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Abstract. In recent years different aspects of categorification of the boson-fermion correspondence have been
studied. In this paper we propose a categorification of the boson-fermion correspondence based on the category
of tensor modules of the Lie algebra sl(∞) of finitary infinite matrices. By T+ we denote the category of
“polynomial” tensor sl(∞)-modules. There is a natural “creation” functor TN : T+

→ T+, M 7→ N ⊗M, M,N ∈
T+. The key idea of the paper is to employ the entire category T of tensor sl(∞)-modules in order to define
the “annihilation” functorDN : T+

→ T+ corresponding to TN. We show that the relations allowing to express
fermions via bosons arise from relations in the cohomology of complexes of linear endofunctors on T+.
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1. Introduction

The origin of the boson-fermion correspondence can be traced back to the celebrated Jacobi triple
product identity

(1)
∑

n∈Z tnq
n2
2∏

n≥1(1 − qn)
=

∏
n≥1

(1 + tqn− 1
2 )(1 + t−1qn− 1

2 )

which one should consider as an equality of two generating functions∑
n∈Z,2m∈Z≥0

bn,mtnqm =
∑

n∈Z,2m∈Z≥0

fn,mtnqm

with nonnegative integral coefficients.
The boson-fermion correspondence can be viewed as a “categorification” of this identity. Namely, it

is an isomorphism of doubly graded vector spaces, called bosonic and fermionic Fock spaces,

(2) B =
⊕

n∈Z,2m≥Z≥0

Bn,m �
⊕

n∈Z,2m≥Z≥0

Fn,m = F

such that

dim Bn,m = bn,m, dim Fn,m = fn,m,
and their structure yields respectively the left-hand and right-hand sides of (1). The identity (1) itself
follows then from the isomorphism (2). The bosonic Fock space is naturally a representation of an infinite-
dimensional Heisenberg Lie algebra, while the fermionic Fock space is naturally a representation of an
infinite-dimensional Clifford algebra, see Section 2 for details.

The fact that the Heisenberg Lie algebra can be constructed from the Clifford algebra and vice versa
was first noticed in the physics literature [Mn], and was given the name boson-fermion correspondence.
It was understood in [F] that the bosonic and fermionic Fock spaces are just two realizations of an affine
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Lie algebra representation. In particular, one can see the bosonic and fermionic Fock spaces (2) as a
representation of a central extension ŝl(∞) of the Lie algebra of infinite matrices with finitely many non-zero
diagonals, [DJKM].

If we consider the subspaces B0 ⊂ B, F0 ⊂ F,

(3) B0 :=
⊕

m∈Z≥0

B0,m �
⊕

m∈Z≥0

F0,m =: F0,

the left-hand side of (1) implies

dim B0,m = dim F0,m = p(m)
where p : N → N is the partition function. The value p(m) equals the size of the character table of
the symmetric group Sm, and the transition matrix between the bases in B0,m and F0,m is precisely the
character table of Sm. This suggests a second categorification of the boson-fermion correspondence, more
specifically of B0 � F0, via representation theory of all symmetric groups {Sn}n≥0 or, by Schur-Weyl duality,
via representation theory of the Lie algebra sl(∞) := sl(∞,C) of traceless finitary infinite matrices.

In this second categorification sl(∞) appears without a central extension and one is led to consider
the category of tensor modules T+ whose Grothendieck ring is given by (3). The passage to the full boson-
fermion correspondence B � F is achieved by considering the derived categoryDT+, or more precisely, Z
copies of the derived categoryDT+ which are related by powers of the autoequivalence S : DT+

→ DT+

arising from shifting the grading, see Section 6.
Initially the idea of categorification was motivated by an attempt to lift three-dimensional invariants to

four-dimensional couterparts replacing nonnegative integers by vector spaces of corresponding dimensions,
vector spaces with bases by categories, categories by 2-categories, etc. [CF], [K1]. It was quickly realized
that the semisimple categories that give rise to three-dimensional invariants should be generalized to more
interesting abelian or even triangulated categories, to get a nontrivial categorification at the next level.
Besides in topology, these ideas have been successfully used in algebraic geometry and representation
theory and have led to many interesting examples of categorification in the last 15 years.

In our example, both T+ and DT+ are semisimple categories and, in order to obtain a nontrivial
categorification, one should look for non-semisimple generalizations. Luckily, there is a natural category of
tensor modules, denoted by T [DPS], based on the vector representation V of sl(∞) and its restricted dual
V∗. Unlike its finite-dimensional analogue, T is not a semisimple category, see Section 3 for details. The
starting point of our categorification of the boson-fermion correspondence is the projection functor

( · )+ : T→ T+.

This allows us to define, besides the obvious “creation functor”

TN : T+
→ T+, M→ N ⊗M, N,M ∈ T+,

its important counterpart, the “annihilation functor”

DN : T+
→ T+, M→ (N∗ ⊗M)+, N,M ∈ T+.

