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§ 1. Introduction

The Barth–Van de Ven–Tyurin–Sato Theorem claims that any finite rank vector
bundle on the complex projective ind-space P∞ is isomorphic to a direct sum of
line bundles. For rank-two bundles this was established by Barth and Van de Ven
in [1], and for finite rank bundles it was proved by Tyurin in [2] and Sato in [3].
This topic was revived in the more recent papers [4], [5], [6], where in particular the
case of twisted ind-grassmannians was considered.

In the current paper we consider ind-varieties X = lim
−→

Xm given by chains of
embeddings of smooth complete algebraic varieties

X1
φ1
↪→ X2

φ2
↪→ · · ·

φm−1

↪→ Xm
φm
↪→ . . . .

We call such ind-varieties locally complete. A locally complete ind-variety X =

lim
−→

Xm is linear if the map on Picard groups induced by ϕi is a surjection for
almost all i. Our main objective is to give a reasonably general sufficient condition
for the Barth–Van de Ven–Tyurin–Sato Theorem to hold on a locally complete
ind-variety X.

In the linear case, besides the results from the 1970-ies and the important results
of Sato [7], [8] in which he considers a case when the Barth–Van de Ven–Tyurin–Sato
Theorem no longer holds, some more recent results belong to Donin and Penkov [4].
In particular, it is shown in [4] that the Barth–Van de Ven–Tyurin–Sato Theorem
holds on any linear direct limit G(∞) = lim

−→
G(km,Cnm), whereG(km,Cnm) denotes

the grassmannian of km-dimensional subspaces in Cnm , under the assumption that
lim
m→∞

km = lim
m→∞

(nm − km) = ∞. It turns out that there is a single isomorphism
class of such ind-varieties. Nevertheless, there are other natural homogeneous
ind-varieties on which the Barth–Van de Ven–Tyurin–Sato Theorem holds but which
have not been considered in the literature. This applies in particular to linear direct
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limits of isotropic (orthogonal or symplectic) grassmannians, as well as to direct
products of such direct limits.

For this reason we formulate a set of abstract conditions on a linear locally
complete ind-variety X which ensure that the Barth–Van de Ven–Tyurin–Sato
Theorem (shortly, BVTS Theorem) holds. We then give many examples of ind-varieties
X satisfying these sufficient conditions. An interesting new class of such ind-varieties
consists of direct limits Y of linear sections Ym ofG(km,Cnm), where lim

−→
G(km,Cnm) =

G(∞). Another class of ind-varieties on which the Barth–Van de Ven–Tyurin–Sato
Theorem holds are certain ind-varieties of generalized flags, see subsection 6.3.

Probably, there are more general sufficient conditions for the Barth–Van de
Ven–Tyurin– Sato Theorem to hold on locally complete ind-varieties. In addition,
for non-linear locally complete ind-varieties nothing seems to be known beyond
the results of [6]. Therefore, providing a sufficient condition for the Barth–Van de
Ven–Tyurin–Sato Theorem to hold on general locally complete ind-varieties remains
a project for the future.

Acknowledgements. We acknowledge the support and hospitality of the Max
Planck Institute for Mathematics in Bonn where the present paper was conceived.
We also acknowledge partial support from the DFG through Priority Program
"Representation Theory"(SPP 1388) at Jacobs University Bremen. A.S.T. has
been financially supported by the Ministry of Education and Science of the Russian
Federation.

§ 2. Linear ind-varieties. Statement of the main result

2.1. The ground field is C. We use the term algebraic variety as a synonym for
a reduced Noetherian scheme. If E is a vector bundle (or simply a vector space), E∗

stands for the dual bundle (or dual space). We use the standard notation OPn(a)

for the line bundle OPn(−1)⊗−a, where OPn(−1) is the tautological bundle on the
complex n-dimensional projective space Pn.

Recall that an ind-variety is the direct limit X = lim
−→

Xm of a chain of morphisms
of algebraic varieties

X1
φ1→ X2

φ2→ · · · φm−1→ Xm
φm→ Xm+1

φm+1→ . . . . (2.1)

Note that the direct limit of the chain (2.1) does not change if we replace the
sequence {Xm}m>1 by a subsequence {Xim}m>1, and the morphisms φm by the
compositions φ̃im := φim+1−1 ◦ ... ◦ φim+1 ◦ φim .

Let X be the direct limit of (2.1) and X′ be the direct limit of a chain

X ′1
φ′1→ X ′2

φ′2→ · · ·
φ′m−1→ X ′m

φ′m→ X ′m+1

φ′m+1→ . . . .

A morphism of ind-varieties f : X → X′ is a map from X to X′ induced by a
collection of morphisms of algebraic varieties {fm : Xm → Ynm}m>1 such that
φ̃′nm ◦ fm = fm+1 ◦ φm for all m > 1. The identity morphism idX is a morphism
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which coincides with the identity as a set-theoretic map from X to X. A morphism
f : X → X′ is an isomorphism if there exists a morphism g : X′ → X such that
g ◦ f = idX and f ◦ g = idX′ .

In what follows we only consider chains (2.1) such thatXm are complete algebraic
varieties, lim

m→∞
(dimXm) =∞, and the morphisms φm are embeddings. We call such

ind-varieties locally complete. Furthermore, we call a morphism f : X = lim
→
Xm →

X′ = lim
→
X ′m of locally complete ind-varieties an embedding if all morphisms fm :

Xm → X ′nm , m > 1, are embeddings.
A vector bundle E of rank r ∈ Z>0 on X is the inverse limit lim

←
Em of an inverse

system of vector bundles Em of rank r on Xm, i.e., of a system of vector bundles
Em with fixed isomorphisms ψm : Em ∼= φ∗mEm+1; here and below φ∗ stands for
inverse image of vector bundles under a morphism φ. Clearly, E|Xm ∼= Em, m > 1.
In particular, the structure sheaf OX = lim

←−
OXm of an ind-variety X is well defined.

By the Picard group PicX we understand the group of isomorphism classes of line
bundles on X. Clearly, PicX is the inverse limit lim

←−
PicXm of the system of Picard

group homomorphisms {φ∗m : PicXm+1 → PicXm}m>1. In the rest of the paper we
automatically assume that all vector bundles considered have finite rank. If E is a
vector bundle on X, rE stands for the direct sum E ⊕ ... ⊕ E of r copies of E. A
vector bundle E is trivial if it is isomorphic to rOX, r = rkE.

A linear ind-variety is an ind-variety X = lim
→
Xm such that, for all large enough

m > 1, the induced homomorphisms of Picard groups φ∗m : PicXm+1 → PicXm are
epimorphisms. A typical example of a linear ind-variety is the projective ind-space
P∞ which is the direct limit of a chain of linear embeddings

Pn1
φ1
↪→ Pn2

φ2
↪→ · · ·

φm−1

↪→ Pnm
φm
↪→ . . . ,

for an arbitrary increasing sequence {nm}m>1 of nonnegative integers. (It is easy to
see that the definition of P∞ does not depend, up to isomorphism of ind-varieties,
on the choice of the sequence {nm}m>1 and the embeddings ϕm.) By a projective
ind-subspace of an ind-variety X we understand the image of an embedding ψ :

P∞ ↪→ X.
Another example of a linear ind-variety is the ind-grassmannian G(∞) which is

the direct limit of a chain of linear embeddings

G(k1,Cn1)
φ1
↪→ G(k2,Cn2)

φ2
↪→ ...

φm−1

↪→ G(km,Cnm)
φm
↪→ ...,

whereG(km,Cnm) is the grassmannian of km-dimensional subspaces in an nm-dimensional
vector space and lim

m→∞
km = lim

m→∞
(nm − km) =∞.

2.2. Let X = lim
→
Xm be a linear ind-variety such that there is a finite or

countable set ΘX and a collection {Li = lim
←
Lim}i∈ΘX

of nontrivial line bundles on
X such that, for anym, Lim ' OXm for all but finitely many indices i1(m), ..., ij(m)(m),
and the images of Li1(m)m, ..., Lij(m)(m)m in PicXm form a basis of PicXm which is
assumed to be a free abelian group. It is clear that in this case PicX is isomorphic
to a direct product of infinite cyclic groups with generators the images of Li.
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We denote by ⊗
i∈ΘX

L⊗aii the line bundle on X whose restriction to Xm equals

⊗iL⊗aiim = L⊗a1

i1(m)m ⊗ ... ⊗ L
⊗aj(m)

ij(m)(m)m. We say that X satisfies the property L if,

in addition to the above condition, H1(Xm,⊗iL⊗aiim ) = 0 for any m > 1 if some ai
is negative.

Let X satisfy the property L. For a given i ∈ ΘX, a smooth rational curve C ' P1

on X is a projective line of the i-th family on X (or simply, a line of the i-th family),
if

Lj |C ∼= OP1(δij) for j ∈ ΘX. (2.2)

By Bi we denote the set of all projective lines of the i-th family on X. It has a natural
structure of an ind-variety: Bi = lim

→
Bim, where Bim := {C ∈ Bi | C ⊂ Xm} for

m > 1. For any point x ∈ X the subset Bi(x) = {C ∈ Bi | C 3 x} inherits an
induced structure of an ind-variety.

Assume that X satisfies the property L. Then we say that X satisfies the property
A if for any i ∈ ΘX there is an ind-variety Πi which is a direct limit of a chain
of emeddings {...

πi,m−1

↪→ Πim
πim
↪→ Πi,m+1

πi,m+1

↪→ ...} where the points of Πim are
projective subspaces Pnm of Bim, together with linear embeddings Pnm ↪→ Pnm+1 =

πim(Pnm) induced by the embeddings Bim ↪→ Bi,m+1, so that each point of Πi is
considered as a projective ind-subspace P∞ = lim

→
Pnm of Bi, and for any x ∈ X the

following conditions hold:
(A.i) for each m > 1 such that x ∈ Xm, each nontrivial sheaf Lim defines a

morphism ψim : Xm → Prim := P(H0(Xm, Lim)∗) which maps the family of lines
Bim(x) isomorphically to a subfamily of lines in Prim passing through the point
ψim(x);

(A.ii) the variety Πim(x) := {Pnm ∈ Πim | Pnm ⊂ Bim(x)} is connected for any
m > 1;

(A.iii) the projective ind-subspaces P∞ ∈ Πi(x) := lim
→

Πim(x) fill Bi(x);
(A.iv) for any d ∈ Z>1 there exists am0(d) ∈ Z>1 such that, for any d-dimensional

variety
Y and any m > m0(d), any morphism Πim(x)→ Y is a constant map.

In particular, (A.ii) and (A.iii) imply that the varieties Πim, Bim, Bim(x) are
connected.

Let X satisfy the properties L and A as above. A vector bundle E on X is called
Bi-uniform, if for any projective line P1 ∈ Bi on X, the restricted bundle E|P1 is
isomorphic to ⊕rkE

j=1OP1(kj) for some integers kj not depending on the choice of P1.

If in addition all kj = 0, then E is called Bi-linearly trivial. We call E uniform
(respectively, linearly trivial) if it is Bi-uniform (respectively, Bi-linearly trivial) for
any i ∈ ΘX. Moreover, we say that X satisfies the property T if any linearly trivial
vector bundle on X is trivial.

Our general version of the BVTS Theorem is the following.

Theorem 1. Let E be a vector bundle on a linear ind-variety X.
(i) If X satisfies the properties L and A for for some fixed line bundles {Li}i∈ΘX

,
and corresponding families {Bi}i∈ΘX

of projective lines on X, then E has a filtration
by vector subbundles

0 = E0 ⊂ E1 ⊂ ... ⊂ Et = E (2.3)
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with uniform successive quotients Ek/Ek−1, k = 1, ..., t.

(ii) If, in addition, X satisfies the property T, then the filtration (2.3) splits and
its quotients are of the form

Ek/Ek−1
∼= rk(Ek/Ek−1)(

⊗
i∈ΘX

L⊗aiki ), aik ∈ Z, i ∈ ΘX, 1 6 k 6 t.

In particular, E is isomorphic to a direct sum of line bundles.

