK/k = extK/L ◦ extL/k implies that extL/k is
injective.

Now look at the subgroup of BrCliff(Γ, L) generated by FMBrCliff(Γ, L)
and extL/k(Br(k)). Denote this group by ExFMBrCliff(Γ, L). It is easy to
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see that the intersection of extL/k(Br(k)) and FMBrCliff(Γ, L) is isomorphic to
Br(L|k). Identify the Brauer group Br(k) with extL/k(Br(k)), then the next
remark describes the structure of ExFMBrCliff(Γ, L).

Remark 3.3.2. The group ExFMBrCliff(Γ, L) is a central product of Br(k)
with FMBrCliff(Γ, L) over Br(L|k) that is:

ExFMBrCliff(Γ, L) = FMBrCliff(Γ, L) �Br(L|k) Br(k)

Note that FMBrCliff(Γ, L) is isomorphic to the second cohomology group
H2(Γ, L∗).

The group ExFMBrCliff(Γ, L) is interesting for two reasons. Firstly, its
elements can be recognized via cohomological methods and hence it admits a
convenient description via group cohomology. Secondly, in a number of cases it
coincides with Brauer-Clifford group. For example this happens if (L/k)
is a cyclic extension.

Theorem 3.3.3. Let (L/k) a cyclic Galois extension and Γ a finite group
acting on L as field automorphisms. Assume that LΓ = k, then BrCliff(Γ, L) =
ExFMBrCliff(Γ, L).

Proof. Let [A] ∈ BrCliff(Γ, L), H := Gal(L/k) and κ : BrCliff(Γ, L)→ Br(L)H

as in (3.1.2). Denote by res the map Br(k) → Br(L) : C 7→ C ⊗k L. The
following exact sequence is due to Teichmüller [Tei40]

H2(H,L∗) // Br(k) res
// Br(L)H // H3(H,L∗)

Cohomology of cyclic groups yields that H3(H,L∗) is trivial. Hence there exists
an B ∈ Br(k) such that res(B) = κ([A]). Therefore extL/k(B)−1[A] is an
element of FMBrCliff(Γ, L). This proves the theorem.

Choosing L = k yields [Tur09a, Corollary 3.13].

Corollary 3.3.4. If L = k, then BrCliff(Γ, k) ∼= Br(k)× FMBrCliff(Γ, k)

Turning back to the general case, assume that K/k is a finite Galois exten-
sion with group Γ and that L is a subfield of K which is Galois over k. View
K and L as Γ-fields via the natural Γ action. Let ExFMBrCliff(Γ, L,K) be the
group generated by FMBrCliff(Γ, L) and extL/k(Br(K|k)). The next problem
is to find necessary and sufficient conditions on K to be an equivariant splitting
field of a central simple Γ-algebra A over L with [A] ∈ ExFMBrCliff(Γ, L). In
particular if K is an equivariant splitting field of A, then K is a splitting field
of A considered as a central simple L-algebra. This provides some necessary
conditions on K and we can assume that [A] ∈ ExFMBrCliff(Γ, L,K).

It is clear that there exists a, not unique, factorization of [A] as:

[A] = extL/k([B])[C] with [B] ∈ Br(K|k) and [C] ∈ FMBrCliff(Γ, L)
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The next step is to calculate h(extK/L([A])). Use lemma (3.3.1) to see:

h(extK/L([A])) = h(extK/k([B])h(extK/L([C]))

= δ([B])h(extK/L([C]))

The next proposition shows that it is possible to calculate h(extK/L([C]))
from h([C]).

Proposition 3.3.5. The inclusion L→ K is Γ-equivariant and induces a map
τL,K : Hn(Γ, L∗) → Hn(Γ,K∗) on the cohomology. Then h(extK/k([C])) =
τL,K(h([C])) for all [C] ∈ FMBrCliff(Γ, L)

Proof. Directly from (3.1.11) and the natural embedding Ln×n → Kn×n

Summing up gives:

Lemma 3.3.6. Let [A] ∈ ExFMBrCliff(Γ, L,K), [B] ∈ Br(K|k) and [C] ∈
FMBrCliff(Γ, L) such that [A] = [extL/k([B])][C], then

h(extK/k([A])) = δ([B])τL,K(h([C])) in H2(Γ,K∗)

Since [B] and h([C]) do not depend on K, lemma (3.3.6) can be used to
obtain necessary and sufficient conditions on K to be an equivariant splitting
field.

If k is a number field, one can be more specific. First of all, recall some
constructions from the theory of central simple algebras. Given a 2-cocycle in
Z2(Γ,K∗), it is possible to construct a crossed product algebra. This construc-
tion induces an isomorphism between H2(Γ,K∗) and Br(K|k).

Let B be a central simple k-algebra B, for which K is a splitting field.
The crossed product algebra defined by the 2-cocycle δ(B) is equivalent to the
opposite algebra Bo of B (cf. [Ser79, p159]).

Recall the theorem of Brauer-Hasse-Noether, which says that the se-
quence

1 // Br(k) //
⊕

p Br(kp)
inv // Q/Z(3.3)

is exact, where p runs through all primes of the field k. The map inv is called
the Hasse invariant map, computed locally on each component: inv =

∑
invkp .

The maps invkp are called Hasse invariants. For more details on Hasse invari-
ants and central simple algebras see [Rei75].

We saw that there exists a factorization of [A] as

[A] = [extL/k([B])][C] with [B] ∈ Br(k) and [C] ∈ FMBrCliff(Γ, L)

Let τL,K : H2(Γ, L∗) → H2(Γ,K∗) be the map of (3.3.5) and DL,K the crossed
product algebra corresponding to the cocycle τL,K(h([C])). Lemma (3.3.6) im-
plies that K is an equivariant splitting field of A if and only if the 2-cocycle
δ([B])τL,K(h([C])) is a coboundary. This is the case if and only if [Bo][DL,K ]
is trivial in the Brauer group. Using sequence (3.3), this is equivalent to

invp([B
o]) + invp([DL,K ]) = 0 ∈ Q/Z for all primes p of k
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Hence K is an equivariant splitting field of A if and only if the crossed product
algebra DL,K is equivalent to B. Note that B is independent of K. The next
example will illustrate this strategy.

Example 3.3.7. Let k = Q, G = Q8 = 〈a, b | a4, a2b2, abab−1〉, then

∆(a) =

(
i 0
0 −i

)
, ∆(b) =

(
0 −1
1 0

)
defines a faithful representation of Q8. Let u be the inner automorphism of Q8

induced by conjugation with ∆(b) and U the subgroup of Aut(Q8) generated
by u.

Let K be a quadratic extension of Q, with Galois group Γ and view K as
a Γ-field. Let − : Γ→ U sending the generator of Γ to u.

Extend the Γ-action on ∆(G) via − to an action on the enveloping alge-
bra ∆(QG) as Q-algebra automorphisms. View ∆(QG) as a central simple
Γ-algebra over Q. Since BrCliff(Γ,Q) is a direct product of FMBrCliff(Γ,Q)
and Br(Q) by (3.3.4), there exists a unique factorization

[∆(QG)] = [B][C] with [B] ∈ Br(k) and [C] ∈ FMBrCliff(Γ,Q)

More precisely B is the quaternion algebra Q( (−1,−1)
Q ) with trivial Γ-action

and C is the matrix algebra Q2×2, where the Γ action is given by σ(X) =
∆(b)X∆(b)−1 for X ∈ Q2×2.

We want to find necessary and sufficient conditions on K to be an equivari-
ant splitting field of ∆(QG).

The Q-algebra B is isomorphic to Bo and the Hasse invariants are

inv2([B]) =
1

2
, inv∞([B]) =

1

2
, invp([B]) = 0 other primes p of Q

It is well known that K is a splitting field of B if and only if

(KP : Q2) = 2 with P|Q = 2 and (K∞ : R) = 2(3.4)

Since ∆(b)2 = −1,

h([C]) : Γ× Γ→ Q : (σ, τ) 7→

{
−1, if σ = τ = u

1, otherwise

is a cocycle representing the cohomology class of h([C]). Let DQ,K be the
crossed product algebra defined by τQ,K(h([C]). Then the conditions on K to
be an equivariant splitting field are (3.4) and

inv2([DQ,K ]) =
1

2
, inv∞([DQ,K ]) =

1

2
, invp([DQ,K ]) = 0 other primes p of Q

Because DQ,K is a cyclic algebra (K/Q, σ,−1), with σ a generator of Gal(K/Q),
it is possible to give the conditions on K in a more satisfactory way.

Let K = Q(
√
D) where D ∈ Z is square-free and denote by D the discrim-

inant of K. It is obvious that the condition inv∞([DQ,K ]) = 1
2 implies that
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D < 0. The other condition inv2([DQ,K ]) = 1
2 implies that K is ramified at the

prime 2, which is equivalent to the fact that

2 | D =

{
D, if and only if D ≡ 1 mod 4

4D, if and only if D ≡ 2, 3 mod 4

This shows that D ≡ 2, 3 mod 4. Assume that p is a prime with p - D
and define p := (p). Since p is unramified, the condition invp([DQ,K ]) = 0
is fulfilled. Now assume that p | D, then the condition can be written as(
−1,D

p

)
= 1 where

(
◦ , ◦
p

)
is the Hilbert-symbol [Neu99]. Using the explicit

formula of the Hilbert symbol in the quadratic case, one concludes that p ≡ 1
mod 4. Hence all quadratic extensions K/Q with the property that there exist
a irreducible and faithful (K/Q,−)-representation ∆ : G → GL2(K) of Q8 are
given by: K = Q(

√
D) where D = −

∏
i pi or D = −2

∏
i pi and pi ∈ N are

primes with pi ≡ 1 mod 4.

We look at a example related to Nebe’s recently discovered extremal uni-
modular 72-dimensional lattice Λ72 [Neb].

Example 3.3.8. Let G = SL2(25), K/Q a Galois extension of degree 2
with group Γ, χ := χ17 be the 12-dimensional complex character in ATLAS
[CCN+85] notation. This character has Schur-index 2 over Q and the corre-
sponding component of the group algebra B has the Hasse invariants

inv5([B]) =
1

2
, inv∞([B]) =

1

2
, invp([B]) = 0 other primes p of Q

One checks that there exists only one conjugacy class of elements of order
2 in Aut(G) with the property that its elements fix the character χ and are
not inner automorphism. Choose an element ϕ of this class and define Γ →
Aut(G) , σ 7→ ϕ. Since ϕ fixes χ it turns the component B into a central simple
Γ-algebra over Q.

By (3.3.4) BrCliff(Γ,Q) is a direct product of FMBrCliff(Γ,Q) and Br(Q),
hence there exists a unique factorization

∆(QG)] = [B][C] with [B] ∈ Br(Q) and [C] ∈ FMBrCliff(Γ,Q)

More precisely B is the algebra ∆(QG) considered as a Γ-algebra with trivial
Γ-action and C is the matrix algebra Q12×12 with a non trivial Γ action. Using
the Atlas we see that χ extends to a character of SL2(25)oΓ which has values
in Q(

√
−5). From [Tur00, Theorem 3.4] we deduce that

h([C]) : Γ× Γ→ Q : (σ, τ) 7→

{
−5, if σ = τ 6= 1

1, otherwise

is a cocycle representing the cohomology class of h([C]). Let DQ,K be the
crossed product algebra defined by τQ,K(h([C]). Then the conditions on K to
be an equivariant splitting field are

inv5([DQ,K ]) =
1

2
, inv∞([DQ,K ]) =

1

2
, invp([DQ,K ]) = 0 other primes p of Q
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Let K = Q(
√
D) where D ∈ Z is square-free and denote by D the discriminant

of K. It is obvious that the condition inv∞([DQ,K ]) = 1
2 implies that D < 0.

We give the various other conditions in an explicit form:

1. Assume that p - D and p 6= 5. Since p is not ramified in K the condition(
−5,D

p

)
= 1 is redundant.

2. Assume that p | D and p 6= 2, 5. Using the explicit formulas for the

Hilbert-symbol, the condition
(
−5,D

p

)
= 1 is equivalent to p ≡ 1 mod 4.

3. The condition
(
−5,D

5

)
= −1 we split in two cases. If 5 - D one easily

checks that the condition is equivalent to D ≡ 2, 3 mod 5. If 5 | D it is

equvialent to
(
D/5

5

)
= −1 where

( ·
5

)
denotes the Legendre-symbol.

4. The last condition to look at is
(
−5,D

2

)
= 1. If 2 | D and 2 - D, this

is equivalent to D ≡ 1 mod 4. If 2 | D, then the condition is given by
−3(D−2

4 )− 3 ≡ 0 mod 2.

With those explicit conditions we see that for example Q(
√
−2),Q(

√
−3) or

Q(
√
−7) are equivariant splitting fields.
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Chapter 4

Applications of the
Brauer-Clifford theory

Let K/k finite Galois extension with group Γ and G a finite subgroup of
GLn(K). In this chapter the Brauer-Clifford theory is applied to study the
existence of(K/k)-forms of G for k being a finite field or the real numbers. The
existence question of (2.2.1) admits a satisfactory treatment in both cases. For
finite fields it turns out that the necessary condition of remark (2.2.2) is also
sufficient. Reproving a result of [KM90], a twisted version of the Frobenius-
Schur indicator answers the existence question for the real numbers. Hence,
in both cases the answer to the existence question depends solely on group
theoretic data.

If the finite matrix group can be realized over its character field, general
sufficient conditions for the existence of a (K/k)-form are obtained in the third
section. Those are used to study the case of G being a subgroup of GLn(Q) and
isomorphic to PSL2(q), where q is a power of an odd prime. It is shown that
G is conjugate to a subgroup of GLn(Q(χ)), where χ is the natural character
of G, with a set of fundamental invariants whose coefficients lie in the minimal
possible subfield of Q(χ).

4.1 Forms over finite fields

Let k be a finite field and K a finite field extension of k with Galois group Γ.
Using the well known fact that H2(Γ,K∗) is trivial, the main theorem (3.2.1)
can be simplified.

Corollary 4.1.1. Let K/k a finite Galois extension with group Γ, G ≤
GLn(K) a finite absolutely irreducible matrix group, ∆ the natural represen-
tation of G, χ the natural character, and − : Γ→ Aut(G) an embedding. Then
there exists a (K/k,−)-representation of G, conjugate in GLn(k) to the natural
representation if and only if σ ◦ χ = χ ◦ σ for all σ ∈ Γ.

Proof. The only non trivial part is the ”if” part. Assume σ ◦ χ = χ ◦ σ for
all σ ∈ Γ. Lemma (2.2.6) implies that the assumptions of the main theorem
(3.2.1) are fulfilled. So, consider ∆(kG) as a central simple Γ-algebra over
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its center L (cf. 3.2.1). We have to show that K is an equivariant splitting
field of ∆(kG), and to see this we have to calculate extK/L([∆(kG)]). Note
that extK/L([∆(kG)]) is an element of FMBrCliff(Γ,K), and by (3.1.10) this

group is isomorphic to H2(Γ,K∗). As mentioned, it is well known from Galois
cohomology that H2(Γ,K∗) is trivial. Hence K is an equivariant splitting field
of ∆(kG).

Remark 4.1.2. In case of finite fields, the condition given in remark (2.2.2)
is necessary and sufficient for the existence of a (K/k,−)-representation of G
conjugate in GLn(k) to the natural representation.

4.2 Forms over R

Let k be the real field R, Γ = Gal(C/R), G be a finite and absolutely irreducible
subgroup of GLn(C) with natural character χ and natural representation ∆ :
G→ GLn(C). Let u be an element of order 2 in Aut(G) and let

− : Γ→ Aut(G)

be the embedding sending the generator σ of Γ to u.

The sum ε(χ) = 1
|G|
∑

g∈G χ(g2) is called the Frobenius-Schur indicator.
It has the well known property that:

ε(χ) =


1, if and only if R(χ) = R and mR(χ) = 1

−1, if and only if R(χ) = R and mR(χ) = 2

0, if and only if R(χ) = C
(4.1)

where mR(χ) is the Schur index of the character χ over R cf. [Isa76, Chapter
10] A twisted version of the Frobenius-Schur indicator was defined in [KM90]
as

εu(χ) =
1

|G|
∑
g∈G

χ(gu(g))

The next theorem due to Kawanaka and Matsuyama links the twisted
Frobenius-Schur indicator to the existence of (C/R)-forms of G.

Theorem 4.2.1. Let G ≤ GLn(C) be a finite matrix group, u be an element of
order 2 in Aut(G). Then

εu(χ) =


1, if and only if χ ◦ u = χ and there exists a (C/R)-form of G

−1, if and only if χ ◦ u = χ and there is no (C/R)-form of G

0, otherwise

We will prove this theorem using Brauer-Clifford theory. Assume that
χ ◦ σ = σ ◦ χ. Hence the enveloping algebra ∆(RG) can be considered as a
central simple Γ-algebra over R(χ) as in (3.2.1). Distinguish two cases:

Case 1: R(χ) = C:
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Since C is algebraically closed, identify BrCliff(Γ,C) and FMBrCliff(Γ,C).
View the map h of (3.1.10) as an isomorphism h : BrCliff(Γ,C) → H2(Γ,C∗).
It is well known that H2(Γ,C∗) is isomorphic to Br(R) and the latter group is
cyclic of order 2. View h as a map h : BrCliff(Γ,C)→ Z2. Then

h(∆(RG)) =

{
1, if and only if mR(χGoΓ) = 1

−1, if and only if mR(χGoΓ) = 2

Case 2: R(χ) = R:
Identify BrCliff(Γ,R) with Br(R)× FMBrCliff(Γ,R) (cf. 3.3.4). Hence the

map

(δ, h) : BrCliff(Γ,R)→ H2(Γ,C∗)×H2(Γ,R∗) : [B][C] 7→ (δ(B), h([C]))

is an isomorphism. Identify H2(Γ,C∗) with Z2 as in the first case. Because Γ
acts trivially on R, the group H2(Γ,R∗) is isomorphic to R∗/R∗2 and the latter
is a cyclic group of order 2. View (δ, h) as a map BrCliff(Γ,R)→ Z2×Z2. Use
Clifford theory to see that there exists an extension Θ ∈ Irr(G o Γ) of the
character χ. This extension is unique up to complex conjugation. Then

(δ, h)(∆(RG)) =


(1, 1), if and only if mR(χ) = 1,R(Θ) = R and mR(Θ) = 1

(1,−1), if and only if mR(χ) = 1,R(Θ) = C and mR(Θ) = 1

(−1, 1), if and only if mR(χ) = 2,R(Θ) = R and mR(Θ) = 2

(−1,−1), if and only if mR(χ) = 2,R(Θ) = C and mR(Θ) = 1

Observe that all possibilities of the cases 1 and 2 can be distinguished using
the Frobenius-Schur indicator of the characters χ and Θ. The next lemma
shows that the twisted Frobenius-Schur indicator can be calculated from the
Frobenius-Schur indicators of those two characters.

Lemma 4.2.2. Let u be an element of order 2 in Aut(G). Assume that θ is
an irreducible complex character of Go U with 〈θ|G, χ〉 6= 0, then:

ε(θ) =
1

2

θ(1)

χ(1)
(ε(χ) + εu(χ))

Proof. Directly from Clifford theory and a calculation

Assume we are in case 2 of the discussion above. Lemma (3.3.6) implies
that the following diagram is commutative

BrCliff(Γ,R)
extC/R //

(δ,h)

��

FMBrCliff(Γ,C)

h
��

Z2 × Z2
(a,b)→ab // Z2

Hence it is easy to decide if C is an equivariant splitting field.
Use the formula of lemma (4.2.2) and the property (4.1) to see that the

twisted Frobenius-Schur is 1 if C is an equivariant splitting field and −1 if
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C is not. Furthermore, the same result is obtained in case 1. This shows that
if χ ◦u = χ, then the twisted Frobenius-Schur indicator determines whether
or not there exists a (C/R)-form of G.

Assume χ ◦ σ 6= σ ◦ χ. Use Clifford theory, property (4.1) and lemma
(4.2.2) to see that εu(χ) = 0. Summing up, one gets the theorem (4.2.1).

