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GIOVANNI CERULLI IRELLI, DANIEL LABARDINI-FRAGOSO, AND JAN SCHRÖER

Abstract. Motivated by the representation theory of quivers with potential introduced
by Derksen, Weyman and Zelevinsky and by work of Caldero and Chapoton, who gave
explicit formulae for the cluster variables of Dynkin quivers, we associate a Caldero-
Chapoton algebra AΛ to any (possibly infinite dimensional) basic algebra Λ. By defini-
tion, AΛ is (as a vector space) generated by the Caldero-Chapoton functions CΛ(M) of
the decorated representations M of Λ. If Λ = P(Q,W ) is the Jacobian algebra defined
by a 2-acyclic quiver Q with non-degenerate potential W , then we have AQ ⊆ AΛ ⊆ Aup

Q ,

where AQ and Aup
Q are the cluster algebra and the upper cluster algebra associated to

Q. The set BΛ of generic Caldero-Chapoton functions is parametrized by the strongly
reduced components of the varieties of representations of the Jacobian algebra P(Q,W )
and was introduced by Geiss, Leclerc and Schröer. Plamondon parametrized the strongly
reduced components for finite-dimensional basic algebras. We generalize this to arbitrary
basic algebras. Furthermore, we prove a decomposition theorem for strongly reduced
components. We define BΛ for arbitrary Λ, and we conjecture that BΛ is a basis of the
Caldero-Chapoton algebra AΛ. Thanks to the decomposition theorem, all elements of
BΛ can be seen as generalized cluster monomials. As another application, we obtain a
new proof for the sign-coherence of g-vectors. Caldero-Chapoton algebras lead to several
general conjectures on cluster algebras.

Contents

1. Introduction 1
2. Basic algebras and decorated representations 4
3. E-invariants and g-vectors of decorated representations 7
4. Caldero-Chapoton algebras 10
5. Strongly reduced components of representation varieties 13
6. Component graphs and CC-clusters 19
7. Caldero-Chapoton algebras and cluster algebras 23
8. Sign-coherence of generic g-vectors 24
9. Examples 24
References 31

1. Introduction

1.1. Let AQ be the Fomin-Zelevinsky cluster algebra [FZ1, FZ2] associated to a finite
2-acyclic quiver Q. By definition AQ is generated by an inductively defined set of rational
functions, called cluster variables. The cluster variables are contained in the set MQ of
cluster monomials, which are by definition certain monomials in the cluster variables.

Now let W be a non-degenerate potential for Q, and let Λ = P(Q,W ) be the associated
Jacobian algebra introduced by Derksen, Weyman and Zelevinsky [DWZ1, DWZ2]. The
category of decorated representations of Λ is denoted by decrep(Λ). To anyM∈ decrep(Λ)
one can associate a Laurent polynomial CΛ(M), the Caldero-Chapoton function ofM. It
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follows from [DWZ1, DWZ2] that the cluster monomials form a subset of the set CΛ of
Caldero-Chapoton functions.

1.2. The generic basis conjecture. One of the main problems in cluster algebra theory
is to find a basis of AQ with favourable properties. As an important requirement, this
basis should contain the set MQ of cluster monomials in a natural way.

The concept of strongly reduced irreducible components of varieties of decorated rep-
resentations of a Jacobian algebra Λ was introduced in [GLS]. To each strongly reduced
component Z one can associate a generic Caldero-Chapoton function CΛ(Z). It was con-
jectured in [GLS] that the set BΛ of generic Caldero-Chapoton functions forms a C-basis
of AQ. Using a non-degenerate potential defined by Labardini [L], Plamondon [P2] found
a counterexample and then conjectured that BΛ is a basis of the upper cluster algebra Aup

Q .
This conjecture should also be wrong in general. We replace it by yet another conjecture.

We study the Caldero-Chapoton algebra

AΛ := 〈CΛ(M) | M ∈ decrep(Λ)〉alg

generated by all Caldero-Chapoton functions. We do not restrict ourselves to Jacobian
algebras, but work with algebras Λ defined as arbitrary quotients of completed path al-
gebras. In particular, we generalize the notation of a Caldero-Chapoton function to this
general setup. One easily checks that the functions CΛ(M) do not only generate AΛ as
an algebra but also as a vector space over the ground field C.

Conjecture 1.1. BΛ is a C-basis of AΛ.

We show that the set BΛ of generic Caldero-Chapoton functions is linearly independent
provided the kernel of the skew-symmetric incidence matrix BQ of Q does not contain any
non-zero element in Qn

≥0. This generalizes [P2, Proposition 3.19].

For Λ = P(Q,W ) a Jacobian algebra associated to a quiver Q with non-degenerate
potential W we have

AQ ⊆ AΛ ⊆ Aup
Q

where AQ is the cluster algebra and Aup
Q is the upper cluster algebra associated to Q. (We

refer to [BFZ, DWZ1, FZ1] for missing definitions.) For this special case, we have a list of
conjectures, which hopefully will lead to a better understanding of the rather mysterious
relation between AQ and Aup

Q .

1.3. Parametrization of strongly reduced components. Plamondon [P2, Theo-
rem 1.2] parametrized the strongly reduced components for finite-dimensional basic al-
gebras. We generalize this to arbitrary basic algebras. Let Λ = C〈〈Q〉〉/I be a basic
algebra, where the quiver Q has n vertices. Let decIrr(Λ) be the set of irreducible com-
ponents of all varieties decrepd,v(Λ) of decorated representations of Λ, where (d,v) runs
through Nn × Nn. By decIrrs.r.(Λ) we denote the subset of strongly reduced components.
(The definition is in Section 5.) Recall that decIrrs.r.(Λ) parametrizes the elements in BΛ.

Let

Gs.r.
Λ : decIrrs.r.(Λ)→ Zn

be the map sending Z ∈ decIrr(Λ) to the generic g-vector gΛ(Z) of Z. (The definition of a
g-vector is in Section 3.) Using Plamondon’s result for finite-dimensional algebras, and a
long-path truncation argument, we get the following parametrization of strongly reduced
components for arbitrary Λ.
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Theorem 1.2. For a basic algebra Λ the following hold:

(i) The map
Gs.r.

Λ : decIrrs.r.(Λ)→ Zn

is injective.
(ii) The following are equivalent:

(a) Gs.r.
Λ is surjective.

(b) Λ is finite-dimensional.

1.4. A decomposition theorem for strongly reduced components. The notion
of a direct sum of irreducible components of representation varieties was introduced in
[CBS]. The Zariski closure Z := Z1 ⊕ · · · ⊕ Zt of a direct sum of irreducible components
Z1, . . . , Zt of varieties of representations of Λ is always irreducible, but in general Z is
not an irreducible component. It was shown in [CBS] that Z is an irreducible component
provided the dimension of the first extension group between the components is gener-
ically zero. The following decomposition theorem is an analogue for strongly reduced
components. Instead of extension groups, we work with a generalization EΛ(−, ?) of the
Derksen-Weyman-Zelevinsky E-invariant [DWZ2]. (We define EΛ(−, ?) in Section 3.)

Theorem 1.3. For Z1, . . . , Zt ∈ decIrr(Λ) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt is a strongly reduced irreducible component.
(ii) Each Zi is strongly reduced and EΛ(Zi, Zj) = 0 for all i 6= j.

Based on Theorem 1.3, we show that all elements of BΛ can be seen as CC-cluster
monomials. (The CC-cluster monomials generalize Fomin and Zelevinsky’s notion of clus-
ter monomials.)

1.5. Sign-coherence of g-vectors. A subset U of Zn is called sign-coherent if for each
1 ≤ i ≤ n we have either ai ≥ 0 for all (a1, . . . , an) ∈ U , or we have ai ≤ 0 for all
(a1, . . . , an) ∈ U .

The following theorem generalizes [P2, Theorem 3.7(1)].

Theorem 1.4. Let Λ be a basic algebra, and let Z1, . . . , Zt ∈ decIrrs.r.(Λ) be strongly
reduced components. Assume that

Z1 ⊕ · · · ⊕ Zt
is a strongly reduced component. Then {gΛ(Z1), . . . , gΛ(Zt)} is sign-coherent.

1.6. The paper is organized as follows. In Section 2 we recall definitions and basic prop-
erties of basic algebras and their (decorated) representations. We also introduce trunca-
tions of basic algebras, which play a crucial role in some of our proofs. In Section 3 we
introduce and study g-vectors and E-invariants of decorated representations. Caldero-
Chapoton functions and Caldero-Chapoton algebras are defined in Section 4. Our main
results Theorem 1.2 and 1.3 are proved in Section 5. In Section 6 we introduce component
graphs, component clusters and CC-clusters, and we show that the cardinality of loop-
complete subgraphs of a component graph is bounded by the number of simple modules.
We also present several general conjectures on the structure of component graphs and on
a generalization of the Fomin-Zelevinsky Laurent phenomenon. Section 7 explains the
relation between Caldero-Chapoton algebras and cluster algebras, and it contains several
conjectures on the relation between cluster algebras and upper cluster algebras. Section 8
contains the proof of Theorem 1.4. Finally, in Section 9 we discuss several examples of
Caldero-Chapoton algebras.
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1.7. Notation. We denote the composition of maps f : M → N and g : N → L by
gf = g ◦ f : M → L. We write |U | for the cardinality of a set U .

A finite-dimensional module M is basic provided it is a direct sum of pairwise non-
isomorphic indecomposable modules. For a module M and some m ≥ 1 let Mm be the
direct sum of m copies of M .

For a finite-dimensional basic algebra Λ let τΛ be its Auslander-Reiten translation. For
an introduction to Auslander-Reiten theory we refer to the books [ARS] and [ASS].

For n ≥ 1 and a set S, depending on the situation, we identify Sn with the set of (n×1)-
or (1×n)-matrices with entries in S. By N we denote the natural numbers, including zero.
For d = (d1, . . . , dn) ∈ Nn let |d| := d1 + · · · + dn. For n ∈ N let Mn(Z) be the set of
(n× n)-matrices with integer entries.

For a ring R let R[x±1 , . . . , x
±
n ] be the algebra of Laurent polynomials over R in n

independent variables x1, . . . , xn. For a = (a1, . . . , an) ∈ Zn set xa := xa1
1 · · ·xann .

2. Basic algebras and decorated representations

2.1. Basic algebras and quiver representations. Throughout, let C be the field of
complex numbers. A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is a finite set of
vertices, Q1 is a finite set of arrows, and s, t : Q1 → Q0 are maps. For each arrow a ∈ Q1

we call s(a) and t(a) the starting and terminal vertex of a, respectively. If not mentioned
otherwise, we always assume that Q0 = {1, . . . , n}. Let BQ = (bij) ∈Mn(Z), where

bij := |{a ∈ Q1 | s(a) = j, t(a) = i}| − |{a ∈ Q1 | s(a) = i, t(a) = j}|.

A path in Q is a tuple p = (am, . . . , a1) of arrows ai ∈ Q1 such that s(ai+1) = t(ai) for
all 1 ≤ i ≤ m − 1. Then length(p) := m is the length of p. Additionally, for each vertex
i ∈ Q0 there is a path ei of length 0. We often just write am · · · a1 instead of (am, . . . , a1).

A path p = (am, . . . , a1) of length m ≥ 1 is a cycle in Q, or more precisely an m-cycle
in Q, if s(a1) = t(am). The quiver Q is acyclic if there are no cycles in Q, and for s ≥ 1
the quiver Q is called s-acyclic if there are no m-cycles for 1 ≤ m ≤ s.