§ 3. Proof of the main theorem

3.1. Preliminaries on vector bundles. If C ⊂ X is a smooth irreducible
rational curve in an algebraic variety X and E is a vector bundle on X, then by a
classical theorem often attributed to Grothendieck, E|C is isomorphic to

⊕
iOC(δi)

for some δ1 > δ2 > ... > δrkE . We call the ordered rkE-tuple (δ1, ..., δrkE) the
splitting type of E|C and denote it Split(E|C). We order splitting types lexicographically,
i.e. (δ1, ..., δrkE) > (δ′1, ..., δ

′
rkE) if δ1 = δ′1, ..., δk−1 = δ′k−1, δk > δ′k for some

k, 1 6 k 6 rkE.
Let X be a locally complete linear ind-variety satisfying the properties L and A,

and let x ∈ X and i ∈ ΘX. In the notation of (A.i), let Prim = P(H0(Xm, Lim)∗)

and y = ψim(x) = Cu, 0 6= u ∈ H0(Xm, Lim)∗, so that Bim(x) ⊂ Prim−1
y :=

P(H0(Xm, Lim)∗/Cu). Fix a projective subspace Pnm ⊂ Bim(x), where Pnm ∈
Πim(x). ThenOP(H0(Xm,Lim)∗/Cu)(1)|Pnm ' OPnm (N(i)) for someN(i) > 0. Consider
the locally closed subvariety Ym := {(z, l) ∈ Prim × Pnm |z ∈ l \ {y}} of Prim × Pnm ,
and let Ym ↪→ Prim be the embedding induced by the projection Prim×Pnm → Prim .
Then Ym is isomorphic to the total space of the line bundle OPnm (N(i)) (see for
instance [9; Appendix B]) and

OPrim (1)|Ym ' π∗mOPnm (N(i)), (3.1)

where πm : Ym → Pnm is the natural projection. Moreover, by construction we have
a commutative diagram of morphisms

Y m_�

��

Ym_�

��

τmoo πm // Pnm_�

��
Prim P̃rim

φyoo πy // Prim−1
y ,

(3.2)

where τm : Ym ↪→ Y m := Ym∪{y} is the inclusion, ϕy : P̃rim → Prim is the blow-up
of Prim with centre at y, and πy is the natural projection which is a P1-bundle. In
addition, we have an open embedding

ιm : Ym ↪→ Ỹ := P̃rim ×Prim−1
y

Pnm
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and projections Y m
τ̃m← Ỹm

τ̃m→ Pnm such that

τm = τ̃m ◦ ιm, πm = π̃m ◦ ιm. (3.3)

By (A.i) ψim : ψ−1
im (Y m) → Y m is an isomorphism. Hence we may consider

E|ψ−1
im(Ym) as a vector bundle on Y m and denote it by E|Ym . We also set E|Ym :=

τ∗m(E|Ym).
For an arbitrary projective line P1 ⊂ Pnm , we consider the surface S = S(x,P1) :=

π−1
y (P1) with natural projections πS := πy|S : S → P1 and σS := φy|S : S → X. It

follows from (3.1) that S is a surface of type FN(i).
Let E be a vector bundle of rank r on X. For any i ∈ ΘX and x ∈ X we set

C(i) := c1(E|l) ∈ Z, where c1 stands for first Chern class and l ∈ Bi(x). Since Bi(x)

is connected, C(i) is well defined. Furthermore, we have δ1(E|l) > C(i)/r > δB(E|l).
Hence there are well-defined integers

δmin
1 := min

l∈Bi(x)
δ1(E|l), δmax

rkE := max
l∈Bi(x)

δrkE(E|l),

and there exist lines lmin, lmax ∈ Bi(x) such that δ1(E|lmin
) = δmin

1 , δrkE(E|lmax
) =

δmax
rkE . The inequality C(i) > δmin

1 + (r− 1)δrkE(E|lmin
) implies

δmin
1 − δrkE(E|lmin) 6 δmin

1 −C(i)/(r−1), δ1(E|lmax)− δmax
rkE > C(i)/(r−1)− δmax

rkE .

(3.4)
Fix P∞ ∈ Bi(x) and lmin ∈ P∞. For an arbitrary point l0 ∈ P∞r{lmin} consider

the line P1 = Span(l0, lmin) in P∞ and the corresponding surface S = S(x,P1)

together with the vector bundle ES := σ∗SE on S. For a general point l ∈ P1 (l is a
line on X), the first inequality in (3.4) implies

δgen := δ1(E|l)− δrkE(E|l) 6 δmin
1 − C(i)/(r− 1). (3.5)

The following lemma is a straightforward consequence of a result of Tyurin.

Lemma 3.1. There exist polynomials PA, PB ∈ Q[x1, ..., x6] such that for any
l0 ∈ P∞ r {lmin}

δ1(E|l0) 6 PA(r, δmin
1 , C(i), N(i), c21(ES), c2(ES)) =: PA(E, i), (3.6)

δrkE(E|l0) > PB(r, δmax
rkE , C(i), N(i), c21(ES), c2(ES)) =: PB(E, i), (3.7)

where c21(ES) and c2(ES) are considered as integers.

Proof. By construction, S is a surface of type FN(i). Hence, repeating for the
vector bundle ES the proof of Lemma 5 from [T, Ch. 2, §1] we obtain that there
exists a polynomial f ∈ Q[x1, ..., x6] such that δ1(E|l0) 6 f(r, δmin

1 , δgen, N(i), c21(ES), c2(ES)).
Thus, in view of (3.5), there exists a polynomial PA ∈ Q[x1, ..., x6] satisfying (3.6).
The proof of (3.7) is similar.

The next proposition employs in a crucial way results of E. Sato. Fix i ∈ ΘX, x ∈
X and Pnm ∈ Πim(x) for a large enough m. In view of (3.6) there exists a maximal
(with respect to lexicographic order) splitting type Si(E,Pnm) := max

l∈Pnm
Split(E|l).
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Proposition 1. The maximal splitting type Si(E,Pnm) depends only on the pair
(E, i), i.e. Si(E,Pnm) does not depend on x and on Pnm ∈ Πim(x).

Proof. Set

Mi(Pnm) := {l ∈ Pnm | Split(E|l) = Si(E,Pnm)}.

The semicontinuity of Split(E|l) implies that Mi(Pnm) is a closed subvariety of
Pnm . Moreover, Lemma 3.1 together with [2; Ch. 2, §2, Lemmas 3 and 4] yields
the inequality

codimPnmMi(Pnm) 6 r(r− 1)(PA(E, i)− PB(E, i)). (3.8)

Consider the upper row of the diagram (3.2). Since the right-hand side of (3.8)
is constant with respect to m, for large enough m we have

codimPnmMi(Pnm) < min(nm − r, (nm − 2r2)/2). (3.9)

Also, clearly for large enough m

codimYm
{x} = codimYm

(Y m r Ym) > r. (3.10)

The inequality (3.10) shows that

ck(E|Ym) = τ∗mck(E|Ym), 0 6 k 6 r, (3.11)

where ck(·) stands for k-th Chern class. Moreover, since the Chow group of codimension
k of the base of an arbitrary vector bundle pulls back isomorphically to the Chow
group of codimension k of the total space of the bundle, we have

ck(E|Ym) = π∗m(ckH
k), 0 6 k 6 r, (3.12)

where H is the class of a hyperplane divisor on Pnm , c0 = 1 and c1, ..., cr are
integers. It is essential to note that the obvious compatibility of the morphisms πm
for varying m and the functoriality of Chern classes imply that these integers do not
depend on x and on Pnm ∈ Πim(x). Note also that (3.1), (3.3) and the equalities
(3.11) and (3.12) imply

ι∗mck(τ̃∗m(E⊗L−ai |Ym)) = τ∗mck(E⊗L−ai |Ym) = ck(E|Ym⊗π∗mOPnm (−N(i)aH)), 0 6 k 6 r, a ∈ Z.
(3.13)

Next, consider the polynomial

h(t) =

r∑
k=0

ck(−t)r−k ∈ Z[t] (3.14)

where the coefficients ck for k > 0 are the integers introduced above. Following
closely an idea of Sato, we will now argue that the roots of h(t) constitute a constant
multiple of the maximal splitting type Si(E,Pnm). More precisely, let a1 > ... > aα,
α 6 r, be the distinct elements of Si(E,Pnm) of respective multiplicities r1, ..., rα in
Si(E,Pnm). Then we claim that the roots of h(t) are N(i)a1, ..., N(i)aα of respective
multiplicities r1, ..., rα.
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The argument in [3; pp. 138-139] shows that in order to prove this claim of
h(t) it suffices to establish the vanishing of ck(E|Ym ⊗ π∗mOPnm (−N(i)ajH)) for
r − rj + 1 6 k 6 r, 1 6 j 6 α. By (3.13) it is enough to prove the vanishing of
ck(τ̃∗m(E⊗L

−aj
i |Ym)). However, the proof of this fact is practically the same as in [3].

Namely, one defines inductively vector bundles F1 := φ̃∗mE|π̃−1
m (Mi(Pnm )), F2, ..., Fα

such that rkFj =
∑α
p=j rp on π̃−1

m (Mi(Pnm)) which fit into the exact triples

0→ rjOπ̃−1
m (Mi(Pnm )) → Fj⊗ (L

aj−1−aj
i |π̃−1

m (Mi(Pnm )))→ Fj+1 → 0, 1 6 j 6 α−1,

(3.15)
where a0 := 0. Using (3.9) and applying the argument from [3; p. 139] to the triples
(3.15), we obtain ck(τ̃∗m(E⊗ L

−aj
i |Ym)) = 0 as desired.

Since h(t) is independent of x and Pnm ∈ Πim(x), the same applies to Si(E,Pnm),
i.e. the proposition is proved.

3.2. Proof of Theorem 2.1.

Proof. According to (3.9), the dimension ofMi(Pnm) is greater than half of the
dimension of Pnm , hence the varieties Mi(Pnm) are connected for large enough m.
Consider the variety Γim(x) := {(l,Pnm) ∈ Bim(x) × Πim(x) | l ∈ Mi(Pnm)} with
projections Bim(x)

p1← Γim(x)
p2→ Πim(x). Since Mi(Pnm) = p−1

2 (Pnm) is connected
for any Pnm ∈ Πim(x) and Πim(x) is connected by (A.ii), it follows that Γim(x) is
connected. By definition, Γim(x) is described as

Γim(x) = t
Pnm∈Πim(x)

Mi(Pnm), m > 1. (3.16)

Similarly, consider the varieties Γim := {(x, l,Pnm) ∈ Xm×Bim×Πim | (l,Pnm) ∈
Γim(x)}. By construction,

Γim = t
x∈Xm

Γim(x),

so that each Γim is connected. Moreover, there is a well-defined ind-variety Γi :=

lim
→

Γim.
Let (x, l,Pnm) ∈ Γi. If δmax

1 is the maximal entry of Split(E|l) = Si(E,Pnm),
there is a well-defined subbundle E1(l) of E|l:

E1(l) := im(H0(l,E|l(−δmax
1 ))⊗Ol

ev→ E|l(−δmax
1 ))⊗Ol(δmax

1 ). (3.17)

Set r1 := rkE1(l) and consider the relative grassmannian ρ1 : G(r1,E) → X.
According to Proposition 1, δmax

1 and r1 do not depend on the point (x, l,Pnm) ∈ Γi.
Thus there is a morphism of ind-varieties

fi1 : Γi → G(r1,E), (x, l) 7→ E1(l)|x, x ∈ X. (3.18)

Since fi1(Γim(x)) ⊂ ρ−1
1 (x) = G(r1,E|x), by (3.16) we have

fi1(Mi(Pnm)) ⊂ G(r1,E|x), Pnm ∈ Πim(x).

According to (3.8) codimPnmMi(Pnm) is bounded as m → ∞. This means
that, for large enough m, the morphism fi1 : Mi(Pnm) → G(r1,E|x) satisfies the
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conditions of [3; Prop. 3.2], in which we set n = nm, X = Mi(Pnm), Y = G(r1,E|x)

and f = fi1. By this proposition, fi1|Mi(Pnm ) is a constant map, hence it induces a
morphism

φi1(x) : Πim(x)→ G(r1,E|x), Pnm 7→ fi1(Mi(Pnm)), x ∈ X.

Now (A.iv) implies that there exists a positive integer m1 such that the morphism
φi1(x) is a constant map for any m > m1. We thus obtain that (3.18) induces a
constant morphism

φi1(x) : Πi(x)→ G(r1,E|x).

Consider the ind-variety Σi = lim
→

Σim, where Σim := {(x,Pnm) ∈ Xm×Πim | Pnm ∈
Πim(x)}, and let pi : Σi → X be the natural projection with fibre Πi(x), x ∈ X.
The above constant morphisms φi1(x) extend to a morphism φi1 : Σi → G(r1,E)

which is constant on the fibres of pi. In addition, the morphism fi1|Mi(x) is a
constant map. We thus obtain a well-defined morphism

Φi1 : X→ G(r1,E), x 7→ fi1(Γi(x)). (3.19)

Let S be the tautological bundle of rank r1 on G(r1,E). Set E1i := Φ∗i1S. It
follows now from (3.17), (3.18) and (3.19) that E1i is a subbundle of E such that

E1i|l = E1(l) ' r1Ol(δmax
1 ), l ∈Mi.