4.3 Sufficient conditions for the existence Q-forms

Let k be a number field, K a finite Galois extension of k with group Γ, G
a finite and absolutely irreducible subgroup of GLn(K), χ the corresponding
natural character, ∆ the natural representation, and − : Γ → Aut(G) an em-
bedding. Assume that the Schur index of χ is one and the condition of (2.2.2)
is satisfied. In this case it is possible to give sufficient conditions for the ex-
istence of a (K/k,−)-representation of G conjugate in GLn(k) to the natural
representation, depending solely on character theoretic data.

The idea is to find conditions which imply that the central simple Γ-algebra
∆(kG) (cf. 3.2.1) represents the trivial element of the Brauer-Clifford
group. If this is the case, then it is easy to see that K is an equivariant splitting
field. Hence there exists a (K/k,−)-representation of G by (3.2.1). Denote the
Schur index of χ over k by mk(χ).

Lemma 4.3.1. Assume the situation of the preceding discussion, specifically
that the Schur index of χ is one. If there exists an irreducible complex character
ζ of the semidirect product Go Γ with

k(ζ) = k, mk(ζ) = 1 and ζ|G =
∑
σ∈H

σ ◦ χ where H = Gal(k(χ)/k),

Then there exists a (K/k,−)-representation of G with character χ.

Proof. The Schur index of χ is one, so it can be assumed that G is a subgroup
GLn(Q(χ)). Because the condition of (2.2.2) is satisfied, view ∆(kG) as a cen-
tral simple Γ-algebra as in (3.2.1). We claim that [∆(kG)] represents the trivial
element of BrCliff(Γ, k(χ)). It is easy to see that [∆(kG)] ∈ FMBrCliff(Γ, k(χ)),
hence it is enough to show that h(∆(kG)) is a coboundary.

Let ι : k(χ)n×n → kl×l be the k-algebra homomorphism induced by re-
stricting scalars. Obviously, there exists a representation Θ : Go Γ→ GLl(k),
affording ζ, with the property Θ(g) = ι(∆(g)) for every g ∈ G. Define the map
F : Γ → kl×l : σ 7→ Θ(σ), then ι and F fulfill the requirements of (3.1.10).
Hence h([∆(kG)])(s, t) = Θ(s)Θ(t)Θ(st)−1 = 1 for all s, t ∈ Γ, and this shows
that h(∆(kG)) is a coboundary. Therefore K is an equivariant splitting field of
∆(kG) and the result follows from (3.2.1).

Using (3.1.12), another sufficient condition can be obtained, cf. [MM,
Proposition 8.1].

Corollary 4.3.2. Let G be a finite subgroup of GLn(K) with natural char-
acter χ, where K/k is a Galois extension with Galois group Γ. Choose
− : Γ → Aut(G) to be an embedding and assume that the the condition of
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(2.2.2) is fulfilled. If |Γ| is prime to the degree of χ, then there exists a (K/k,−)-
representation of G with character χ.

4.4 Q-forms of matrix groups isomorphic to PSL2(p
l)

Let G be an absolutely irreducible subgroup of GLn(Q) with natural character
χ. Assume that G is isomorphic to PSL2(q), where q is a power of an odd prime
p. Let k be the minimal subfield of Q(χ) with the property that a subgroup of
Aut(G) acts transitively on the set of Galois conjugates of χ over k. The aim
is to show that there exists a (Q(χ)/k)-form of G.

To determine k, identify G with PSL2(q) and consider an arbitrary faithful
and irreducible complex character χ of PSL2(q). Note that every automorphism
of PSL2(q) is induced by a unique automorphism of SL2(q) [Die51]. View χ as
a character of SL2(q), then it is possible to work with SL2(q). So let χ be an
irreducible complex character of SL2(q).

At first, recall some basic facts about SL2(q). Let ν be a generator of F∗q
and define

1 =

(
1 0
0 1

)
, z =

(
−1 0
0 −1

)
, c =

(
1 0
1 1

)
, d =

(
1 0
ν 1

)
a =

(
ν 0
0 ν−1

)
, b element of order q+1

Then the conjugacy classes of SL2(q) are:

(1), (z), (c), (d), (cz), (dz), (al), (bm) with 1 ≤ l ≤ q − 3

2
and 1 ≤ m ≤ q − 1

2

Let ε := (−1)
q−1

2 , ρ ∈ C a primitive (q−1)th root of unity and σ ∈ C a primitive
(q + 1)th root of unity. Then the complex character table of SL2(q) is

1 z c d al bm

1G 1 1 1 1 1 1
ψ q q 0 0 1 −1
χi q + 1 (−1)i(q + 1) 1 1 ρil + ρ−il 0
Θj q − 1 (−1)j(q − 1) −1 −1 0 −(σjm + σ−jm)

ζ1
q+1

2
1
2ε(q + 1) 1

2(1 +
√
εq) 1

2(1−√εq) (−1)l 0

ζ2
q+1

2
1
2ε(q + 1) 1

2(1−√εq) 1
2(1 +

√
εq) (−1)l 0

η1
q−1

2 −1
2ε(q − 1) 1

2(−1 +
√
εq) 1

2(−1−√εq) 0 (−1)m+1

η2
q−1

2 −1
2ε(q − 1) 1

2(−1−√εq) 1
2(−1 +

√
εq) 0 (−1)m+1

with 1 ≤ i ≤ q−3
2 and 1 ≤ j ≤ q−1

2 .
It is well known that Aut(SL2(q)) is isomorphic to the projective semilinear

group PΓL2(q) [Die51]. This group is a semidirect product of PGL2(q) with
Gal(Fq/Fp). The subgroup of PGL2(q) generated by the matrix(

−1 0
0 1

)
if q ≡ 3 mod 4 and

(
0 ν
−1 0

)
if q ≡ 1 mod 4(4.2)
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is a complement of PSL2(q) in PGL2(q) and cyclic of order 2. Hence PGL2(q)
is a semidirect product PSL2(q)o C2.

Let u be the automorphism of SL2(q) induced by conjugation with the
matrix of (4.2) and F the automorphism induced by the Frobenius automor-
phism of Fq. Note that the images of u and F under the natural epimorphism
Aut(SL2(q))→ Out(SL2(q)) generate the outer automorphism group.

To study the action of Aut(SL2(q)) on the irreducible complex characters,
we have to analyze the action on the conjugacy classes. It is clear that the
automorphism group can be replaced by the group of outer automorphisms.
So it is enough to consider u and F . Since u and F are given explicitly, the
following table can be calculated easily.

C (1) (z) (c) (d) (al) (bm)
uC (1) (z) (d) (c) (al) (bm)
FC (1) (z) (c) (d) (apl) (bpm)

This table determines the action of Out(SL2(q)) on the conjugacy classes
completely. A close look at the character table reveals the following fact and
determines the field k.

Remark 4.4.1. Assume that the character field of χ is a proper extension of Q.
The natural action of Out(SL2(q)) on the set of irreducible complex characters
induces an action on Q(χ) as field automorphisms. Let k be the fixed field of
this action or, if χ has values in Q, let k = Q. In all cases k is a minimal subfield
of the character field with a subgroup of Aut(SL2(q)) acting transitively on the
set of Galois conjugates of χ over k. Furthermore, Gal(Q(χ)/k)) is a cyclic
group.

In case that the character field is a proper extension of Q, there exists
a natural epimorphism π : Aut(SL2(q)) → Gal(Q(χ)/k) with the property
π(ϕ) ◦ χ = χ ◦ ϕ for all ϕ ∈ Aut(SL2(q)).

Lemma 4.4.2. Assume that the character field of χ is a proper extension of
Q. Then the natural epimorphism π : Aut(SL2(q)) → Gal(Q(χ)/k) admits a
section.

Proof. Recall that u is the automorphism of SL2(q) induced by conjugation
with the matrix of (4.2) and F the automorphism induced by the Frobenius.
It is easy to see that u has order 2 and F has order ν where q = pν . Let λ be a
generator of the cyclic group Gal(Q(χ)/k). If χ ∈ {ζ1,2, η1,2}, then k = Q and
the map Gal(Q(χ)/Q) → Aut(SL2(q)) : λ 7→ u defines a section of π. In case
that χ ∈ {χi,Θj}, then it is easy to see that there exists an l ∈ N such that
Gal(Q(χ)/k)→ Aut(SL2(q)) : λ 7→ F l defines a section.

Note that remark (4.4.1) and lemma (4.4.2) are, mutatis mutandis, true if
χ is a complex character of PSL2(q).

Theorem 4.4.3. Let G be an absolutely irreducible subgroup of GLn(Q) iso-
morphic to PSL2(q) and χ the natural character of G. Then there exists a
(Q(χ)/k)-form of G with k given in (4.4.1).
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Proof. Recall that every character of PSL2(q) has Schur index one [SS83]. As-
sume that χ has values in Q, then there exists a subgroup of GLn(Q) conjugate
to G. This subgroup is clearly a Q-form of G.

Assume that the character field of χ is a proper extension of Q and identify
G with PSL2(q). Let Γ := Gal(Q(χ)/Q) and take a section − : Γ→ Aut(G) of
π cf. 4.4.2. Then σ ◦ χ = χ ◦ σ for all σ ∈ Γ. This shows that the condition of
(2.2.2) is fulfilled.

Assume that χ ∈ {η1, η2, ζ1, ζ2}. Recall that in those cases k = Q, Γ is
cyclic of order 2 and n, the degree of χ, is odd. Then by (4.3.2) there exists a
(Q(χ)/Q,−)-representation of G.

Let 1 ≤ i ≤ q−3
2 , i even and χ = χi. Choose the section of − given in the

proof of (4.4.2). Note that σ = F l for an l ∈ N. Use Clifford theory to
see that χGoΓ is an irreducible complex character of G o Γ with the following
properties:

k(χGoΓ) = k and (χGoΓ)|G =
∑
σ∈H

σ ◦ χ where H = Gal(k(χ)/k).

To apply (4.3.1), it remains to check that the Schur index over k of χGoΓ is
one. View χ as a character of G = SL2(q), then it is enough to show that the
Schur index over k of χGoΓ is one.

Let N := 〈a, x〉 and A := 〈a〉 with

x :=

(
0 −1
1 0

)
, a :=

(
ν 0
0 ν−1

)

and for 1 ≤ k ≤ (q−3)
2 define the characters λk : A → C∗ : a 7→ ρk. The proof

of [SS83, Lemma 2.1] shows that:

〈χk, λk〉A = 3 and 〈χk, λl〉A = 2 if l 6= k

In particular, 〈γ ◦ χ, λi〉 = 2 for any non trivial Galois automorphism γ ∈
Gal(Q(χ)/k). Use this, Clifford theory and Frobenius reciprocity to see
that 〈χGoΓ

i , λGoΓ
i 〉 is odd. Assume for the moment that the character λGoΓ

i

is afforded by a representation over k. Since the Schur index of χGoΓ over k
divides 〈χGoΓ

i , λGoΓ
i 〉, it has to be odd. Applying the Brauer-Speiser theorem

one sees that the Schur index of χGoΓ
i over k has to be one.

It remains to show that there exists a representation over k affording λGoΓ
i .

The group N is obviously Γ-invariant, hence it is sufficient to show that λNoΓ
i

is afforded by a representation over k. Let a ∈ N act on Q(ρi) as left multipli-
cation with ρi, x ∈ N by applying complex conjugation and F l by applying the
Galois-automorphism ρi 7→ ρip

l
. This turns Q(ρi) into an k(N o Γ)-module

and it is easy to see that the corresponding representation over k affords λNoΓ
i .

Let 1 ≤ j ≤ (q−1)
2 , j even and χ = Θj . This case can be treated analogously

to the last case. Note that N has to be replaced by NG(〈b〉) and lemma (2.2)
of [SS83] by lemma (2.1).
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Let K/k be a Galois extension with group Γ, G a finite subgroup of
GLn(K) and assume that G is defined over k. The fixed group GΓ is a subgroup
of GLn(k) and is called the subgroup of k-rational points.

Remark 4.4.4. Denote by Fpr ≤ Fq = Fpf the fixed field of the map F l used
in the proof of (4.4.3). The (Q(χ)/k)-forms constructed in this proof have the
following subgroups of k-rational points:

• PSL2(pf ) if χ has values in Q

• Dq−1 if χ ∈ {η1, η2}

• Dq+1 if χ ∈ {ζ1, ζ2}

• PGL2(pr) if 2r | f and χ is χi or Θj

• PSL2(pr) if 2r - f and χ is χi or Θj

A 3-dimensional representation of PSL2(7) over Q(
√
−7) which has S3 as the

subgroup of Q-rational points can be found in [Elk99].

Proof. Identify G with PSL2(q) and obtain − : Γ → Aut(G) from the proof
of (4.4.3). Then the group of k-rational points is the fixed group of PSL2(q)
under Γ. Since the subgroups of PSL2(q) are well known, cf. [Hup67, Chapter
2, Theorem 8.5] and due to the explicit description of the image of −, the fixed
groups can be calculated easily.



Chapter 5

Skew group rings

Let k = Q, K/Q a finite Galois extension with group Γ, G a finite subgroup of
GLn(K), ∆ the natural representation of G and − : Γ→ Aut(G) an embedding.
Theorem (2.3.3) establishes a correspondence between (K/k,−)-representations
of G (2.1.12) and modules over the skew group ring K ∗ E where E = G o Γ.
The objective of this chapter is to study those K ∗E-modules. Actually, slightly
more general skew group rings are considered i.e. we do not necessarily assume
that E is a split extension of a finite group G with Γ. Shoda and Nakayama
[NS36] showed that K ∗ E is a semisimple Q-algebra and noted that, if K is a
splitting field of QG, the number of components of K ∗E equals the number of
components of the group ring KG. In a more recent paper [Kün04] and without
restrictions on K, Künzer proved Fourier inversion and a Plancherel-
formula for K ∗ E. He introduced characters of K ∗ E-modules and deduced
Schur relations for them. However, the character values were not calculated
explicitly.

The first section takes a step towards an explicit calculation. As a first
approximation A := C⊗QK ∗E-modules respectively their characters are stud-
ied. The main result, given in theorem (5.1.2), is an explicit correspondence
between the characters of A-modules and the complex characters of G. Hence,
A-modules are uniquely defined by their characters and the scalar product for
characters of G can be used to calculate a decomposition into irreducibles. To
describe the characters of A a modified character table is defined in (5.1.6) and
a convenient notation is introduced.

The proof of theorem (5.1.2) is given in the second section. Its main idea is
to compute the central primitive idempotents of A in two different ways, which
is a rather technical matter.

Passing over from K ∗ E-modules to A-modules some information is lost.
More precisely, one has to decide which A-modules actually come from a K ∗E-
module. This information is encoded in the Schur index which is introduced in
section three. It is shown that the Schur index equals the order of the equiv-
alence class of the central simple Γ-algebra ∆(QG) in the Brauer-Clifford
group discussed in the third chapter.

In general it is a hard problem to compute the Schur index of a given
character. A crucial tool is to construct K ∗ E-modules from modules over

37
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some natural subalgebras of K ∗ E. Using Γ-invariant subgroups of G, one
can define induction and restriction. Those methods are applied to study the
skew group rings C⊗Q(ζp) ∗ (SL2(p)o Γ) related to the groups SL2(p) where
p is a prime. It is shown that the Schur index of all of its characters is one.
Specifically the SL2(p) characters of degree (p−1)/2 and (p+1)/2 respectively,
can be realized as a (K/Q,−)-representation.

5.1 Character Theory

Let K/Q be a Galois extension with Galois group Γ, E a finite group, K ∗E
a skew group ring and define G := CE(K). Throughout we fix an embedding
K → C, hence view K as a subfield of C, and assume that the induced map
E/G → Γ is an isomorphism. The main examples are the skew group rings
K ∗ (GoΓ) from the third section of the second chapter. Let A := C⊗QK ∗E
and define a character of A as follows.

Definition 5.1.1. Let V be a finite dimensional A-module of dimension n.
Choose a C-basis of V to obtain a linear representation ∆V : A → Cn×n. The
character of V is the C-linear map

χV : A→ C : x 7→ Tr(∆(x))

A character associated to an irreducible A-module V is called an irreducible
character. Denote the set of all irreducible characters of A by Irr(K ∗ E) and
since A is semisimple it is enough to know this set.

Identify K ∗ E with 1 ⊗Q (K ∗ E) in A and note that a character of A is
uniquely defined by its restriction to this subalgebra. The main theorem gives
an explicit correspondence between Irr(K∗E) and the set of irreducible complex
characters Irr(G) of G.

Theorem 5.1.2. Let K/k be a finite Galois extension with group Γ, − : Γ→
Aut(G) an embedding, χ a irreducible complex character of G and choose an
embedding of K into C. Define χ̂ : K ∗ E → C as the Q-linear extension of

χ̂(yg) =

{∑
σ∈Γ σ(y)χ(σ(g)) if g ∈ G,

0 if g /∈ G.

with y ∈ K and g ∈ E. Denote the C-linear extension of χ̂ by χ̃.

Then χ̃ is an irreducible character of A and the map χ 7→ χ̃ defines a one
to one correspondence between the irreducible complex characters of G and A.

One important remark on how this correspondence depends on the embed-
ding K → C has to be made.

Remark 5.1.3. Using different embeddings K → C, the image of a complex
character may give a different A-character. However, since the set of all irre-
ducible characters of A does not depend on the embedding, this induces a Γ
action one the set of irreducible characters of A.
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Extending the correspondence of theorem (5.1.2) between the irreducible
characters C-linearly, the following corollary is immediate.

Corollary 5.1.4. The correspondence of theorem (5.1.2) induces an isomor-
phism between the C-spaces generated by the irreducible character of A and G
respectively.

The proof of (5.1.2) is part of the next section. The main idea is to calculate
the central primitive idempotents of A in two ways. It turns out that one way
depends on the embedding K → C and the other does not. This could be
expected from the last remark.

The main theorem has some easy corollaries, which the next remark sums
up.

Remark 5.1.5. 1. Every character of A restricts to a class function of E.
Let χ, ψ be two irreducible characters of G within the same Γ-orbit, then
χ̃|E = ψ̃|E . This shows that the characters of A are not uniquely deter-
mined by their values on E. It emphasizes the fact that K ∗ E is not a
K-algebra.

2. It suffices to know the characters of A on a Q-basis of K ∗E. Specifically,
the characters are determined by their values on a finite set. Unfortu-
nately there is no canonical choice of a Q-basis of K.

3. The irreducible A-modules are, up to isomorphism, uniquely determined
by their character. Hence, every A-module is uniquely determined up to
isomorphism by its character.

4. Let M be an A-module with character ψ̃ where ψ is a character of G.
For any irreducible A-module Mi with character χ̃i, the multiplicity of
Mi occurring in M is given by (ψ, χi) = 1

|G|
∑

g∈G ψ(g)χi(g
−1).

To describe the characters we define a character table for A. Remark (5.1.5)
suggests that it should depend canonically on the field K and not on a specific
Q-basis.

Definition 5.1.6. Choose a set of representatives (gj)1≤j≤h of the conjugacy
classes of G and denote by (χi)1≤i≤h the irreducible characters of G. The
character table of A is a map

K → Ch×h , y 7→ (χ̃i(ygj))1≤i,j≤h

The next remark introduces a convenient notation for character tables.

Remark 5.1.7. 1. Very often one has χ̃(ygj) = |Γ|TrK/Q(y)χ(gj), for ex-
ample this is the case if the conjugacy class of gj is fixed by Γ. In this
situation we just print the value |Γ|χ(gj), leaving out the dependence on
y. Note that in those cases the value of χ̃ does not depend on the em-
bedding of K into C. In the other cases we write down the value of χ̃
depending on y and mark the cells gray.
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2. The degree of the characters and their restrictions to G can be read off
easily. Note that if χ, ψ ∈ Irr(G) are in the same Γ-orbit the gray cells
for the characters χ̃ and ψ̃ are interchanged accordingly.

We compute the character tables for two examples.