A representation of a quiver Q = (Q0, Q1, s, t) is a tuple M = (Mi,Ma)i∈Q0,a∈Q1 , where
each Mi is a finite-dimensional C-vector space, and Ma : Ms(a) → Mt(a) is a C-linear
map for each arrow a ∈ Q1. We call dim(M) := (dim(M1), . . . ,dim(Mn)) the dimension
vector of M . Let dim(M) := dim(M1) + · · · + dim(Mn) be the dimension of M . For a
path p = (am, . . . , a1) in Q let Mp := Mam ◦ · · · ◦Ma1 . The representation M is called
nilpotent provided there exists some N > 0 such that Mp = 0 for all paths p in Q with
length(p) > N .

For i ∈ Q0 let Si := (Mi,Ma)i,a be the representation of Q with Mi = C, Mj = 0 for all
j 6= i, and Ma = 0 for all a ∈ Q1. For a nilpotent representation M the ith entry dim(Mi)
of its dimension vector dim(M) equals the Jordan-Hölder multiplicity [M : Si] of Si in M .

For m ∈ N let CQ[m] be a C-vector space with a C-basis labeled by the paths of length
m in Q. Note that CQ[m] is finite-dimensional. We do not distinguish between a path p
of length m and the corresponding basis vector in CQ[m].

The completed path algebra of a quiver Q is denoted by C〈〈Q〉〉. As a C-vector space we
have

C〈〈Q〉〉 =
∏
m≥0

CQ[m].
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We write the elements in C〈〈Q〉〉 as infinite sums
∑

m≥0 am with am ∈ CQ[m]. The product

in C〈〈Q〉〉 is then defined as

(
∑
i≥0

ai)(
∑
j≥0

bj) :=
∑
k≥0

∑
i+j=k

aibj .

A potential of Q is an element W =
∑

m≥1wm of C〈〈Q〉〉, where each wm is a C-linear
combination of m-cycles in Q. By definition, W = 0 is also a potential. The definition of
a non-degenerate potential can be found in [DWZ1, Section 7].

The category mod(C〈〈Q〉〉) of finite-dimensional left C〈〈Q〉〉-modules can be identified
with the category nil(Q) of nilpotent representations of Q.

By m we denote the arrow ideal in C〈〈Q〉〉, which is generated by the arrows of Q. An
ideal I of C〈〈Q〉〉 is admissible if I ⊆ m2. We call an algebra Λ basic if Λ = C〈〈Q〉〉/I for
some quiver Q and some admissible ideal I of C〈〈Q〉〉.

A representation of a basic algebra Λ = C〈〈Q〉〉/I is a nilpotent representation of Q,
which is annihilated by the ideal I. We identify the category rep(Λ) of representations of
Λ with the category mod(Λ) of finite-dimensional left Λ-modules. Up to isomorphism the
simple representations of Λ are the 1-dimensional representations S1, . . . , Sn.

The category of (possibly infinite dimensional) Λ-modules is denoted by Mod(Λ), we
consider rep(Λ) as a subcategory of Mod(Λ).

2.2. Decorated representations of quivers. Let Λ = C〈〈Q〉〉/I be a basic algebra.
A decorated representation of Λ is a pair M = (M,V ), where M is a representation of
Λ and V = (V1, . . . , Vn) is a tuple of finite-dimensional C-vector spaces. Let dim(V ) :=
(dim(V1), . . . ,dim(Vn)) and dim(V ) := dim(V1) + · · · + dim(Vn). We call dim(M) :=
(dim(M),dim(V )) the dimension vector of M.

One defines morphisms and direct sums of decorated representations in the obvious way.
Let decrep(Λ) be the category of decorated representations of Λ.

Let M = (M,V ) ∈ decrep(Λ). We write M = 0 if all Mi are zero, and V = 0 if all Vi
are zero. Furthermore, M = 0 if M = 0 and V = 0.

For 1 ≤ i ≤ n set Si := (Si, 0), and let S−i := (0, V ), where Vi = C and Vj = 0 for all

j 6= i. The representations S−i are the negative simple decorated representations of Λ.

2.3. Varieties of representations. For d = (d1, . . . , dn) ∈ Nn let repd(Λ) be the affine
variety of representations of Λ with dimension vector d. By definition the closed points of
repd(Λ) are the representations M = (Mi,Ma)i∈Q0,a∈Q1 of Λ with Mi = Cdi for all i ∈ Q0.
One can regard repd(Λ) as a Zariski closed subset of the affine space

repd(Q) :=
∏
a∈Q1

HomC(Cds(a) ,Cdt(a)).

For d = (d1, . . . , dn) let Gd :=
∏n
i=1 GL(Cdi). The group Gd acts on repd(Λ) by conjuga-

tion. More precisely, for g = (g1, . . . , gn) ∈ Gd and M ∈ repd(Λ) let

g.M := (Mi, g
−1
t(a)Mags(a))i∈Q0,a∈Q1 .

For M ∈ repd(Λ) let O(M) be the Gd-orbit of M . The Gd-orbits are in bijection with
the isomorphism classes of representations of Λ with dimension vector d.

For (d,v) ∈ Nn×Nn let decrepd,v(Λ) be the affine variety of decorated representations
M = (M,V ) with M ∈ repd(Λ) and V = Cv := (Cv1 , . . . ,Cvn), where v = (v1, . . . , vn).
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For M = (M,V ) ∈ decrepd,v(Λ) define g.M := (g.M, V ). This defines a Gd-action on
decrepd,v(Λ). The Gd-orbit of M is denoted by O(M). We have

(1) dimO(M) = dimO(M) = dimGd − dim EndΛ(M),

see for example [G].

2.4. Quiver Grassmannians. Let Λ = C〈〈Q〉〉/I be a basic algebra. For a representa-
tion M = (Mi,Ma)i∈Q0,a∈Q1 of Λ and e ∈ Nn let Gre(M) be the quiver Grassmannian
of subrepresentations U of M with dim(U) = e. (By definition a subrepresentation of
M is a tuple U = (Ui)i∈Q0 of subspaces Ui ⊆ Mi such that Ma(Us(a)) ⊆ Ut(a) for all
a ∈ Q1.) So Gre(M) is a projective variety, which can be seen as a closed subvariety of
the product of the classical Grassmannians Grei(Mi) of ei-dimensional subspaces of Mi,
where e = (e1, . . . , en). Let χ(Gre(M)) be the Euler-Poincaré characteristic of Gre(M).

2.5. Truncations of basic algebras. For a basic algebra Λ = C〈〈Q〉〉/I and some p ≥ 1
let Λp := Λ/Jp, where Jp is the ideal of Λ generated by all (residue classes) of paths of
length p in Q. We call Λp the p-truncation of Λ. We get canonical surjective algebra
homomorphisms

C〈〈Q〉〉 π−→ Λ
πp−→ Λp

with Ker(π) = I and Ip := Ker(πp ◦ π) = I + mp, where mp is the pth power of the arrow
ideal m. Thus we can write Λp = C〈〈Q〉〉/Ip. As a vector space, Λp is isomorphic to

Vp/(Vp ∩ (I + mp))

where

Vp :=
∏

0≤m≤p−1

CQ[m].

Clearly, Λp is a finite-dimensional basic algebra, and the canonical epimorphism πp : Λ→
Λp induces embeddings rep(Λp) → rep(Λ) and decrep(Λp) → decrep(Λ) in the obvious
way.

Lemma 2.1. Let Λ = C〈〈Q〉〉/I be a basic algebra. Then the following hold:

(i) Let M = (M,V ) ∈ decrep(Λ). If p ≥ dim(M), then M is in the image of the
embedding decrep(Λp)→ decrep(Λ).

(ii) Let M,N ∈ rep(Λ). If p ≥ dim(M), dim(N), then

dim HomΛp(M,N) = dim HomΛ(M,N).

(iii) Let M,N ∈ rep(Λ). If p ≥ dim(M) + dim(N), then

dim Ext1
Λp

(M,N) = dim Ext1
Λ(M,N).

(iv) Let (d,v) ∈ Nn × Nn. If p ≥ |d|, then decrepd,v(Λp) = decrepd,v(Λ).

Proof. Let am · · · a1 be a path of length m in Q, and let M be a representation of Λ. For
any non-zero vector v0 ∈ M set vi := ai · · · a1v0 for 1 ≤ i ≤ m. Assume that each of
the vectors v1, . . . , vm is non-zero. We claim that v0, v1, . . . , vm are pairwise different and
linearly independent. Let b be a path of maximal length such that bv0 6= 0. Such a path b
exists, because M is nilpotent. By induction v1, . . . , vm are linearly independent. Assume
now that

v0 =

m∑
i=1

λivi
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for some λi ∈ C. We have vi = ai · · · a1v0. Therefore we get

bv0 =
m∑
i=1

λibai · · · a1v0.

Since bai · · · a1 is either zero or a path of length length(b) + i, we have bai · · · a1v0 = 0 for
all 1 ≤ i ≤ m. Since bv0 6= 0, this is a contradiction. Therefore v0, v1, . . . , vm are linearly
independent. It follows that for any M∈ decrep(Λ) with dim(M) = (d,v) and any path
b with length(b) ≥ |d| we have bM = 0. This implies (i). Parts (ii) and (iv) are easy
consequences of (i). Any extension of representations M and N of Λ is a representation
of Λ of dimension dim(M) + dim(N). This implies (iii). �

3. E-invariants and g-vectors of decorated representations

3.1. Definition of E-invariants and g-vectors. Let Q be a quiver, and let W be a
potential of Q. Let Λ = P(Q,W ) be the associated Jacobian algebra [DWZ1, Section 3].

For decorated representations M and N of Λ the g-vector g(M) and the invariants
Einj(M) and Einj(M,N ) were defined in [DWZ2], where Einj(M) is called the E-invariant
of M. We define invariants gΛ(M), EΛ(M) and EΛ(M,N ) of decorated representations
M and N of an arbitrary basic algebra Λ = C〈〈Q〉〉/I as follows.

For a decorated representation M = (M,V ) of Λ let

gΛ(M) := (g1, . . . , gn)

with

gi := gi(M) := −dim HomΛ(Si,M) + dim Ext1
Λ(Si,M) + dim(Vi)

be the g-vector of M.

For decorated representations M = (M,V ) and N = (N,W ) of Λ let

EΛ(M,N ) := dim HomΛ(M,N) +
n∑
i=1

gi(N ) dim(Mi).

The E-invariant of M is defined as EΛ(M) := EΛ(M,M).

Lemma 3.1. Let Λ = P(Q,W ), where W is a potential of Q. For M,N ∈ decrep(Λ) the
following hold:

(i) gΛ(M) = g(M).
(ii) EΛ(M,N ) = Einj(M,N ).

Proof. Part (i) follows from [P1, Lemma 4.7, Proposition 4.8]. It can also be shown in a
more elementary way by using the exact sequence displayed in [DWZ2, Equation (10.4)].
Part (ii) is a direct consequence of (i) and the definition of EΛ(M,N ) and Einj(M,N ). �

3.2. Homological interpretation of the E-invariant. For 1 ≤ i ≤ n let Ii ∈ Mod(Λ)
be the injective envelope of the simple representation Si of Λ. One easily checks that the
socle soc(Ii) of Ii is isomorphic to Si, and that

(2) dim HomΛ(M, Ii) = dim(Mi)

for all M ∈ rep(Λ). Note that in general Ii is infinite dimensional. For M ∈ rep(Λ) let

0→M
f−→ IΛ

0 (M)→ IΛ
1 (M)
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denote a minimal injective presentation of M . The modules IΛ
0 (M) and IΛ

1 (M) are up to
isomorphism uniquely determined by M .