Using the semicontinuity of dimH0(l,E1i(−δmax
1 )|l), one checks immediately that

the last equality is true for any l ∈ Bi.

Applying the above argument to the quotient E′ = E/E1i etc., we obtain a
filtration of the bundle E

0 ⊂ E1i ⊂ E2i ⊂ ... ⊂ Eαi =⊂ E1i

with Bi-uniform successive quotients Fki = Eki/Ek−1,i.

Fix now j ∈ ΘX, i 6= j. By applying the same procedure to all bundles Fki,

we obtain a bundle filtration of E whose quotients are Bi-uniform and Bj-uniform.
After finitely many iterations we finally obtain a filtration

0 = E0 ⊂ E1 ⊂ ... ⊂ Es = E (3.20)

of E with uniform successive quotients. This yields (i).
Note that any uniform vector bundle on X becomes linearly trivial after twisting

by an appropriate line bundle. This means that each successive quotient Ek/Ek−1

is isomorphic to Mk ⊗ Fk where Mk is a line bundle and Fk is linearly trivial. In
addition, assume that the property T is satisfied. Then the bundles Fk are trivial,
i.e.

Ek/Ek−1 ' rk(Ek/Ek−1)Mk, 1 6 k 6 s.

Furthermore, for p < k

Ext1(Mk,Mp) = H1(X,M∗
k ⊗Mp),
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and, according to a well known fact [10; Theorem 4.5] (see also [11; Proposition
10.3]),

H1(X,M∗
k ⊗Mp) = lim

←
H1(Xm, (M

∗
k ⊗Mp)|Xm).

However, the above construction shows that

(M∗
k ⊗Mp)|Xm ' ⊗iL

⊗ai
imi

with some ai negative. Therefore the vanishing part of property L yields

H1(Xm, (M
∗
k ⊗Mp)|Xm) = 0

for m > 1, and hence Ext1(Mk,Mp) = 0 for 1 6 p 6 k 6 s. This is sufficient to
conclude that the filtration (3.20) splits, i.e. (ii) follows.

The rest of the paper (with exception of the appendix) is devoted to examples
of linear ind-varieties satisfying the properties L, A and T.

§ 4. Linear ind-grassmannians satisfying the properties L, A, T

4.1. Finite-dimensional orthogonal and symplectic grassmannians. Let
V be a finite-dimensional vector space. In what follows we will consider, both
symmetric and symplectic, quadratic forms Φ on V . Under the assumption that
Φ is fixed, for any subspace W ⊂ V we set W⊥ := {v ∈ V | Φ(v, w) = 0 for any
w ∈W}. Recall that W is isotropic (or Φ-isotropic) if W ⊂W⊥.

Let Φ ∈ S2V ∗ be a non-degenerate symmetric form on V . For dimV > 3

and 1 6 k 6
[

dimV
2

]
, the orthogonal grassmannian GO(k, V ) is defined as the

subvariety of G(k, V ) consisting of all Φ-isotropic k-dimensional subspaces of V .
Unless dimV = 2n, k = n, GO(k, V ) is a smooth irreducible variety. For dimV =

2n, k = n, GO(k, V ) is smooth and has two irreducible components, both of which
are isomorphic to GO(n− 1, Ṽ ) for dim Ṽ = 2n− 1.

If Φ ∈ ∧2V ∗ is a non-degenerate symplectic form on V , dimV = 2n, we recall
that the symplectic grassmannian GS(k, V ) is a smooth irreducible subvariety of
G(k, V ) consisting of all Φ-isotropic k-dimensional subspaces of V .

4.2. Definition of linearind-grassmannians. We start by recalling the definition
of standard extension of grassmannians [12].

By a standard extension of grassmannians we understand an embedding of grassmannians
f : G(k, V )→ G(k, V ′) for dimV > dimV, k′ > k, given by the formula

f : Vk 7→ Vk ⊕W, (4.1)

for some fixed isomorphism V ′ ' V ⊕Ŵ and a fixed subspaceW ⊂ Ŵ of dimension
k′−k. Respectively, by a standard extension of orthogonal respectively, of symplectic
grassmannians we understand an embedding of isotropic grassmannians f : GO(k, V )→
GO(k, V ′) (respectively, f : GS(k, V ) → GS(k, V ′)) given by the formula (4.1) for
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some fixed orthogonal (respectively, symplectic) isomorphism V ′ ' V ⊕ Ŵ and a
fixed isotropic subspace W ⊂ Ŵ of dimension k′ − k, cf. [12; Definitions 3.2. and
3.5]. Note that standard extensions are linear morphisms.

Next we recall the definition of a standard ind-grassmannian [12].

Definition 1. Fix an infinite chain of vector spaces

Vn1
⊂ Vn2

⊂ ... ⊂ Vnm ⊂ Vnm+1
⊂ ... (4.2)

of dimensions nm, nm < nm+1.
a) For an integer k, 1 6 k < n1, set G(k) := lim

→
G(k, Vnm) where

G(k, Vn1
) ↪→ G(k, Vn2

) ↪→ ... ↪→ G(k, Vnm) ↪→ G(k, Vnm+1
) ↪→ ...

is the chain of canonical inclusions of grassmannians induced by (4.2).
b) For a sequence of integers 1 6 k1 < k2 < ... such that km < nm, lim

m→∞
(nm −

km) =∞, set G(∞) := lim
→
G(km, Vnm) where

G(k1, Vn1
) ↪→ G(k2, Vn2

) ↪→ ... ↪→ G(km, Vnm) ↪→ G(km+1, Vnm+1
) ↪→ ...

is an arbitrary chain of standard extensions of grassmannians.
c) Assume that Vnm are endowed with compatible non-degenerate symmetric

(respectively, symplectic) forms Φm. In the symplectic case nm
2 ∈ Z+. For an

integer k, 1 6 k 6 [n1

2 ], set GO(k,∞) := lim
→
GO(k, Vnm) (respectively, GS(k,∞) :=

lim
→
GS(k, Vnm)) where

GO(k, Vn1) ↪→ GO(k, Vn2) ↪→ ... ↪→ GO(k, Vnm) ↪→ GO(k, Vnm+1) ↪→ ...

(respectively,

GS(k, Vn1
) ↪→ GS(k, Vn2

) ↪→ ... ↪→ GS(k, Vnm) ↪→ GS(k, Vnm+1
) ↪→ ...)

is the chain of inclusions of isotropic grassmannians induced by (4.2).
d) For a sequence of integers 1 6 k1 < k2 < ... such that km < [nm2 ], lim

m→∞
([nm2 ]−

km) =∞, set GO(∞,∞) = lim
→
GO(km, Vnm) (respectively, GS(∞,∞) := lim

→
GS(km, Vnm))

where

GO(k1, Vn1) ↪→ GO(k2, Vn2) ↪→ ... ↪→ GO(km, Vnm) ↪→ GO(km+1, Vnm+1) ↪→ ...

(4.3)
(respectively,

GS(k1, Vn1
) ↪→ GS(k2, Vn2

) ↪→ ... ↪→ GS(km, Vnm) ↪→ GS(km+1, Vnm+1
) ↪→ ...)

(4.4)
is an arbitrary chain of standard extensions of isotropic grassmannians.

e) In the symplectic case, consider a sequence of integers 1 6 k1 < k2 < ... such
that km 6 nm

2 , lim
m→∞

(nm2 − km) = k ∈ N, and set GS(∞, k) := lim
→
GS(km, Vnm) for

any chain of standard extensions (4.4). In the orthogonal case, assume first that
dimVnm are even. Then set GO0(∞, k) := lim

→
GO(km, Vnm) for a chain (4.3) where
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km < nm
2 , lim

m→∞
(nm2 − km) = k ∈ N, k > 2. Finally, consider the orthogonal case

under the assumption that dimVnm are odd. Then set GO1(∞, k) := lim
→
GO(km, Vnm)

for a chain (4.3) where km 6 [nm2 ], lim
m→∞

([nm2 ]− km) = k ∈ N.

In particular, P∞ = G(1) ' GS(1). Note that the above standard ind-grassmannians
are well-defined, i.e. a standard ind-grassmannian does not depend, up to an
isomorphism of ind-varieties, on the specific chain of standard embeddings used in
its definition. Furthermore, the main result of [12] claims that, with the exception
of the isomorphism P∞ ' GS(1), the standard ind-grassmannians are pairwise
non-isomorphic as ind-varieties.

In all cases the maximal exterior power of a tautological bundle generated by
its global sections yields an ample line bundle OXm(1) on Xm, where Xm =

G(km, Vnm), GO(km, Vnm), GS(km, Vnm). It is well known that OXm(1) generates
PicXm. Moreover, if im : Xm ↪→ Xm+1 is one of the embeddings in Definition 1,
there is an isomorphism i∗mOXm+1(1) ' OXm(1). This allows us to conclude that
X = lim

→
Xm is a linear ind-variety and PicX is generated by OX(1) := lim

←
OXm(1).

4.3. BVTS Theorem for G(∞), GO(∞,∞), GS(∞,∞), GO1(∞, 0) and
GS(∞, 0). We first note that, if X = G(k), GO(k,∞), GS(k,∞) there is a
tautological rank-k bundle S on X. If k > 2, this bundle is not isomorphic to
a direct sum of line bundles, hence the BVTS theorem does not hold for these
ind-grassmannians. Moreover, it is known [7] that, for X = G(k), GO(k,∞),
X = GS(k,∞), any simple vector bundle of finite rank on X, i.e. a vector bundle
which does not have a non-trivial proper subbundle, is a direct summand in a tensor
power of S.

Theorem 2. Any vector bundle E on X ' G(∞), GO(∞,∞), GS(∞,∞),
GO1(∞, 0), GS(∞, 0) is isomorphic to ⊕

i
OX(ki) for some ki ∈ Z.

For X = G(∞) this is proved in [4] (see also [5; Section 4]). For the remaining
standard ind-grassmannians the claim of Theorem 2 follows from Theorem 1 and
the following theorem.

Theorem 3. Let X ' GO(∞,∞), GS(∞,∞), GO1(∞, 0) or GS(∞, 0). Then
X satisfies the properties L, A and T.1

Proof. X satisfies the property L asOX(1) generates PicX, andH1(Xm,OXm(a))

vanishes for all a and sufficiently largem by Borel-Weil-Bott’s Theorem. Furthermore,
the property T follows from Proposition 9 below.

It remains to establish the property A. Part (A.i) holds here simply because
OX(1) is very ample. We therefore discuss parts (A.ii)-(A.iv).

Let X = GO(∞,∞) = lim
→
GO(km, Vnm). For m > 1, the base Bm of the family

of projective lines on GO(km, Vnm) coincides with the variety of isotropic flags of
type (km − 1, km + 1) in Vnm :

Bm = {(Vkm−1, Vkm+1) ∈ GO(km − 1, Vnm)×GO(km + 1, Vnm) | Vkm−1 ⊂ Vkm+1}
(4.5)

1The reader can check that G(∞) also satisfies the properties L, A, T.
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[12; Lemma 2.2(i)]. Furthermore, set

Πm := {(Vkm , Vkm+1) ∈ GO(km, Vnm)×GO(km + 1, Vnm) | Vkm ⊂ Vkm+1}. (4.6)

A point y = (Vkm , Vkm+1) ∈ Πm corresponds to the projective subspace G(km −
1, Vkm)× {Vkm+1} ⊂ Bm.

It is easy to see that Π := lim
→

Πm is a well-defined ind-variety and that a point
of Π represents a projective ind-subspace of B := lim

→
Bm.

Next, (4.5) together with [12; Lemma 2.2(iv)], implies that for any point x =

{Vkm} ∈ GO(km, Vnm),

Bm̃(x) := {P1 ∈ Bm̃ | P1 3 x} ' (4.7)

P((φm̃−1◦...◦φm)(Vkm)∗)×GO(1, (φm̃−1◦...◦φm)(Vkm)⊥/(φm̃−1◦...◦φm)(Vkm)), m̃ > m,

and

Πm̃(x) := {((φm̃−1 ◦ ... ◦ φm)(Vkm), Vkm̃+1) ∈ Πm̃} ' GO(1, V ⊥km̃/Vkm̃), m̃ > m.
(4.8)

Since the quadrics GO(1, (φm̃−1 ◦ ... ◦ φm)(Vkm)⊥/(φm̃−1 ◦ ... ◦ φm)(Vkm)) are
connected, (A.ii) follows from (4.5). Furthermore, as for each m̃ > 1 the variety
GO(1, V ⊥km̃/Vkm̃) is a smooth quadric hypersurface in the projective space Pnm̃−2km̃−1,
(4.7) and (4.8) directly imply (A.iii) and (A.iv).