Example 5.1.8. Consider the skew group ring Q(i) ∗ (Q8oΓ) of example
(2.3.5). Choose {1, a2, a, b, ab} as a set of representatives of the conjugacy
classes of G. The character table of A is:

1 a2 a b ab

χ̃1 2 2 2 2 2
χ̃2 2 2 2 −2 −2
χ̃3 2 2 −2 2 −2
χ̃4 2 2 −2 −2 2
χ̃5 4 −4 0 0 0

Note that no shading was necessary since all conjugacy classes are fixed by Γ.
One sees directly that C⊗QQ(i)∗(Q8oΓ) has the Wedderburn decomposition
⊕4
i=1C2×2 ⊕ C4×4. In (2.3.5) the character χ5 is realized as a 4-dimensional

representation over Q. It is easy to realize the remaining characters over Q,
hence Q(i) ∗ (Q8oΓ) = ⊕4

i=1Q2×2 ⊕Q4×4.

Example 5.1.9. Let G = A5, then Aut(G) = S5 = A5oC2. Choose K =
Q(
√

5) and define − : Γ→ Aut(G) mapping the generator σ of Γ to the gener-
ator of C2. Note that Γ interchanges the conjugacy classes of elements of order

5. Write Tr(y) := y + σ(y) for y ∈ K and define b5 := −1+
√

5
2 . The character

table for A is:

1 (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (1, 2, 3, 5, 4)

χ̃1 2 2 2 2 2
χ̃2 6 −2 0 −Tr(y · b5) −Tr(σ(y) · b5)
χ̃3 6 −2 0 −Tr(σ(y) · b5) −Tr(y · b5)
χ̃4 8 0 2 −2 −2
χ̃5 10 2 −2 0 0

Note that all characters have values in Q. Since χ2 and χ3 are in the same
Γ-orbit, the corresponding characters χ̃2, χ̃3 agree on G. The Γ action on the
characters of A, mentioned in remark (5.1.3), interchanges χ̃2 and χ̃3.

We come back to the special situation of the second chapter. Let K/Q
a finite Galois extension with group Γ, G be a finite subgroup of GLn(K)
defined over k and − : Γ → Aut(G) the induced embedding. In lemma (2.3.6)
a K ∗ (G o Γ)-module was constructed and its character value is computed in
the next corollary.

Corollary 5.1.10. Let G ≤ GLn(K) be a defined over k with natural charac-
ter χ and natural representation ∆. Give M = Kn×1 the K ∗ (G o Γ)-module
structure of lemma (2.3.6) and view C⊗M as an A-module. Denote the corre-
sponding character by χM . Under the correspondence (5.1.4) we have χ̃ = χM .
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Proof. The representation of A associated to C⊗M is obtained by restricting
the scalars of ∆ to Q and using the componentwise action of Γ on Kn×1. For
y ∈ K and g ∈ G one computes the corresponding character as:

χM (yg) =
∑
σ∈Γ

σ(Tr(∆(yg)) =
∑
σ∈Γ

σ(y)χ(σ(g)) = χ̃(yg)

If g /∈ G then χM (yg) = 0 follows easily.

Remark 5.1.11. Specifically, (K/Q,−)-representations of G that are abso-
lutely irreducible as K-linear representations correspond to the irreducible A-
modules coming from K ∗ (Go Γ)-modules.

5.2 Central idempotents

In this section we will prove the main theorem (5.1.2). Hence we make the
same assumptions as in the beginning of the last section. Let K/Q be a Galois
extension with Galois group Γ, E a finite group, K ∗E a skew group ring and
define G := CE(K). Throughout we fix an embedding K → C, hence view K as
a subfield of C, and assume that the induced map E/G→ Γ is an isomorphism.

We have to fix some notation. Denote by l the degree of the Galois ex-
tension K/Q, let (yr)1≤r≤l be a Q-basis of K and (y∗r )1≤r≤l the dual basis with
respect to the trace bilinear form. We fix an embedding K → C and view K as
a subfield of C. Elements of A = C⊗Q K ∗ E will be written as∑

g∈E

∑
1≤r≤l

ag,r ⊗ yrg

with ag,r ∈ C.
To compute the components of A, it suffices to compute a decomposition of

1A into central primitive idempotents.
Identify K ∗E with 1⊗K ∗E and K with 1⊗K in A. View CG = C⊗QQG

and C⊗K as subalgebras of A. It is well known that

C⊗Q K → ⊕σ∈ΓC : a⊗ b 7→ (aσ(b))σ

defines a C-algebra isomorphism. Note that K = 1⊗K is embedded diagonally
into ⊕σ∈ΓC but with a twist in each component. Let (eσ)σ∈Γ be the primitive
idempotents of C⊗K corresponding to this decomposition. Note that eσ(1⊗K)
corresponds to the embedding K → C , y 7→ σ(y).

It is clear that Γ acts on the set of those idempotents and permutes them
regularly. Let eid be the primitive idempotent of C ⊗K corresponding to the
embedding K → C which was fixed in the beginning. Viewing eid as an element
of A we have that σ(eid) = eσ−1 for all σ ∈ Γ.

The next theorem calculates the central primitive idempotents of A.

Theorem 5.2.1. Let K/Q be a Galois extension with Galois group Γ, K ∗E
a skew group ring, G := CG(K) and assume that the induced map E/G→ Γ is
an isomorphism.
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Let 1G =
∑s

i=1 ei be a decomposition of 1 in CG into central, primitive
idempotents and let eid be the primitive idempotent of C⊗K constructed in the
preceding discussion. View the (ei)1≤i≤s and eid as idempotents of A and define

ẽi :=
∑
σ∈Γ

σ(eidei)

Then ẽi ∈ A and 1A =
∑s

i=1 ẽi is a decomposition of 1 in A into central,
primitive idempotents of A.

Proof. We show that 1A decomposes into the ẽi and that those are central,
primitive idempotents.

Note that G commutes with K = 1 ⊗ K in A and hence in A we have
eσei = eieσ for all 1 ≤ i ≤ s and σ ∈ Γ. It is easy to see that 1A =

∑s
i=1 ẽi and

that the ẽi are central. Let 1 ≤ i, j ≤ s, use the orthogonality of (eσ)σ∈Γ and
(ei)1≤i≤s to compute:

ẽiẽj =
∑
σ∈Γ

σ(eidei)
∑
σ∈Γ

σ(eidej) =
∑
σ∈Γ

σ(eid)σ(eiej)

= δi,j ẽi

This shows that 1A =
∑s

i=1 ẽi is a decomposition of 1A into s distinct central
and orthogonal idempotents. The primitivity follows from the fact that A has
only s components [Kün04, Corollary, 1.29].

Remark 5.2.2. The last theorem depends on the embedding of K → C. Since
those embeddings correspond to Γ, this induces a Γ-action on the set of central
primitive idempotents of A. This action is precisely the action mentioned in
remark (5.1.3).

We need the following result from number theory cf. [Kün04, Remark 1.23].

Proposition 5.2.3. Let K/Q be a Galois extension with Q-basis (yr)1≤r≤l
and dual basis (y∗i )1≤r≤l. For all σ ∈ Γ one has

∑l
r=1 yrσ(y∗r ) = δ1,σ.

Proof. Use linear algebra to see that the statement is independent of the choice
of the basis. Hence it is enough to choose a primitive element α ∈ K and
consider the basis (1, ..., αl−1). Let f(x) be the minimal polynomial of α, then

f(x)

x− α
= b0 + b1x+ ...+ bl−1x

l−1

and it is well known [Neu99][p.208] that the dual basis is given by

b0
f ′(α)

, ...,
bl−1

f ′(α)

The claim follows from an easy calculation.
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Recall that the central, primitive idempotents ei of CG can be calculated
explicitly [Isa76]. In A they take the form

ei =
χi(1)

|G|
∑
g∈G

χi(g
−1)⊗ g ∈ A

Combined with the last proposition this leads to explicit description of the ẽi.

Proposition 5.2.4. Let K/Q be Galois extension, (yr)1≤r≤l a Q-basis of K
with dual basis (y∗i )1≤r≤l, χi the irreducible character of G corresponding to the
central, primitive idempotent ei of CG. The idempotent ẽi is given by:

ẽi =
χi(1)

|G|
∑
g∈G

l∑
r=1

∑
σ∈Γ

σ(y∗r )χi(σ(g−1))⊗ yrg

Proof. From (5.2.3) one concludes that

σ(eid) = eσ−1 =

l∑
r=1

σ−1(y∗r )⊗ yr

and computes:

ẽi =
∑
σ∈Γ

σ(eidei) =
χi(1)

|G|
∑
σ∈Γ

eσ−1σ(
∑
g∈G

χi(g
−1)⊗ g)

=
χi(1)

|G|
∑
σ∈Γ

∑
g∈G

l∑
r=1

σ−1(y∗r )χi(g
−1)⊗ yrσ(g)

=
χi(1)

|G|
∑
g∈G

l∑
r=1

∑
σ∈Γ

σ(y∗r )χi(σ(g−1))⊗ yrg

The next step is to calculate the central primitive idempotents of A using
the irreducible characters. Note that those characters do not depend on the
embedding of K into C.

Lemma 5.2.5. Let 1A = ẽ1 + ... + ẽs be the decomposition of 1A in A into
central, primitive idempotents of theorem (5.2.1). Denote by χ̃i the irreducible
character of A corresponding to ẽi. For every 1 ≤ i ≤ s we have:

ẽi =
χ̃i(1)

|E|
∑
g∈E

∑
1≤r≤l

χ̃i(g
−1y∗r )⊗ yrg

Proof. Let ρ denote the regular trace on A and (Mj)1≤j≤s the irreducible A-
modules with corresponding characters χ̃j . It is easy to see that the regular
trace decomposes as ρ =

∑s
j=1 χ̃j(1)χ̃j . Write the idempotent ẽi as

ẽi =
∑
g∈E

∑
1≤r≤l

ag,r ⊗ yrg
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with ag,r ∈ C. For every 1 ≤ τ ≤ l and g̃ ∈ E one has ρ(ẽig̃
−1y∗τ ) = ag̃,τ |E|.

This implies

ag̃,τ |E| =
s∑
j=1

χ̃j(1)χ̃j(eig̃
−1y∗τ ) = χ̃i(1)χ̃i(g̃

−1y∗τ )

and the claim follows.

To prove the main theorem (5.1.2), compare the formulas of proposition
(5.2.4) and lemma (5.2.5). Doing so one obtains:

χ̃i(gyr) =

{
χi(1)|Γ|
χ̃i(1)

∑
σ∈Γ σ(yr)χi(σ(g)) if g ∈ G,

0 if g /∈ G.

Substitute g = 1 and y1 = 1 to conclude that χ̃i(1) = χi(1)|Γ| and this proves
the main theorem.

5.3 The Schur Index

Let K/Q be a Galois extension with Galois group Γ, E a finite group, K∗E a
skew group ring and define G := CE(K). In this section we study the following
question: Given an irreducible character χ̃ of A and an algebraic extension field
L of Q, is there a L-linear representation of L⊗Q K ∗ E affording χ̃?

In other words, we want to measure the loss of information passing from
K ∗ E to A. This suggests the following definition.

Definition 5.3.1. Let χ̃ be an irreducible character of K ∗E. Choose an irre-
ducible C-representation ∆̃ of A affording χ̃ and an irreducible L-representation
Ξ of L ⊗Q K ∗ E such that ∆̃ is a constituent of Ξ. The multiplicity of ∆̃ as
a constituent of Ξ is called the Schur index of χ̃ over L. It is denoted by
mL(χ̃).

This definition is the same as in the classical case [Isa76, Chapter 10] and
with it we can rephrase remark (5.1.11) using characters only.

Remark 5.3.2. Let G be a finite matrix group and − : Γ → Aut(G) an
embedding. The (K/Q,−)-representations of G that are absolutely irreducible
as K-linear representations correspond to the irreducible K ∗(GoΓ)-characters
χ̃ with character field Q and Schur index 1 over Q.

The next remark covers the special case where K is a cyclotomic field.

Remark 5.3.3. Let G be a finite group, K = Q(ζq) the q-th cyclotomic field
with Galois group Γ and assume that Γ acts faithfully on G as group auto-
morphism. Define E := GoΓ and let K ∗E be the skew group ring constructed
using the natural Γ action on K. Note that Cq = 〈ζq〉 is a subgroup of K and
define G′ := (Cq ×G)oΓ. Then every K ∗E-module is a QG′-module which as
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a QCq oΓ-module is the l-fold copy of the unique faithful and absolutely irre-
ducible QCq oΓ-module K for some l ∈ N. Conversely, every such QG′-module
is a K ∗ E-module.

Denote the (absolutely irreducible) character of the QCq oΓ-module K by
ψ. The irreducible K ∗ E characters correspond to irreducible G′ characters
which, restricted to Cq oΓ, are lψ for an l ∈ N. In this case the Schur index
of the irreducible K ∗E-characters agrees with the classical Schur index of the
corresponding irreducible G′ character.

The Schur index has the following important properties, which can be
proved as in the classical case.

Remark 5.3.4. 1. The Schur index of an irreducible K ∗ E character χ̃
over a field L is the same as the Schur index of χ̃ over the character field
L(χ̃)

2. Let χ be an irreducible character of G and χ̃ the corresponding irreducible
character of A. If ψ̃ is the character of any L-representation of L⊗QK∗E,
then mL(χ̃) divides (ψ, χ)G.

3. The Schur index is the smallest integer m such that mχ̃ is afforded by
an L(χ̃) representation of L(χ̃)⊗Q K ∗ E.

Recall the twisted group rings K ∗ (Go Γ) constructed in the first chapter
from a finite group G and a Galois extension K/Q with Galois group Γ.
Assume that χ ∈ Irr(G) has the property

σ(χ(g)) = χ(σ(g) for all σ ∈ Γ, g ∈ G

Under this assumption the next theorem relates the Schur index of χ̃ to the
Brauer-Clifford theory of the second chapter.

Theorem 5.3.5. Let K/Q be a Galois extension with group Γ, G an abso-
lutely irreducible finite subgroup of GLn(K) and − : Γ → Aut(G) an injective
homomorphism. Let ∆ : G → GLn(K) be the natural representation, χ the
natural character and assume that

σ(χ(g)) = χ(σ(g) for all σ ∈ Γ, g ∈ G(Co)

The Schur index of the character χ̃ of K ∗ (GoΓ) over Q equals the order
of the element [∆(QG) ⊗Q(χ) K] c.f (3.2.1) in the Brauer-Clifford group,
where χ̃ is the character corresponding to χ under (5.1.4).

Proof. Condition (Co) implies that χ̃, the character of A corresponding to χ
via (5.1.4), has rational values.

Using theorem (3.2.1) turns ∆(QG) into a central simple Γ-algebra. We will
show that in the Brauer-Clifford-group the order of the image of this class
under the scalar extension map (3.1.6) equals the Schur-index of χ̃ over Q.

Condition (Co) implies that idempotent

eχ̃ =
χ(1)

|G|
∑
g∈G

l∑
r=1

∑
σ∈Γ

σ(y∗r )χ(σ(g−1))⊗ yrg
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of A lies in K ∗ (Go Γ) cf. (5.2.4). It is easy to see that the Schur index of χ̃
is the index of the central simple Q-algebra B := eχ̃(K ∗ (E o Γ)). View B as
an element of the Brauer-group, then it is well known that this index equals
the order of B [Rei75, Theorem 31.4].

Recall the isomorphism δ : Br(K|Q)→ H2(Γ,K∗) of the discussion preced-
ing lemma (3.3.1) between the relative Brauer-group and a second Galois
cohomology group [Ser79, Chapter X]. The objective is to calculate the image
δ(B).

Define the embedding

Ψ : Kn×n → K |Γ|n×|Γ|n : X 7→ diag((σ(X))σ∈Γ)

where diag((σ(X))σ∈Γ) is a block diagonal matrix with blocks σ(X). Denote
by

P : Γ→ GL|Γ|(Q) : σ 7→ P(σ)

the regular representation of Γ. The map

∆̃ : K⊗QK ∗(GoΓ)→ K |Γ|n×|Γ|n : a⊗ygσ 7→ diag(a)Ψ(y)Ψ(∆(g))(P(σ)⊗In)

with a, y ∈ K, g ∈ G, σ ∈ Γ is a K-algebra epimorphism and induces a K-
algebra isomorphism K ⊗Q B → K |Γ|n×|Γ|n. This shows that K splits B.

Condition (Co) guarantees that for every σ ∈ Γ there exists a matrix Xτ ∈
GLn(K) such that

Xσσ(∆(g))X−1
σ = ∆(σ(g)) for all g ∈ G

It is clear that for all σ, τ ∈ Γ there exists λσ,τ ∈ K with Xστ = λσ,τXσσ(Xτ ).

Define Yτ := Ψ(τ)diag(Xτ ) for τ ∈ Γ and calculate for σ, τ ∈ Γ:

Yστ = Ψ(στ)diag(Xστ )

= λσ,τΨ(σ)Ψ(τ)diag(Xσ)σ(diag(Xτ ))

= λσ,τΨ(σ)diag(Xσ)σ(Ψ(τ)diag(Xτ ))

= λσ,τYσσ(Yτ )

Hence the map Γ→ PGLn(K) : σ 7→ Yσ is a 1-cocycle. Identify B with ∆̃(B).
By construction we have:

B = {x ∈ Kn|Γ|×n|Γ| | Yσσ(x)Y −1
σ = x for all σ ∈ Γ}

Use the description of δ in [Ser79] to see that the image of B under δ is the
2-cocycle:

δ(B)(σ, τ) = λσ,τ for all σ, τ ∈ Γ

This cocycle λ uniquely determines the equivalence class of [∆(QG)⊗Q(χ)K]
in the Brauer-Clifford group by lemma (3.1.11). This proves the theorem.

We discuss an example similar to (5.1.8).
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Example 5.3.6. Denote by ζ3 a primitive third root of unity. Construct the
skew group ring Q(ζ3) ∗ (Q8oΓ) as in (2.3.5) The character table is

1 a2 a b ab

χ̃1 2 2 2 2 2
χ̃2 2 2 2 −2 −2
χ̃3 2 2 −2 2 −2
χ̃4 2 2 −2 −2 2
χ̃5 4 −4 0 0 0

Hence C⊗QQ(ζ3)∗ (Q8oΓ) has the Wedderburn decomposition ⊕4
i=1C2×2⊕

C4×4. The character χ̃5 has Schur-index 2 over Q by example (3.3.7). Using
remark (5.3.3) this follows also from the fact that the character of degree 4 of
(C3×Q8)o Γ has Schur-index 2.

Recall the discussion of the case of the real numbers R in the fourth chapter.
Let G be a finite group and u be an element of order 2 in Aut(G). Define

− : Gal(C/R) = 〈σ〉 → Aut(G) : σ 7→ u

The skew group algebras under consideration are C ∗ (Go Γ) and C⊗R C ∗
(G o Γ). Using the Schur index and the twisted Frobenius-Schur index,
theorem (4.2.1) becomes:

Corollary 5.3.7. Let χ be an irreducible character of G, then:

εu(χ) =


1, if and only if R(χ̃) = R and mR(χ̃) = 1

−1, if and only if R(χ̃) = R and mR(χ̃) = 2

0, otherwise

where χ̃ is the character of C⊗R C ∗ (Go Γ) corresponding to χ via (5.1.4).

5.4 Induction and Restriction

Let K/Q be a Galois extension with Galois group Γ, G a finite subgroup
of GLn(K) and − : Γ → Aut(G) an embedding. In this section we restrict
ourselves to the special skew group rings K ∗E where E := GoΓ. A convenient
way to construct K ∗ E modules is to induce them up from modules over a
subalgebra of K ∗E. For this purpose we consider U to be a Γ-stable subgroup
of G. View the skew group ring K ∗ (U o Γ) as a subalgebra of K ∗ E. For a
K ∗ (U o Γ)-module M define the induced module ME := (K ∗ E) ⊗K∗(UoΓ)

M . The following remark describes the induced matrix representation and the
character corresponding to an induced module.