We will need the following theorem due to Auslander and Reiten.

Theorem 3.2 ([AR, Theorem 1.4 (b)]). Let M and N be representations of a finite-
dimensional basic algebra Λ. Then we have

dim HomΛ(τ−Λ (N),M) = dim HomΛ(M,N)− dim HomΛ(M, IΛ
0 (N))

+ dim HomΛ(M, IΛ
1 (N)).

Lemma 3.3. Let Λ = C〈〈Q〉〉/I be a finite-dimensional basic algebra, and let M ∈ rep(Λ).
Let

0→M
f−→ IΛ

0 (M)→ IΛ
1 (M)

be a minimal injective presentation of M . Then for 1 ≤ i ≤ n we have

(i) [soc(IΛ
0 (M)) : Si] = [soc(M) : Si] = dim HomΛ(Si,M) and

IΛ
0 (M) ∼= I

dim HomΛ(S1,M)
1 ⊕ · · · ⊕ Idim HomΛ(Sn,M)

n .

(ii) [soc(IΛ
1 (M)) : Si] = [soc(Coker(f)) : Si] = dim Ext1

Λ(Si,M) and

IΛ
1 (M) ∼= I

dim Ext1
Λ(S1,M)

1 ⊕ · · · ⊕ Idim Ext1
Λ(Sn,M)

n .

Proof. Since IΛ
0 (M) is the injective envelope of M , we have soc(M) ∼= soc(IΛ

0 (M)). This
implies (i). By the construction of injective presentations, IΛ

1 (M) is the injective enve-
lope of Coker(f). It follows that soc(Coker(f)) ∼= soc(IΛ

1 (M)). We apply the functor
HomΛ(Si,−) to the exact sequence

0→M
f−→ IΛ

0 (M)→ Coker(f)→ 0.

This yields an exact sequence

0→ HomΛ(Si,M)
F−→ HomΛ(Si, I

Λ
0 (M))→ HomΛ(Si,Coker(f))

G−→ Ext1
Λ(Si,M)→ 0

Here we used that IΛ
0 (M) is injective, which implies Ext1

Λ(Si, I
Λ
0 (M)) = 0. By (i) we know

that F is an isomorphism. Thus G is also an isomorphism. This implies (ii). �

Combinining Lemma 2.1 and Lemma 3.3 yields the following result.

Lemma 3.4. Let M = (M,V ) be a decorated representation of a basic algebra Λ, and let
gΛ(M) = (g1, . . . , gn) be the g-vector of M. If p > dim(M), then

gi = −[I
Λp

0 (M) : Si] + [I
Λp

1 (M) : Si] + dim(Vi)

for all 1 ≤ i ≤ n.

The following result is a homological interpretation of the E-invariant in terms of
Auslander-Reiten translations. This can be seen as a generalization of [DWZ2, Corol-
lary 10.9].

Proposition 3.5. Let M = (M,V ) and N = (N,W ) be decorated representations of a
basic algebra Λ. If p > dim(M),dim(N), then

EΛ(M,N ) = EΛp(M,N ) = dim HomΛp(τ−Λp
(N),M) +

n∑
i=1

dim(Wi) dim(Mi).
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In particular, we have

EΛp(M,N ) = EΛq(M,N )

and

dim HomΛp(τ−Λp
(N),M) = dim HomΛq(τ−Λq

(N),M)

for all p, q > dim(M), dim(N).

Proof. Since p > dim(M),dim(N) we can apply Lemma 2.1 and get

dim HomΛp(M,N) = dim HomΛ(M,N),

dim HomΛp(Si, N) = dim HomΛ(Si, N),

dim Ext1
Λp

(Si, N) = dim Ext1
Λ(Si, N).

Let

0→ N → I
Λp

0 (N)→ I
Λp

1 (N)

be a minimal injective presentation of N , where we regard N now as a representation of
Λp. It follows from Lemma 3.3 and Equation (2) that

dim HomΛp(M, I
Λp

0 (N)) =

n∑
i=1

dim HomΛp(Si, N) dim(Mi),

dim HomΛp(M, I
Λp

1 (N)) =
n∑
i=1

dim Ext1
Λp

(Si, N) dim(Mi).

This implies

EΛ(M,N ) = dim HomΛ(M,N) +

n∑
i=1

(−dim HomΛ(Si, N) + dim Ext1
Λ(Si, N)) dim(Mi)

+

n∑
i=1

dim(Wi) dim(Mi)

= dim HomΛp(M,N) +
n∑
i=1

(−dim HomΛp(Si, N) + dim Ext1
Λp

(Si, N)) dim(Mi)

+
n∑
i=1

dim(Wi) dim(Mi)

= dim HomΛp(M,N)− dim HomΛp(M, I
Λp

0 (N)) + dim HomΛp(M, I
Λp

1 (N))

+
n∑
i=1

dim(Wi) dim(Mi).

The first equality follows from Lemmas 2.1, 3.3 and 3.4. The second equality says that
EΛ(M,N ) = EΛp(M,N ). Applying Theorem 3.2 yields

EΛp(M,N ) = dim HomΛp(τ−Λp
(N),M) +

n∑
i=1

dim(Wi) dim(Mi).

This finishes the proof. �

Corollary 3.6. For decorated representations M and N of a basic algebra Λ we have

EΛ(M,N ) ≥ 0.
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4. Caldero-Chapoton algebras

4.1. Caldero-Chapoton functions. To any basic algebra Λ = C〈〈Q〉〉/I we associate a
set of Laurent polynomials in n independent variables x1, . . . , xn as follows. The Caldero-
Chapoton function associated to a decorated representation M = (M,V ) of Λ is defined
as

CΛ(M) := xgΛ(M)
∑
e∈Nn

χ(Gre(M))xBQe.

Note that CΛ(M) ∈ Z[x±1 , . . . , x
±
n ]. Let

CΛ := {CΛ(M) | M ∈ decrep(Λ)}
be the set of Caldero-Chapoton functions associated to Λ. ForM = (M, 0) we sometimes
write CΛ(M) instead of CΛ(M).

The definition of CΛ(M) is motivated by the (different versions of) Caldero-Chapoton
functions appearing in the theory of cluster algebras, see for example [Pa, Section 1]. Such
functions first appeared in work of Caldero and Chapoton [CC, Section 3], where they show
that the cluster variables of a cluster algebra of a Dynkin quiver are Caldero-Chapoton
functions.

Lemma 4.1. For decorated representations M = (M,V ) and N = (N,W ) the following
hold:

(i) gΛ(M⊕N ) = gΛ(M) + gΛ(N ).
(ii) CΛ(M) = CΛ(M, 0)CΛ(0, V ).

(iii) CΛ(M⊕N ) = CΛ(M)CΛ(N ).

Proof. Part (i) follows directly from the definitions and from the additivity of the functors
HomΛ(−, ?) and Ext1

Λ(−, ?). To prove (ii), letM = (M,V ) be a decorated representation
of Λ. For the decorated representation (0, V ) we have

CΛ(0, V ) =
n∏
i=1

xvii

where dim(V ) = (v1, . . . , vn). For the decorated representation (M, 0) we have

CΛ(M, 0) := xgΛ(M,0)
∑
e∈Nn

χ(Gre(M))xBQe

where gi(M, 0) = −dim HomΛ(Si,M) + dim Ext1
Λ(Si,M) for 1 ≤ i ≤ n. Now one easily

checks that CΛ(M) = CΛ(M, 0)CΛ(0, V ). Thus (ii) holds. Now (iii) follows from (i), (ii)
and the well known formula

χ(Gre(M ⊕N)) =
∑

(e′,e′′)

χ(Gre′(M))χ(Gre′′(N))

where the sum runs over all pairs (e′, e′′) ∈ Nn × Nn such that e′ + e′′ = e. �

4.2. Definition of a Caldero-Chapoton algebra. In the previous section, we associ-
ated to a basic algebra Λ the set

CΛ = {CΛ(M) | M ∈ decrep(Λ)}
of Caldero-Chapoton functions. Clearly, CΛ is a subset of the integer Laurent polyno-
mial ring Z[x±1 , . . . , x

±
n ] generated by the variables x1, . . . , xn. By definition the Caldero-

Chapoton algebra AΛ associated to Λ is the C-subalgebra of C[x±1 , . . . , x
±
n ] generated by

CΛ. The following is a direct consequence of Lemma 4.1(iii).
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Lemma 4.2. The set CΛ generates AΛ as a C-vector space.

4.3. Linear independence of Caldero-Chapoton functions. Let Λ = C〈〈Q〉〉/I be
a basic algebra. Except in some trivial cases, the set CΛ of Caldero-Chapoton functions
associated to decorated representations of Λ is linearly dependent. Often the Caldero-
Chapoton functions satisfy beautiful relations, which should be studies more intensively.
On the other hand, by Lemma 4.2, there are C-bases of AΛ consisting only of Caldero-
Chapoton functions. Our aim is to provide a candidate BΛ for such a basis. Before
constructing BΛ in Section 5, we prove the following criterion for linear independence of
certain sets of Caldero-Chapoton functions.

Let

Qn
≥0 := {(a1, . . . , an) ∈ Qn | ai ≥ 0 for all i},

Qn
>0 := {(a1, . . . , an) ∈ Qn | ai > 0 for all i}.

Proposition 4.3. Let Λ = C〈〈Q〉〉/I be a basic algebra. Let Mj, j ∈ J be decorated
representations of Λ. Assume the following:

(i) Ker(BQ) ∩Qn
≥0 = 0.

(ii) The g-vectors gΛ(Mj), j ∈ J are pairwise different.

Then the Caldero-Chapoton functions CΛ(Mj), j ∈ J are pairwise different and linearly
independent in AΛ.

Proof. We treat BQ as a linear map Qn → Qn. For a,b ∈ Zn define a ≤ b if there exists
some e ∈ Qn

≥0 such that

a = b +BQe.

We claim that this defines a partial order on Zn. Clearly, a ≤ a, so ≤ is reflexive.
Furthermore, assume that a ≤ b and b ≤ a. Thus a = b + BQe1 and b = a + BQe2 for
some e1, e2 ∈ Qn

≥0. It follows that a = a + BQ(e1 + e2). Thus e1 + e2 ∈ Ker(BQ). Our

assumption (i) yields e1 = e2 = 0. Thus a = b. This shows that ≤ is antisymmetric.
Finally, assume that a ≤ b ≤ c. Thus we have a = b +BQe1 and b = c +BQe2 for some
e1, e2 ∈ Qn

≥0. It follows that a = c + BQ(e1 + e2). In other words, we have a ≤ c. Thus
≤ is transitive.

The partial order ≤ on Zn induces obviously a partial order on the set of Laurent
monomials in the variables x1, . . . , xn. Namely, set xa ≤ xb if a ≤ b. Let deg(xa) := a be
the degree of xa.

Among the Laurent monomials xgΛ(M)+BQe occuring in the expression

CΛ(M) = xgΛ(M)
∑
e∈Nn

χ(Gre(M))xBQe =
∑
e∈Nn

χ(Gre(M))xgΛ(M)+BQe

the monomial xgΛ(M) is the unique monomial of maximal degree.