In the remaining cases the same argument goes through if one makes the following
modifications.

If X = GS(∞,∞), the formulas for Bm, Πm and Πm̃(x) are the same as (4.5),
(4.6), (4.7) and (4.8) respectively, withGO substituted byGS (use [12; Lemma 2.5]).
Note also that GS(1, V ⊥km̃/Vkm̃) is isomorphic to the projective space P(V ⊥km̃/Vkm̃).

For X = GO1(∞, 0) = lim
→
GO(km, V2km+1) we first identify GO(km, V2km+1)

with an irreducible component GO(km+1, V2km+2)∗ of GO(km+1, V2km+2) - see [12;
Section 2.3]. Consequently, X ' lim

→
GO(km, V2km)∗. Next, instead of (4.5)-(4.6) one

has Bm ' GO(km−2, V2km), Πm ' GO(km−1, V2km), m > 1. Respectively, instead
of (4.7)-(4.8) one has Bm̃(x) ' G(km̃ − 2, (φm̃−1 ◦ ... ◦ φm)(Vkm)) for x = {Vkm}.
The latter fact can be proved by an argument similar to that of [12; Lemma 2.2].
In addition, Πm̃(x) ' P((φm̃−1 ◦ ... ◦ φm)(Vkm)∗), m̃ > m.

For X = GS(∞, 0) = lim
→
GS(km, V2km) one can show that (4.5)-(4.6) can be

replaced by Bm ' GS(km−1, V2km), Πm ' GS(km, V2km). Respectively, (4.7)-(4.8)
for x = {Vkm} ∈ GS(km, V2km) can be replaced by Bm̃(x) ' G(km̃ − 1, (φm̃−1 ◦ ... ◦
φm)(Vkm)), and Πm̃(x) ' {P((φm̃−1 ◦ ... ◦ φm)(Vkm)∗)} is a point for m̃ > m.

§ 5. Linear sections of G(∞), GO(∞,∞), GS(∞,∞)

5.1. Linear sections of finite-dimensional grassmannians. LetG = G(k, V ),
GO(k, V ), GS(k, V ). Assume 1 6 k < dimV − 1 for G = G(k, V ), and 1 6
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k < [dimV
2 ] for G = GO(k, V ), GS(k, V ). Put N := dimH0(OG(1)) and VN :=

H0(OG(1))∗. We consider G as a subvariety of P(VN ) via the Plücker embedding.
For a given integer c, 1 6 c 6 k − 1, set

X := G ∩ P(U),

where U ⊂ VN is a subspace of codimension c. We call X a linear section of G of
codimension c.

Note that there is a single family of maximal projective spaces of dimension k on
G with base G̃, where G̃ = G(k + 1, V ) if G = G(k, V ), respectively, G̃ = GO(k +

1, V ) if G = GO(k, V ), and G̃ = GS(k + 1, V ) if G = GS(k, V ) (see [12; Lemmas
2.2(i) and 2.5(i)]). Consider the graph of incidence Σ := {(Vk, Vk+1) ∈ G×G̃ | Vk ⊂
Vk+1} with projections G̃ p← Σ

q→ G and set π := p|q−1(X) : q−1(X) → G̃. The
condition 1 6 c 6 k − 1 implies that π is a surjective projective morphism.

Proposition 2. For a subspace U ⊂ VN of codimension c in general position
the following statements hold.

(i) The varieties X and q−1(X) are smooth and

π∗Oq−1(X) = OG̃. (5.1)

(ii) Z(U) := {x ∈ G̃ | dimπ−1(x) > k − c} is a proper closed subset of G̃ and

codimG̃Z(U) > 3, codimq−1(X)π
−1(Z(U)) > 2. (5.2)

(iii) The projection π : q−1(X)\π−1(Z(U))→ G̃\Z(U) is a projective Pk−c-bundle.

Proof. We give the proof for the case G = GO(k, V ). The other cases are very
similar and we leave them to the reader.

(i) Since the projective subspace P(U) is in general position in P(VN ), we have
codimGX = c and hence there is a Koszul resolution of the OG-sheaf OX

0→ OG(−c)→ ...→
(c
i

)
OG(−i)→ ...→ cOG(−i)→ OG → OX → 0. (5.3)

The pullback of (5.3) under the projection q is aOΣ-resolution of the sheafOq−1(X) =

π∗OG̃ of the form

0→ Lc → ...→ L1 → OΣ → π∗OG̃ → 0 (5.4)

where Li := q∗(
(
c
i

)
OG(−i)), i = 1, ..., c.

For any x ∈ G̃ we have p−1(x) ' Pk, so the condition c 6 k − 1 implies
Hj(p−1(x),Li|p−1(x)) ' Hj(Pk,OPk(−i)) = 0 for j > 0, i = 1, ..., c. Hence the
Base-change Theorem [13; Ch. III, Theorem 12.11] for the flat projective morphism
p shows that Rjp∗Li = 0. In addition, by the same reason Rjp∗OΣ = 0, j > 0, and
clearly p∗OΣ = OG̃. Therefore, applying the functor R·p∗ to (5.4) we obtain (5.1).

(ii) We now prove (5.2). Fix an arbitrary point Vk+1 ∈ G̃. Since p−1(x) = P(V ∗k+1)

(see [12; Lemma 2.2(i)]), there is an induced monomorphism

0→ V ∗k+1 → VN . (5.5)
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Consider the varieties

Γi := {(W,Vk+1) ∈ G(N−c, VN )×G̃ | dim(W ∩V ∗k+1) > k−c+i+2}, 0 6 i 6 c−1,

together with the natural projections

G(N − c, VN )
pi← Γi

qi→ G̃.

For an arbitrary U ∈ G(N − c, VN ) denote

Zi(U) := qi(p
−1
i (U)), 0 6 i 6 c− 1.

By construction, Z0(U) = Z(U), Zi(U) are closed subvarieties of G̃, and we have
a filtration

∅ =: Zc(U) ⊂ Zc−1(U) ⊂ ... ⊂ Z0(U) = Z(U) (5.6)

such that Zi(U)′ := Zi(U)\Zi+1(U)) are locally closed subvarieties of G̃. Consequently,
Bi(U)′ := π−1(Zi(U)′) are locally closed subvarieties of q−1(X). Moreover, π|Bi(U)′ :

Bi(U)′ → Zi(U)′ is a Pk+1−c+i-bundle, so that dimBi(U)′ = dimZi(U)′ + k + 1−
c+ i. Equivalently,

codimq−1(X)Bi(U)′ = codimG̃Zi(U)′ − (i+ 1). (5.7)

Note also that Z(U) = ∪c−1
i=0Zi(U)′, hence

π−1(Z(U)) = π−1
(
∪c−1
i=0Zi(U)′

)
= ∪c−1

i=0Bi(U)′. (5.8)

We now calculate the dimensions of Zi(U) under the assumption that U is in
general position. For this, let Y := q−1

i (x) be the fibre of the projection qi over
a point x = Vk+1 ∈ Zi(U). Consider the variety Ỹ = {(W,Vk−c+i+2) ∈ G(N −
c, VN )×G(k−c+i+2, V ∗k+1) |W ⊃ Vk−c+i+2 ⊂ V ∗k+1}. The natural projection Ỹ →
G(k−c+i+2, V ∗k+1) is a fibration with the grassmannianG(N−k−i−2,CN−k−i−2+c)

as a fibre. On the other hand, one has a birational surjective morphism Ỹ →
Y, (W,Vk−c+i+2) 7→ W . Therefore, in view of (5.5), dimY = dim Ỹ = dimG(k −
c+ i+2, V ∗k+1)+dimG(N−k− i−2,CN−k−i−2+c) = cN−c2 +(i+1)(c−k− i−2).
As qi is surjective, this yields

dim Γi = dim G̃+ dimY = dim G̃+ cN − c2 + (i+ 1)(c− k − i− 2).

Since pi is also surjective, for a point U ∈ G(N − c, VN ) in general position we have
dimZi(U) = dim Γi − dimG(N − c, VN ) = dim G̃− (i+ 1)(k + i+ 2− c), i.e.

codimG̃Zi(U) = (i+ 1)(k + i+ 2− c), 0 6 i 6 c− 1. (5.9)

This together with (5.7) implies codimq−1(X)Bi(U)′ = (i+ 1)(k+ i+ 1− c), 0 6 i 6
c− 1. Therefore, in view of (5.8) and the assumption c 6 k − 1, we obtain

codimq−1(X)π
−1(Z(U)) = min

06i6c−1
codimq−1(X)Bi(U)′ = k + 1− c > 2. (5.10)

The inequality codimG̃Z(U) > 3 follows now from (5.7), and the proposition is
proved.
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Corollary 1. Under the assumptions of Proposition 2, let E be a vector bundle
on q−1(X) trivial along the fibres of the morphism π : q−1(X)→ G̃. Then there is
an isomorphism ev : π∗π∗E

'→ E.

Proof. Apply Proposition 7 from the appendix to the morphism π : q−1(X)→
G̃, the subvariety Z(U) in G̃, and the vector bundle E on q−1(X).

Lemma 5.1. Let X = G ∩ P(U) be a linear section of G of codimension c for
1 6 c 6 (k− 1)/2, and let P1 be a projective line on G̃. Then there exists a rational
curve C ⊂ q−1(X) such that π|C is an isomorphism of C with P1, and q|C is either
an isomorphism or a constant map.

Proof. We only consider the case G = GO(k, V ). It is clear that

P1 = {Vk+1 ∈ G̃ | Vk ⊂ Vk+1 ⊂ Vk+2}

for a unique isotropic flag Vk ⊂ Vk+2 in V . If Vk ∈ X, we set C := {(Vk, Vk+1) ∈
Σ | Vk ⊂ Vk+1 ⊂ Vk+2}. Then π|C : C → P1 is an isomorphism and q(C) equals
the point {Vk} ∈ G.

Assume that Vk /∈ X. It is straightforward to check that the intersection q(p−1(P1))∩
PN−2 for a hyperplane PN−2 ⊂ P(VN ) such that Vk /∈ PN−2, is isomorphic to the
direct product P(V ∗k )×P(Vk+2/Vk) imbedded by Segre in PN−2. Let Pk−1

a , Pk−1
b be

the fibres in P(V ∗k )×P(Vk+2/Vk) over two points a, b ∈ P(Vk+2/Vk). The projection
pr1 : P(V ∗k )× P(Vk+2/Vk)→ P(V ∗k ) induces an isomorphism f : Pk−1

a
∼→ Pk−1

b .

Set Pk−c−1
a := Pk−1

a ∩P(U), Pk−c−1
b := Pk−1

b ∩P(U). Since 1 6 c 6 (k−1)/2, the
intersection Pk−c−1

b ∩ f(Pk−c−1
a ) ⊂ Pk−1

b is nonempty. Consider a point x in this
latter intersection. By construction, the fibre P1

x := pr−1
1 (x) lies in q(p−1(P1))∩X.

Finally, the preimage of P1
x in p−1(P1) is a rational curve C as desired.

Proposition 3. Let X be a linear section of G of codimension c for 1 6 c 6
(k − 1)/2. Then a linearly trivial vector bundle E on X is trivial.

Proof. Consider the vector bundle E := q∗E on q−1(X). Since E is linearly
trivial, for any x ∈ G̃ E|π−1(x) is a linearly trivial bundle on the projective space
π−1(x). A well-known theorem [14; Ch. I, Theorem 3.2.1] implies that E|π−1(x) is
trivial. Therefore ev : π∗π∗E → E is an isomorphism by Corollary ??.

Next, Lemma 5.1 allows us to conclude that π∗E is linearly trivial. Indeed, if
P1 ⊂ G̃ is a projective line and C ⊂ q−1(X) is a rational curve as in Lemma 5.1,
then π∗E|P1 ' E|C , and hence E|C is trivial because of the linear triviality of E.

Consequently, π∗E is trivial by Proposition 7.4. from the appendix. Then E '
π∗π∗E is also trivial. Finally, since q : q−1(X) → X is a flat projective morphism
with irreducible fibres, E = q∗E is trivial by Proposition 6.

5.2. Linear sections of G(∞), GO(∞,∞), GS(∞,∞) of small codimension.
Let G = G(∞),GO(∞,∞), GS(∞,∞), in particular G = lim

→
G(km, Vnm), lim

→
GO(km, Vnm),

lim
→
GS(km, Vnm), see Definition 1. Fix a nondecreasing sequence {cm}m>1 of integers

satisfying the condition
1 6 cm 6 (km − 1)/2. (5.11)

Consider an ind-variety X = lim
→
Xm such that, for each m > 1, Xm is a smooth

linear section of codimension cm of Gm = G(km, Vnm), GO(km, Vnm), GS(km, Vnm)
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and the embedding φm : Xm ↪→ Xm+1 is induced by the embedding Gm ↪→ Gm+1.
In what follows we call such ind-varieties linear sections of G of small codimension.