Remark 5.4.1. Let M be a K ∗ (U o Γ)-module of Q-dimension n, B =
(B1, ..., Bn) a Q-basis of M and ∆ the corresponding linear representation.
Choose a left transversal si of U in G, then si ⊗ Bk is a Q-basis of ME . For
every y ∈ K and g ∈ E the induced representation is the block matrix

∆E(yg) = (∆̇(yg))i,j ∈ Q[G:U ]n×[G:U ]n
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with n× n blocks

∆̇(yg) =

{
0 , if gsj /∈ siU o Γ

∆(s−1
i ygsj) , if gsj ∈ siU o Γ

Let χ be the character corresponding to M and χE the character corre-
sponding to ME . Then χE is given by:

χE(yg) =

[G:U ]∑
i=1

χ̇(s−1
i ygsi) with χ̇(yg) =

{
0 ,if g /∈ U o Γ,

χ(yg) ,if g ∈ U o Γ

Denote by C(G), C(U), C(K ∗E), C(K ∗ (U o Γ) the C-space generated by
the irreducible characters of G, U , A and C⊗K ∗ (U oΓ). Character induction
defines maps Ind : C(U)→ C(G) and Ind : C(K ∗ (U o Γ))→ C(K ∗ E).

Theorem 5.4.2. The following diagram is commutative.

C(K ∗ (U o Γ))
Ind

// C(K ∗ E)

C(U)

ψ 7→ψ̃

OO

Ind
// C(G)

χ 7→χ̃

OO

Proof. Reduce to the case of an irreducible character and use the definition of
the correspondence (5.1.4).

Remark 5.4.3. Let U be a Γ-invariant subgroup of G. Character induction
from U to G is Γ-equivariant, that is for every character χ of U we have:

(χ ◦ σ)G = χG ◦ σ for all σ ∈ Γ. Hence, χ̃ ◦ σ
G

= χ̃G ◦ σ.

Combining the last remark with remark 5.1.5 (4) and classical Frobenius
reciprocity, one gets the following corollary.

Corollary 5.4.4. Given a character χ̃ of A and ψ̃ of C ⊗ K ∗ (U o Γ), the
multiplicity of χ̃ in ψ̃E is (χ, ψG) = (χU , ψ).

Let p be a prime, we use character induction to calculate the Schur indices
of the characters of a twisted group ring related to the special linear groups
SL2(p). It turns out that all of those are one over Q.

Example 5.4.5. Let p be a prime, ν a generator of F∗p, G = SL2(p) and
K = Q(ζp) and Γ its Galois group. Conjugation with the matrix

x :=

(
ν−1 0
0 1

)
induces an outer automorphism of G, which is of order p − 1 in Aut(G). It
interchanges the two conjugacy classes of elements of order p and fixes the
others.
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Let X be the subgroup of Aut(G) generated by x. Choose the generator σ
of Γ as σ(ζp) = ζνp and define − : Γ → Aut(SL2(p)) by σ 7→ x · x−1. Note that
the subgroup

U := 〈
(

1 0
1 1

)
︸ ︷︷ ︸

:=u

〉

of G is X-stable and cyclic of order p.
Let i ∈ {1, ..., p− 1} and define the representation

U → GL1(Q(ζp)) : u 7→ ζip

Note that this is a (K/Q,−)-representation and denote the corresponding irre-
ducible complex character of U by χi. Hence the corresponding character χ̃ of
K ∗ (U o Γ) has Schur index 1, i.e. can be realized over Q. Let ψ ∈ Irr(G) be
any character. Use Frobenius reciprocity and the well known character table
of G to see that there exists a character χi ∈ Irr(U) such that

(ψ, χGi ) = (ψU , χi)U = 1

Since every irreducible character of Q(ζp) ∗ (SL2(p) o Γ) is of the form ψ̃ for
a unique ψ ∈ Irr(SL2(p)), we see that every irreducible character has Schur
index one over Q by remark (5.3.4) and corollary (5.4.4).

Specifically there exist (Q(ζp)/Q,−)-representation of SL2(p) affording the
characters of degree (p+ 1)/2 and (p− 1)/2. In the nineteenth century Klein
constructed such representation for p = 5, 7, 11 with geometric methods.
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Chapter 6

Arithmetic of skew group
rings

Let K/Q be a finite Galois extension with group Γ, G a finite subgroup of
GLn(K) and − : Γ→ Aut(G) an embedding. Let E be the semidirect product
of G with Γ and construct the skew group ring K ∗E using the natural action
of Γ on K. In this chapter we study arithmetic features of the skew group rings
K ∗ E.

If K admits a central canonical complex conjugation, that is an element of
center of Γ which induces complex conjugation in every embedding of K to C, a
canonical involution on K ∗E is defined. Restricted to E this involution inverts
the elements and restricted to K it is the canonical complex conjugation. The
involution induces an involution on the enveloping Q-algebra ∆(K ∗ E) of any
Q-linear representation ∆ : K ∗ E → Qn×n. The main theorem (6.1.2) states
that this involution is the adjoint anti-automorphism of a symmetric positive
definite bilinear form on the natural ∆(K ∗ E)-module.

Denote by ZK the ring of algebraic integers in K. The natural Γ action
on ZK defines the Z-order ZK ∗ E in K ∗ E. Let M be a K ∗ E-module, the
objective of the second and the third section is to introduce theoretical and
algorithmic methods to compute the set of all full ZK ∗ E-lattices in M .

If M is absolutely irreducible, it is shown that this set can be computed
from the set of all full ZKG-lattices in M and all Γ-invariant ideals of ZK up
to a certain equivalence. In general both sets are hard to obtain theoretically
and algorithmic methods are needed. The centering algorithm of Plesken and
Nebe provides such a method.

Putting the pieces all together, a procedure to construct numerically nice
(K/Q,−)-representations of G is proposed in the last section. It is shown that
the denominators occurring in those representations divide the discriminant of
K.

6.1 Canonical involution

Let G be a finite group and K be either a totally real Galois extension of Q
or a field with a central canonical complex conjugation, that is an element
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of center of the Galois group Γ which induces complex conjugation in every
complex embedding of K into C. Note that this element is of order 2 and its
fixed field is the totally real subfield of K. For cyclotomic fields Q(ζn) for n ∈ N,
the map ζn 7→ ζ−1

n is a central canonical complex conjugation.
Let σ be the identity if K is totally real or the central canonical complex

conjugation of K. Define the map

ισ : K ∗ (Go Γ)→ K ∗ (Go Γ) :
∑

g∈GoΓ

agg 7→
∑

g∈GoΓ

g−1σ(ag)

Proposition 6.1.1. The map ισ is an involution on K ∗ (Go Γ).

Proof. The map is Q-linear, hence well defined. To see that it is an involution,
use that σ is central to compute for all a, b ∈ K and g, u ∈ Go Γ:

ισ((ag)(bu)) = ισ(agbgu) = u−1g−1σ(a)σ(gb)

and

ισ(bu)ισ(ag) = u−1σ(b)g−1σ(a) = u−1g−1gσ(b)σ(a) = u−1g−1σ(a)σ(gb)

Hence ισ(xy) = ισ(y)ισ(x) for all x, y ∈ K ∗ (G o Γ). Using the fact that σ is
central in Γ and of order 2, one easily checks that ι2σ = idK∗(GoΓ). The claim
follows.

The involution ισ is called the canonical involution on K ∗ (G o Γ).
Let ∆ : K ∗ (G o Γ) → Qn×n be a linear representation, then ισ induces an
involution on the enveloping Q-algebra ∆(K ∗ (G o Γ)) by ∆(x) 7→ ∆(ισ(x)).
The next theorem shows that this involution is the adjoint anti-automorphism
of a symmetric positive definite bilinear form.

Theorem 6.1.2. Let G be a finite group, K a Galois extension of Q with
group Γ and − : Γ → Aut(G) an embedding. Assume that K is either totally
real or has a central canonical complex σ and consider the skew group ring
K ∗ (G o Γ) with the canonical involution ισ. Given a linear representation
∆ : K ∗ (G o Γ) → Qn×n, there exists a symmetric, positive definite matrix
Φ ∈ Qn×n with

∆(ισ(x)) = Φ−1∆(x)trΦ

for all x ∈ K ∗ (Go Γ).

Proof. We have to construct a symmetric positive definite matrix Φ ∈ Qn×n
such that

1. ∆(σ(y))−trΦ∆(y) = Φ for all y ∈ K∗.

2. ∆(g)trΦ∆(g) = Φ for all g ∈ Go Γ

Assume that Φ̃ ∈ Qn×n is a symmetric positive definite matrix satisfying
the first condition. One easily checks that the matrix

Φ :=
∑

g∈GoΓ

∆(g)trΦ̃∆(g)
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is symmetric positive definite, and meets both conditions.
It remains to show that a symmetric positive definite matrix Φ ∈ Qn×n

fulfilling the first condition exists. Denote by P : K → Q[K:Q]×[K:Q] the regular
representation of K as a Q-algebra with respect to a Q-basis (yi)1≤i≤l of K.
By base change one can assume that ∆(y) = diag(P(y)) for all y ∈ K, Hence
it suffices to show that there exists a s.p.d. matrix Φ ∈ Q[K:Q]×[K:Q] such that
P(σ(y))−tΦP(y) = Φ for all y ∈ K∗.

Choose Φ = (Φi,j)1≤i,j≤l with Φi,j := TrK(σ(yi)yj) and use linear algebra
to check that P(σ(y))−tΦP(y) = Φ for all y ∈ K∗. By definition Φ lies in
Q[K:Q]×[K:Q]. Use that σ is of order 2 to check that

TrK(σ(yi)yj) = TrK(σ(yj)yi)

for all 1 ≤ i, j ≤ l, hence Φ is symmetric. It is easy to see (for example use
[Neu99, p. 11]) that there exists a matrix X ∈ GL[K:Q](K) such that Φ =
σ(Xtr)X. This implies that Φ is positive definite and proves the theorem.

Remark 6.1.3. 1. Restricted to the rational group algebra Q(G o Γ) the
involution ισ is the canonical involution induced by g 7→ g−1. On the field
K it is canonical complex conjugation.

2. Let ∆ : K ∗ (G o Γ) → Qn×n be a linear representation and Φ ∈ Qn×n
the symmetric positive definite matrix of theorem (6.1.2). Then ∆ is a
Q-linear representation of the group G o Γ and Φ is a positive definite
∆(Go Γ) invariant form. For cyclotomic fields K = Q(ζq), the matrix Φ
is a (Cq ×G)o Γ-invariant form cf. (5.3.3).

3. If ∆ : K ∗ (G o Γ) → Qn×n is absolutely irreducible, then the symmet-
ric positive definite matrix of theorem (6.1.2) is uniquely determined up
multiplication with a positive element of Q.

4. Let χ be an irreducible character of G and χ̃ the corresponding character
of A cf. (5.1.4). Then χ̃ ◦ ισ is the complex conjugate character of χ̃.
Specifically, if χ̃ has only rational values, the corresponding component of
K ∗ E is a central simple Q-algebra with involution. Hence the Schur-
index of χ̃ is at most two. This is a generalization of the Brauer-Speiser
theorem.

6.2 Canonical order

We turn back to general finite Galois extensions K/Q with group Γ. Let G
be a finite subgroup of GLn(K) and − : Γ→ Aut(G) an embedding. Note that
Γ acts naturally on the ring of algebraic integers ZK in K. Hence ZK ∗ (GoΓ)
is a skew group and moreover a Z-order in the skew group ring K ∗ (Go Γ).

Let M be an K ∗ (G o Γ)-module, and denote by Z(M) the set of full
ZK ∗ (G o Γ) lattices in M . The group AutK∗(GoΓ)(M) acts on this set and
the orbits are the isomorphism classes of full ZK ∗ (GoΓ)-lattices in M . There
are only a finite number of isomorphism classes by the theorem of Jordan-
Zassenhaus [Rei75, Theorem 26.4].
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Some general remarks can be made on this order.

Remark 6.2.1. 1. The order ZK ∗ (GoΓ) contains the ZK-order ZKG, the
Z-order ZK ∗ Γ and the integral group ring ZGo Γ.

2. Let p ∈ Z be a prime and denote by Z(p) the localization of Z at p and
by D the discriminant of K. If p - D|G|, then Z(p) ⊗Z ZK ∗ (G o Γ) is a
maximal Z(p)-order in K ∗ (GoΓ). This result will be proved in the next
section and implies the well known group ring case for K = Q [Rei75,
Chapter 9].

3. Let M be a K ∗ (Go Γ)-module, then Γ acts on the set ZZKG(M) of full
ZKG lattices in M and the fixed points of this action are precisely the
elements of Z(M).

The objective is to calculate Z(M). Assume that M is an absolutely irre-
ducible K ∗ (Go Γ)-module, then it is absolutely irreducible as a KG-module
by the character correspondence (5.1.4). Let L,L′ ∈ Z(M) and view L,L′ as
ZKG lattices. If L′ and L are isomorphic, then L′ = aL for an a ∈ K. Observe
that L′ = aL is a ZK ∗ (G o Γ)-lattice if and only if the principal fractional
ideal generated by a ∈ K is Γ-stable under the natural Γ-action.

On the set of Γ-stable principal fractional ideals in K define the equivalence
relation:

a1 ∼ a2 ⇔ a1 = λa2 for a λ ∈ Q

View those ideals as ZK ∗ Γ-lattices of Z-rank |Γ|, hence there are only
finitely many up to isomorphism by Jordan-Zassenhaus. Note that two
ideals are isomorphic ZK ∗Γ-lattices if and only if they are equivalent under the
above equivalence relation. Denote by A(K) a set of representatives of those
equivalence classes.

The next proposition shows that Z(M) can be calculated from the isomor-
phism classes of full ZKG-lattice in M and A(K).

Proposition 6.2.2. Let M be an absolutely irreducible K ∗ (G o Γ)-module.
View M as a ZKG-module and let Υ be a maximal set of pairwise non isomor-
phic Γ-fixed points of ZZKG(M). A set of representatives of the isomorphism
classes of Z(M) is given by:

Ω := {aL | a ∈ A(ZK)and L ∈ Υ}

Proof. It is clear that every L ∈ Ω is in Z(M). Furthermore, the elements
of Ω are pairwise non isomorphic. Since every L ∈ Z(M) is a Γ-stable full
ZKN -lattice in M and it has to appear in the set Ω.

Remark 6.2.3. Dropping the assumption that M is absolutely irreducible,
then M might become reducible as a KG-module. For example this is the
case for irreducible Q(ζ3) ∗ (Q8 o Γ)-module affording 2 · χ̃5 of example (5.3.6).
In those cases it is hard to determine the set of full ZKG-lattices in M or to
compute necessary replacement of A(K) and the proposition is of not much
use.
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If K is the p-th cyclotomic field then A(Q(ζp)) is computable.

Example 6.2.4. Let p be a prime and K = Q(ζp) the p-th cyclotomic field.
Then A(ZK) = {(1− ζp)iZK | 0 ≤ i ≤ p− 2}.

Proof. Multiplying with elements in Z shows that it suffices to calculate the
equivalence classes of Γ-stable principal ZK-ideals instead of principal fractional
ideals. Check that all elements of T := {(1 − ζp)iZK | 0 ≤ i ≤ p − 2} are Γ-
invariant and pairwise non equivalent. Use Hilbert ramification theory to see
that every other Γ-stable, principal prime ideal of ZK is given by qZK for a
prime q ∈ Z. Hence every Γ-stable ideal of ZK is equivalent to an element of
T .

Remark 6.2.5. 1. Let K = Q(ζp), M be an absolutely irreducible Q(ζp) ∗
(G o Γ)-module of K-dimension n, Υ = {L0, ...., Lk} as in proposition
(6.2.2), and assume that L0 is uniserial ZKG-lattice. Define t := (1− ζp),
then the following Hasse illustrates the situation:

L0

tL0

t2L0

tp−2L0

L1

tL1

t2L1

tp−2L1

L2

tL2

t2L2

tp−2L2

pn

pn
pn

pn
pn

pn

2. Let G = PSL2(p) and K = Q(ζp) with Galois group Γ. Assume that
p ≡ −1 mod 4 and assume − : Γ→ Aut(G) as in example (5.4.5). Choose
χ to be one of the characters of G of degree (p − 1)/2 and let M be the
K ∗ (Go Γ)-module affording χ̃, which is of degree (p− 1)2/2. It is well
known that there exists only one isomorphism class of full ZKG-lattices
in M , hence every full ZK ∗ (GoΓ)-lattice in M is uniserial and there are
exactly p− 1 non isomorphic full ZK ∗ (Go Γ)-lattices in M .
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6.3 Centering algorithm

We make the same assumptions mentioned at the beginning of the preceding
section. Proposition (6.2.2) relies heavily on the knowledge of ZZKG(M) and
on A(K). There are theoretical methods to compute ZZKG(M) [Ple83] but it
is a hard problem in general.

As a fallback we need algorithmic methods. Those are provided by the
centering algorithm of Plesken and Nebe [PP87]. To apply this algorithm,
the following proposition is crucial.

Proposition 6.3.1. Let D be the discriminant of K und Λ a Z-order in K ∗
(Go Γ), which contains ZK ∗ (Go Γ). Then we have:

ZK ∗ (Go Γ) ⊂ Λ ⊂ (|G||Γ|D)−1ZK ∗ (Go Γ)

Proof. Define E := GoΓ and let Tr,TrK be the regular trace of K ∗E and the
trace of K, respectively. Choose a Q-basis (yi)1≤i≤r of K and let (y∗i )1≤i≤r be
the dual basis. Check that

Tr(yig) = |E|TrK(yi)δg,1

for all 1 ≤ i ≤ r and g ∈ E. Let γ =
∑r

i=1

∑
g∈E αg,iyig ∈ Λ and use Dy∗i ∈ ZK

to see:
Tr(γDg̃−1y∗j︸ ︷︷ ︸

∈ZK∗E

) =
∑

αg,iDTr(yigg̃
−1y∗j ) = αg̃,jD|E| ∈ Z

for all 1 ≤ j ≤ r and g̃ ∈ E. Hence αg̃,j ∈ (D|E|)−1Z and the claim follows.

Note that the second point of remark (6.2.1) follows directly from this propo-
sition.

We will sketch the centering algorithm in the absolutely irreducible case.
The key observations, which follow directly from proposition (6.3.1), are given
in the next proposition.

Proposition 6.3.2. Let M be an absolutely irreducible K ∗(GoΓ)-module and
L a full ZK ∗ (Go Γ)-lattice in M .

1. For any prime p ∈ Z with p - D|G||Γ| the Fp⊗ZZK ∗(GoΓ)-module L/pL
is simple.

2. Representatives for the isomorphism classes of Z(M) are V(M) := {L′ ≤
L | L′ � pL for all primes p}

The algorithm can be described as follows.

Algorithm 6.3.3. Let K/Q a finite Galois extension with group Γ, G a finite
subgroup of GLn(K) and − : Γ → Aut(G) an embedding. Denote by D the
discriminant of K. Given an K ∗ (G o Γ) module M and L ∈ Z(M). The
following steps construct the set V(M) := {L′ ≤ L | L′ � pL for all primes p} :

1. Compute all primes p ∈ Z such that p | D|G||Γ| and L/pL is not a simple
Fp ⊗Z ZK ∗ (Go Γ)-module.
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2. For those primes p compute the irreducible constituents of L/pL.

3. Starting with N = L, construct epimorphisms N → S for all relevant,
simple Fp ⊗Z ZK ∗ (Go Γ)-modules S.

4. If necessary, add the kernels to V(M) and start over with those.

This algorithm is in principle not limited to the absolutely irreducible sit-
uation. There exists a fast implementation of it in MAGMA [BCP97] due to
Kirschmer.

6.4 Forms and fixed lattices

Let K/Q a finite Galois extension with group Γ and G a finite subgroup of
GLn(K) which is defined over Q. We want to apply the results of the previous
sections to construct nice Q-forms of G, i.e. representations with fundamental
invariants having small integer coefficients. Let − : Γ→ Aut(G) be the embed-
ding from the natural action of Γ on G and recall that (K/Q,−)-representations
are constructed by taking a Q-basis of the Γ-fixed points of a K ∗ (G o Γ)-
module M . Hence, it makes sense to use a Z-basis of the Γ-fixed lattice of a
ZK ∗ (Go Γ)-lattice in M . Before we describe the exact procedure, we have to
fix some notation.