For e = 0 the Grassmannian Gre(M) is just a point, and BQe = 0. Thus, if e = 0,

we have χ(Gre(M))xBQe = 1. This shows that the Laurent monomial xgΛ(M) really
occurs as a non-trivial summand of CΛ(M). In particular, we have CΛ(M) 6= CΛ(N ) if
gΛ(M) 6= gΛ(N ).

Now letM1, . . . ,Mt be decorated representations of Λ with pairwise different g-vectors.
Assume that

λ1CΛ(M1) + · · ·+ λtCΛ(Mt) = 0
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for some λj ∈ C. Without loss of generality we assume that λj 6= 0 for all j. There is a (not

necessarily unique) index s such that xgΛ(Ms) is maximal in the set {xgΛ(Mj) | 1 ≤ j ≤ t}.
It follow that the Laurent monomial xgΛ(Ms) does not occur as a summand of any of the
Laurent polynomials CΛ(Mj) with j 6= s. (Here we use that the g-vectors of the decorated
representations Mj are pairwise different.) This implies λs = 0, a contradiction. Thus
CΛ(M1), . . . , CΛ(Mt) are linearly independent. �

For the example, where Λ is the path algebra of an affine quiver of type A2, the main
argument used in the proof of Proposition 4.3 can already be found in [C, Section 6.1].

Note that condition (d) in the following lemma coincides with condition (i) in Proposi-
tion 4.3.

Lemma 4.4. For the conditions

(a) rank(BQ) = n.
(b) Each row of BQ has at least one non-zero entry, and there are n−rank(BQ) rows of

BQ, which are non-negative linear combinations of the remaining rank(BQ) rows
of BQ.

(c) Im(BQ) ∩Qn
>0 6= ∅.

(d) Ker(BQ) ∩Qn
≥0 = 0.

the implications

(a) =⇒ (b) =⇒ (c) =⇒ (d)

hold.

Proof. The implication (a) =⇒ (b) is trivial. Next, assume (b) holds. Let m :=
rank(BQ). We denote the jth row of BQ by rj . By assumption there are pairwise different
indices i1, . . . , im ∈ {1, . . . , n} such that for each 1 ≤ k ≤ n with k /∈ {i1, . . . , im} we have

rk = λ
(k)
1 ri1 + · · ·+ λ(k)

m rim

for some non-negative rational numbers λ
(k)
j . Since rk is non-zero, at least one of the λ

(k)
j

is posititve. Clearly, there is some e ∈ Qn such that rij · e = 1 for all 1 ≤ j ≤ m. (The
(k × n)-matrix with rows ri1 , . . . , rim has rank m. Thus, we can see it as a surjective

homomorphism Qn → Qm.) Now observe that the kth entry of BQe is λ
(k)
1 + · · · + λ

(k)
m

for all 1 ≤ k ≤ n with k /∈ {i1, . . . , im} and that this entry is positive. It follows that
Im(BQ) ∩Qn

>0 6= ∅.

Finally, to show (c) =⇒ (d) let b ∈ Im(BQ)∩Qn
>0. Thus there is some a ∈ Qn such that

BQa = b. Since BQ is skew-symmetric, we get −aBQ = b. Now let e ∈ Ker(BQ) ∩Qn
≥0.

We get BQe = 0, and therefore −aBQe = b · e = 0. Since b has only positive entries and
e has only non-negative entries, we get e = 0. This finishes the proof. �

If we replace condition (i) by condition (a), Proposition 4.3 was first proved by Fu
and Keller [FK, Corollary 4.4]. Essentially the same argument was later also used by
Plamondon [P1]. That the Fu-Keller argument can be applied under condition (b) was
observed by Geiß and Labardini. To any triangulation T of a punctured Riemann surface
with non-empty boundary, one can associate a 2-acyclic quiver QT . It is shown in [GL]
that there is always a triangulation T such that the matrix BQT

satisfies condition (b).
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5. Strongly reduced components of representation varieties

5.1. Decomposition theorems for irreducible components. Let Λ = C〈〈Q〉〉/I be a
basic algebra, and let (d,v) ∈ Nn ×Nn. By Irrd(Λ) and decIrrd,v(Λ) we denote the set of
irreducible components of repd(Λ) and decrepd,v(Λ), respectively. For Z ∈ decIrrd,v(Λ)
we write dim(Z) := (d,v). Let

Irr(Λ) =
⋃

d∈Nn

Irrd(Λ) and decIrr(Λ) =
⋃

(d,v)∈Nn×Nn

decIrrd,v(Λ).

Note that any irreducible component Z ∈ decIrr(Λ) can be seen as an irreducible compo-
nent in Irr(Λdec), where Λdec := Λ×C×· · ·×C is defined as the product of Λ with n copies
of C. In fact, we can identify decrep(Λ) and rep(Λdec). Thus statements on varieties of
representations can be carried over to varieties of decorated representations.

By definition we have

decrepd,v(Λ) = {(M,Cv) |M ∈ repd(Λ)}.

We have an isomorphism

decrepd,v(Λ)→ repd(Λ)

of affine varieties mapping (M,Cv) to M . Thus the irreducible components of decrepd,v(Λ)
can be interpreted as irreducible components of repd(Λ). For Z ∈ decIrrd,v(Λ) let πZ be
the corresponding component in Irrd(Λ). Recall that the group Gd acts on decrepd,v(Λ)
by

g.(M,Cv) := (g.M,Cv),

and that the Gd-orbit of a decorated representation M is denoted by O(M).

For Z,Z1, Z2 ∈ decIrr(Λ) define

cΛ(Z) := min{dim(Z)− dimO(M) | M ∈ Z},
eΛ(Z) := min{dim Ext1

Λ(M,M) | M = (M,V ) ∈ Z},
EΛ(Z) := min{EΛ(M) | M ∈ Z},

endΛ(Z) := min{dim EndΛ(M) | M = (M,V ) ∈ Z},
homΛ(Z1, Z2) := min{dim HomΛ(M1,M2) | Mi = (Mi, Vi) ∈ Zi, i = 1, 2},
ext1

Λ(Z1, Z2) := min{dim Ext1
Λ(M1,M2) | Mi = (Mi, Vi) ∈ Zi, i = 1, 2},

EΛ(Z1, Z2) := min{EΛ(M1,M2) | Mi ∈ Zi, i = 1, 2}.

It is easy to construct examples of components Z ∈ decIrr(Λ) such that endΛ(Z) 6=
homΛ(Z,Z), eΛ(Z) 6= ext1

Λ(Z,Z) and EΛ(Z) 6= EΛ(Z,Z). Note that for Z ∈ decIrrd,v(Λ)
we have

cΛ(Z) = dim(Z)− dim(Gd) + endΛ(Z).

This follows from Equation (1).

By [CBS, Lemma 4.3] the functions dim HomΛ(−, ?) and dim Ext1
Λ(−, ?) are upper

semicontinuous. Using this one easily shows the following lemma.

Lemma 5.1. For Z,Z1, Z2 ∈ decIrr(Λ) the following hold:
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(i) The sets

{M ∈ Z | dim(Z)− dimO(M) = cΛ(Z)},
{M = (M,V ) ∈ Z | dim Ext1

Λ(M,M) = eΛ(Z)},
{M ∈ Z | EΛ(M) = EΛ(Z)},
{M = (M,V ) ∈ Z | dim EndΛ(M) = endΛ(Z)}

are open in Z.
(ii) The sets

{((M1, V1), (M2, V2)) ∈ Z1 × Z2 | dim HomΛ(M1,M2) = homΛ(Z1, Z2)},
{((M1, V1), (M2, V2)) ∈ Z1 × Z2 | dim Ext1

Λ(M1,M2) = ext1
Λ(Z1, Z2)},

{(M1,M2) ∈ Z1 × Z2 | EΛ(M1,M2) = EΛ(Z1, Z2)}

are open in Z1 × Z2.

For Z ∈ decIrr(Λ) there is a dense open subset U of Z such that gΛ(M) = gΛ(N ) for
all M,N ∈ U . This follows again by upper semicontinuity. For M∈ U let

gΛ(Z) := gΛ(M)

be the generic g-vector of Z.

Lemma 5.2. For Z,Z1, Z2 ∈ decIrr(Λ) we have

cΛ(Z) ≤ eΛ(Z) ≤ EΛ(Z) and ext1
Λ(Z1, Z2) ≤ EΛ(Z1, Z2).

Proof. Let d = dim(πZ) and di = dim(πZi). Choose some p ≥ 2|d|, |d1| + |d2|. By
Lemma 2.1 we can regard all the representations in Z, Z1 and Z2 as representations of
Λp. Thus we can interpret Z, Z1 and Z2 as irreducible components in decIrr(Λp). Now
Proposition 3.5 allows us to assume without loss of generality that Λ = Λp. Voigt’s
Lemma [G, Proposition 1.1] implies that cΛ(Z) ≤ eΛ(Z). The Auslander-Reiten formula
Ext1

Λ(M,N) ∼= DHomΛ(τ−Λ (N),M) yields

dim Ext1
Λ(M,N) ≤ dim HomΛ(τ−Λ (N),M).

This implies eΛ(Z) ≤ EΛ(Z) and ext1
Λ(Z1, Z2) ≤ EΛ(Z1, Z2). (Here we used again Propo-

sition 3.5.) �

Following [GLS] we call an irreducible component Z ∈ decIrr(Λ) strongly reduced pro-
vided

cΛ(Z) = eΛ(Z) = EΛ(Z).

For example, if Λ is finite-dimensional, one can easily check that for any injective Λ-module
I ∈ rep(Λ) the closure of the orbit O(I, 0) is a strongly reduced irreducible component.
Similarly, it follows directly from the definitions that for all decorated representations of
the formM = (0, V ), the closure of O(M) is a strongly reduced component. (In this case,
O(M) is just a point, and it is equal to its closure.)

Let decIrrs.r.
d,v(Λ) be the set of all strongly reduced components of decrepd,v(Λ), and let

decIrrs.r.(Λ) :=
⋃

(d,v)∈Nn×Nn

decIrrs.r.
d,v(Λ).

An irreducible component Z in Irr(Λ) or decIrr(Λ) is called indecomposable provided there
exists a dense open subset U of Z, which contains only indecomposable representations or
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decorated representations, respectively. In particular, if Z ∈ decIrrd,v(Λ) is indecompos-
able, then either d = 0 or v = 0.

Given irreducible components Zi of decrepdi,vi
(Λ) for 1 ≤ i ≤ t, let (d,v) := (d1,v1) +

· · ·+ (dt,vt) and let
Z1 ⊕ · · · ⊕ Zt

be the points of decrepd,v(Λ), which are isomorphic to M1 ⊕ · · · ⊕Mt with Mi ∈ Zi for
1 ≤ i ≤ t. The Zariski closure of Z1 ⊕ · · · ⊕ Zt in decrepd,v(Λ) is denoted by

Z1 ⊕ · · · ⊕ Zt.
It is quite easy to show that Z1 ⊕ · · · ⊕ Zt is an irreducible closed subset of decrepd,v(Λ),
but in general it is not an irreducible component.

Theorem 5.3 ([CBS]). For Z1, . . . , Zt ∈ decIrr(Λ) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt is an irreducible component.
(ii) ext1

Λ(Zi, Zj) = 0 for all i 6= j.