The existence of linear sections X of G of small codimension is a consequence of
the Bertini Theorem. Moreover, such a linear section X is a linear ind-variety and
PicX is generated by OX(1) := lim

←
OXm(1). This follows from the observation that

OXm(1) generates PicXm by the Lefschetz Theorem, and from the linearity of the
embeddings Gm ↪→ Gm+1.

Proposition 4. Let G = G(∞), GO(∞,∞), GS(∞,∞). There exists a linear
section X of G of small codimension which is not isomorphic to either of the
ind-varieties G(∞), GO(∞,∞) or GS(∞,∞).

Proof. Let G = lim
→
Gm whereGm = G(km, Vnm), GO(km, V2nm+1), GS(km, V2nm).

Fix m > 1 and let P1 be a projective line on Gm. Then there exist unique
maximal projective subspaces Pkm and Psm on Gm which intersect in P1. For Gm =

G(km, Vnm) one has sm = nm− km, and for Gm = GO(km, Vnm), GS(km, Vnm) one
has sm = [nm2 ]− km, see [12; Lemmas 2.3(iii) and 2.6(ii)].

For m̃ > m the embeddings φm̃ : Gm̃ ↪→ Gm̃+1 in the direct limit lim
→
Gm are

given by formula (4.1), which makes it easy to check that Pkm and Psm admit
extensions Pkm̃ ⊂ Gm̃, Psm̃ ⊂ Gm̃ such that Pkm ⊂ Pkm̃ , Psm ⊂ Psm̃ and

P1 = Pkm̃ ∩ Psm̃ , m̃ > m.

Denoting P∞α := lim
→

Pkm̃ , P∞β := lim
→

Psm̃ , we have

P1 = P∞α ∩P∞β . (5.12)

We now choose nm̃ and km̃ in a specific way. Namely, we assume that nm̃ = 3tm̃
for Gm = G(km, Vnm), and [nm̃2 ] = 3tm̃ for Gm = GO(km, Vnm), GS(km, Vnm),
km̃ = 2tm̃, tm̃ ∈ Z>1. Set cm̃ := tm̃ − 1. Then

sm̃ − cm̃ = 1 (5.13)

and the inequality (5.11) together with the conditions lim
m̃→∞

km̃ = lim
m̃→∞

sm̃ =∞ are

satisfied. Next, using (5.13) and the Bertini Theorem we choose a tower of projective
subspaces PNm̃−cm̃−1 ⊂ P(VNm̃) for m̃ > m in general positon so that PNm̃−cm̃−1 ∩
Psm̃ = P1 and PNm̃−cm̃−1∩Pkm̃ = P(km̃/2)+1 for some projective subspaces P(km̃/2)+1

of Gm̃. As a result, we obtain a linear section X := lim
→

(PNm̃−cm̃−1 ∩ Gm̃) of G

of small codimension and a projective line P1 ⊂ X such that P1 is contained in a
unique linear ind-projective subspace P∞ of X, namely P∞ := lim

→
P(km̃/2)+1. If X

were isomorphic to G(∞), GO(∞,∞), GS(∞,∞), this would contradict to (5.12).

Now we show that a linear section X of G of small codimension satisfies the
properties L, A and T. The property L is clear as PicX is generated by the class
of OX(1), and H1(Xm,OXm(a)) vanishes for dimXm > 1 and a < 0 by Kodaira’s
Theorem. The property T is established in Proposition 3. It remains to establish
the property A. Part (A.i) is clear as OXm(1) is very ample. For parts (A.ii)-(A.iv)
we consider in detail only the case when X is a linear section of GO(∞,∞).
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Let B(Gm) be the family of all projective lines in Gm = GO(km, Vnm), and Bm
be its subfamily consisting of those projective lines which lie in Xm. By definition,
Xm is the intersection of Gm with a subspace P(Um) of P(VNm) for a fixed Um ∈
G(Nm− cm, VNm) in general position. The grassmannians G(2, VNm) and G(2, Um)

can be be thought of as the grassmannians of projective lines in P(VNm) and P(Um)

respectively. Then Bm = B(Gm) ∩ G(2, Um) where the intersection is taken in
G(2, VNm). We show next that Bm is irreducible.

Let B be an irreducible component of Bm. Since G(2, VNm) is smooth, the
subadditivity of codimensions [15; Thm. 17.24]) yields

codimB(Gm)B 6 codimG(2,VNm )G(2, Um) = 2cm. (5.14)

Consider the graph of incidence Σm := {(x,Pkm) ∈ Gm × G̃m | x ∈ Pkm} with
its projections G̃m

pm← Σm
qm→ Gm, where G̃m := GO(km + 1, Vnm). Let B(Σm)

be the family of all projective lines in Σm lying in the fibres of the projection
pm. Denote by B(q−1

m (Xm)) the subfamily of B(Σm) consisting of those projective
lines which lie in q−1

m (Xm). The projection qm : Σm → Gm induces a morphism
rGm : B(Σm) → B(Gm) which is bijective since any projective line on Gm lies
in a unique maximal projective space Pkm (see [12; Section 2]). The space Pkm
is an isomorphic image via qm of some fibre of pm. Respectively, the restricted
morphism rXm := rGm |B(q−1

m (Xm)) : B(q−1
m (Xm)) → Bm is a bijection. Hence, for

any irreducible component B′ of B(q−1
m (Xm)), (5.14) yields the inequality

codimB(Σm)B
′ 6 codimG(2,VNm )G(2, Um) = 2cm. (5.15)

The projection pm induces a projection ρm : B(Σm)→ G̃m. Let

∅ = Zcm(Um) ⊂ Zcm−1(Um) ⊂ ... ⊂ Z0(Um) ⊂ G̃m

be the filtration (5.6) of G̃m by closed subvarieties Zi(Um) of codimensions in G̃m
given by (5.9) where we put c = cm, k = km. This filtration yields a decomposition
B(q−1

m (Xm)) = t
06i6cm

Bi, where B0 := B(q−1
m (Xm)) ∩ ρ−1

m (G̃m \ Z0(Um)), Bi :=

B(q−1
m (Xm)) ∩ ρ−1

m (Zi−1(Um) \ Zi(Um)), i = 1, ..., cm. Formula (5.9) implies that
codimB(Σm)B0 = 2cm, codimB(Σm)Bi > 2cm for i = 1, ..., cm. This together with
(5.15) yields the irreducibility of B(q−1

m (Xm)), hence of Bm as well.
Now let Π(Gm) be the family of projective spaces Pkm−1 lying in B(Gm) and

defined by the right-hand side of (4.6). Set

Π := lim
→

Πm, (5.16)

where Πm := {Pkm−cm−1 ⊂ Bm | Pkm−cm−1 is a linear subspace of some Pkm−1 ∈
Π(Gm)}.

Fix m and let π := pm|q−1
m (Xm) : q−1

m (Xm) → G̃m be the projection. Consider
the relative grassmannian Gπ := {P1 ⊂ q−1

m (Xm) | P1 lies linearly in a fibre of the
projection π} with induced projections ρ : Gπ → G̃m and qπ : Gπ → Bm. By
definition, the fibre ρ−1(x) over an arbitrary point x ∈ G̃m is the grassmannian
of projective lines in the projective space π−1(x). (Note that for a point x ∈ G̃m
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in general position the fibre π−1(x) is a projective space Pkm−cm , hence ρ−1(x) '
G(2,Ckm−cm+1).) Furthermore, the projection qπ is birational.

By construction, the projective spaces Pkm−cm−1 ∈ Πm are isomorphic images
under qπ of projective spaces Pkm−cm−1 lying linearly in the fibres of ρ : Gπ → G̃m.
Considering the set Gρ := {Pkm−cm ⊂ q−1

m (Xm) | Pkm−cm lies linearly in a fibre
of π : q−1

m (Xm) → G̃m}, we obtain a Pkm−cm-fibration qρ : Πm → Gρ with fibre
q−1
ρ (y) = Pkm−cm over a given point y = {Pkm−cm} ∈ Gρ. Therefore, to check
the irreducibility of Πm it suffices to check the irreducibility of Gρ. Note that the
projection π induces a projection τ : Gρ → G̃m such that the fibre of τ over a point
Vkm+1 ∈ G̃m coincides with the grassmannian G(km−cm+1,W ), whereW ⊂ Vkm+1

is the subspace defined by the condition P(W ) = π−1(x). As above, (5.9) implies
that, for i > 1, the locally closed subsets τ−1(Zi(W )) of Gρ have dimensions strictly
less than that of the open subset τ−1(Z(W )\Zi(W )). This proves the irreducibility
of Gρ, hence of Πm.

Next, (4.7) implies that, for any point x = Vkm ∈ Xm and m̃ > m, the base
Bm̃(x) of the family of projective lines on Xm passing through x is a linear section
of the variety P((φm̃−1 ◦ ... ◦ φm)(Vkm)∗)×GO(1, (φm̃−1 ◦ ... ◦ φm)(Vkm)⊥/(φm̃−1 ◦
... ◦ φm)(Vkm)) ⊂ P(V ∗km̃ ⊗ V

⊥
km̃
/Vkm̃) by a projective subspace of codimension cm̃

in P(V ∗km̃ ⊗ V
⊥
km̃
/Vkm̃). Let bm̃(x) : Bm̃(x) → Q(m̃)(x) := GO(1, V ⊥km̃/Vkm̃) be the

natural projection. Note that the fibres of bm̃(x) are projective spaces of dimension
at least km̃− cm̃−1, and, for points x of Xm and z ∈ Qm̃(x) in general position the
fibre bm̃(x)−1(z) is a projective space Pkm̃−cm̃−1 by the Bertini Theorem. Moreover,
we have an ind-variety B(x) = lim

→
Bm̃(x), m̃ > m.

In a similar way we obtain that Π(x) := {P∞ ∈ Π | P∞ 3 x} is the ind-variety
lim
→

Πm̃(x), m̃ > m, where Πm̃(x) := {Pkm̃−cm̃−1 ⊂ Bm| Pkm̃−cm̃−1 lies as a linear
projective subspace in a fibre of the projection bm̃(x)}. Let p(x) : Πm̃(x)→ Q(m̃)(x)

be the induced projection. By construction, for any point z ∈ Q(m̃)(x) the fibre
p(x)−1(z) is the grassmannian G(km̃ − cm̃,Cdim(bm̃(x)−1(z))+1). (In particular, this
grassmannian is just a point for x ∈ Xm̃ and z ∈ Q(m̃)(x) in general position.) This
implies the property (A.ii) since Q(m̃)(x) is an irreducible quadric hypersurface.

The property (A.iii) is evident. As for the property (A.iv), let Y be a fixed
variety and f : Πm̃(x) → Y be a morphism. For m̃ → ∞ the fibres of p(x) are
either points or are grassmannians whose dimensions tend to infinity. Therefore f
maps each fibre of p(x) to a point, i.e. f factors through the induced morphism
g : Q(m̃)(x) → Y . As Q(m̃)(x) is a smooth quadric hypersurface whose dimension
tends to infinity as m̃→∞, it follows that for large enough m̃ the morphism g is a
constant map. Hence, f is constant too, and (A.iv) is proved.

Theorem 1 yields now the following.

Theorem 4. A vector bundle on a linear section X of small codimension of
G(∞), GO(∞,∞), GS(∞,∞) is isomorphic to a direct sum of line bundles OX(ai)

for ai ∈ Z.
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§ 6. Ind-products and their subvarieties
satisfying the properties L, A, T

6.1. Finite or countable ind-products satisfying the properties L, A,
T. Let Xξ = lim

→
Xξ
m, ξ ∈ Ξ, be a countable collection of ind-varieties. We assume

that for each ξ ∈ Ξ and each m > 1 we have a fixed inclusion Xξ
m ⊂ Xξ

m+1. On
every Xξ we fix a point xξ0. Without loss of generality we assume that xξ0 ∈ X

ξ
1 .

Fix a bijection ν : N ∼→ Ξ and denote m := {1, 2, ...,m}. Set

νXm := ×
ξ∈ν(m)

Xξ
m

and consider the embeddings

νXm ↪→ νXm+1 = νXm ×Xν(m+1)
m , x 7→

(
x, x

ν(m+1)
0

)
, m > 1.