Assume that K is either a totally real field or has a central canonical con-
jugation and let ∆ : K ∗ (G o Γ) → Qn×n be a Q-linear representation and
M := Qn×1 the corresponding K ∗ (GoΓ)-module. Proposition (6.1.2) implies
that

F∆(K ∗ (Go Γ)) ={Φ ∈ Qn×n | Φtr = Φ, ∆(ισ(x)) = Φ−1∆(x)trΦ

for all x ∈ K ∗ (Go Γ)}

and

F∆,>0(K ∗ (Go Γ)) = {Φ ∈ F∆(K ∗ (Go Γ)) | Φ positive definite}

are non empty. For a full ZK∗(GoΓ)-lattice L in M and Φ ∈ F∆,>0(K∗(GoΓ))
call

L#(Φ) := {x ∈ Qn×1 | xtrΦy ∈ Z for all y ∈ L} ∈ Z(M)

the dual lattice of L with respect to Φ. The form Φ is integral on L if L ⊆ L#(Φ)

and primitive on L, if L ⊆ L#(Φ) and pL * L#(Φ) for all primes p. If Φ
is integral on L, define the determinant det(L,Φ) by |L#(Φ)/L|. Note that
if M is absolutely irreducible, then for every L ∈ Z(M) there is a unique
Φ ∈ F∆,>0(K ∗ (Go Γ)) which is primitive on L.

Remark 6.4.1. The canonical radicalizer-idealizer process [BZ85] guarantees
the existence of a lattice L ∈ Z(M) and a Φ ∈ F∆,>0(K ∗ (GoΓ)) such that Φ
is primitive on L and L/L#(Φ) is of square-free exponent. We call such a pair
(L,Φ) normalized.
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There are numerous arithmetic and geometric invariants attached to a nor-
malized pair (L,Φ). For example one can look for a minimal determinant, a
large minimal norm, a high number of vectors of minimal norm and so on, cf.
[CS99]. It often turns out that normalized pairs (L,Φ) with nice arithmetic and
geometric properties induce nice representations ZK ∗ (Go Γ)→ Zn×n using a
reduced lattice basis. For example one could use LLL [LLL82] reduced bases
or various refinements thereof.

It turns out that the result of the following steps often is a numerically nice
(K/Q,−)-representation of G.

Procedure 6.4.2. Let K/Q a finite Galois extension with group Γ, G a finite
subgroup of GLn(K) and − : Γ → Aut(G) an embedding. Construct the skew
group ring K ∗ (Go Γ) and let M be a K ∗ (Go Γ)-module. To construct nice
(K/Q,−)-representations of G, do the following:

1. Choose pair (L,Φ) ∈ Z(M) × F∆,>0(K ∗ (G o Γ)), which is normalized
and has nice arithmetic and geometric properties.

2. Define the symmetric positive definite bilinear form

ΦLΓ : LΓ × LΓ → Z : (v, w) 7→ vtrΦw

on LΓ and after rescaling choose a reduced Z-basis of LΓ with respect to
this form.

3. Construct the (K/Q,−)-representation of G using this basis.

Since LΓ ⊗ ZK is mostly not a ZK ∗ (G o Γ)-lattice, the representation
produced by the last procedure often involves certain denominators. Those
denominators are described next proposition.

Proposition 6.4.3. Let ∆ : G → GLn(K) be a (K/Q,−)-representation ob-
tained from a Z-basis of the fixed point lattice LΓ of a full ZK ∗ (Go Γ)-lattice
in a K ∗ (G o Γ)-module M . Then the denominators of the matrix entries of
∆(g) divide the discriminant of K for every g ∈ G.

Remark 6.4.4. In the next chapter the famous representations of PSL2(p) for
p ∈ {5, 7, 11} constructed by Klein in [Kle93], [Kle99], [Kle79] are obtained
using the procedure (6.4.2). This explains the denominators of those represen-
tations.

To prove the proposition we need to study the fixed lattice LΓ for a ZK∗(Go
Γ)-lattice in M . More generally, we have to understand L as as a ZK ∗Γ-lattice.

Let R be a Dedekind domain with quotient field Q and S its integral
closure in K. The following general results can be found in [Rei75, Chapter
40].

Theorem 6.4.5 (Auslander-Goldman, Rim). The order S ∗ Γ is a maximal
R-order if and only if S/R is unramified.

Theorem 6.4.6 (Rosen). The order S ∗ Γ is a hereditary R-order if and only
if S/R is tamely ramified.
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The next proposition computes the primes p at which L(p) is (LΓ⊗ZZK)⊗Z
Z(p).

Proposition 6.4.7. Let D be the discriminant of K, M be a K ∗ (G o Γ)-
module, L ∈ Z(M) and p ∈ Z a prime such that p - D. Then L ⊗Z Z(p) =

(LΓ ⊗Z ZK)⊗Z Z(p)

Proof. Since p - D, the skew group ring Λ := Z(p) ⊗Z ZK ∗ Γ is a maximal
Z(p)-order by the theorem of Auslander-Goldman, Rim. Two Λ lattices
are isomorphic if and only if they have the same Z(p)-rank [Rei75, Theorem
18.7]. This rank equals the Q-dimension of the scalar extension by Q. Use
the Speiser-lemma to see that L ⊗Z Q and (LΓ ⊗Z ZK) ⊗Z Q have the same
Q-dimension. This proves the proposition.

As a corollary one finds the prime divisors of the index of LΓ ⊗Z ZK in L.

Corollary 6.4.8. The prime divisors of [L : (LΓ ⊗Z ZK)] divide the discrimi-
nant D of K.

From this corollary one easily obtains the proposition on the denominators.
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Chapter 7

Examples

In this chapter we apply the arithmetic techniques of the last chapter to con-
struct and study nice K/Q-forms for various finite matrix groups G and fields
K with Galois group Γ. This will be done using the procedure (6.4.2).

In the course of this chapter algorithmic methods such as the centering
algorithm (6.3.3) or algorithmic group theory are used freely and are often not
mentioned separately.

Let p ≡ −1 mod 4 and K = Q(ζp) the p-th cyclotomic field with Galois
group Γ. In the first section a general hermitian construction of ZK ∗ (Go Γ)-
lattices, where G is the hermitian automorphism group of a special hermitian
Q(
√
−p)-lattice, is developed. Using this construction, one finds ZK∗(PSL2(p)o

Γ)-lattices of rank (p − 1)2/2 which turn out to be modular of level p in the
sense of [Que95]. Taking a reduced Z-basis of the fixed lattice under the Galois
group Γ, one obtains a representation of PSL2(p) in degree (p− 1)/2, which is
absolutely irreducible as a K-linear representation and defined over Q. Klein’s
famous representations of PSL2(7) and PSL2(11) in degree 3 and 5 respectively,
appear in this arithmetic way.

The group PSL2(7) in Klein’s representation, which realizes PSL2(7) as a
subgroup of GL3(Q(ζ7)), turns out to be particularly interesting. Viewed as a
projective curve, the invariant of smallest degree is the famous Klein quartic.
The Mordell-Weil-lattice related to this curve [Elk99, 2.3] is the Craig-

lattice A(2)
6 which admits a hermitian Z[α] (where α2 + α + 2 = 0) structure.

Computing a Z[ζ7] ∗ (PSL2(7)oC6)-structure on the hermitian tensor product
of this lattice with itself and taking a reduced Z-basis of the fixed lattice under
the Galois group C6 brings back Klein’s representation.

Using the hermitian construction of the 72-dimensional extremal unimod-
ular lattice Λ72 discovered recently by Nebe [Neb] turns this lattice into a
Z[ζ7] ∗ (SL2(25) o Γ)-lattice, where Γ is the Galois group of Q(ζ7)/Q. After
rescaling, the lattices corresponding to fixed points under the subgroups of Γ
turn out to be unimodular themselves. Hence unimodular lattices of rank 12, 24
and 36 are attached to Λ72.

Further examples include the lattice E8 ⊥ E8, from which Maschke’s 4-
dimensional representation of the complex reflection group G31 can be recon-
structed [Mas89], and the Leech lattice, from which it is possible to obtain

61
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Klein’s 4-dimensional representation of 2.A7 [Kle87], the double cover of the
alternating group.

It often turns out that using cyclotomic fields K to construct (K/Q,−)-
representations gives the numerically best invariants.

7.1 A hermitian construction

Let p ≡ −1 mod 4, K = Q(ζp), Γ = Gal(K/Q), F the subfield Q(
√
−p) of K,

σ the canonical complex conjugation of K, and (L, h) a hermitian ZF -lattice
with respect to σ. Denote by G its hermitian automorphism group. In this
section we show that under some conditions on G the hermitian tensor product
of (L, h) with a Craig lattice [CS99, Chapter 8, 7.3] can be turned into a
ZK ∗ (Go Γ)-lattice. Specifically, we construct such lattices for G = PSL2(p).

We have to introduce some notation. Let V be a F -vectorspace of dimension
n endowed with a positive definite hermitian form h with respect to σ. A
hermitian lattice is the tuple (P, h) where P is a full ZF -sublattice in V . The
hermitian dual of P defined as

P ∗h = {x ∈ V | h(x, P ) ⊂ ZF }

and the hermitian automorphism group is

Aut((P, h)) := {g ∈ GL(V ) | gP = P and h(gx, gy) = h(x, y) for all x, y ∈ P}

From every n-dimensional hermitian ZF lattice one obtains a 2n-dimensional
Z-lattice R(P, h) := (P,TrF/Q ◦h) by restricting scalars. The dual lattice of
R(P, h) is the product of the hermitian dual P ∗h with the different of F i.e.
R(P, h)# = 1/(

√
−p)P ∗h .

Remark 7.1.1. Choose i ∈ {0, ..., p − 2} and let (P1, h1) be the hermitian
ZF -lattice

((1− ζp)iZK , (x, y) 7→ TrK/F (xy))

for 0 ≤ i ≤ p−2. This is a Craig lattice viewed as a hermitian ZF -lattice. The
hermitian automorphism group contains CpoC(p−1)/2, which can be identified
with 〈ζp〉oGal(K/F ).

Let (P2, h2) be a hermitian ZF -lattice and G its hermitian automorphism
group. Assume that (P2, h2) has the following properties:

1. It is isometric to its Galois conjugate lattice.

2. Using the isometry of (1) turns Gal(F/Q) into a subgroup of the Z-
automorphism group of the scalar restriction R(P2, h2). Inside this group
the extension of G with Gal(F/Q) is split.

3. The group GoGal(F/Q)−G contains an element of order p− 1.

Define (L, h) := (P1 ⊗ZF P2, h1 ⊗ h2) and note that its hermitian automor-
phism group contains CpoC(p−1)/2×G. It is easy to see that the Craig lattice
(P1, h1) is isometric to its Galois conjugate. Use this fact and the property
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(2) of (P2, h2) to see that the Z-automorphism group of R(L, h) contains the
absolutely irreducible matrix group (CpoC(p−1)/2×G) o C2. Since p ≡ −1
mod 4, we can write this group as (Cp×G)oCp−1, and using an element with
property (3), we can assume that Cp−1 → Aut(G) is injective.

Identifying Cp with 〈ζp〉 and Cp−1 with Γ turns R(L, h) into a normalized
ZK ∗ (Go Γ)-lattice.

Note that choosing a different element with property (3) may result in a
different ZK∗(GoΓ) structure with respect to the classification theorem (2.4.1).

To illustrate this remark, we use it to construct nice Z[ζp] ∗ (PSL2(p)o Γ)-
lattices.

Example 7.1.2. Let p ≡ −1 mod 4 and F = Q(
√
−p) and Γ = Gal(F/Q).

By [NP95, Theorem V.8] there exists a hermitian unimodular ZF -lattice (P, h)
of rank (p− 1)/2 with hermitian automorphism group PSL2(p). This lattice is
in fact a Craig lattice viewed as a hermitian ZF -lattice as in remark (7.1.1).
The automorphism group of the scalar restricted lattice R(P, h) is PGL2(p).
Use the ATLAS [CCN+85] to see that the construction of remark (7.1.1) is
applicable for (P1, h1) = (P2, h2) = (P, h).

This turns the scalar restricted lattice R((P ⊗P, h⊗h)) into a ZK ∗ (GoΓ)-
lattice. Since (P⊗P, h⊗h) is hermitian unimodular and it follows from algebraic
number theory, that R((P ⊗ P, h ⊗ h)) is modular of level p in the sense of
[Que95].

Specifically this construction applies for p ∈ {7, 11} and we will see that
Klein’s famous representations of the groups PSL2(p) are obtained from a
reduced Z-basis of the fixed lattice under the Γ-action.

7.2 PSL2(p)

We start with a general remark on the groups PSL2(p) and the irreducible
characters of degree (p+ 1)/2 and (p− 1)/2.

Remark 7.2.1. Let p be an odd prime, G = PSL2(p), χ be an irreducible
character of degree (p + 1)/2 or (p − 1)/2 respectively, K the character field
of χ and Γ = Gal(K/Q) with generator σ. The automorphism group of G is
PGL2(p), which is a split extension of PSL2(p) by C2 = 〈ϕ〉. Let − : Γ →
Aut(G) given by σ → ϕ and note that σ exchanges the conjugacy classes of
elements of order p in G. Since χ has irrationalities on those classes, Γ acts on
the character field as Galois automorphisms. The character χ̃ of K ∗ (Go Γ)
is of degree p − 1 respectively p + 1, has rational values and Schur index 1
by (4.4.3). Let M be the corresponding K ∗ (Go Γ)-module and view M as a
KG-module.

It is well known that if p ≡ −1 mod 4, there exists, up to isomorphism, a
unique full ZKG-lattice L in M [NP95, Chapter V]. It follows from proposition
(6.2.2) that L and

√
−pL are representatives of the isomorphism classes of full

ZK ∗ (Go Γ)-lattices in M .
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7.2.1 PSL2(5)

Let p = 5, G = PSL2(5), K, Γ and − : Γ → Aut(G) as in remark (7.2.1).
There are four non isomorphic ZK ∗ (PSL2(5)oΓ)-lattices in the 6-dimensional
K ∗ (PSL2(5) o Γ)-module M . It should be noted the the ZPGL2(5)-lattice
M6,2 of [NP95] is not a ZK ∗ (PSL2(5)o Γ)-lattice.

Let L0 be a full ZK ∗ (PSL2(5) o Γ)-lattice in M . The following Hasse
diagram illustrates the situation:

L0

√
5L0

L1

√
5L1

2L0

53

53

24

24

24

One obtains following table.

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 2253 4 2 · 5 2√
5L0 2253 4 2 · 52 4

L1 2453 5 225 3√
5L1 2453 5 2252 3

The fixed lattice (LΓ
0 ,ΦLΓ

0
) is a 3-dimensional Bravais-lattice (rhombohedral

of even type). Choosing a reduced basis of the fixed lattice, we can realize G
as a finite matrix group defined over Q. The group is generated by:

〈

0 1 −1
1 0 −1
0 0 −1

 ,
1√
5

1 + 2α −α −2
1 + 2α −2− α 1

0 −1 −1

〉
with α = (−1 +

√
5)/2. Those matrices are of order 2 and 5, respectively. The

Gram matrix of (LΓ
0 ,ΦLΓ

0
) is  2 −1 0

−1 2 −1
0 −1 4


and represents the invariant of lowest degree of G. It has determinant 10. The
subgroup of Q-rational points is isomorphic to S3 and lies in GL3(Z).

7.2.2 Klein’s representation

Let G = SL2(5), K = Q(ζ5) and use the notation of example (5.4.5) and the
ATLAS. Let χ := χ2 be one of the irreducible G characters of degree 3. The
character χ̃ of K ∗ (GoΓ) has degree 12 and Schur index 1 over Q. Let M be
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a K ∗ (G o Γ)-module affording this character. There are two non isomorphic
full ZKG-lattices in M and the Hasse diagram looks like (6.2.5).

One computes the following table of normalized ZK ∗(GoΓ)-lattices (Li,Φi)
in M .

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 24 · 53 4 2 1

(1− ζ5)L0 24 · 59 8 2 · 52 2

(1− ζ5)2L0 24 · 53 4 2 · 5 2

(1− ζ5)3L0 24 · 59 8 2 1

L1 28 · 59 10 22 · 52 4

(1− ζ5)L1 28 · 53 4 22 · 5 1

(1− ζ5)2L1 28 · 59 10 22 1

(1− ζ5)3L2 28 · 53 4 22 1

The lattice (L0,Φ0) corresponds to an irreducible maximal finite subgroup
of GL12(Q) isomorphic to (C2×D10 ×A5)o C2 [NP95].

One can choose a reduced Z-basis of LΓ
0 such that the Gram matrix of

(LΓ
0 ,ΦLΓ

0
) is diag(1, 1, 2). This provides a (K/Q,−)-representation

∆Q : PSL2(5)→ GL3(K),

which differs from Klein’s representation [Kle93] by an element O3(ΦLΓ
7
,Z).

In Klein’s representation the group G is generated by

〈

1 0 0
0 ζ5 0

0 0 ζ−1
5

 ,
1√
5

−1 1 + ζ5 + ζ2
5 + ζ3

5 −ζ5

−2 −ζ5 − ζ2
5 −1− ζ2

5

−2 −1− ζ3
5 1 + ζ5 + ζ2

5

〉
and the subgroup of Q-rational points is C2. The invariant of smallest degree

is:

i2 := x2
1 + x2x3

This invariant, although it has a very simple structure, corresponds to an
indefinite quadratic form over Q, whereas the representation of the last section
over fixes a positive definite form.

7.2.3 PSL2(7)

Let p = 7, K = Q(
√
−7), use the notation of remark (7.2.1) and recall that M is

an 18-dimensional absolutely irreducible K ∗(PSL2(7)oΓ)-module. Viewing M
as a 3-dimensional K PSL2(7)-module every ZK PSL2(p)-lattice in M is isomor-
phic to the Barnes lattice. Let α := (−1 +

√
−7)/2 and β := (−1−

√
−7)/2,

then as a sublattice of Z3
K it is spanned by

〈(1, 1, α), (0, β, β), (0, 0, 2)〉

with the hermitian form h:

h((a1, a2, a3), (b1, b2, b3)) :=
1

2

3∑
i=1

aiσ(bi)
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cf. [Neb]. The scalar restriction of this lattice is the Craig lattice A(2)
6 . Hence,

representatives of the isomorphism classes of ZK ∗ (GoΓ)-lattices are A(2)
6 and

its dual. One computes the following table.

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 73 4 7 2

L1 73 4 72 4

To construct a (K/Q,−)-representation ∆ : PSL2(7)→ GL3(K) one should use
a reduced Z-basis of (LΓ

0 ,ΦLΓ
0
). Let α = (−1 +

√
−7)/2, the following matrix

group is defined over Q, isomorphic to PSL2(7) and constructed using a reduced
basis of the fixed lattice LΓ

0 .

〈 1√
−7

−1 + 2α 1 −1− α
0 α −3 + α
0 1 + α −α

 ,
1√
−7

−1 + α 2− α −3 + α
1 + α −1 −3

1 1− α −2

〉
These matrices are of order 2 and 7, respectively. The Gram matrix of

(LΓ
0 ,Φ) is  2 −1 −1

−1 2 0
−1 0 3


and the subgroup of Q-rational points is isomorphic to S3 and lies in GL3(Z).
The natural character decomposes into the irreducible character of degree 2
and the sign character, but the natural S3-lattice Z3×1 does not decompose
accordingly.

The invariant of smallest degree is:

i4 :=x4
1 − 2x3

1x2 − 2x3
1x3 + 3x2

1x
2
2 + 9x2

1x2x3 − 3x2
1x

2
3 − 2x1x

3
2

− 9x1x
2
2x3 − 3x1x2x

2
3 + 4x1x

3
3 + x4

2 + 3x2
2x

2
3 − 3x4

3

The representation and the invariant should be compared to the representa-
tion obtained by Elkies in [Elk99, 1.3]. His representation is also defined over
Q and realized over Q(

√
−7). Although the invariant seems to have a simpler

structure, the generating matrices involve 7 as denominators.

7.2.4 Klein’s representation

We construct another representation of G = PSL2(7) in degree 3. Let K =
Q(ζ7), Γ = Gal(K/Q) and let (L, h) be the 7-modular 18-dimensional ZK ∗
(G o Γ)-lattice of example (7.1.2). More precisely, this lattice is the scalar
restriction of the hermitian tensor product of the Barnes lattice with itself.

Note that there is only one conjugacy class of elements of order 6 in Aut(G)−
G, hence all the possible ZK∗(GoΓ)-structures lead to equivalent matrix groups
defined over Q in the sense of (2.4.1).