Furthermore, the following hold:

(iii) Each irreducible component Z ∈ decIrr(Λ) can be written as Z = Z1 ⊕ · · · ⊕ Zt
with Z1, . . . , Zt indecomposable irreducible components in decIrr(Λ). Suppose that

Z1 ⊕ · · · ⊕ Zt = Z ′1 ⊕ · · · ⊕ Z ′s
is an irreducible component with Zi and Z ′i indecomposable irreducible components
in decIrr(Λ) for all i. Then s = t and there is a bijection σ : {1, . . . , t} → {1, . . . , s}
such that Zi = Z ′σ(i) for all i.

The next lemma is an easy exercise.

Lemma 5.4. For 1 ≤ i ≤ n and any decorated representation M = (M,V ) of Λ we have

EΛ(M,S−i ) = dim(Mi) and EΛ(S−i ,M) = 0.

Corollary 5.5. For any Z ∈ decIrrs.r.
d,v(Λ) we have divi = 0 for all 1 ≤ i ≤ n.

Lemma 5.6. Let Z ∈ decIrrd,v(Λ), and assume that p > |d|. Then the following are
equivalent:

(i) Z ∈ decIrrs.r.(Λ).
(ii) Z ∈ decIrrs.r.(Λp).

Proof. Since p > |d|, we can apply Lemma 2.1 and Proposition 3.5 and get cΛp(Z) = cΛ(Z)
and EΛp(Z) = EΛ(Z). This yields the result. �

The additivity of the functor HomΛ(−, ?) and upper semicontinuity imply the following
lemma.

Lemma 5.7. Let Z,Z1, Z2 ∈ decIrr(Λ). Suppose that Z = Z1 ⊕ Z2. Then the following
hold:

(i) endΛ(Z) = endΛ(Z1) + endΛ(Z2) + homΛ(Z1, Z2) + homΛ(Z2, Z1).
(ii) EΛ(Z) = EΛ(Z1) + EΛ(Z2) + EΛ(Z1, Z2) + EΛ(Z2, Z1).

For a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Zn set a · b := a1b1 + · · · + anbn. The
following lemma is obvious.
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Lemma 5.8. Let d,d1,d2 ∈ Nn with d = d1 + d2. Then

dim(Gd)− dim(Gd1)− dim(Gd2) = 2(d1 · d2).

Lemma 5.9. Let Z,Z1, Z2 ∈ decIrr(Λ) with Z = Z1 ⊕ Z2. We have

dim(Z) = dim(Z1) + dim(Z2) + 2(dim(πZ1) · dim(πZ2))− homΛ(Z1, Z2)− homΛ(Z2, Z1).

Proof. For i = 1, 2 let (di,vi) := dim(Zi), and let (d,v) := dim(Z). We have dim(Z) =
dim(Z1) + dim(Z2) and dim(πZi) = di. The map

f : Gd × Z1 × Z2 → Z

defined by
(g, (M1,Cv1), (M2,Cv2)) 7→ (g.(M1 ⊕M2),Cv)

is a morphism of affine varieties. For (M1,M2) ∈ Z1 × Z2 define

fM1,M2 : Gd ×O(M1)×O(M2)→ O(M1 ⊕M2)

by (g,N1,N2) 7→ f(g,N1,N2). The fibres of fM1,M2 are of dimension

dM1,M2 := dim(Gd) + dimO(M1) + dimO(M2)− dimO(M1 ⊕M2).

Using Equation (1), an easy calculation yields

dM1,M2 = dim(Gd1) + dim(Gd2) + dim HomΛ(M1,M2) + dim HomΛ(M2,M1).

LetM be in the image of f . We want to compute the dimension of the fibre f−1(M). Let

T := {O(N1)×O(N2) ⊆ Z1 × Z2 | N1 ⊕N2
∼=M}.

It follows from the Krull-Remak-Schmidt Theorem that T is a finite set. Thus the fibre
f−1(M) is the disjoint union of the fibres f−1

N1,N2
(M), where O(N1)×O(N2) runs through

T . So we get
dim(f−1(M)) = max{dN1,N2 | O(N1)×O(N2) ∈ T }.

Thus by upper semicontinuity there is a dense open subset V ⊆ Z such that all fibres
f−1(M) with M∈ V have dimension

dZ1,Z2 := dim(Gd1) + dim(Gd2) + homΛ(Z1, Z2) + homΛ(Z2, Z1).

By Chevalley’s Theorem we have

dim(Z) + dZ1,Z2 = dim(Gd) + dim(Z1) + dim(Z2).

Using Lemma 5.8 we get

dim(Z) = dim(Z1) + dim(Z2)− 2(d1 · d2)− homΛ(Z1, Z2)− homΛ(Z2, Z1).

This finishes the proof. �

Lemma 5.10. For Z,Z1, Z2 ∈ decIrr(Λ) with Z = Z1 ⊕ Z2 we have

cΛ(Z) = cΛ(Z1) + cΛ(Z2).

Proof. For i = 1, 2 let (di,vi) := dim(Zi), and let (d,v) := dim(Z). We get

cΛ(Z) = dim(Z)− dim(Gd) + endΛ(Z)

= dim(Z1) + dim(Z2)− dim(Gd1)− dim(Gd2) + endΛ(Z1) + endΛ(Z2)

= cΛ(Z1) + cΛ(Z2).

The first equality follows directly from the definition of cΛ(Z). The second equality uses
Lemma 5.7(i) and Lemma 5.9. �

The following result is a version of Theorem 5.3 for strongly reduced components.
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Theorem 5.11. For Z1, . . . , Zt ∈ decIrr(Λ) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt is a strongly reduced irreducible component.
(ii) Each Zi is strongly reduced and EΛ(Zi, Zj) = 0 for all i 6= j.

Proof. Without loss of generality assume that t = 2. The general case follows by induction.
Let Z1 ∈ decIrrd1,v1(Λ) and Z2 ∈ decIrrd2,v2(Λ).

Assume that Z := Z1 ⊕ Z2 is a strongly reduced component. Thus we have cΛ(Z) =
EΛ(Z). Applying Lemma 5.10 and Lemma 5.7(ii) this implies

cΛ(Z1) + cΛ(Z2) = EΛ(Z1) + EΛ(Z2) + EΛ(Z1, Z2) + EΛ(Z2, Z1).

Since cΛ(Zi) ≤ EΛ(Zi) we get EΛ(Z1, Z2) = EΛ(Z2, Z1) = 0 and cΛ(Zi) = EΛ(Zi). Thus
(i) implies (ii).

To show the converse, assume that Z1 and Z2 are strongly reduced with EΛ(Z1, Z2) =
EΛ(Z2, Z1) = 0. We claim that

cΛ(Z) = cΛ(Z1) + cΛ(Z2) = EΛ(Z1) + EΛ(Z2) = EΛ(Z).

For the first equality we use Lemma 5.10, the second equality is just our assumption
that Z1 and Z2 are strongly reduced. Finally, the third equality follows from Lemma 5.7
together with our assumption that EΛ(Z1, Z2) and EΛ(Z2, Z1) are both zero. Thus Z is
strongly reduced. �

Note that Theorems 5.3 and 5.11 imply that each Z ∈ decIrrs.r.(Λ) is of the form
Z = Z1 ⊕ · · · ⊕ Zt with Zi ∈ decIrrs.r.(Λ) and Zi indecomposable for all i.

The next lemma follows directly from upper semicontinuity and Lemma 4.1(i).

Lemma 5.12. For Z,Z1, Z2 ∈ decIrr(Λ) with Z = Z1 ⊕ Z2 we have

gΛ(Z) = gΛ(Z1) + gΛ(Z2).

Lemma 5.13. For Z ∈ decIrrs.r.
d,v(Λ) we have

d · gΛ(Z) = dim(Z)− dim(Gd).

Proof. It follows from the definitions that

EΛ(Z) = endΛ(Z) + d · gΛ(Z),

and we have

cΛ(Z) = dim(Z)− dim(Gd) + endΛ(Z).

Now the claim follows, since cΛ(Z) = EΛ(Z). �

Corollary 5.14. Let Z ∈ decIrrs.r.
d,v(Λ) with d 6= 0. If EΛ(Z) = 0, then

d · gΛ(Z) = − endΛ(Z) < 0.

5.2. Parametrization of strongly reduced components. Let Λ = C〈〈Q〉〉/I be a
finite-dimensional basic algebra. Plamondon [P2] constructs a map

PΛ : decIrr(Λ)→ Zn,

which can be defined as follows: Let Z ∈ decIrr(Λ). Then there exist injective Λ-modules
IΛ

0 (Z) and IΛ
1 (Z), which are uniquely determined up to isomorphism, and a dense open
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subset U ⊆ πZ such that for each representation M ∈ U we have IΛ
0 (M) = IΛ

0 (Z) and
IΛ

1 (M) = IΛ
1 (Z). For Z ∈ decIrrs.r.

d,v(Λ) define

PΛ(Z) := −dim(soc(IΛ
0 (Z))) + dim(soc(IΛ

1 (Z))) + v.

Let
P s.r.

Λ : decIrrs.r.(Λ)→ Zn

be the restriction of PΛ to decIrrs.r.(Λ).

For a representation M let add(M) be the category of all finite direct sums of direct
summands of M . Plamondon [P2] obtains the following striking result.

Theorem 5.15 (Plamondon). For any finite-dimensional basic algebra Λ the following
hold:

(i)
P s.r.

Λ : decIrrs.r.(Λ)→ Zn

is bijective.
(ii) For every Z ∈ decIrrs.r.(Λ) we have

add(IΛ
0 (Z)) ∩ add(IΛ

1 (Z)) = 0.

Note that Plamondon works with irreducible components, and not with decorated irre-
ducible components. But his results translate easily from one concept to the other.

We now generalize Theorem 5.15(i) to arbitrary basic algebras Λ. It turns out that
decIrrs.r.(Λ) is in general no longer parametrized by Zn but by a subset of Zn. Our proof
is based on Plamondon’s result and uses additionally truncations of basic algebras.

For a basic algebra Λ let
GΛ : decIrr(Λ)→ Zn

be the map, which sends Z ∈ decIrr(Λ) to the generic g-vector gΛ(Z) of Z. For finite-
dimensional Λ, it follows immediately from Lemma 3.3 that GΛ = PΛ. Let

Gs.r.
Λ : decIrrs.r.(Λ)→ Zn

be the restriction of GΛ to decIrrs.r.(Λ).

For a basic algebra Λ let
decIrr<p(Λ)

be the set of irreducible components Z ∈ decIrr(Λ) such that (d,v) := dim(Z) satisfies
|d| < p. Define

decIrrs.r.
<p(Λ) := decIrr<p(Λ) ∩ decIrrs.r.(Λ).

Lemma 5.16. For a basic algebra Λ the following hold:

(i) For all p ≤ q we have

decIrrs.r.
<p(Λp) ⊆ decIrrs.r.

<q (Λq) ⊆ decIrrs.r.(Λ).

(ii) We have

decIrrs.r.(Λ) =
⋃
p>0

decIrrs.r.
<p(Λp).