We call the ind-variety X := lim
→ νXm an ind-product of the ind-varieties {Xξ}ξ∈Ξ

and denote it as
X = ×

ξ∈Ξ
Xξ. (6.1)

Note that X does not depend, up to an isomorphism of ind-varieties, on the
choice of the bijection ν : N ∼→ Ξ, and thus the notation (6.1) is consistent. Indeed,
let ν′ : N ∼→ Ξ be another bijection, and let ψ := ν′−1 ◦ ν : N ∼→ N be the induced
bijection. An isomorphism f : lim νXm

∼→ lim ν′Xm, f = {fm : νXm → ν′Xm̃(m)},
and its inverse g = f−1 : lim ν′Xm

∼→ lim νXm, g = {gm : ν′Xm → νXm̃(m)}, for
m̃(m) := min

m′>m
{m′ | ψ(m) ⊂ m′}, are given by the formulas

fm : νXm = ×
ξ∈ν(m)

Xξ
m → ν′Xm̃(m) = ( ×

ξ∈ν(m)
Xξ
m̃(m))× ( ×

ξ∈ν′(m̃(m))\ν(m)
Xξ
m̃(m)),

x 7→
(
x, {xξ0}ξ∈ν′(m̃(m))\ν(m)

)
,

gm : ν′Xm = ×
ξ∈ν′(m)

Xξ
m → νXm̃(m) = ( ×

ξ∈ν′(m)
Xξ
m̃(m))× ( ×

ξ∈ν(m̃(m))\ν′(m)
Xξ
m̃(m)),

x 7→
(
x, {xξ0}ξ∈ν(m̃(m))\ν′(m)

)
.

Note in addition that in principle X depends on the choice of points xξ0, however
we suppress this dependence in the notation (6.1).

The reason we call X an ind-product rather than a product is that X is not a
direct product in the category of ind-varieties. Of course, there are well-defined
projections of ind-varieties pξ : X→ Xξ, pξ = lim

→
pξm, where pξm : νXm → Xξ

m is
the projection onto the ξ-factor for ξ ∈ ν(m), and the constant map pξm : νXm →
x
ν(m)
0 for ξ 6∈ ν(m). However, X fails to satisfy the universality property of a

product.
If Ξ is finite, we define the ind-product ×

ξ∈Ξ
Xξ as the set-theoretic direct product

of the Xξ’s. Then ×
ξ∈Ξ

Xξ = lim
→

( ×
ξ∈Ξ

Xξ
m) is an ind-variety, and ×

ξ∈Ξ
Xξ clearly satisfies

the universality property of a direct product in the category of ind-varieties.
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Now let Ξ be finite or countable and let the ind-varieties Xξ = lim
→
Xξ
m satisfy the

properties L, A and T. This means that on each Xξ there exists a collection Lξ :=

{Lξθ | θ ∈ ΘXξ} of line bundles and a collection Bξ := {Bξ
θ = lim

→
Bξθm | θ ∈ ΘXξ}

of ind-varieties of projective lines such that Xξ satisfies the properties L, A and T.
The collections {Lξ}ξ∈Ξ yield the following countable collection of line bundles on
X

L = {p∗ξL
ξ
θ | θ ∈ ΘXξ , ξ ∈ Ξ}. (6.2)

Moreover, any projective line P1 on Xξ determines a projective line P1
X on X such

that pξ(P1
X) = P1 and pξ′(P1

X) = {xξ
′

0 } for ξ′ 6= ξ. Therefore each ind-variety Bξ
θ

of projective lines on Xξ "lifts"to an ind-variety of projective lines on X. In this
way we obtain a collection B of ind-varieties of projective lines on X. Since each
Xξ satisfies the properties L, A and T, it is easy to check that X satisfies the same
properties with respect to the collections L and B.

This, together with Theorem 1, leads to the following theorem.

Theorem 5. A vector bundle on X = ×
ξ∈Ξ

Xξ, where each ind-variety Xξ satisfies

the properties L, A and T, is isomorphic to a direct sum of line bundles.

6.2. Linear sections of ind-products. In this subsection we assume that Ξ

is finite, Ξ = {1, 2, ..., l}, and that the ind-varieties Xi = lim
→
Xi
m, i ∈ Ξ, are copies

of the standard ind-grassmannians G(∞), GO(∞,∞), GS(∞,∞). By the above,
×
i∈Ξ

Xi is a direct limit lim
→

( ×
i∈Ξ

Xi
m). Each Xi

m is a (possibly isotropic) grassmannian

which we consider as lying via the Plücker embedding in PNim−1 = P(VNim), and the
embeddings ×

i∈Ξ
Xi
m ↪→ ×

i∈Ξ
Xi
m+1 are induced by standard extensions Xi

m ↪→ Xi
m+1.

We also assume that ×
i∈Ξ

Xi
m lies in PNm−1 via the Segre embedding ×

i∈Ξ
PNim−1 ↪→

PNm−1.

For each m > 1 and i ∈ Ξ set

X̂i
m := X1

m × ...×Xi−1
m ×Xi+1

m × ...×X l
m,

and forXi
m = G(kim, Vnim) (respectively,Xi

m = GO(kim, Vnim) orXi
m = GS(kim, Vnim)),

set Xi
m

+
:= G(kim + 1, Vnim) (respectively, Xi

m
+

= GO(kim + 1, Vnim) or Xi
m

+
=

GS(kim + 1, Vnim)). Consider the flag variety Σim := {(Vkim , Vkim+1) ∈ Xi
m ×

Xi
m

+ | Vkim ⊂ Vkim+1} with natural projections Xi
m

+←Σim → Xi
m. There are

induced projections

Xi
m

+ × X̂i
m
pim← Σim × X̂i

m
qim→ Xi

m × X̂i
m ' X̂m, i ∈ Ξ, (6.3)

and we put

πim := pim|q−1
im(Xm) : q−1

im (Xm)→ Xi
m

+ × X̂i
m, i ∈ Ξ. (6.4)

Now let {cm}m>1 be a nondecreasing sequence of integers satisfying the conditions

1 6 cm 6 min{kim − 1

2
| i ∈ Ξ}, (6.5)
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where Xi
m = G(kim, Vnim), GO(kim, Vnim), GS(kim, Vnim). For eachm > 1 consider

a linear section Xm of ×
i∈Ξ

Xi
m,

Xm := ( ×
i∈Ξ

Xi
m) ∩ PNm−cm−1,

where PNm−cm−1 = P(Um) for Um ∈ G(Nm−cm, VNm). We call Xm a linear section
of ×

i∈Ξ
Xi
m of codimension cm.

Proposition 5. For a given m > 1 such that kim > 2 for all i ∈ Ξ, fix an
integer cm satisfying (6.5). Then for a projective subspace PNm−cm−1 = P(Um) of
general position in PNm−1, Um ∈ G(Nm − cm, VNm), and any i ∈ Ξ the following
statements hold:

(i) the varieties Xm and q−1
im (Xm) are smooth;

(ii) codim ×
i∈Ξ

Xim
Xm = codimΣim×X̂im

q−1
im (Xm) = cm, πim∗Oq−1

im(Xm) = OXim+×X̂im
,

and, for a point x = (x1, x2) ∈ Xi
m

+ × X̂i
m in general position, the projective

subspace Pkim = qimp
−1
im(x) of Xi

m × {x2} satisfies the condition

codimPkim (Pkim ∩ PNm−cm−1) = cm,

so that Zim(Um) := {x ∈ Xi
m

+ × X̂i
m | dimπ−1

im (x) > kim − cm} is a proper closed
subset of Xi

m
+ × X̂i

m;
(iii) let Bim(Um) := π−1

im (Zim(Um)); then codimq−1
im(Xm)B

i
m(Um) > 2, codimXim

+×X̂im
Zim(Um) >

3;
(iv) the projection πim : q−1

im (Xm) \ Bim(Um) → Xi
m

+ × X̂i
m \ Zim(Um) is a

projective Pkim−cm-bundle.

Proof. Similar to the proof of Proposition 2.

Corollary 2. Under the assumptions of Proposition 5, let i ∈ Ξ and let E be a
vector bundle on q−1

im (Xm) trivial along the fibres of the morphism πim : q−1
im (Xm)→

Xi
m

+ × X̂i
m. Then the sheaf πim∗E is locally free and the canonical morphism

ev : π∗imπim∗E
'→ E is an isomorphism.

Proof. Proposition 5 implies that the data X = Xi
m

+ × X̂i
m, Y = q−1

im (Xm),
B = Bim(Um), Z = Zim(Um), E = E satisfy the conditions of Proposition 6 from
the appendix. Therefore this latter proposition yields the corollary.

Below we will need the following lemma, the proof of which is similar to that of
Lemma 5.1.

Lemma 6.1. For i = 1, 2, let Xi = G(ki, Vi), GO(ki, Vi), GS(ki, Vi) and let X
be a linear section of codimension c of X1 ×X2, where 1 6 c 6 min{k1+1

2 , k2+1
2 }.

Then for any projective line P1
i ⊂ Xi there exists a projective line P1 such that

pri|P1 is an isomorphism of P1 and P1
i . Here pri stands for the natural projection

X1 ×X2 → Xi.

Consider an ind-variety X = lim
→
Xm such that, for each m > 1, Xm is a

smooth linear section of codimension cm of ×
i∈Ξ

Xim where cm satisfies (6.5), and
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the embeddings φm : Xm ↪→ Xm+1 are induced by the corresponding embeddings
×
i∈Ξ

Xi
m ↪→ ×

i∈Ξ
Xi
m+1. In what follows we call X a linear section of ×

i∈Ξ
Xi of small

codimension. The existence of linear sections X of ×
i∈Ξ

Xi of small codimension

follows immediately from the Bertini Theorem.

Theorem 6. Let X be a linear section of ×
i∈Ξ

Xi of small codimension. Then a

vector bundle on X is a direct sum of line bundles.

Proof. We give a proof for the case when all Xi are isomorphic to GO(∞,∞).
The case when some Xi are isomorphic to G(∞) or GS(∞,∞) is treated similarly.

First we construct families Bi, i ∈ Ξ, on X. For eachm > 1 and each i, 1 6 i 6 l,
consider the natural projection pim : Xm → X̂i

m, and for a varying point y ∈ X̂i
m

set Xi
m(y) := p−1

im(y). By definition, Xi
m(y) is a linear section of the grassmannian

GO(kim, Vnim). Let Bi(m)(y) be the family of projective lines in GO(kim, Vnim)

lying on Xi
m(y), and set Bi(m) := ∪

y∈X̂im
Bi(m)(y). Then Bi := lim

→
Bi(m), i ∈

Ξ. Furthermore, the ind-varieties Πi, i ∈ Ξ, parametrizing certain families of
ind-projective spaces P∞ in Bi, are defined in the same way as the ind-variety Π

in subsection 5.2 – see (5.16).
Next, recall the collection of line bundles (6.2) on ×

i∈Ξ
Xi. In our case ΘXξ

consists of a single point for each i, hence we can write simply L = {Li}i∈Ξ. We
now define a family of line bundles LX by putting LX := {Li|X}i∈Ξ. Then by
the Lefschetz Theorem LX freely generates PicX; in addition, the relation (2.2) is
clearly satisfied. To see that X satisfies the property L, it remains to notice that
H1(Xm, ⊗

i∈Ξ
L⊗aii |Xm) = 0 for all ai. Indeed, the vanishing ofH1( ×

i∈Ξ
Xi
m, ⊗

i∈Ξ
L⊗aii | ×

i∈Ξ
Xim

)

follows from Kunneth’s and Bott’s formulas. Since ⊗
i∈Ξ

L⊗aii |Xm admits a Koszul

resolution similar to (5.3), this is sufficient to conclude that H1(Xm, ⊗
i∈Ξ

L⊗aii |Xm) =

0.
Using Proposition 5 and repeating the argument from subsection 5.2, it is easy

to check that X satisfies the property A. Let us show that X satisfies the property
T. The case |Ξ| = 1 was treated in the proof of Theorem 4. It is enough to give the
proof for the case |Ξ| = 2; the proof for |Ξ| > 3 goes along the same lines. We thus
assume that Xm is a linear section of X1

m ×X2
m. According to (6.3) and (6.4) we

have a commutative diagram

q−1
im (Xm)

π1m

��

q1m // Xm

ρ

��
X1
m

+ ×X2
m λ

// X2
m,

(6.6)

where l = 2, i = 1, so that X̂1
m = X2

m, and λ and ρ are the natural projections.
Let lim

←
Em be a Bi-trivial vector bundle on X = lim

→
Xm for i = 1, 2. This means

that each vector bundle Em is a Bi(m)-trivial bundle on Xm, i.e. Em|P1 is trivial
for any P1 ∈ Bi(m), i = 1, 2. Consider the vector bundle

Ẽm := q∗1mEm.
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Since Em is B1(m)-trivial, i.e. linearly trivial on the fibres of ρ, Em is trivial by
Proposition 3. It follows that Ẽm is trivial along the fibres of π1m. Therefore, by
Corollary 2 there is an isomorphism

ev : π∗1mπ1m∗Ẽm
'→ Ẽm.