It is easy to see that the K ∗ (GoΓ)-module Q⊗M is absolutely irreducible
and of dimension 18. Denote by ∆ the corresponding Q-linear representation
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of K ∗G and χ̃ its character, then χ is one of the Galois conjugate characters
of degree 3 of G.

It is well known that all ZKG-sublattices of L are isomorphic. Use example
(6.2.4) and proposition (6.2.2) to see that the isomorphism classes of ZK ∗ (Go
Γ)-lattices in L are:

L > (ζ7 − 1)L > (ζ7 − 1)2L > (ζ7 − 1)3L > (ζ7 − 1)4L > (ζ7 − 1)5L

Define Li = (ζ7 − 1)iL for 0 ≤ i ≤ 5. Since L is absolutely irreducible there
exists a unique primitive form ΦLi ∈ F∆,>0(K ∗ (Go Γ)) for every lattice Li.

Note that one can view every Li as a ZG′-lattice for the group G′ :=
(C7×SL2(7)) o C6. The primitive forms ΦLi correspond to G′ invariant sym-
metric positive definite bilinear forms.

One computes the following table.

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 79 6 1 1

L1 715 12 1 1

L2 73 4 1 1

L3 79 6 1 1

L4 715 12 72 3

L5 73 4 7 2

The automorphism group of (L0, h0) is an irreducible maximal finite sub-
group of GL18(Q) isomorphic to (C2×PSL2(7)× PSL2(7))o C2×C2 [NP95].

Let
ΦLΓ

0
: LΓ

0 × LΓ
0 → Z : (v, w) 7→ vtrΦw

be the positive definite bilinear form on LΓ induced by Φ0. Choose a reduced
Z-basis of LΓ such that after rescaling the Gram matrix of ΦLΓ

0
is the identity

matrix in GL3(Z). This basis provides a (K/Q,−)-representation

∆Q : SL2(7)→ GL3(K),

which differs from Klein’s representation [Kle99] by an element of the orthog-
onal group O(3,Z) ∼= C2×S4.

In Klein’s representation the group G is generated by

〈

ζ7 0 0
0 ζ2

7 0
0 0 ζ4

7

 ,
1√
−7

ζ5
7 − ζ2

7 ζ6
7 − ζ7 ζ3

7 − ζ4
7

ζ6
7 − ζ7 ζ3

7 − ζ4
7 ζ5

7 − ζ2
7

ζ3
7 − ζ4

7 ζ5
7 − ζ2

7 ζ6
7 − ζ7

〉
and the subgroup of Q-rational points is C2 and the invariant of smallest

degree is:

i4 :=x1x
3
2 + x2x

3
3 + x3x

3
1

Viewed as a projective curve in P2 this is the famous Klein quartic. In
comparison to the representation constructed in the previous chapter, the in-
variant of degree 4 has a pretty trinomial structure. It is an interesting fact
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that the Mordell-Weil-lattice related to Klein’s quartic [Elk99, 2.3] turns

out to be A(2)
6 , the lattice from which the representation of the previous section

was constructed and from whose hermitian square Klein’s representation was
obtained.

7.2.5 PSL2(8)

Let G = PSL2(8) and K the totally real subfield of Q(ζ9). The automorphism
group of G is a split extension of G by C3 and there is a unique conjugacy
class of elements of order 3 in Aut(G) − G. Choose an isomorphism − : Γ →
C3 ≤ Aut(G) and let χ be an absolutely irreducible character of G of degree
7 with K as its character field. There are 3 such characters, all of which are
Galois conjugate. The character χ̃ of K ∗(GoΓ) has degree 21, character field
Q and Schur index 1 over Q. Let M be a K ∗ (G o Γ)-module affording this
character and ∆ the corresponding representation. There are 24 non isomorphic
full ZK ∗ (G o Γ)-lattices in M and each has a unique primitive form ΦL ∈
F∆,>0(K ∗ (G o Γ)). Restricting to the normalized lattices corresponding to
maximal subgroups of GL21(Q) one has the following table.

Lattice L Name det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 C2×Sp2(6) 2637 4 2238 4

L1 Λ2E7 26 3 22 1

To construct a (K/Q,−)-representation ∆ : G→ GL3(K), one should use a
reduced basis of (LΓ

1 ,ΦLΓ
1
). Doing so gives a matrix group defined over Q and

isomorphic to G. Due to the size, we do not print generating matrices. The
denominators of the matrix entries all lie in the fractional ideal generated by
(3(β + 1))−1 where β is a zero of x3− 3x+ 1. Note that K is the splitting field
of this polynomial.

The invariant of smallest degree is the symmetric positive definite quadratic
form (LΓ

1 ,ΦLΓ
1
) with Gram matrix:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 2 1 1 −1
0 0 0 1 2 0 −1
0 0 0 1 0 2 −1
0 0 0 −1 −1 −1 2


As in the previous examples one could extend K to Q(ζ9) and find a

(K/Q,−)-representation. One would expect the invariants to become simpler,
but one would loose positive definiteness of the invariant of degree 2.

7.2.6 PSL2(11)

Let G = PSL2(11) and K = Q(ζ11) and note that there are two conjugacy
classes of elements of order 10 in Aut(G) − G. Composition with an inner
automorphism of order 5 interchanges both classes. Hence, there are two
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different ZK ∗ (G o Γ)-structures on the 50-dimensional 11-modular lattice
(L, h) constructed in remark (7.1.2). Fix one such structure on (L, h) and
denote by M := L ⊗ Q the corresponding K ∗ (G o Γ)-module. The set
{(ζ11 − 1)iZk | 1 ≤ i ≤ 9} is a set of representatives of the equivalence classes
of Γ-stable principal ZK-ideals by example (6.2.4). By proposition (6.2.2) the
isomorphism classes in Z(M) are {(1− ζ11)iL | 0 ≤ i ≤ 9}

Define Li = (ζ11− 1)iL for 0 ≤ i ≤ 9. There exists a unique, primitive form
ΦLi ∈ F∆,>0(K ∗ (G o Γ)) for every lattice Li. One computes the following
table, in which both structures are considered.

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 1125 10 1, 114 1, 5

L1 1135 22 1, 114 1, 5

L2 1145 30 1, 114 1, 2

L3 115 6 1, 11 1, 2

L4 1115 10 1, 11 1, 2

L5 1125 10 1, 11 1, 5

L6 1135 22 112, 113 3, 1

L7 1145 30 114, 1 5, 1

L8 115 6 11, 1 2, 3

L9 1115 10 113, 112 5, 5

Note that the two ZK ∗ (G o Γ)-structures only differ with respect to the
Γ-fixed lattices. For i ∈ {0, 5} one can choose a reduced Z-basis of LΓ such
that, after rescaling, the Gram matrix of ΦLΓ

i
is the identity matrix in GL4(Z).

This basis provides a (K/Q,−)-representation

∆Q : PSL2(11)→ GL5(K)

and one of those differs from Klein’s representation [Kle79] by an element of
the orthogonal group O(5,Z).

In Klein’s representation the group G is generated by

〈


0 0 0 1 0
0 0 −1 0 0
−1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

 ,
1√
−11


ζ1011 − ζ311 ζ611 − ζ711 1− ζ211 −ζ811 + ζ511 −ζ911 + ζ411
ζ311 − ζ411 −ζ511 + ζ211 −ζ11 + ζ611 ζ1011 − ζ811 −1 + ζ711
ζ211 − ζ411 1− ζ611 ζ811 − ζ911 ζ511 − ζ11 ζ1011 − ζ711
−1 + ζ811 ζ511 − ζ311 ζ611 − ζ211 ζ711 − ζ11 ζ911 − ζ1011
−ζ211 + ζ811 −ζ711 + ζ311 −ζ911 + ζ11 ζ1011 − 1 ζ611 − ζ411

〉

where the first matrix has order 5 and the second order 3. The subgroup of
Q-rational points is C5 and the invariant of smallest degree is:

i3 := x2
4x3 − x2

5x1 − x2
2x4 − x2

3x5 − x2
1x2,

which has a pretty trinomial structure.
Using the second structure one can choose a reduced Z-basis of LΓ

7 such
that, after rescaling, the Gram matrix of ΦLΓ

7
is the identity matrix in GL4(Z).

This basis provides a (K/Q,−)-representation

∆Q : PSL2(11)→ GL5(K)
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Due to the size of the entries we do not print the generating matrices. The
appearing denominator is 11, which is worse than in Klein’s representation.
The invariant of smallest degree is

i3 =10x2x3x5 − 6x2x4x5 + 2x2x
2
5 − 6x2

1x2 − x2
1x3 + 2x2

1x4 + 2x1x
2
2 − 2x3

1 − 2x3
2 − 2x3

3−
2x3

4 + 2x3
5 + 6x2

2x5 + 6x2x3x4 − x2x
2
3 − 6x2

3x4 − 2x2
3x5 + 2x3x

2
4 + 10x3x4x5 − 6x3x

2
5−

x2
2x4 − x1x

2
5 − 10x1x3x4 − 6x1x3x5 − 6x1x

2
4 − 6x1x4x5 + 6x1x2x3 − 10x1x2x4+

10x1x2x5 + x2
4x5

which seem also worse compared to the preceding invariant.
Similar to the examples of PSL2(5) and PSL2(7) one could construct a

(Q(
√
−11)/Q,−)-representation of G. We do not do this, because the resulting

representation and the invariants would become too large to print.

7.3 SL2(7)

Let G = SL2(7), K = Q(ζ7), Γ = Gal(K/Q) and F = Q(
√
−7). The objective

is to realize G as subgroup of GL4(K) which is defined over Q. As seen before,
we try to apply the construction of remark (7.1.1).

It is well known that up to isomorphism there exist two full ZF SL2(7)-
lattices of rank 4 in each of the absolutely irreducible 4-dimensional F SL2(7)-
modules. On both lattices there exists a (unique up to scalars) G-invariant
hermitian form. Restricting scalars of those forms yields the root lattice D8

and its dual. Let (P1, h1) be the Barnes lattice and (P2, h2) the hermitian
G-invariant ZF -lattice of which the scalar restriction is D8. One checks that
the construction of remark (7.1.1) is applicable, hence one obtains a lattice
ZK ∗ (G o Γ)-lattice of dimension 24 with determinant 26. Denote by L1 the
ZK ∗ (G o Γ)-lattice by applying (7.1.1) to the other G-invariant hermitian
lattice. Let M = Q⊗ L0 be the K ∗ (Go Γ)-module and ∆ the corresponding
representation.

By proposition (6.2.2) the isomorphism classes of full ZK ∗ (Go Γ)-lattices
in M are Li,j := (1− ζ7)iLj with 0 ≤ i ≤ 5 and 1 ≤ j ≤ 2. The Hasse diagram
looks like

L0

(1− ζ7)L0

L1

(1− ζ7)L1

74

74

212

212
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For each lattice there exists a unique, primitive form ΦLi,j ∈ F∆,>0(K ∗
(GoΓ)). One computes the following table of normalized ZK ∗ (GoΓ)-lattices
in M .

Lattice L det(ΦL) min(ΦL) det(ΦLΓ) min(ΦLΓ)

L0,0 26 4 2 1

L0,1 26 · 78 6 2 · 72 2

L0,2 26 · 716 12 2 1

L0,3 26 4 2 1

L0,4 26 · 78 6 2 1

L0,5 26 · 716 12 2 · 72 2

L1,0 218 4 23 1

L1,1 218 · 78 6 23 · 72 1

L1,2 218 · 716 14 23 1

L1,3 218 4 23 1

L1,4 218 · 78 6 23 1

L1,5 218 · 716 14 23 · 72 4

The lattices (L0,0,Φ0,0) and (L1,0,Φ1,0) correspond to the irreducible maxi-
mal finite subgroup of GL24(Q) isomorphic to (SL2(7)×PSL2(7))oC2 [Neb96]
and its dual.

One can choose a reduced Z-basis of LΓ
0,1 such that the Gram matrix of

(LΓ
0,1,ΦLΓ

0,1
) is diag(2, 1, 1, 1). This basis provides a (K/Q,−)-representation

∆Q : SL2(7)→ GL4(K) which differs from Maschke’s representation [Mas87]
by an element O4(ΦLΓ

0,1
,Z).

This realizes SL2(7) as a subgroup of GL4(K) which is defined over Q and
generated by

〈


1 0 0 0
0 ζ7 0 0
0 0 ζ4

7 0
0 0 0 ζ7

 ,
1√
−7


1 1 1 1
2 ζ7 + ζ6

7 ζ2
7 + ζ5

7 ζ3
7 + ζ4

7

2 ζ2
7 + ζ5

7 ζ3
7 + ζ4

7 ζ7 + ζ6
7

2 ζ3
7 + ζ4

7 ζ7 + ζ6
7 ζ2

7 + ζ5
7

〉
The invariant of smallest degree is

i4 := 2x4
1 + 6x1x2x3x4 + x3

2x3 + x3
3x4 + x3

4x2

and in fact Maschke calculated fundamental invariants of this group [Mas87].
One can also use the hermitian ZF -structure on the D8-lattice to realize

SL2(7) as a subgroup of GL4(F ) which is defined over Q. Recall the hermitian
G-invariant lattice (P2, h2) whose scalar restriction is D8. The extension of the
hermitian automorphism group of Aut((P2, h2)) with the Galois group of F/Q
is split inside Aut(D8). This turns D8 into a ZF ∗ (SL2(7) o C2)-lattice. One
can choose a reduced Z-basis of the Γ fixed lattice such that the Gram matrix
of is diag(1, 1, 1, 2). Let α = (−1 +

√
−7)/2, then the group is generated by

〈 1√
−7


−2− α −1 0 −2
1 + α −α− 1 1 −2

1 1 + α α −2
0 1 −α− 1 −1

 ,
1√
−7


1 + α −α− 1 1 −2

0 −1 −α −2α
−1 −2 α 0

1 + α 0 −1 1

〉
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where the first generator is of order 7 and the second of order 3. We compute
the invariant of degree 4, which does not have such a pretty structure as in
Maschke’s representation.

i4 :=3x2
1x

2
2 + 6x3

1x4 − 12x2
1x3x4 − 3x1x

2
2x3 − 12x1x

2
2x4 − 3x1x2x

2
3 − 6x1x

2
3x4−

6x2
2x3x4 − 12x2x

2
3x4 − 6x2

1x2x4 − 14x4
4 − x4

1 + 6x3
3x4 − 6x1x2x3x4 − 6x1x

3
2+

6x3
2x4 + 3x2

2x
2
3 − 6x2x

3
3 + 3x2

1x
2
3 − 3x2

1x2x3 − 6x3
1x3 − x4

2 − x4
3;

The subgroup of rational points is C6 in either representation.

7.4 SL2(13)

Let G = SL2(13), K = Q(ζ13), χ an absolutely irreducible character of degree
6 of G and use the notation of example (5.4.5). Note that this fixes one of the
possible 2 different K ∗ (GoΓ)-structures in the sense of (2.4.1). The character
χ̃ of K ∗ (G o Γ) has degree 72, rational values and Schur index 1 over Q.
Let M be a K ∗ (G o Γ)-module affording this character. Viewing M as a
K SL2(13)-module, there exists, up to isomorphism, a unique ZKG-lattice L in
M . The isomorphism classes of full ZK ∗ (Go Γ)-lattices are Li := (1− ζ13)iL
with 0 ≤ i ≤ 11. One computes the following table of ZK ∗ (Go Γ)-lattices in
M together with their unique primitive form in F∆,>0(K ∗ (Go Γ)).

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 1348 ≤ 26 134 7

L1 1360 ≤ 52 134 7

L2 1 ≤ 6 1 1

L3 1312 ≤ 8 132 3

L4 1324 ≤ 12 132 3

L5 1336 ≤ 12 134 3

L6 1348 ≤ 26 134 3

L7 1360 ≤ 52 1 1

L8 1 ≤ 6 1 1

L9 1312 ≤ 8 1 1

L10 1324 ≤ 12 132 2

L11 1336 ≤ 12 132 2

Choosing a reduced Z-basis of LΓ
2 such that the Gram matrix of (LΓ

2 ,ΦLΓ
2
)

is the identity matrix, provides a (K/Q,−)-representation

∆Q : SL2(13)→ GL6(K)

with character χ. Due to its size we do not print the generating matrices.
The denominators of those matrices all lie in the fractional ideal generated by
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(
√
−13)−1 and the representation has the following invariant degree 4

i4 :=11x31x3 + 3x31x4 + 3x21x
2
2 + 9x21x2x5 + 3x21x

2
3 − 9x21x3x4 + 9x21x3x6 − 3x21x

2
4+

6x21x4x6 − 3x21x
2
5 − 11x1x

3
2 + 9x1x

2
2x5 − 9x1x

2
2x6 − 6x1x2x

2
5 − 27x1x2x5x6 − 9x1x

2
3x6+

27x1x3x4x6 + 6x1x3x
2
6 + 9x1x

2
4x6 − 9x1x4x

2
6 − 3x1x

3
5 + 9x1x

2
5x6 − 3x32x6 − 3x22x

2
3+

9x22x3x4 + 3x22x
2
4 + 6x22x5x6 − 3x22x

2
6 + 3x2x

3
3 + 6x2x

2
3x4 − 9x2x

2
3x5 − 9x2x3x

2
4+

27x2x3x4x5 + 11x2x
3
4 + 9x2x

2
4x5 + 9x2x

2
5x6 − 9x2x5x

2
6 + 11x33x5 + 9x23x4x5 + 3x23x

2
5−

3x23x
2
6 + 6x3x

2
4x5 − 9x3x4x

2
5 + 9x3x4x

2
6 − 3x3x

3
6 − 3x34x5 − 3x24x

2
5 + 3x24x

2
6+

11x4x
3
6 + 11x35x6 + 3x25x

2
6

7.5 SL2(25)

Recently Nebe constructed a 72-dimensional, extremal even unimodular lattice
Λ72 together with a subgroup U := (PSL2(7) × SL2(25)) o C2 ≤ GL72(Z) of
the automorphism group of Λ72 [Neb]. The hermitian construction of Λ72 will
be reviewed shortly. Let K = Q(ζ7), Γ = Gal(K/Q) and F = Q(

√
−7). In his

thesis [Hen09] Hentschel classified all hermitian ZF -structures on the Leech
lattice. One of those is a 12-dimensional hermitian ZF -lattices (P, h) with
hermitian automorphism group SL2(25). It is isometric to its Galois conjugate
and the extension of the hermitian automorphism group by Gal(F/Q) is split.
The lattice Λ72 is the scalar restriction of the hermitian tensor product of (P, h)
with the Barnes lattice. Note that the Barnes lattice is a Craig-lattice and
use the ATLAS [CCN+85] to check that the construction of remark (7.1.1)
applies. This turns Λ72 into an 72-dimensional ZK ∗ (SL2(25)o Γ)-lattice. Let
M := Q ⊗ Λ72 the corresponding Q(ζ7) ∗ (SL2(25) o Γ)-module. Its character
is χ̃16, where χ16 is a faithful irreducible character of SL2(25) in the ATLAS
notation.

There exists another faithful irreducible character χ17 of SL2(25) of degree
12. The corresponding character χ̃17 of K ∗ (Go Γ) has degree 72 and Schur
index 2 over Q, which can be checked using the twisted Frobenius-Schur
indicator (5.3.7).

The Galois group Γ acts on Λ72 and let H be a subgroup of Γ. Denote
the bilinear form corresponding to Λ72 by Φ, and by ΦΛH72

: ΛH72 × ΛH72 → Z :

(v, w) 7→ vtrΦw the form restricted to the fixed lattice under H. After rescaling
ΦΛH72

, one computes the following table.

H rkZ(ΛH72) det(ΦLH ) min(ΦΛH72
) [Λ72 : (ΛH72 ⊗ ZK)]

Γ 12 1 2 730

〈σ2〉 24 1 4 712

〈σ3〉 36 1 4 76

Note that the lattice Λ
〈σ2〉
72 is the Leech lattice and ΛΓ

72 turns out to be
the unique indecomposable unimodular lattice of dimension 12, which Kneser
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denoted K12 in [Kne57]. Choosing a reduced basis for the fixed lattice ΛΓ
72 gives

a (K/Q,−)-representation:

∆Q : SL2(25)→ GL12(Q(ζ7))

Due to its size we do not print the generating matrices nor the invariant of
smallest degree. The denominators of the generating matrices all lie in the
fractional ideal generated by (

√
−7)−1.