Proof. Let Z ∈ decIrrd,v(Λ), and let p > |d|. Thus we have Z ∈ decIrrd,v(Λp) and
Z ∈ decIrr<p(Λp). Furthermore, we have cΛp(Z) = cΛ(Z) and EΛp(Z) = EΛ(Z). Thus
Z ∈ decIrrs.r.(Λ) if and only if Z ∈ decIrrs.r.(Λp). This yields the result. �
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Theorem 5.17. For a basic algebra Λ the following hold:

(i) The map

Gs.r.
Λ : decIrrs.r.(Λ)→ Zn

is injective.
(ii) The following are equivalent:

(a) Gs.r.
Λ is surjective.

(b) Λ is finite-dimensional.

Proof. Since Λp is finite-dimensional for all p, we know from Plamondon’s Theorem 5.15(i)
that

Gs.r.
Λp

: decIrrs.r.(Λp)→ Zn

is bijective. Now Lemma 5.16 yields that the map

Gs.r.
Λ : decIrrs.r.(Λ)→ Zn

sends Z ∈ decIrrs.r.
<p(Λp) to Gs.r.

Λp
(Z), and that Gs.r.

Λ is injective. This proves (i). Theo-

rem 5.15(i) says that (b) implies (a). To show the converse, assume that Λ is infinite
dimensional. Thus there exists some 1 ≤ i ≤ n such that the injective envelope Ii of the
simple Λ-module Si is infinite dimensional. Let Ii,p be the injective envelope of the simple
Λp-module Si. Using that Ii is infinite dimensional, one can easily show that dim(Ii,p) ≥ p.

Assume that −ei is in the image of Gs.r.
Λ . (Here ei denotes the ith standard basis vector

of Zn.) In other words, there is some Z ∈ decIrrs.r.(Λ) such that Gs.r.
Λ (Z) = −ei. By

Lemma 5.16(ii) we know that Z ∈ decIrrs.r.
<p(Λp) for some p ≥ 1. Since gΛ(Z) = −ei,

we have I
Λp

0 (Z) = Ii,p and I
Λp

1 (Z) = 0. This implies that Z is the closure of the orbit
of the decorated representation (Ii,p, 0). But dim(Ii,p) ≥ p and the dimension of all
representations in Z is strictly smaller than p, a contradiction. �

The proof of Theorem 5.17(ii) yields the following result.

Corollary 5.18. For a basic algebra Λ and 1 ≤ i ≤ n the following are equivalent:

(i) −ei ∈ Im(Gs.r.
Λ ).

(ii) Ii is finite-dimensional.

Let

GΛ := Im(Gs.r.
Λ ) = {gΛ(Z) | Z ∈ decIrrs.r.(Λ)}

be the set of generic g-vectors of the strongly reduced irreducible components.

6. Component graphs and CC-clusters

6.1. The graph of strongly reduced components. Let Λ be a basic algebra. In [CBS]
the component graph Γ(Irr(Λ)) of Λ is defined as follows: The vertices of Γ(Irr(Λ)) are
the indecomposable irreducible components in Irr(Λ). There is an edge between (possibly
equal) vertices Z1 and Z2 if ext1

Λ(Z1, Z2) = ext1
Λ(Z2, Z1) = 0.

We want to define an analogue of Γ(Irr(Λ)) for strongly reduced components. The
graph Γ(decIrrs.r.(Λ)) of strongly reduced components has as vertices the indecomposable
components in decIrrs.r.(Λ), and there is an edge between (possibly equal) vertices Z1 and
Z2 if EΛ(Z1, Z2) = EΛ(Z2, Z1) = 0.
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6.2. Component clusters. Let Γ be a graph, and let Γ0 be the set of vertices of Γ.
We allow only single edges, and we allow loops, i.e. edges from a vertex to itself. For a
subset U ⊆ Γ0 let ΓU be the full subgraph, whose set of vertices is U . The subgraph ΓU
is complete if for each i, j ∈ J with i 6= j there is an edge between i and j. A complete
subgraph ΓU is maximal if for each complete subgraph ΓU ′ with U ⊆ U ′ we have U = U ′.
We call a subgraph ΓU loop-complete if ΓU is complete and there is a loop at each vertex
in U .

The set of vertices of a maximal complete subgraph of Γ := Γ(decIrrs.r.(Λ)) is called a
component cluster of Λ. A component cluster U of Λ is E-rigid provided EΛ(Z) = 0 for
all Z ∈ U . (Recall that there is a loop at a vertex Z of Γ if and only if EΛ(Z,Z) = 0. If
EΛ(Z) = 0, then EΛ(Z,Z) = 0, but the converse does not hold.)

Proposition 6.1. For each loop-complete subgraph ΓU of Γ := Γ(decIrrs.r.(Λ)) we have
|U | ≤ n.

Proof. Assume that Z1, . . . , Zn+1 are pairwise different vertices of a loop-complete sub-
graph ΓJ of Γ(decIrrs.r.(Λ)). For 1 ≤ i ≤ n + 1 let gΛ(Zi) be the generic g-vector of Zi.
Since ΓJ is loop-complete we know by Theorem 5.11 that

Za := Za1
1 ⊕ · · · ⊕ Z

an+1

n+1

is again a strongly reduced component for each a = (a1, . . . , an+1) ∈ Nn+1. By the
additivity of g-vectors we get

gΛ(Za) = a1gΛ(Z1) + · · ·+ an+1gΛ(Zn+1).

Furthermore, we know from Theorem 5.3 that Za = Zb if and only if a = b. Now one can
essentially copy the proof of [GS, Theorem 1.1] to show that there are a,b ∈ Nn+1 with
gΛ(Za) = gΛ(Zb) but a 6= b. By Theorem 5.17 different strongly reduced components
have different g-vectors. Thus we have a contradiction. �

Corollary 6.2. Let Λ be a finite-dimensional basic algebra. Let M be a representation of
Λ with HomΛ(τ−Λ (M),M) = 0. Then M has at most n isomorphism classes of indecom-
posable direct summands.

The following conjecture might be a bit too optimistic. But it is true for Λ = C〈〈Q〉〉
the path algebra of an acyclic quiver Q, see [DW, Corollary 21] and Section 9.1.

Conjecture 6.3. For any basic algebra Λ the following hold:

(i) The component clusters of Λ have cardinality at most n.
(ii) The E-rigid component clusters of Λ are exactly the component clusters of cardi-

nality n.

6.3. E-rigid representations. After most of this work was done, we learned that Iyama
and Reiten [IR] obtained some beautiful results on socalled τ -rigid modules over finite-
dimensional algebras, which fit perfectly into the framework of Caldero-Chapoton algebras.

Adapting their terminology to decorated representations of basic algebras, a decorated
representation M of a basic algebra Λ is called E-rigid provided EΛ(M) = 0. The
following theorem is just a reformulation of Iyama and Reiten’s results on τ -rigid modules.
Part (i) follows also directly from the more general statement in Proposition 6.1.

ForM∈ decrep(Λ) let Σ(M) be the number of isomorphism classes of indecomposable
direct summands of M.
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Theorem 6.4 ([IR]). Let Λ = C〈〈Q〉〉/I be a finite-dimensional basic algebra. For M ∈
decrep(Λ) the following hold:

(i) If M is E-rigid, then Σ(M) ≤ n.
(ii) For each E-rigid M ∈ decrep(Λ) there exists some N ∈ decrep(Λ) such that
M⊕N is E-rigid and Σ(M⊕N ) = n.

(iii) For each E-rigid M ∈ decrep(Λ) with Σ(M) = n − 1 there are exactly two non-
isomorphic indecomposable decorated representations N1,N2 ∈ decrep(Λ) such that
M⊕Ni is E-rigid and Σ(M⊕Ni) = n for i = 1, 2.

It is easy to find examples of infinite dimensional basic algebras Λ such that Theo-
rem 6.4(iii) does not hold, see Section 9.3.1.

A basic algebra Λ is representation-finite if there are only finitely many isomorphism
classes of indecomposable representations in rep(Λ). One easily checks that Λ is finite-
dimensional in this case.

Corollary 6.5. Assume that Λ is a representation-finite basic algebra. Then the following
hold:

(i) Each component cluster of Λ is E-rigid.
(ii) Each component cluster of Λ has cardinality n.
(iii) There is bijection between the set of isomorphism classes of E-rigid representation

of Λ to the set decIrrs.r.(Λ) of strongly reduced components. Namely, one maps an
E-rigid representation M to the closure of the orbit O(M).

Proof. Since Λ is representation-finite, every irreducible component Z ∈ decIrr(Λ) is a
union of finitely many orbits, and exactly one of these orbits has do be dense in Z.
Thus we have cΛ(Z) = 0. This implies (i) and (iii). Now (ii) follows directly from
Theorem 6.4(ii). �

6.4. Generic Caldero-Chapoton functions. For each (d,v) ∈ Nn × Nn let

Cd,v : decrepd,v(Λ)→ Z[x±1 , . . . , x
±
n ]

be the function defined by M 7→ CΛ(M). The map Cd,v is a constructible function. In
particular, the image of Cd,v is finite. Thus for an irreducible component Z ∈ decIrrd,v(Λ)
there exists a dense open subset U ⊆ Z such that Cd,v is constant on U . Define

CΛ(Z) := CΛ(M)

with M any representation in U . The element CΛ(Z) depends only on Z and not on the
choice of U .

Define

BΛ := {CΛ(Z) | Z ∈ decIrrs.r.(Λ)}.
We refer to the elements of BΛ as generic Caldero-Chapoton functions.

Proposition 6.6. Let Λ = C〈〈Q〉〉/I be a basic algebra. If Ker(BQ) ∩ Qn
≥0 = 0, then BΛ

is linearly independent in AΛ.

Proof. For each Z ∈ decIrrs.r.(Λ) there is some M ∈ Z such that gΛ(M) = gΛ(Z) and
CΛ(M) = CΛ(Z). By Theorem 5.17(i) the generic g-vectors of the strongly reduced
components of decorated representations of Λ are pairwise different. Now Proposition 4.3
yields the result. �
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If BΛ is a basis of AΛ, then we call BΛ the generic basis of AΛ.

6.5. CC-clusters. For a component cluster U of a basic algebra Λ let

CU := {CΛ(Z) | Z ∈ U} and MU := {
∏
Z∈U

CΛ(Z)aZ | aZ ∈ IZ}

where

IZ :=

{
N if EΛ(Z,Z) = 0,

{0, 1} otherwise.

(In each of the products above we assume that aZ = 0 for all but finitely many Z ∈ U .)
The set CU is called a CC-cluster of Λ, and the elements inMU are CC-cluster monomials.
(The letters CC just indicate that we deal with sets of Caldero-Chapoton functions.) A
CC-cluster CU is E-rigid provided EΛ(Z) = 0 for all Z ∈ U .

Note that
CU ⊆MU ⊆ AΛ.

The following result is a direct consequence of the definition of BΛ and Theorem 5.11.

Proposition 6.7. Let Λ be a basic algebra. Then

BΛ =
⋃
U
MU

where the union is over all component clusters U of Λ.

6.6. A change of perspective. The CC-clusters are a generalization of the clusters
of a cluster algebra defined by Fomin and Zelevinsky. In general, the Fomin-Zelevinsky
cluster monomials form just a small subset of the set of CC-cluster monomials. Recall
that the Fomin-Zelevinsky cluster monomials are obtained by the inductive procedure of
cluster mutation [FZ1, FZ2], and the relation between neighbouring clusters is described
by the exchange relations. One can see the exchange relations as part of the definition
of a cluster algebra. On the other hand, the definition of a Caldero-Chapoton algebra
does not involve any mutations of CC-clusters. The CC-clusters are given by collections
of irreducible components, and they do not have to be constructed inductively. One can
find a meaningful notion of neighbouring CC-clusters, and it remains quite a challenge to
actually determine the exchange relations.