Moreover, as in the proof of Proposition 3, we obtain that the bundle π1m∗Ẽm|λ−1(y)

is trivial for any y ∈ X2
m.

Thus Proposition 6 below and diagram (6.6) imply that Eλm := λ∗π1m∗Ẽm is
a vector bundle on X2

m such that Ẽm ' π∗1mλ
∗Eλm ' q∗1mρ

∗Eλm. Applying again
Proposition 6 we obtain

Em ' q1m∗Ẽm ' q1m∗q
∗
1mρ

∗Eλm ' ρ∗Eλm. (6.7)

Since Em is B2(m)-trivial, it follows from (6.7) and Lemma 6.1 that Eλm is a linearly
trivial bundle on X2

m. Hence, Eλm is trivial by Proposition 9 below, and Em is trivial
as well. In this we showed that X satisfies the property T.

6.3. Ind-varieties of generalized flags. We first recall some basic definitions
concerning generalized flags in a vector space, see [16; sections 3-5]. Let V be a
countable-dimensional vector space. A set C of pairwise distinct subspaces of V is
called a chain if it is linearly ordered by inclusion. A chain F of subspaces of V is
a generalized flag in V if it satisfies the following conditions:

(i) each F ∈ F has an immediate successor or an immediate predecessor, i.e.
F = F ′ ∪ F ′′, where F ′ ⊂ F (respectively, F ′′ ⊂ F) is the set of subspaces in F
having an immediate successor (respectively, predecessor);

(ii) V \ {0} = tF ′∈F ′(F ′′ \ F ′), where F ′′ ∈ F ′′ is the immediate successor of
F ′ ∈ F ′.

We define a flag in V to be a generalized flag in V which is isomorphic as an
ordered set to a subset of Z. A flag can be equivalently defined as a chain of
subspaces of V such that ∩F∈FF = 0, ∪F∈FF = V and there exists a strictly
monotonic map of ordered sets φ : F → Z.

If F is a generalized flag in V and {eα}α∈A is a basis of V (A being a countable
set), we say that F and {eα}α∈A are compatible if there exists a strict partial order
≺ on A such that, for any F ′ ∈ F ′, F ′ = Span{eβ | β ≺ α} for a certain α ∈ A,
and F ′′ = F ′ ⊕ Span{eγ | γ is not ≺-comparable to α}.

For the rest of this section we fix a basis E = {en} of V . We call a generalized
flag F weakly compatible with E if F is compatible with a basis L of V such that
E \ (E ∩ L) is a finite set. Furthermore, we define two generalized flags F and G
in V to be E-commensurable if both F and G are weakly compatible with E and
there exists an inclusion preserving bijection φ : F → G and a finite-dimensional
subspace U in V such that, for every F ∈ F ,

(i) F ⊂ φ(F ) + U, φ(F ) ⊂ F + U , and
(ii) dim(F ∩ U) = dim(φ(F ) ∩ U).
Let F l(F , E) be the set of all generalized flags in V that are E-commensurable

with F . Following [16; Prop. 5.2]) we endow F l(F , E) with a structure of an
ind-variety in the following way. For any m > 1 denote Em := {eα}α6m, Vm :=

Span(Em), Ecm := {eα}α>m, V cm := Span(Ecm). Next, for any G ∈ F l(F , E) choose
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a positive integer mG such that F and G are compatible with bases containing
EcmG , and VmG contains a finite-dimensional subspace U which together with the
corresponding inclusion preserving bijection φG : F ∼→ G makes F and G E-commensurable.
We can pick nF so that nF 6 mG for every G ∈ F l(F , E). Set

Gm := {G ∩ Vm | G ∈ G}, m > mG .

The type of the flag Fn yields a sequence of integers

0 < dm,1 < ... < dm,sm−1
< dmm,sm = m,

and let F l(dm, Vm) be the usual flag variety of type dm = (dm,1, ..., dm,sm−1
) in

Vm. Notice that sm+1 = sm or sm+1 = sm + 1. Furthermore, in both cases an
integer jm is determined as follows: in the former case dm+1,i = dm,i for 0 6 i < jm
and dm+1,i = dm,i + 1 for jm 6 i < sm, and in the latter case dm+1,i = dm,i for
0 6 i < jm and dm+1,i = dm,i−1 + 1 for jm 6 i < sm.

Now we define a map ιm : F l(dm, Vm) → F l(dm+1, Vm+1) for every m > mF .
Given a flag Gm = {0 = Gm0 ⊂ Gm1 ⊂ ... ⊂ Gmsm = Vm} ∈ F l(dm, Vm), put
ιm(Gm) = Gm+1 := {0 = Gm+1

0 ⊂ Gm+1
1 ⊂ ... ⊂ Gm+1

sm+1 = Vm+1}, where

Gm+1
i =


Gmi if 0 6 i < jm,

Gmi ⊕ kem+1 if jm 6 i 6 sm+1 and sm+1 = sm,

Gmi−1 ⊕ kem+1 if jm 6 i 6 sm+1 and sm+1 = sm + 1.

The maps ιm are closed embeddings of algebraic varieties, and hence lim
→
F l(dm, Vm)

is an ind-variety. A bijection between F l(F , E) and lim
→
F l(dm, Vmmm) is given by

τ : F l(F , E)
∼→ lim
→
F l(dm, Vm), G 7→ lim

→
Gm

– see [16; Prop. 5.2].
Assume now that F is a flag of subspaces in V . Then F = {... ⊂ Fi ⊂ Fi+1 ⊂

...}i∈Θ, where Θ is one of the four linearly ordered sets {1, ..., n}, Z, Z>0, Z<0.
Assume in addition that

dim(F ′′/F ′) =∞ (6.8)

for all i ∈ Θ for which i + 1 ∈ Θ. Denote by F̂(i) the flag F̂ \ {Fi} = {... ⊂
Fi−1 ⊂ Fi+1 ⊂ ...}. There is natural projection πi : F l(F , E) → F l(F̂(i), E).
Let Ĝ = {... ⊂ Gi−1 ⊂ Gi+1 ⊂ ...} ∈ F l(F̂(i), E) and G = {... ⊂ Gi−1 ⊂ Gi ⊂
Gi+1 ⊂ ...} ∈ π−1

i (Ĝ). Then the fibre π−1
i (Ĝ) equals F l(Gi/Gi−1, E(i)) where

E(i) = (E ∩ Gi+1) \ (E ∩ Gi−1). Note that the ind-variety F l(Gi/Gi−1, E(i)) is
isomorphic to the ind-grassmannian G(∞).

Moreover, there is a well-defined line bundle Li := Oπi(1) := lim
←
Oπim(1) on

F l(F , E), where πim : F l(dm, Vm) → F l(d̂m(i), Vm) is the natural projection and
d̂m(i) is defined in the same way as dm using the flag F̂(i) instead of F . The fact
that the line bundles Oπim(1) yield a well-defined bundle Oπi(1) is established by
a straightforward checking using the explicit form of the embeddings ιm.

By Bi(G) we denote the ind-variety of projective lines on F l(F , E) passing
through a point G ∈ F l(F , E) and lying in the fibre of πi which contains G. Finally,
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we define the ind-variety Πi(G) as the ind-variety Π(G) for the ind-grassmannian
F l(Gi/Gi−1, E(i)) ' G(∞) as defined in subsection 4.3.

It is easy to check that F l(F , E) satisfies the properties L, A and T with respect
to the data ΘFl(F,E) := Θ, Li, Bi := ∪

G∈Fl(F,E)
Bi(G), Πi := ∪

G∈Fl(F,E)
Πi(G). As a

result, Theorem 1 implies the following theorem.

Theorem 7. Let V be a countable-dimensional vector space with basis E. Let
F be a flag in V satisfying (6.8) weakly compatible with E. Then any vector bundle
on F l(F , E) is isomorphic to a direct sum of line bundles.

It is an interesting question whether the BVTS Theorem holds on any ind-variety
of generalized flags F l(F , E) under the assumption that the generalized flag F
satisfies (6.8) for all F ′ ∈ F ′ and their respective successors F ′′.

§ 7. Appendix

In this appendix we collect some general facts about coherent sheaves on projective
varieties and their behaviour under flat projective morphisms, which are used throughout
the paper.

Proposition 6. Let p : Y → X be a smooth flat projective morphism of projective
varieties with irreducible fibres.

1) If E is a vector bundle on Y , trivial on the fibres of p, then the evaluation
morphism ev : p∗p∗E → E is an isomorphism.

2) If F be a vector bundle on X, then the canonical morphism F
∼→ p∗p

∗F is an
isomorphism.

Proof. 1) This follows easily from the Base-change Theorem [H, Ch. III, Cor. 12.9].

2) Consider the Stein factorization f : Y
f ′→ X ′

g→ X of f , where X ′ =

Spec(f∗OY ) and f ′∗OY = OX′ (see [13; Ch. III, Cor.12.9]). Since f∗OY is an
invertible sheaf by 1), it follows that g is an isomorphism. Therefore f∗OY = OX .
This, together with the projection formula [13; Ch. III, Exc. 8.3], gives the desired
assertion.

Proposition 7. Let π : Y → X be a surjective morphism of smooth irreducible
projective varieties such that:

(i) the fibres of π are projective spaces;
(ii) the variety Z := {x ∈ X | dimπ−1(x) > dimY − dimX} has codimension

at least 3 in X, and the variety B := π−1(Z) has codimension at least 2 in Y ;
(iii) there exists a vector bundle F on X \Z such that π : Y \B ' P(F )→ X \Z

is the structure map of the projectivized vector bundle F .
Next, let E be a vector bundle on Y , trivial along the fibres of π. Then the

OX-sheaf π∗E is locally free and the evaluation morphism ev : π∗π∗E → E is an
isomorphism.
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Proof. We first show that ev : π∗π∗E → E is an isomorphism. For this,
consider an arbitrary open subvariety U ⊂ X and its closed subvariety A ⊂ U such
that

codimUA > 2. (7.1)

SinceX is smooth and Z has codimension > 3 inX, it follows that codimU (Z∩A) >
3 and codimπ−1(U)π

−1(Z ∩A) > 2. Next, (iii) and (7.1) imply codimπ−1(U)π
−1(Z \

Z ∩A) > 2. Hence
codimπ−1(U)π

−1(A) > 2. (7.2)

Let s ∈ H0(U \A, π∗E|U\A) and let s̃ := φ(s), where φ : H0(U \A, π∗E|U\A)
'→

H0(π−1(U \A), E|π−1(U\A)) is the canonical isomorphism. Since E is a locally free
sheaf on a smooth variety Y , E is normal by [17; Prop. 1.6(ii)], i.e. (7.2) implies
that s̃ extends uniquely to a section s̃′ ∈ H0(π−1(U), E|π−1(U)). Then s extends
to the section s′ := ψ(s̃′) ∈ H0(U, π∗E|U ), where ψ : H0(π−1(U), E|π−1(U))

'→
H0(U, π∗E|U ) is the canonical isomorphism. In view of (7.1) this means that the
sheaf π∗E is normal.

Note that π∗E is torsion-free. Indeed, if the torsion subsheaf Tors(π∗E) were
nonzero, then since E is locally free, by (iii) any section 0 6= s ∈ H0(Y, Tors(π∗E))

would be supported in Z. Then the section 0 6= s̃ := ψ−1(s) would be supported in
B, i.e. Tors(E) 6= 0. This contradicts the assumptions that E is locally free and Y
is smooth and irreducible.

Hence, π∗E is reflexive by [17; Prop. 1.6]. Set

Ẽ := π∗π∗E/Tors(π
∗π∗E).

Proposition 6, together with (iii), implies the existence of an isomorphism

α : Ẽ|Y \B
'→ E|Y \B . (7.3)

Now by [17; Prop. 1.1] the sheaf π∗E can, locally on X, be included in an exact
sequence

0→ π∗E → L1 → L2, (7.4)

with locally free sheaves L1 and L2. Applying to (7.4) the functor π∗ we obtain the
sequence

0→ Ẽ → π∗L1 → π∗L2

which is exact when restricted onto Y \B. Hence, this sequence is itself exact as Ẽ
is torsion free and the sheaves π∗L1 and π∗L2 are locally free. By [17; Prop. 1.1]
this implies that Ẽ is reflexive. Therefore, denoting by i the inclusion Y \ B ↪→ Y

and using the isomorphism (7.3) and [17; Prop. 1.6(iii)] we obtain an isomorphism

π∗π∗E = Ẽ ∼= i∗(Ẽ|Y \B)
i∗α→
'
i∗(E|Y \B) ∼= E.