7.6 3.A6

Let G be the Valentiner group 3.A6, χ one of the irreducible faithful charac-
ters of degree 3, and K = Q(ζ15) with Galois group Γ = C4×C2. A computer
calculation shows that, up to conjugation in Aut(G), there is a unique subgroup
U ∼= C4×C2 of Aut(G) which acts as Galois automorphisms on the character
field Q(

√
5, ζ3) of χ.

There are two elements of order 2 in U , conjugate to each other in Aut(G),
acting non trivially on the center of G and fixing the conjugacy classes of el-
ements of order 5 of G. Hence, both elements induce the canonical complex
conjugation on the character field of χ.

In fact, up to composition with an element of Inn(Aut(G)), there are two
different possibilities for the isomorphism − : Γ → U . In terms of theorem
(2.4.1) one expects two matrix groups which are not conjugate to each other
by an element of GL3(Q) and which are isomorphic to 3.A6. Note that the two
resulting twisted group rings K ∗ (G o Γ) are isomorphic Q-algebras, but the
canonical involution on K ∗ (Go Γ) is not respected.

The character χ̃ of K ∗ (G o Γ) has degree 24, rational values and Schur
index 1 over Q. Denote by M the corresponding K ∗ (G o Γ)-module. Let
∆ : G → GL3(K) a representation affording χ. It is well known that ∆(ZKG)
is a maximal ZK-order. Hence, up to isomorphism, there exists a unique ZKG-
lattice in M and the equivalence classes of Γ-invariant ideals of ZK are (1 −
ζ3)i(1− ζ5)j for 0 ≤ i ≤ 1 and 0 ≤ j ≤ 3.

One computes the following table of ZK ∗ (G o Γ)-lattices in M together
with their unique primitive form in F∆,>0(K ∗ (G o Γ)). Note that this table
is the same for both choices of − : Γ→ U .

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 312 · 518 16 3 · 52 2

L1 312 · 518 16 32 · 52 4

L2 312 · 56 8 3 · 5 1

L3 312 · 518 16 3 1

L4 312 · 56 8 32 · 5 2

L5 312 · 56 8 3 1

L6 312 · 518 16 32 1

L7 312 · 56 8 32 1

The lattices (L2,Φ2) and (L5,Φ5) correspond to an irreducible maximal
finite subgroup of GL24(Q) isomorphic to (C2×C3 .PGL2(4)×D10).C2 [Neb96].
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We discuss the two different choices of the map − : Γ → Aut(G) and the
influence on the fixed lattices. For one choice there exists a reduced Z-basis
of (LΓ

5 ,ΦLΓ
5
) such that after rescaling the Gram matrix is diag(1, 1, 3). In this

case, up to an element of O3(ΦLΓ
5
,Z), we find that the group 3.A6 is generated

by the matrices ζ15 0 0
0 ζ4

15 0
0 0 −1− ζ5

15


and

1
√
−15

−2 + 2ζ715 + ζ415 − 2ζ315 − 2ζ615 + 2ζ215 2− 2ζ715 − 3ζ15 − 2ζ415 + ζ315 + ζ615 + 2ζ515 −3 + 3ζ715 − 3ζ315 − 3ζ615
−1 + 2ζ715 − ζ

4
15 − ζ

3
15 − ζ

6
15 ζ15 + 2ζ615 3− 3ζ715 − 3ζ15 − 3ζ415 + 3ζ315 + 3ζ615 + 3ζ515

1− ζ215 2− ζ715 − ζ15 − ζ
4
15 + ζ315 + ζ515 −1 + 2ζ715 + ζ15 + ζ415 − 2ζ315 + 2ζ215 − ζ

5
15



This representation is precisely the one Wiman found in [Wim96] by study-
ing the geometry of the Valentiner group and of which he calculated the
invariant of smallest degree:

i6 := 27x6
3 + 9x5

1x3 − 45x2
1x

2
2x

2
3 − 135x1x2x

4
3 + 10x3

1x
3
2 + 9x5

2x3

The second choice of Γ→ Aut(G) leads to Gram matrix of (LΓ
5 ,ΦLΓ

5
) being1 0 0

0 2 1
0 1 2


It is easy to check that those Gram matrices represent non isometric quadratic
forms over Q.

Since the representation is quite similar to Wimans, we give only the in-
variant of degree 6.

i6 =− 15x4
1x

2
3 − 15x2

1x
4
2 − 9x1x

5
3 + 90x1x

2
2x

3
3 + 15x4

1x2x3 + 30x2
1x2x

3
3 + 30x2

1x
3
2x3−

45x2
1x

2
2x

2
3 − 90x1x

3
2x

2
3 + 10x6

2 + 10x6
3 − 15x4

1x
2
2 − 15x2

1x
4
3 + 9x1x

5
2 − 30x5

2x3+

60x4
2x

2
3 − 70x3

2x
3
3 + 60x2

2x
4
3 − 30x2x

5
3 + x6

1

We observe that Wimans representation provides better invariants.

7.7 2.A7

Let G = 2.A7, K = Q(
√
−7) and χ an absolutely irreducible character of degree

4. One finds that K is the character field of χ. There are two isoclinic split
extensions of G by an outer automorphism of order 2. In both cases χ and its
complex conjugate character fuse to a single character ψ of degree 8 and with
rational values. Using MAGMA one checks that in one extension, denoted by
E := G o C2, the character ψ has Schur index 1 over Q. Hence there exists
an 8-dimensional QE-module M with character ψ. Let ϕ be the generator of
C2 ≤ Aut(G) and note that ϕ interchanges the two conjugacy classes of elements
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of order 7 and 14 respectively. This shows that C2 acts on the character field
Q(χ) = Q(

√
−7) as Galois automorphisms. Let − : Γ → Aut(G) defined by

σ 7→ ϕ, then this choice turns M into a K ∗ (Go Γ)-module.

There are 2-non isomorphic ZK ∗ (Go Γ)-lattices L0, L1 in M and for each
there exists a unique primitive form ΦLi ∈ F∆,>0(K ∗ (Go Γ)). One computes
the following table.

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 1 2 2 2

L1 1 2 1 2

Both lattices (Li,ΦLi) are isometric to the famous E8-lattice. Thus the E8

lattice induces a representation ∆ : 2.A7 → GL4(K) having fundamental in-
variants with rational coefficients. In this representation 2.A7 is generated by
the matrices:

〈 1√
−7


0 −1− 2α 0 0

−α− 1 0 −1 + α −1
1 0 α 2

−1 + α 0 −1 −α

 ,
1√
−7


α −1 1 + α −α− 1
−1 −1 + α 0 1 + α
−α 0 α+ 2 1
α −α 1 1 + α

〉
where α = (−1 +

√
−7)/2 and the generators have order 12 and 6, respec-

tively. The subgroup of rational points is isomorphic to S4. We do not print the
polynomial invariant of degree 8, since it consist of 117 summands. It should
be noted that the largest absolute value among the coefficient is 24, which is
rather small.

We construct another representation of 2.A7 with character χ over K =
Q(ζ7). Using the twisted Frobenius-Schur (5.3.7) indicator and the ATLAS
[CCN+85] one checks that, up to conjugation in Aut(G), there exists a unique
automorphism ϕ ∈ Aut(G) with the following properties:

• It is not an inner automorphism.

• Let − : Γ→ Aut(G) : σ 7→ ϕ, then the K ∗ (GoΓ) character χ̃ has degree
24, rational values and Schur index 1 over Q.

Let M be the module corresponding to χ̃. One computes the following table of
normalized ZK ∗ (Go Γ)-lattices (Li,Φi) in M .

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 716 12 72 2

L1 1 4 1 1

L2 78 6 72 1

L3 716 12 1 1

L4 1 4 1 1

L5 78 6 1 1
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The lattices (L1,Φ1) and (L4,Φ4) are isometric to the famous Leech lattice.
For those one can choose a reduced Z-basis of (LΓ

i ,ΦLΓ
i
) such that the Gram

matrix is the identity matrix. This basis provides a (K/Q,−)-representation

∆Q : 2.A7 → GL4(K)

and one of them differs from Klein’s representation [Kle87] by an element
O3(Z). The corresponding matrix group is generated by

〈


−1 0 0 0
0 −ζ7 0 0
0 0 −ζ4

7 0
0 0 0 −ζ2

7

 ,
1√
−7


0 −ζ3

7 + ζ4
7 −ζ5

7 + ζ2
7 ζ7 − ζ6

7

ζ3
7 − ζ4

7 0 ζ6
7 − ζ7 ζ2

7 − ζ5
7

ζ5
7 − ζ2

7 ζ7 − ζ6
7 0 ζ3

7 − ζ4
7

ζ6
7 − ζ7 ζ5

7 − ζ2
7 −ζ3

7 + ζ4
7 0

〉
and the invariant of smallest degree is

i8 =21x4
4x1x

2
2x3 − 21x2

1x
2
4x

2
2x

2
3 + 21x4

3x
2
4x1x2 + 3x7

4x1 − x8
1 + 28x4

4x2x
3
3+

28x3x
3
4x

4
2 − 21x5

4x
2
1x3 − 42x3

1x
2
3x

3
4 − 42x3

2x
3
1x

2
4 + 7x2x

4
1x

3
4 − 7x6

4x
2
2−

7x6
3x

2
4 − 42x2x4x

5
1x3 + 21x4

2x4x
2
3x1 − 7x2

3x
6
2 + 3x1x

7
2 + 3x7

3x1 + 7x3
2x3x

4
1+

28x4
3x

3
2x4 − 21x2

1x4x
5
2 + 7x4

1x
3
3x4 − 21x5

3x
2
1x2 − 42x3

1x
3
3x

2
2

7.8 U3(4)

Let G = U3(4), K = Q(ζ13) with group Γ and χ the irreducible faithful charac-
ter of degree 12. The character χ has rational values and Schur index 2 over
Q. There are 2-conjugacy classes of automorphisms of order 13 of G which are
not inner automorphisms. Choose a representative of one of those classes and
use it to define − : Γ → Aut(G). Since χ is Γ invariant, the character χ̃ of
K ∗ (Go Γ) has degree 144 and values in Q.

A computer calculation shows that there exists a cyclic and Γ-invariant
subgroup of order 13 in G. Similar to example (5.4.5) one can use induction
to see that χ̃ has Schur index 1 over Q. Let M be a K ∗ (G o Γ)-module
affording this character. Viewing M as a KU3(4)-module there exists, up to
isomorphism, two ZKG-lattice L0, L1 in M . Hence the isomorphism classes of
full ZK ∗ (GoΓ)-lattices are Lj,i := (1− ζ13)iLj with 0 ≤ i ≤ 11 and 0 ≤ j ≤ 1.
One computes the following table of normalized ZK ∗(GoΓ)-lattices in M with
minimal determinant.

Lattice L det(ΦLi) min(ΦLi) det(ΦLΓ
i
) min(ΦLΓ

i
)

L0 272 ≤ 12 26 2

L1 272 ≤ 12 26 2

L2 272 ≤ 12 26 1

L3 272 ≤ 12 26 1

There exists a (K/Q,−)-representation

∆Q : U3(4)→ GL12(K)



78 CHAPTER 7. EXAMPLES

with character χ. Due to its size we do not print the generating matrices nor
the invariant of smallest degree.

7.9 Extraspecial groups

7.9.1 D8 ⊗Q8

Let G be the extraspecial 2-group D8 ⊗ Q8 and K = Q(i) with Galois group
Γ. Use the Kronecker product of the elements of

D8 = 〈
(

0 1
−1 0

)
,

(
0 1
−1 0

)
〉

and the matrix group Q8 given in example (5.1.8) to construct G as a finite
subgroup of GL4(K) which is invariant under complex conjugation. This turns
M := K4×1 into a K ∗ (G o Γ)-module. A computer calculation shows that
there are 192 non isomorphic full ZK ∗ (G o Γ)-lattices Li in M and each has
a unique primitive form in F∆,>0(K ∗ (Go Γ)). There are 32-lattices (Li,ΦLi)
isometric to the E8-lattice, 30 isometric to the standard lattice (Z8×1, I8), 70
isometric to D4 ⊥ D4 and 30 represent the root lattice D8 and the dual D∗8,
respectively.

Viewing all those lattices as hermitian Z[i]-lattices, we compute the hermi-
tian automorphism group:

Lattice L |AutZ[i](L,ΦL)| solvable

E8 210 · 32 · 5 no

Std 211 · 3 yes

D4 ⊥ D4 28 · 32 yes

D8 211 · 3 yes

We consider the case that (L,Φ) is isometric to the E8-lattice. The hermitian
automorphism group of those lattices is the complex reflection group G := G31,
which is an extension of

C4 �(D8 � Q8)

by the symmetric group S6. This turns E8 into an ZK ∗ (G31 o Γ)-lattice and
one can choose a reduced Z-basis of (EΓ

8 ,ΦEΓ
8
) such that the Gram matrix is

the identity matrix. This basis provides a (K/Q,−)-representation

∆Q : G31 → GL4(K)

As a matrix group G31 is generated by

G31 :=

〈
1

2


1 1 i −i
−1 1 i i
i −i −1 −1
−i −i −i 1

 ,
1

2


−i −i 1 1
1 −i− 1 −1 0
1 i −i 1
−i 0 −i −i− 1


〉
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where the generators are of order 6 and 8, respectively. Computing the
invariant of smallest degree, one finds

i8 :=x8
1 − 7x4

1x
4
2 − 42x4

1x
2
2x

2
4 + 14x4

1x
4
3 − 7x4

1x
4
4 − 42x2

1x
4
2x

2
3 + 84x2

1x
2
2x

2
3x

2
4

− 42x2
1x

2
3x

4
4 + x8

2 − 7x4
2x

4
3 + 14x4

2x
4
4 − 42x2

2x
4
3x

2
4 + x8

3 − 7x4
3x

4
4 + x8

4

In the nineteenth century, Maschke constructed a representation of this
group where the generating matrices have entries in the 8-th cyclotomic field
[Mas89]. Using the techniques of the previous examples, one finds E8 ⊥ E8

as a Z[ζ8] ∗ (G31 o Gal(Q(ζ8)/Q))-lattice. Maschke’s representation can be
obtained taking a reduced Z-basis of the fixed point lattice under the action of
the Galois group of Q(ζ8) on E8 ⊥ E8. The invariant of smallest degree in
Maschke’s representation is

i8 =14x4
2x

4
3 + x8

4 + 168x2
1x

2
4x

2
2x

2
3 + x8

1 + 14x4
1x

4
4 + 14x4

1x
4
2 + 14x4

1x
4
3+

14x4
4x

4
3 + 14x4

4x
4
2 + x8

3 + x8
2

An obvious difference between those invariants is the number of real solu-
tions of the equation i8(x) = 0 in R4.

7.9.2 Odd p

Let p be an odd prime and G an extraspecial p-group of order p3. There are
exactly two non isomorphic groups of such type and they admit the following
presentations:

p2+1
+ = 〈a, b, c | ap = bp = cp = 1, ba = abc, ca = ac, cb = bc〉

p2+1
− = 〈a, b, c | ap = bp = c, cp = 1, ba = abc, ca = ac, cb = bc〉

It is immediate that the first group has exponent p and the second p2, thus
the exponent distinguishes both.

Let ϕ : Sp → GLp(Z) be the permutation representation corresponding to
the natural Sp action on {1, ..., p}. One finds the following matrix representa-
tions:

∆ : p2+1
+ → GLp(Q(ζp))

a 7→ ϕ((1, 2, ..., p)), b 7→ diag(1, ζp, ζ
2
p , ..., ζ

p−1
p )

c 7→ diag(ζp, ..., ζp)

and

∆ : p2+1
− → GLp(Q(ζp2))

a 7→ diag(ζp2 , ζp+1
p2 , ζ2p+1

p2 , ..., ζ
(p−1)p+1
p2 )ϕ((1, 2, ..., p))

b 7→ diag(ζp2 , ζp+1
p2 , ζ2p+1

p2 , ..., ζ
(p−1)p+1
p2 ), c 7→ diag(ζp

p2 , ..., ζ
p
p2)
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where ζp and ζp2 are primitive p-th respectively p2-th roots of unity. Both
representation are faithful, absolutely irreducible and the corresponding ma-
trix group is defined over Q. This turns Z[ζp]

p×1 and Z[ζp2 ]p×1 into a Z[ζp] ∗
(p2+1

+ oΓ) respectively Z[ζp2 ] ∗ (p2+1
− oΓ)-lattice, where Γ = Gal(Q(ζp)/Q) and

Gal(Q(ζp2)/Q) respectively.

7.9.3 3-groups

Assume that p = 3, K = Q(ζ3) and

G = 32+1
+ = 〈

0 0 1
1 0 0
0 1 0

 ,

1 0 0
0 ζ3 0
0 0 ζ2

3

 ,

ζ3 0 0
0 ζ3 0
0 0 ζ3

〉
The space of invariants of smallest degree is

λ1(x3
1 + x3

2 + x3
3) + λ2(x1x2x3) with λ1, λ2 ∈ Q(ζ3)

hence 2-dimensional. Geometrically, this invariant space is directly connected
to the Hesse pencil [AD09].

Recall that L0 := Z[ζ3]3×1 is a ZK ∗ (G o Γ)-lattice. View L0 as a ZKG-
lattice and using MAGMA one obtains the Hasse diagram of all full ZKG
sublattices of L0:

L0

L1

L2

L3 L5L4

3

3

3
3

3

The dotted lines indicate that L4 and L5 are not ZK∗(GoΓ)-lattices. Hence,
up to isomorphism, the ZK ∗ (G o Γ)-lattices are (1 − ζ3)jLi with 0 ≤ j ≤ 1
and 1 ≤ i ≤ 3. On all those lattices there existes a unique primitive form Φi,j .

One checks that (L2,Φ2,0) is isometric to the root lattice E6-lattice. The
ZK ∗ (G o Γ)-structure on E6 turns it into an hermitian Z[ζ3]-lattice and
the hermitian automorphism group is the complex reflection group G26 =
C2×31+2. SL2(3). The quotient G26/C(G26) is isomorphic to F3 o SL2(F3)
and is called the Hessian group. Hence, E6 is an ZK ∗ (G26 o Γ)-lattice.
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Choosing a reduced Z-basis of the Γ-fixed lattice (EΓ
6 ,ΦEΓ

6
) such that the

Gram matrix is the identity matrix, provides a (K/Q,−)-representation

∆Q : G26 → GL3(K)

and generating matrices are

G26 :=

〈
1√
−3

−1 −ζ3 −1
−1 1 + ζ3 1 + ζ3

−1 −1 −ζ3

 ,

ζ3 0 0
0 −ζ3 − 1 0
0 0 ζ3

〉

where the first matrix is of order 18 and the second of order 3. This is a
primitive matrix group i.e. it is not conjugate to a subgroup of

H o Sk := 〈diag(h1, ..., hk), P ⊗ Im
k
| hi ∈ H,P a permutation matrix 〉

for some H < GLm
k

(K).
The invariant of smallest degree is

i6 := x6
1 + x6

2 + x6
3 − 10(x3

1x
3
2 + x3

1x
3
3 + x3

2x
3
3)

which is the same as Maschke calculated in [Mas89]. This shows that the
classical representation of G26, from which Maschke calculated fundemental
invariants, admits an arithmetical construction using a Z-basis of the Γ-fixed
lattice EΓ

6 .
We turn to the second extraspecial 3-group of order 33. Let K = Q(ζp2)

and

G = 32+1
− = 〈

 0 0 ζ9

ζ4
9 0 0
0 ζ7

9 0

 ,

ζ9 0 0
0 ζ4

9 0
0 0 ζ7

9

 ,

ζ3
9 0 0
0 ζ3

9 0
0 0 ζ3

9

〉
The invariant of smallest degree is

i3 = x2
1x3 + x2

2x1 + x2x
2
3

Recall that Z[ζ9]3×1 is a ZK ∗ (G o Γ)-lattice. A computer calculation
reveals that there are 324 non isomorphic ZK ∗ (G o Γ)-lattices, which are all
equipped with an unique primitive form Φ. The most interesting lattice (L,Φ)
corresponds to an irreducible maximal finite subgroup of GL18(Q) isomorphic
to ((C2×31+4 : Sp(4, 3)).C2 of [NP95].