6.7. Conjectures. In this section let Λ be any basic algebra. The following conjectures
are again quite optimistic in this generality.

Conjecture 6.8. BΛ is a C-basis of AΛ.

Conjecture 6.8 is true for every Λ = C〈〈Q〉〉 with Q an acyclic quiver and also for
numerous other examples, see [GLS].

Conjecture 6.9. We have

AΛ = 〈CΛ(Z) | Z ∈ decIrrs.r.(Λ), EΛ(Z) = 0〉alg.

If true, the following conjecture would be a vast generalization of the Laurent phenom-
enon [FZ1].

Conjecture 6.10. For any E-rigid component cluster {Z1, . . . , Zn} of Λ, we have

AΛ ⊆ C[CΛ(Z1)±, . . . , CΛ(Zn)±].

In this case, we say that AΛ has the Laurent phenomenon property.
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Conjecture 6.11. For any E-rigid component cluster {Z1, . . . , Zn} of Λ, the generic
g-vectors gΛ(Z1), . . . , gΛ(Zn) form a Z-basis of Zn.

7. Caldero-Chapoton algebras and cluster algebras

7.1. Calderon-Chapoton algebras of Jacobian algebras. Suppose that Q is a 2-
acyclic quiver with a non-degenerate potential W , and let Λ := P(Q,W ) be the associated
Jacobian algebra. Let AQ and Aup

Q be the cluster algebra and upper cluster algebra of Q,
respectively. Set AQ,W := AΛ, BQ,W := BΛ and GQ,W := GΛ. Let

MQ,W := {CΛ(Z) | Z ∈ decIrrs.r.(Λ), EΛ(Z) = 0}.

The first part of the following proposition is a consequence of [DWZ2, Lemma 5.2],
compare also the calculation at the end of [GLS, Section 6.3]. The rest follows from
[DWZ2, Corollary 7.2].

Proposition 7.1. We have
AQ ⊆ AQ,W ⊆ Aup

Q .

The set MQ of cluster monomials of AQ is contained in BQ,W . More precisely, we have

MQ ⊆MQ,W ⊆ BQ,W .

In general, the sets MQ, MQ,W and BQ,W are pairwise different.

7.2. Example. Let Q be the quiver

2

b1

��55555555555

b2

��55555555555

1

a1

DD											

a2

DD											
3

c1
oo

c2oo

and define

W1 := c1b1a1 + c2b2a2,

W2 := c1b1a1 + c2b2a2 − c2b1a2c1b2a1.

It is not difficult to check that P(Q,W1) is infinite dimensional and P(Q,W2) is finite-
dimensional. By [BFZ, Proposition 1.26] the algebras AQ and Aup

Q do not coincide. The

potentials W1 and W2 are both non-degenerate, see [DWZ1, Example 8.6] and [L, Exam-
ple 8.2], respectively. Furthermore, by [P2, Example 4.3] the set BQ,W2 of generic functions
is not contained in AQ. In particular, AQ and AQ,W2 do not coincide. We conjecture that
AQ = AQ,W1 and Aup

Q = AQ,W2 .

7.3. Conjectures. Presently there are only few examples of cluster algebras AQ, which
do not coincide with the upper cluster algebra Aup

Q . So one would like to collect more
evidence for the following conjectures.

Conjecture 7.2. There exist non-degenerate potentials W1 and W2 of Q such that AQ =
AQ,W1 and Aup

Q = AQ,W2.

Conjecture 7.3. For a non-degenerate potential W of Q the following are equivalent:

(i) AQ,W = Aup
Q .

(ii) P(Q,W ) is finite-dimensional.
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Combining Conjectures 7.2 and 7.3 yields the following conjecture.

Conjecture 7.4. The following are equivalent:

(i) AQ = Aup
Q .

(ii) P(Q,W ) is finite-dimensional for all non-degenerate potentials W .

Conjecture 7.5. For non-degenerate potentials W1 and W2 of Q the following are equiv-
alent:

(i) AQ,W1 ⊆ AQ,W2.
(ii) BQ,W1 ⊆ BQ,W2.
(iii) GQ,W1 ⊆ GQ,W2.

8. Sign-coherence of generic g-vectors

The following result implies Theorem 1.4. The special case, where Λ = P(Q,W ) is a
Jacobian algebra with non-degenerate potential W and U is an E-rigid component cluster,
is proved in [P2, Theorem 3.7(1)].

Theorem 8.1. Let Λ be a basic algebra, and let U be a component cluster of Λ. Then the
set {gΛ(Z) | Z ∈ U} is sign-coherent.

Proof. Assume that {gΛ(Z) | Z ∈ U} is not sign-coherent. Thus there are Z1, Z2 ∈ U
such that the set {gΛ(Z1), gΛ(Z2)} is not sign-coherent. Since U is a component cluster,
we know from Theorem 5.11 that Z := Z1 ⊕ Z2 is a strongly reduced component. By
Lemma 5.12 we have gΛ(Z) = gΛ(Z1) + gΛ(Z2). By Lemma 5.16(ii) there is some p such
that Z,Z1, Z2 ∈ decIrrs.r.

<p(Λp). We also know that gΛp(Z) = gΛ(Z) and gΛp(Zi) = gΛ(Zi)
for i = 1, 2, and that

I
Λp

0 (Z) = I
Λp

0 (Z1) + I
Λp

0 (Z2) and I
Λp

1 (Z) = I
Λp

1 (Z1) + I
Λp

1 (Z2).

For i = 1, 2 let (di,vi) := dim(Zi).

We first assume that v1 = v2 = 0. Since {gΛ(Z1), gΛ(Z2)} is not sign-coherent, we get
from Lemma 3.4 that

add(I
Λp

0 (Z1)) ∩ add(I
Λp

1 (Z2)) 6= 0 or add(I
Λp

1 (Z1)) ∩ add(I
Λp

0 (Z2)) 6= 0,

a contradiction to Theorem 5.15(ii).

Next, assume that v1 and v2 are both non-zero. The components Z1 and Z2 are
indecomposable. It follows that Z1 and Z2 are just the orbits of some negative simple
representations. But then {gΛ(Z1), gΛ(Z2)} has to be sign-coherent, a contradiction.

Finally, let v1 = 0 and v2 6= 0. Thus we get Z2 = O(S−i ) for some 1 ≤ i ≤ n. This
implies gΛ(Z2) = ei. Since {gΛ(Z1), gΛ(Z2)} is not sign-coherent, the ith entry of gΛ(Z1)
has to be negative. It follows that the socle of each representation in Z1 has Si as a
composition factor. In particular, the ith entry di of d1 is non-zero. But we also have
EΛ(Z1, Z2) = 0. Now Lemma 5.4 implies that di = 0, a contradiction. �

9. Examples

9.1. Strongly reduced components for hereditary algebras.



CALDERO-CHAPOTON ALGEBRAS 25

9.1.1. Assume that Λ = C〈〈Q〉〉 with Q an acyclic quiver. Thus Λ is equal to the ordinary
path algebra CQ. Clearly, for each (d,v) ∈ Nn × Nn the variety decrepd,v(Λ) is an affine
space. In particular, it has just one irreducible component, namely Zd,v := decrepd,v(Λ).

Lemma 9.1. The following hold:

(i) For irreducible components Zd1,0, Zd2,0 ∈ decIrr(Λ) we have

ext1
Λ(Zd1,0, Zd2,0) = EΛ(Zd1,0, Zd2,0).

(ii) Zd,v is strongly reduced if and only if divi = 0 for all 1 ≤ i ≤ n.

Proof. Since Λ is a finite-dimensional hereditary algebra, we have

dim Ext1
Λ(M,N) = dim HomΛ(τ−Λ (N),M)

for all M,N ∈ rep(Λ). Now Proposition 3.5 implies (i). In particular, for Z = Zd,0 we
have eΛ(Z) = EΛ(Z). Since Z = decrepd,0(Λ) is an affine space, Voigt’s Lemma implies
that cΛ(Z) = eΛ(Z). Thus Z is strongly reduced. The components Z0,ei are obviously
also strongly reduced. Now Lemma 5.4 yields (ii). �

The following result is a direct consequence of Lemma 9.1 and Schofield’s [Scho] ground
breaking work on general representations of acyclic quivers. For all unexplained terminol-
ogy we refer to [Scho].

Proposition 9.2. Let Λ = C〈〈Q〉〉 with Q an acyclic quiver. Then the indecomposable
strongly reduced components are the components Zd,0, where d is a Schur root, and the
components Z0,e1 , . . . , Z0,en, where ei is the ith standard basis vector of Zn.

For a finite-dimensional path algebra Λ = CQ one can use Schofield’s algorithm [Scho]
(see also [DW] for a more efficient version of the algorithm) to determine the canonical
decomposition of a dimension vector, and one can also use it to decide if ext1

Λ(Z1, Z2) is
zero or not. So at least in principle, the graph Γ(decIrrs.r.(Λ)) can be computed. However,
even in this case there are numerous interesting open questions on the structure of the
graph Γ(decIrrs.r.(Λ)), see [Sche].

9.2. Strongly reduced components for 1-vertex algebras.

Proposition 9.3. Let Λ = C〈〈Q〉〉/I be a basic algebra with n = 1. Then the following
hold:

(i) If Λ is finite-dimensional, then the indecomposable strongly reduced components in
decIrr(Λ) are O(S−1 ) and the closure of O(I1), where I1 := (I1, 0) and I1 is the
injective envelope of the simple Λ-module S1.

(ii) If Λ is infinite-dimensional, then the only indecomposable strongly reduced compo-
nent in decIrr(Λ) is O(S−1 ).

Proof. Assume that Λ is finite-dimensional. Then Theorem 5.15(i) implies that GΛ = Z.
For m ≥ 0, we know that the orbit closures of (S−1 )m and Im1 are E-rigid strongly reduced
components with generic g-vectors me1 and −me1, respectively. This implies (i). Part (ii)
follows from the proof of Theorem 5.17(ii). �
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9.3. Strongly reduced components for some representation-finite algebras. In
the following examples, for each E-rigid indecomposable strongly reduced component, we
just display the indecomposable decorated representation whose orbit closure is the com-
ponent. We describe representations by displaying their socle series and their composition
factors. For 1 ≤ i ≤ n we write i and −i instead of Si and S−i , respectively. For a
decorated representation of the form M = (M, 0) we just display M .

9.3.1. Let Q be the quiver

1 2
boo aee

and let Λ := C〈〈Q〉〉/I, where I is generated by ba. Then Γ(decIrrs.r.(Λ)) looks as follows:

2
1 1

−1 −2

For p = 2, the component graph Γ(decIrrs.r.(Λp)) looks as follows:

2
1 1

2
2

���

BBB

−1 −2

To repair the somewhat non-symmetric graph Γ(decIrrs.r.(Λ)) one could insert a vertex
for the infinite-dimensional indecomposable injective Λ-module I2. Such aspects will be
dealt with elsewhere.

9.3.2. Let Q be the quiver

1 2
boo 3

aoo

and let Λ := C〈〈Q〉〉/I, where I is generated by ba. Then Γ(decIrrs.r.(Λ)) looks as follows:

−3

}}}}}}}

AAAAAAA

1 2
1

−2

}}}}}}}

AAAAAAA 2

������

>>>>>>

3 3
2

−1

}}}}}}}

AAAAAAA

Note that for M = 3
2 and N = 1 and we have Ext1

Λ(M,N) = 0 but EΛ((M, 0), (N, 0)) =
HomΛ(τ−(N),M) 6= 0.