This isomorphism is nothing but the evaluation morphism ev.
It remains to show that π∗E is locally free. The isomorphism ev implies that

π∗π∗E is locally free. Therefore, for any y ∈ Y , r := dimC(y)(π
∗π∗E ⊗ C(y)) does

not depend on y, and consequently, dimC(x)(π∗E⊗C(x)) = r. According to [18; §5,
Lemma 1], since X is smooth, the fact that dimC(x)(π∗E ⊗ C(x)) does not depend
on x ∈ X implies that π∗E is locally free.
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Proposition 8. Let Qn be a nonsingular n-dimensional quadric in Pn+1 for
n > 2, and let E be a linearly trivial vector bundle on Qn. Then E is trivial.

Proof. We argue by induction on n. For n = 2 the proof is easy and is the
same as for a projective space as given in [14; Ch. I, Thm. 3.2.1]. Thus we may
assume that n > 3. Consider a codimension-2 subspace Pn−1 in Pn+1 such that
Qn−2 := Qn ∩ Pn−1 is a smooth quadric of dimension n − 2. If n > 4 then E|l is
trivial for any projective line l ⊂ Qn−2, hence E|Qn−2

is trivial by the induction
assumption. For n = 3 the quadric Qn−2 is a smooth conic C. By Bertini’s Theorem
there exists a smooth quadric surface Q2 on Q3 passing through the conic C. Since
E|Q2

is trivial (being linearly trivial), E|C is also trivial, i.e. our claim holds for
n = 3.

We will now use the triviality of E|Qn−2 for n > 4 to show that E is trivial. Let
σQ : Q̃n → Qn be the blow-up of Qn with center at Qn−2, and let D := σ−1

Q (Qn−2)

be the exceptional divisor. Clearly, D ' Qn−2 × P1 and there is a flat surjective
morphism π : Q̃n → P1 fitting in the commutative diagram

D = Qn−2 × P1

pr2
&&

� � i // Q̃n

π

��
P1,

(7.5)

where i is the embedding of the exceptional divisor. By construction, there exist two
distinct points t1, t2 ∈ P1 such that the fibre Qn−1(t) = π−1(t) is a smooth quadric
for t ∈ U := P1 r{t1∪ t2}, and Qn−1(tj) := π−1(tj) for j = 1, 2 are quadratic cones
whose vertices are points.

Consider the vector bundle Ẽ := σ∗QE on Q̃n. By construction, Ẽ is trivial
on any projective line l ⊂ Qn−1(t), t ∈ U . Hence, by the induction assumption,
E|Qn−1(t), t ∈ U , is trivial. Consequently,

Hi(Qn−1(t), Ẽ(−D)|Qn−1(t)) = 0, i > 0, dimHi(Qn−1(t), Ẽ|Qn−1(t)) =

{
r, if i = 0,

0, if i > 1,
t ∈ U.

(7.6)
Next, for j = 1, 2, let σ : Kj → Qn−1(tj) be the blow-up of the cone Qn−1(tj)

with center at the singular point. Let fj : Kj → Qn−2 be the induced P1-bundle,
the fibres of which map to projective lines on Qn−1(tj) under the morphism σ.
Since Ẽtj := Ẽ|Qn−1(tj) is trivial along the projective lines on Qn−1(tj), it follows
that the bundle ẼKj := σ∗Ẽtj is trivial along the fibers of fj . Therefore, for an
arbitrary point x ∈ Qn−2 we obtain

Hi(Qn−2, ẼKj ⊗ Cx) = Hi(P1, rOP1) = 0, i > 1,

Hi(Qn−2, ẼKj (−σ∗D)⊗ Cx) = Hi(P1, rOP1(−1)) = 0, i > 0.

This, together with the Base-change Theorem for fj , shows that Rifj∗ẼKj = 0 for
i > 1, and Rifj∗(ẼKj (−σ∗D)) = 0 for i > 0. Hence the Leray spectral sequence for
the projection fj yields

Hi(Kj , ẼKj ) = 0, i > 1, Hi(Kj , ẼKj (−σ∗D)) = 0, i > 0, j = 1, 2. (7.7)
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Next, one uses the blow-up of the embedded in Pn cone Qn−1(tj) С
’
Рѕ show

that σ∗OKj = OQn−1(tj) and Riσ∗OKj = 0, i > 1. Therefore, setting Ẽtj :=

Ẽ|Qn−1(tj), we have by the projection formula: σ∗ẼKj = Ẽtj , Riσ∗ẼKj = 0, i > 1,
and σ∗(ẼKj (−σ∗D)) = Ẽtj (−D), Riσ∗(ẼKj (−σ∗D)) = 0, i > 1. Now the Leray
spectral sequence applied to σ shows in view of (7.7) that

Hi(Qn−1(tj), Ẽtj ) = Hi(Kj , ẼKj ) = 0, i > 1,

Hi(Qn−1(tj), Ẽtj (−D)) = Hi(Kj , ẼKj (−σ∗D)) = 0, i > 0, j = 1, 2.
(7.8)

The equalities (7.6) and (7.8) yield via base change for the flat morphism π

Riπ∗Ẽ = 0, i > 1, Riπ∗(Ẽ(−D)) = 0, i > 0. (7.9)

The same argument yields base change isomorphisms

bt : π∗Ẽ ⊗ Ct
'→ H0(Qn−1(t), Ẽ|Qn−1(t)), t ∈ P1. (7.10)

Consider the divisorD = Qn−2×P1 on Q̃n (see diagram (7.5)) and the projections
Qn−2

pr1← Qn−2 × P1 pr2→ P1. By definition, Ẽ|D = pr∗1(Ẽ|Qn−2
), hence, since Ẽ|Qn−2

is trivial, the base change for the flat morphism pr2 gives the isomorphisms

b′ : pr2∗(Ẽ|D)
'→ H0(Qn−2, E|Qn−2

)⊗OP1 ' Cr ⊗OP1 , (7.11)

b′t : pr2∗(Ẽ|D)⊗ Ct
'→ H0(Qn−2, E|Qn−2

) ' Cr, t ∈ P1. (7.12)

Now consider the exact triple

0→ Ẽ(−D)→ Ẽ → E|D → 0 (7.13)

and its restriction

0→ Ẽ(−D)|Qn−1(t) → Ẽ|Qn−1(t) → (E|Qn−2)⊗ Ct → 0 (7.14)

onto a fibre Qn−1(t) of the projection π over an arbitrary point t ∈ P1. Applying
the functor Riπ∗ to (7.13) and using (7.9) and (7.11) we obtain the isomorphism of
sheaves

rD : π∗Ẽ
∼→ pr2∗(Ẽ|D) ' Cr ⊗OP1 . (7.15)

In particular, π∗Ẽ is a trivial bundle. Respectively, passing to cohomology of the
exact sequence (7.14) and using (7.6), (7.8) and (7.12), we obtain the isomorphisms

rest : H0(Qn−1(t), Ẽ|Qn−1(t))
∼→ H0(Qn−2, E|Qn−2

), t ∈ P1. (7.16)

By construction, the isomorphisms (7.10), (7.12), (7.15) and (7.16) constitute the
commutative diagram

π∗Ẽ ⊗ Ct

bt '
��

rD⊗Ct
'

// pr2∗(Ẽ|D)⊗ Ct

b′t '
��

H0(Qn−1(t), Ẽ|Qn−1(t))
rest

'
// H0(Qn−2, E|Qn−2) = Cr

(7.17)
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for t ∈ P1. Next, since E|Qn−2
is trivial, the evaluation map H0(Qn−2, E|Qn−2

) ⊗
OQn−2 → E|Qn−2 is an isomorphism, so that its composition et with the restriction
H0(Qn−2, E|Qn−2

)⊗OQn−1(t) � H0(Qn−2, E|Qn−2
)⊗OQn−2

is an epimorphism for
any t ∈ P1 and fits in the commutative diagram

H0(Qn−1(t), Ẽ|Qn−1(t))⊗OQn−1(t)

evt

��

π∗rest

'
// H0(Qn−2, E|Qn−2

)⊗OQn−1(t)

et
����

Ẽ|Qn−1(t)

resQn−2 // // E|Qn−2 .

(7.18)

Here we understand Qn−2 as lying in Qn−1(t) as a divisor. In particular, through
any point of Qn−1(t)rQn−2 there passes a line, say, l interesecting Qn−2 at a point,
say y. Therefore, since Ẽ|l is trivial, we have a commutative diagram of restriction
maps

H0(Qn−1(t), Ẽ|Qn−1(t))

ρ

��

rest

'
// H0(Qn−2, E|Qn−2

)

'
��

H0(l, Ẽ|l)
' // H0(y, Ẽ|y).

Hence, ρ is an isomorphism, and therefore the evaluation morphism evt in (7.18) is
an isomorphism of sheaves. Composing it with the isomorphism π∗bt : π∗π∗Ẽ|Qn−1(t)

'→
H0(Qn−1(t), Ẽ|Qn−1(t)) ⊗ OQn−1(t) arising from the left vertical isomorphism in
(7.17) we obtain the (evaluation) isomorphism ev|Qn−1(t) : π∗π∗Ẽ|Qn−1(t)

'→ Ẽ|Qn−1(t).
Since this is true for any t ∈ P1, we obtain the isomorphism ev : π∗π∗Ẽ

'→ Ẽ which
together with (7.15) leads to the triviality of Ẽ. Since clearly σQ∗OQ̃ = OQ, it
follows that E = σQ∗Ẽ = σQ∗(rOQ̃) = rOQ, i. e. we obtain the statement of
Proposition.

Proposition 9. Let E be a linearly trivial vector bundle on GO(k, V ) or GS(k, V ).
Then E is trivial.

Proof. Consider the case GO(k, V ). We give a proof by induction under the
assumption that n := dimV

2 ∈ Z>0. The case when dimV is odd can be treated
similarly.

For n = 2 we have GO(1, V ) ' P1 × P1, GO(2, V ) ' P1, and for these varieties
our claim clearly holds. Therefore we assume that n > 3 and argue by induction on
k. If k = 1, GO(k, V ) is a (2n− 2)-dimensional quadric in P2n−1 so our statement
holds by Proposition 8. Now let 1 6 k 6 n− 2, and recall the graph of incidence Σ

with natural projections

GO(k, V )
q← Σ

p→ GO(k + 1, V ) (7.19)

(see subsection 5.1).
Let E be a linearly trivial vector bundle on GO(k+ 1, V ). Then the bundle p∗E

is linearly trivial on the fibres of q. Since these fibres are quadrics, Proposition 8
implies that p∗E is trivial on the fibres of q. Furthermore, Proposition 6 yields an
isomorphism q∗q∗p

∗E
'→ p∗E. Hence, since p∗E is trivial along the fibres of p which
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are mapped by q isomorphically to projective spaces Pk on GO(k, V ), it follows that
q∗p
∗E is trivial along these projective subspaces Pk of GO(k, V ). Consequently,

q∗p
∗E is linearly trivial on GO(k, V ). Thus, by the induction assumption, q∗p∗E is

trivial. Hence p∗E and E = p∗p
∗E are trivial.

It remains to consider GO(n, V ). Here we employ induction on n. For n = 3

GO(n, V ) ' P3, hence the statement holds in this case. For n > 4, consider the
graph of incidence Πn := {(V1, Vn) ∈ Q2n−2 × GO(n, V ) | V1 ⊂ Vn} with natural
projections

Q2n−2
p← Πn

q→ GO(n, V ). (7.20)

Let E be a linearly trivial vector bundle on GO(n, V ). Then q∗E is trivial on
lines lying in the fibres of p which are isomorphic to GO(n− 1,C2n−2). Hence q∗E
is trivial along the fibres of p by the induction assumption. Next, Proposition 6
yields an isomorphism p∗p∗q

∗E
'→ q∗E. Since q∗E is trivial on the fibres of p, it

follows that p∗q∗E is trivial on the projective subspaces Pn−1 of the quadric Q2n−2.
Therefore p∗q∗E is trivial on the lines in Q2n−2, so it is trivial by Proposition 8.
Finally, q∗E ' p∗p∗q∗E and E = q∗q

∗E are trivial as well.
Proceed to the case of GS(k, V ). Substituting GO by GS in diagram (7.19), we

obtain a diagram GS(k, V )
q← Σ′

p→ GS(k + 1, V ), where p is a Pk-bundle and q is
a P2n−2k−1-bundle. Respectively, substituting GO by GS, and Q2n−2 by P(Vn) in
diagram (7.20), we obtain a diagram P(Vn)

p← Π′n
q→ GSn. This enables us to carry

out an argument very similar to the one for GO(k, V ).
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