Blichfeld showed that every finite subgroup of GL3(C) which contains
∆(G) = p1+2

− is not primitive [Bli17, Chapter V]. Hence, the finite subgroups
of GL3(C) constructed from Γ-fixed points of the ZK ∗ (G o Γ)-lattices are of
not much interest.
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Chapter 8

The quotient map

Let K be an algebraically closed field and G a finite subgroup of GLn(K) with
natural module V := Kn. The main result of this chapter is the following
theorem, which was proposed by Plesken.

Theorem 8.0.1. Let G be a finite subgroup of GLn(K), p a point in Kn and
assume that the characteristic of K does not divide |G|. The rank of the Jaco-
bian matrix, evaluated at p, of any system of fundamental polynomial invariants
equals the dimension of the subspace of fixed points under the stabilizer Gp of p
in G.

If K has characteristic zero, a similar result is mentioned in [Bay04, Propo-
sition 4] which is neither proven nor explained in any form. Here this theorem
is a result of a more general study between the geometric properties of the
quotient map [DK02, Chapter 2]

π : Kn → Kn/G

and the group theoretic properties of the natural action of G on V .
Denote by Tp(V ) the tangent space and by T∗p(V ) the cotangent space. The

stabilizer Gp acts linearly on both spaces and as a KGp-module the cotangent
space is the dual of the natural Gp module. Identify the cotangent space with
V ∗. In the first section it is proven that the image of the cotangent map induced
by π is FixGp(V

∗), which is isomorphic to FixGp(V ) if the characteristic of K
and |G| are coprime. Theorem (8.0.1) is obtained by choosing fundamental
polynomial invariants.

Assume that L is a subfield of K and that G is a subgroup of GLn(L). For
any L-valued point p ∈ V that is p ∈ Ln, the fixed space FixGp(V

∗) is the
scalar extension of FixGp((L

n)∗) by K. Hence the results remain true under
restriction to L-valued points of V . Choose K = C and L = R to obtain the
finite group version of a result by Procesi and Schwarz for compact, real
Lie-groups [PS85, Proposition 1.5].

In the last section the results are applied to study the geometry of a natural
map associated to the normalizer of Gp acting on the fixed points under Gp.
Theorem (8.0.1) combined with elementary group theory is used to compute
the orbit type stratification of Kn. The complex reflection group G31 shows

83
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that this method is superior to the methods described in [Bay04], which do not
work for this group. More theoretically, for reflection groups (8.0.1) implies
a generalization of a result of Steinberg [Ste60] on the factorization of the
Jacobian determinant.

8.1 Singularities of the quotient map

Let G be a finite subgroup of GLn(K) and V := Kn×1 its natural module.
Then G acts on the dual space V ∗ by gω := ω ◦ g−1. Choosing a basis x1, ..., xn
of V ∗, one can identify the ring of polynomial functions on V with K[x1, ..., xn]
and gets an action of G on K[x1, ..., xn]. The ring of invariants is denoted by
K[x1, ..., xn]G and by a result of Noether it is finitely generated [DK02, Thm.
2.2.10].

The quotient variety V/G is the algebraic variety with coordinate ring
OV/G = K[x1, ..., xn]G and the points are identified with orbits. The natural

embedding K[x1, ..., xn]G → K[x1, ..., xn] induces the quotient map π : V →
V/G : p 7→ Gp and this map is a good geometric quotient c.f. [DK02,
Chapter 2].

Let p ∈ Kn×1 be a point, Gp its stabilizer in G and mπ(p),mp denote the
maximal ideals of Oπ(p),V/G and Op,V respectively. The quotient map induces
the map

π∗|p : mπ(p) /m2
π(p) → mp /m2

p : f + m2
π(p) 7→ f ◦ π + m2

p

on the cotangent space. The first objective is to describe the image of this
map. This is done using the ideas of the proof of [Dré04, Proposition 4.11],
hence generalizing this proposition.

Theorem 8.1.1. The stabilizer Gp acts naturally on mp /m2
p and the image

of π∗|p is the space of fixed points under this action that is π∗|p(mπ(p) /m2
π(p)) =(

mp /m2
p

)Gp.

Proof. From the definition of π∗|p the inclusion

π∗|p(mπ(p) /m2
π(p)) ⊆

(
mp /m2

p

)Gp
(8.1)

is immediate for all p ∈ V .

Identify
(
mp /m2

p

)Gp with the space of invariant polynomials of degree one,
which vanish at p.

Let u 6= 0 be an element of
(
mp /m2

p

)Gp , then there exists an f̃ ∈ m
Gp
p with

the following properties:

• The image of f̃ is u in mp /m2
p

• The restriction of f̃ to the G orbit of p vanishes only at p
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Define

f :=
∏

g∈G/Gp

gf̃

Then f ∈ mp ∩K(V )G and we can compute the image of f in mp /m2
p as the

linear part of the Taylor expansion in p. Let 1 ≤ i ≤ n, using the product
rule we have:

∂

∂xi |p
f = (

∂

∂xi |p
f̃) · (

∏
g∈G/Gp,g /∈Gp

gf̃)x=p︸ ︷︷ ︸
6=0

+ f̃(p)︸︷︷︸
=0

·( ∂
∂xi |p

∏
g∈G/Gp,g /∈Gp

gf̃)

This shows that the linear part of the Taylor expansion of f is a non zero
scalar multiple of the linear part of f̃ . By construction this is a non zero scalar
multiple of u in mp /m2

p.

Since f is G-invariant it can be considered as an element of mπ(p) /m2
π(p)

and one has equality in (8.1). This proves the theorem.

Recall that the differential

π∗|p : Tp V → Tπ(p) V/G

of π is the dual map of π∗|p.

From now on assume that the characteristic of K does not divide the order
of G. The linear action of Gp on mp /m2

p turns this into a KGp-module, which
is isomorphic to the dual of the natural module V of Gp. Both modules are
completly reducible and contain the same number of copies of the trivial module.

This implies that
(
mp /m2

p

)Gp and the space of fixed points

FixGp(V ) := {v ∈ V | gv = v for all g ∈ Gp}

are isomorphic vector spaces. Use this and theorem (8.1.1) to determine the
rank of π∗|p and note that dual maps have the same rank.

Corollary 8.1.2. Let K be of characteristic coprime to |G| and p be an point
in V , then:

rk(π∗|p) = dimK

(
mp /m2

p

)Gp
= dimK(FixGp(V ))

Remark 8.1.3. In the modular case rk(π∗|p) = dimK

(
mp /m2

p

)Gp remains
true, but in general this differs from dimK(FixGp(V )).

Choose a system of fundamental invariants {hi}i=1,..,l. This induces a closed
embedding of the quotient variety into affine l-space

ϕ : V/G→ K l×1 : Gp 7→
(
h1(p), ..., hl(p)

)
One obtains the following commutative diagram.



86 CHAPTER 8. THE QUOTIENT MAP

V
π //

ϕ◦π=:ψ !!

V/G

ϕ
��

K l×1

For any point p this leads to a commutative diagram on the tangent spaces.

Tp V
π∗|p //

ψ∗|p ((

Tπ(p) V/G

ϕ∗|π(p)

��
Tψ(p)K

l×1

It is a basic fact that the differential ψ∗|p of ψ at p can be identified with the

Jacobian matrix Jac(ψ)|p := (
∂hj
∂xi

)|p ∈ Kn×l. Since ϕ is a closed embedding
the rank of ψ∗|p is the same as the rank of π∗|p. By corollary (8.1.2) one has
that rk(π∗|p) = dimK(FixGp(V )) and this proves the main theorem (8.0.1).

Remark 8.1.4. Theorem (8.0.1) does not hold in every characteristic. Assume

that G := GL3(F2) is given in the natural representation and that V := F2
3×1

is the natural module. The Dickson invariants ([Wil83])

h1 = x4
1 + x2

1x
2
2 + x2

1x2x3 + x2
1x

2
3 + x1x

2
2x3 + x1x2x

2
3 + x4

2 + x2
2x

2
3 + x4

3

h2 = x4
1x

2
2 + x4

1x2x3 + x4
1x

2
3 + x2

1x
4
2 + x2

1x
2
2x

2
3

+ x2
1x

4
3 + x1x

4
2x3 + x1x2x

4
3 + x4

2x
2
3 + x2

2x
4
3

h3 = x4
1x

2
2x3 + x4

1x2x
2
3 + x2

1x
4
2x3 + x2

1x2x
4
3 + x1x

4
2x

2
3 + x1x

2
2x

4
3

are a set of fundamental invariants and the Jacobian matrix is

Jac =

x2
2x3 + x2x

2
3 x2

1x3 + x1x
2
3 x2

1x2 + x1x
2
2

x4
2x3 + x2x

4
3 x4

1x3 + x1x
4
3 x4

1x2 + x1x
4
2

x4
2x

2
3 + x2

2x
4
3 x4

1x
2
3 + x2

1x
4
3 x4

1x
2
2 + x2

1x
4
2


For an arbitrary, non-zero point p ∈ F3

2 the stabilizer Gp of p is isomorphic to
the symmetric group S4. The space of fixed points under Gp is one dimensional
and spanned by p, but the Jacobian is always zero evaluated at p. This is
consistent with remark (8.1.3), since the dual representation of the natural
representation of Gp has no non trivial fixed points.

8.2 Applications and examples

We want to use the results of the last section to study the geometric properties
of the map

ι : FixGp(V )/NG(Gp)→ V/G : NG(Gp)x 7→ Gx
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induced by the natural action of the normalizer NG(Gp) of Gp on the space of
fixed points FixGp(V ). This gives the map

ι̃ : C[V ]G → C[FixGp(V )]NG(Gp) : p 7→ p|FixGp (V )

on the coordinate rings. Analyzing the proof of (8.1.1) one obtains the following
corollary.

Corollary 8.2.1. Let π̃ be the quotient map FixGp(V ) → FixGp(V )/NG(Gp),
K an arbitrary algebraically closed field and

E := {x ∈ FixGp(V ) | Gx = Gp}

be the set of points in FixGp(V ) whose stabilizer is Gp. Then

1. the restriction of ι to π̃(E) is injective.

2. for every x ∈ E, the induced map

ι∗|π̃(x) : Tπ̃(x) FixGp(V )/NG(Gp)→ Tπ(x) V/G

is injective

Proof. Since elements in the same G-orbit have conjugate stabilizers the injec-
tivity of ι restricted to π̃(E) is immediate.

Let x ∈ E and consider the quotient maps σ : V/NG(Gp) → V/G and
π̂ : V → V/NG(Gp). Denote by mπ̂(x) the maximal ideal of Oπ̂(x),V/NG(Gp).
Use Gp ≤ NG(Gp) and the proof of (8.1.1) to see that the cotangent map

σ∗|π̂(x) : mπ(x) /m2
π(x) → m̂π̂(x)/m̂

2
π̂(x)

is surjective. Hence the differential of σ is injective. Note that the natural
map τ : FixGp /NG(Gp)→ V/NG(Gp) is a closed embedding and that ι = σ◦τ .
This proofs the corollary.

We discuss the special case when FixGp(V ) is 1-dimensional. If G has no non
trivial fixed points on V and if it can be realized as a subgroup of GLn(R), then
there is an easy group theoretic criterion to decide if the map ι̃ is surjective. If
ι̃ is surjective then ι is a closed embedding, which is a stronger statement than
corollary (8.2.1). One can make the following remark.

Remark 8.2.2. Assume that G is a subgroup of GLn(R) and that G has no
non trivial fixed points on V = Cn. Let p ∈ V be a point such that FixGp(V )
is 1-dimensional. The map ι̃ is surjective if and only if [NG(Gp) : Gp] = 2.

Proof. Since NGp(Gp) acts on the one dimensional space FixGp(V ) it induces a
1-dimensional, real representation of NGp(Gp)/Gp. Therefore Gp is either self
normalizing or [NG(Gp) : Gp] = 2. Assume that Gp is self normalizing, then
C[FixGp(V )]NG(Gp) = C[FixGp(V )] and since G has no fixed points, the map
cannot be surjective.

One can assume that p is the first standard basis vector and if [NG(Gp) :
Gp] = 2 then C[FixGp(V )]NG(Gp) is C[x2

1]. It is enough to show that there exists
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an element of degree 2 in C[V ]G, which does not vanish at p. Since G is a
real matrix group the invariant polynomial corresponding to a positive definite
G-invariant bilinear form has this property.

In other words the last remark says that the map

ι : FixGp(V )/NG(Gp)→ V/G

is a closed embedding, if and only if the G-orbit of p is stable under the C2-
action x 7→ −x.

Turning to theorem (8.0.1) we can use this to calculate the orbit type strat-
ification of V . Let H be a subgroup of G and [H] denote its conjugacy class.
The stratum associated to [H] is

V [H] := {p ∈ V | Gp ∈ [H]}

Since G is finite there are only a finite number of strata and each stratum is a
locally closed non-singular subvariety of V . For proofs of these assertions see
[VP89, Section 6.9].

If G is given as a subgroup of GLn(R), one could use the work [AS83] to
obtain a description in terms of equalities and inequalities of the the stratifi-
cation of ϕ(Rn/G). For 1 ≤ k ≤ n denote by V≤k the Zariski-closure of the
union of all strata of dimension less or equal to k. Note that this is the union
of all fixed point spaces, with a dimension less or equal to k, of subgroups of G.

Corollary 8.2.3. For 1 ≤ k ≤ n let Jack be the ideal generated by the k × k
minors of the Jacobian of a chosen set of fundamental invariants. Then the
radical of Jack is the ideal corresponding to V≤k−1.

Proof. A point p lies in the zero set of Jack if and only if the rank of the
Jacobian evaluated at p is less than k. By theorem (8.0.1) this is the case if
and only if the dimension of the space of fixed points under the stabilizer Gp is
less than k. This is equivalent to p being an element of V≤k−1.

Remark 8.2.4. Geometrically the zero set of Jack is a union of subspaces of
dimension less than k, which are pointwise fixed by some subgroup of G. For
example if G ≤ SL3(C) is the symmetry group of a platonic solid, these are the
symmetry axes.

Consider G to be a finite, unitary reflection group. In this case it is possible
to give a more specific description of the prime components of the radical of
Jack. Specifically for k = n one obtains a description of the factorization of
the Jacobian determinant, which is a well known result of Steinberg [Ste60].
This result is also mentioned in [Bay04, 3.2 Proposition 6], but the proof is less
transparent.

Proposition 8.2.5. The prime components of the radical of Jack are the ideals
corresponding to (k − 1)-dimensional fixed point spaces under subgroups of the
finite, unitary reflection group G.
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Proof. From corollary (8.2.3) one knows that only ideals corresponding to fixed
point spaces with a dimension less than k occur in the primary decomposition.
Hence it remains to show that every fixed point space with a dimension less
than k − 1 lies in a k − 1 dimensional fixed point space. Assume that X is a
fixed point space of dimension k− l with 1 < l < k. It is well known that X can
be obtained as an intersection of n − k + l independent reflection hyperplanes
[OT92, Theorem 6.27]. Taking the intersection of only n − k + 1 of those
hyperplanes, one gets a k − 1 dimensional fixed point space containing X.

Remark 8.2.6. It is clear that (8.2.5) does not hold for non reflection groups.
For example it fails for the 2-dimensional rational irreducible representation of
the cyclic group of order 4.

Assume that G is an arbitrary finite subgroup of GLn(K). To determine
the orbit type stratification of V , we will compute a set of representatives of the
conjugacy classes of subgroups appearing as point stabilizers. From corollary
(8.2.3) it follows that one has to do the following steps for 1 ≤ k ≤ n:

• Compute the prime components of the radical of Jack (cf. [BW93]).

• Find representatives of the G-orbits on this set.

• For all representatives P , choose a generic point p of the zero set V(P )
that is a point with FixGp(K

n×1) = V(P )

The stabilizers of the generic points are the desired representatives.
This procedure should be compared with the algorithms proposed in [Bay04,

Section 4]. The first step, that is the decomposition of the radical of Jack, is the
same in both algorithms. Apart from computing a set of fundamental invariants
this is the main bottleneck of this approach. This is because there might be
many prime components, although all of them are linear.

Finding generic points can be compared to the orbit length computation in
[Bay04]. Bayer used commutative algebra for this. Generic points can easily
be found by choosing ”random” points in the spaces V(P ) and computing the
intersection of stabilizers in G of those points.

We shortly mention a group theoretic application: If G is a finite subgroup
of GLn(Z). In this case the orbit type stratification can be used to describe
how the FqG-module Fq ⊗ Zn×1 decomposes into G orbits (cf. [PP87]) for any
prime q.

The following example shows the difficulty when lots of prime components
are involved.

Example 8.2.7. Consider the the finite unitary reflection group denoted G31

in Shephard-Todd [ST54] given as a matrix group in (7.9.1). As an abstract
group it is an extension of

C4 �(D8 � Q8)

by the symmetric group S6.
The degrees of the fundamental invariants are 8, 10, 20, 24 and the subgroups

appearing as stabilizers can be found in [OT92, Appendix C]. Using theorem
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(8.2.5) the primary decomposition of the radical of Jack for 1 ≤ k ≤ 4 is
completely determined. However, trying to compute this decomposition with
MAGMA ([BCP97]) for k = 2 and 3 was stopped after 3 days. This is mainly
because the radical of Jac2 has 1500 and of Jac3 has 710 prime components.

The example shows that one has to provide more group theoretic informa-
tion. Compute the fixed space Fix(gν) of a set of representatives gν of the
conjugacy classes of prime order elements. Denote the corresponding ideals Igν
and define Jack,ν as the ideal generated by Jack and Igν . Compute the prime
components of the radical of Jack,ν for every k, ν.

It is clear that the G orbit of every fixed point space has a representative
contained in some Fix(gν). Another way to say this is that every prime compo-
nent of the radical of Jack can be found in the G-orbit of a component of the
radical of Jack,ν . So one obtains the desired primary decomposition.

Remark 8.2.8. Geometrically this method works by restricting to represen-
tatives of the fixed spaces that are maximal with respect to inclusion. The
advantage of this comes from the observation that the number of fixed spaces,
which are contained in a fixed representative, is significantly smaller than in
the whole space.

Example 8.2.9. Consider example (8.2.7) again. Since G is a finite unitary
reflection group the maximal, with respect to inclusion, fixed spaces are the re-
flection hyperplanes. Note that there is only one conjugacy class of reflections
in G31, so it is enough to consider just one hyperplane. The zero set of 〈x1〉 is
such a hyperplane and with this choice MAGMA is now able to compute the
primary decomposition of the radical of 〈Jack, x1〉 for k = 2 and 3, respectively.
One sees that for k = 2 there are 127 and for k = 3 there are 31 prime compo-
nents, which is significantly less compared to the 1500 and prime components
of Jac2 and the 710 of Jac3, respectively. From these data one recomputes the
table of [OT92, Appendix C].

Consider the modular case and recall remark (8.1.3). It is clear that one
cannot expect corollary (8.2.3) to hold in this case. The special case k = n
remains true, since dim(FixG(V )) = n if and only if the group G is trivial.

Corollary 8.2.10. The radical of Jacn is the ideal corresponding to V≤n−1.

Remark 8.2.11. In other words the last corollary says that a point p has a
non trivial stabilizer if and only if the rank of the Jacobian evaluated at p is
less then n.

It might also happen that the radical of Jack is the same for all k ∈ {1...n}.
The following example shows such a case.

Example 8.2.12. Let G = GL3(F3) in its natural representation and V := F3
3

the natural module. The Dickson invariants are a system of fundamental
invariants. Use MAGMA to see that prime components of the radical of Jack
for k ∈ {1, 2, 3} are the ideals corresponding to the 13 subspaces of dimension 2
spanned by elements of F3

3. Note that for every such 2-dimensional subspace the
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dual representation of the pointwise stabilizer has no non trivial fixed points.
Hence those subspaces must appear as prime components of the radical of all
the Jack.

In this case it is better to work with the ideals Jack and not with their
radicals. If one does so, then Jac1 contains all non-zero points of F3

3 as embedded
components and zero appears as an embedded component of Jac2.
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