CALDERO-CHAPOTON ALGEBRAS 27

9.4. Examples of Caldero-Chapoton algebras.

9.4.1. Let Q be the quiver

1
yy

and let Λ := C〈〈Q〉〉. We have BQ = (0). Up to isomorphism, for each d ≥ 1 there is a
unique indecomposable representation Md of Λ with dim(Md) = d. One easily checks that

CΛ(Md) = d+ 1.

This implies AΛ = C.

For p ≥ 1 the indecomposable representations of the p-truncation Λp are M1, . . . ,Mp,
and we get

CΛp(Md) =

{
(d+ 1)x−1

1 if d = p,

(d+ 1) otherwise.

This implies AΛp = C[x−1
1 ].

9.4.2. In this section, let Q be the quiver

1
a // 2

b // 3 c
yy

and let Λ := C〈〈Q〉〉/I, where I is the ideal generated by c2. We want to study the
Caldero-Chapoton algebra AΛ generated by the Caldero-Chapoton functions associated
to the decorated representations of Λ.

The basic algebra Λ is a representation-finite string algebra, and its Auslander-Reiten
quiver looks as follows: (Recall that there is an arrow from M to N if and only if there
is an irreducible homomorphism from M to N , and for all non-injective M we draw a
dashed arrow from M to its Auslander-Reiten translate τΛ(M). )

1
2
3
3

$$HHHHHHHH 2

""DDDDDDDDD
oo_ _ _ _ _ _ _ _ _ _ 1oo_ _ _ _ _ _ _

2
3
3

::vvvvvvvvvv

$$HHHHHHHH
1
2
3 2

3

::vvvvvvvv

$$HHHHHH
oo_ _ _ _ _ _ _ _ _ 1

2

??��������
oo_ _ _ _ _ _ _ _

3
3

##GGGGGGG

<<zzzzzzzzz 2
3 2

3
oo_ _ _ _ _ _ _ _

%%JJJJJJ

::vvvvvv 1
2 1
3 2

3

oo_ _ _ _ _ _ _ _

<<zzzzzzz

##GGGGGG

3

==|||||||

""EEEEEEE
3 2

3

&&LLLLLL

99tttttt
oo_ _ _ _ _ _ _ 2 1

3 2
3

99tttttt

&&LLLLLLLL
oo_ _ _ _ _ _ _ _ 1

2
3

oo_ _ _ _ _ _ _ _

2
3

$$IIIIIIII

::uuuuuuu 1
3 2

3
oo_ _ _ _ _ _ _ _

&&LLLLLLLL

88rrrrrr
2
3

::uuuuuuuuoo_ _ _ _ _ _ _ _ _

1
2
3

88rrrrrrrr
3

88rrrrrrrrroo_ _ _ _ _ _ _ _ _ _

In this quiver the two south-west and the two south-east edges are identified. The framed
representations are the indecomposable E-rigid decorated representations of Λ. We have

I1 = 1 , I2 = 1
2 , I3 =

1
2 1
3 2

3
.
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We now describe explicitly the Caldero-Chapoton functions associated to the 12 in-
decomposable E-rigid decorated representations of Λ. By definition CΛ(S−i ) = xi, for
i = 1, 2, 3. The remaining 9 functions are

CΛ( 1 ) =
1 + x2

x1
, CΛ ( 1

2 ) =
x1 + x3 + x2x3

x1x2
,

CΛ

(
1
2
3
3

)
=
x1x

2
2 + x1x2 + x1 + x3 + x2x3

x1x2x3
, CΛ( 2 ) =

x1 + x3

x2
,

CΛ ( 3
3 ) =

x2
2 + x2 + 1

x3
, CΛ

(
2
3
3

)
=
x1x

2
2 + x1x2 + x1 + x3

x2x3
,

CΛ

(
1
2
3 2

3

)
=
x2

1x
2
2 + x2

1x2 + x1x2x3 + 2x1x3 + x2
1 + x1x2x3 + x2x

2
3 + x2

3

x1x2
2x3

,

CΛ

(
1
2 1
3 2

3

)
=
x2

1x
2
2 + x2

1x2 + x2
1 + x1x2x3 + 2x1x3 + x2

3 + x1x
2
2x3 + 2x1x2x3 + 2x2x

2
3 + x2

2x
2
3

x2
1x

2
2x3

,

CΛ

(
2
3 2

3

)
=
x2

1x
2
2 + x2

1x2 + x2
1 + x1x2x3 + 2x1x3 + x2

3

x2
2x3

.

The Caldero-Chapoton functions associated to the 6 indecomposable non-E-rigid repre-
sentations of Λ are

CΛ( 3 ) = x2 + 1,

CΛ ( 2
3 ) =

x1x2 + x1 + x3

x2
,

CΛ ( 3 2
3 ) =

x1x
2
2 + x1x2 + x1 + x3 + x2x3

x2x3
,

CΛ

(
1
2
3

)
=
x1x2 + x1 + x3 + x2x3

x1x2
,

CΛ

(
1

3 2
3

)
=
x1x

2
2 + x1x2 + x1 + x2x3 + x2

2x3 + x2x3 + x3

x1x2x3
,

CΛ

(
2 1
3 2

3

)
=
x2

1x
2
2 + x2

1x2 + x2
1 + x1x2x3 + 2x1x3 + x2

3 + x1x
2
2x3 + x1x2x3 + x2x

2
3

x1x2
2x3

.

Claim 9.4. BΛ generates AΛ as a C-vector space.

Proof. It is enough to express the Caldero-Chapoton functions of the 6 indecomposable
non-E-rigid representations in terms of the generic Caldero-Chapoton functions in BΛ. An
easy calculation yields

CΛ( 3 ) = x2 + 1,

CΛ ( 2
3 ) = x1 + CΛ( 2 ),

CΛ ( 3 2
3 ) = CΛ

(
2
3
3

)
+ 1

CΛ

(
1
2
3

)
= CΛ ( 1

2 ) + 1,

CΛ

(
1

3 2
3

)
= CΛ

(
1
2
3
3

)
+ CΛ( 1 ),

CΛ

(
2 1
3 2

3

)
= CΛ

(
1
2
3 2

3

)
+ 1.
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All Caldero-Chapoton functions appearing on the right hand side of the above equations
are elements in BΛ. (Note that xi = CΛ(S−i ) and 1 = CΛ(0) are both in BΛ.) This finishes
the proof. �

To prove the linear independence of BΛ is left as an exercise.

Since Λ is representation-finite, each strongly reduced component contains an E-rigid
decorated representation. Each vertex of Γ(decIrrs.r.(Λ)) has a loop. Let Γ(decIrrs.r.(Λ))◦

be the graph obtained by deleting these loops. We display Γ(decIrrs.r.(Λ))◦ in Figure 1.
Each component cluster is E-rigid and contains exactly three irreducible components.

3
3

2
3
3

−1
2
3 2

3

2

−3

−2

I2

I3

1
2
3 2

3

1
2
3
3

I1

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
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44444444444444444444444444
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zzzzzzzzzzzzzzz
|||||||||
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llllllllllllllllllllllllllll

�����������
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yyyyyyyyyyyyyyyyyyyyyyy

Figure 1. The graph Γ(decIrrs.r.(Λ))◦ of indecomposable strongly reduced components

Every CC-cluster of AΛ is a free generating set for the field C(x1, x2, x3) of rational
functions in the variables x1, x2, x3. In particular, every element of AΛ is a rational
function when expressed in terms of any CC-cluster. In fact, even the following holds:

Claim 9.5. AΛ has the Laurent phenomenon property.

The proof will be presented elsewhere.

9.4.3. Let Q be the 2-Kronecker quiver

1

����
2

and let Λ = C〈〈Q〉〉. The following picture describes the quiver Γ(decIrrs.r.(Λ)). (For
indecomposable strongly reduced components of the form Zd,0 or Z0,ei we just display the
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vectors d or −ei, respectively.)

1
1

· · · 4
3

3
2

2
1

1
0

0
−1

−1
0

0
1

1
2

2
3

3
4 · · ·

Thus there is exactly one component cluster {Z} of cardinality one, and there are infinitely
many component clusters of cardinality two. One can easily check that EΛ(Z,Z) = 0,
hence the loop at Z, but EΛ(Z) 6= 0. Thus {Z} is not E-rigid. The other component
clusters are E-rigid. The CC-cluster monomials are

CΛ( 0
−1 )aCΛ(−1

0 )b, CΛ( i+1
i )aCΛ( i

i−1 )b, CΛ( i−1
i )aCΛ( i

i+1 )b and CΛ( 1
1 )a

where a, b, i ≥ 0.

The set BΛ of generic Caldero-Chapoton functions is just the set of CC-cluster mono-
mials. Recall from [BFZ] that for any acyclic quiver Q we have AQ = Aup

Q . In this case,

BΛ is a C-basis of AQ, see [GLS].

For acyclic quivers Q of wild representation type and Λ = C〈〈Q〉〉, the component graph
Γ(decIrrs.r.(Λ)) will have vertices without loops. For example, let Q be the 3-Kronecker
quiver

1

���� ��
2

and let Λ = C〈〈Q〉〉. Let

φ =

(
−1 3
−3 8

)
be the Coxeter matrix of Λ. For k ≥ 0 define

p2k := φk ( 0
1 ) ,

p2k+1 := φk ( 1
3 ) ,

q2k := φ−k ( 1
0 ) ,

q2k+1 := φ−k ( 3
1 ) .

Set p−1 := −e1 and q−1 := −e2. One connected component of the component graph
Γ(decIrrs.r.(Λ)) looks as follows:

· · · q3 q2 q1 q0 q−1 p−1 p0 p1 p2 p3 · · ·

These are precisely the E-rigid vertices of Γ(decIrrs.r.(Λ)).

The set of Schur roots ofQ consists of real and imaginary Schur roots. The above picture
shows the real Schur roots (and the vectors −e1 and −e2). The set R+

im of imaginary Schur
roots consists of all dimension vectors d = (d1, d2) ∈ N2 with d2 6= 0 such that

(3−
√

5)/2 ≤ d1/d2 ≤ (3 +
√

5)/2,
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see [DW, Section 3] and [K, Section 6]. There is no edge between Zd,0 and any other
vertex of Γ(decIrrs.r.(Λ)). In particular, there is no loop at Zd,0.

The CC-cluster monomials are

CΛ(q−1)aCΛ(p−1)b, CΛ(pi−1)aCΛ(pi)
b, CΛ(qi)

aCΛ(qi−1)b and CΛ(d)

where a, b, i ≥ 0 and d ∈ R+
im. Again it follows from [GLS] that these CC-cluster mono-

mials form a C-basis of AQ. It remains a challenge to compute the exchange relations
between all neighbouring CC-clusters. For the E-rigid CC-clusters, the exchange rela-
tions are known from the Fomin-Zelevinsky exchange relations arising from mutations of
clusters. But for d,d1,d2 ∈ R+

im and i ≥ −1 it remains an open problem to express the
products

CΛ(d)CΛ(pi), CΛ(d)CΛ(qi) and CΛ(d1)CΛ(d2)

as linear combinations of elements from the basis BΛ.
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