We show in Section 4 thatDN is left adjoint to TN.
Together, the two functors TN and DN generate an abelian subcategory T̂ of the category of linear

endofunctors on T+, and the category T̂ can be viewed as a realization of T. In particular, the simplest
nontrivial exact sequence in T

0→ sl(V)→ V∗ ⊗ V → C→ 0
gives rise to a categorification of the simplest nontrivial relation in the Heisenberg algebra acting on B:
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(4) 0→ TV ◦ DV →DV ◦ TV → Id→ 0.

To categorify the boson-fermion correspondence one needs to consider the creation and annihilation
functors corresponding to the extreme partitions of n: n itself and 1n = (1, ..., 1)︸  ︷︷  ︸

n

. We denote

(5) Hn := TSn(V), En := T∧n(V), H
∗

n := DSn(V), E
∗

n := D∧n(V).

The exact sequences between these functors yield a categorification of certain identities that appear in the
boson-fermion correspondence, see Section 5.

The creation and annihilation functors (5) and the relations between them provide the building blocks
for the categorifications of the operators in the Heisenberg and Clifford algebras. However, to define the
corresponding functors we need to work with the category of complexes in T̂. In Section 6 we introduce
complexes of functors

· · · → Hp+1 ◦ E
∗

q+1 →Hp ◦ E
∗

q →Hp−1 ◦ E
∗

q−1 . . . ,

· · · → Ep+1 ◦ H
∗

q+1 → Ep ◦ H
∗

q → Ep−1 ◦ H
∗

q−1 . . .

for p−q = a, which we denote byXa, andX∗a, respectively. Then in Section 7 we verify that the commutation
relations of these complexes of functors yield, at the Grothendieck ring level, the usual relations between
the generators of the Clifford algebra.

Finally, in Section 8 we introduce the complexes of functors Pk and P∗k and verify that their commu-
tation relations categorify the familiar relations between the generators of the Heisenberg algebra.

Different aspects of categorification of the boson-fermion correspondence have been studied by sev-
eral authors. A combinatorial version of the categorification of the Heisenberg algebra using a counterpart
of the functors (5) is obtained in [K2]. It has been further extended in [LS1] and a survey of related works
can be found in [LS2]. Another categorification of the bosonic Fock space and the action of the Lie algebra
ŝl(∞) has been obtained in a series of papers [HY1], [HTY], [HY2]. This approach is closest to ours, though
our tensor representations of sl(∞) are “rational” (not “polynomial”) which leads to a non-semisimple
category. In a more general setting, the authors of [CL1], [CL2] have constructed a categorification of the
basic representation of the affine Lie algebras using the derived categories of coherent sheaves on Hilbert
schemes of points on ALE spaces. For the simplest ALE space C2 their construction should yield a categori-
fication of the boson-fermion correspondence.1 It is a very interesting problem to obtain these more general
geometric categories as representation categories for appropriate generalizations of sl(∞). Extending the
existing terminology of categorification it would be natural to call a solution to this problem — represen-
tification — namely, a realization of a geometric category as a certain representation category associated
with a particular Lie algebra. Strictly speaking, one still has to verify that our representation-theoretic
categorification of boson-fermion correspondence is equivalent to the earlier geometric categorification. If
so, one can view our present paper as a first example of representification of the categories of sheaves on
Hilbert schemes of points on C2.

Acknowledgements. I. P. and V. S. acknowledge partial support from the Max-Planck Institute for
Mathematics in Bonn (fall 2012) as well as continued partial support through the DFG priority program
“Representation Theory” (2011–2014). I. F. and V. S. have been supported by NSF grants DMS-1001633 and
DMS - 1303301, respectively.

1Note added in proof. In fact, the work of [CL1], [CL2] has recently been extended, independently of our work, to a
categorification of the boson-fermion correspondence in [CS].
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2. Recollection of the boson-fermion correspondence

Recall that the boson-fermion correspondence relates the actions of the infinite Heisenberg and
Clifford algebras on the Fock space, see for instance [F] or [DJKM].

The ground field is C. Let Cf be the infinite-dimensional Clifford algebra over with generators
{ψi, ψ∗i }i∈Z and relations

(6) ψiψ j + ψ jψi = ψ∗iψ
∗

j + ψ∗jψ
∗

i = 0, ψiψ
∗

j + ψ∗jψi = δi j.

The Fock space F can be defined as the induced module Cf⊗Cf+ C, where Cf+ is the subalgebra generated by
ψi for i ≥ 0 and ψ∗i for i < 0. The Fock space is an irreducible Cf-module and is equipped with the grading
F =

⊕
m∈Z F(m) induced by the grading on Cf given by deg ψi = 1, deg ψ∗i = −1.

Let H denote the (infinitely generated) Weyl algebra with generators {pn, p∗n}n≥1 and relations

(7) [pn, pm] = [p∗n, p
∗

m] = 0, [pn, p∗m] = nδmn.

The notation H reflects the fact that the Lie algebra defined by the relations (7) is the infinite-dimensional
Heisenberg algebra. One can define an action of H on F by setting

pn =
∑
i∈Z

ψiψ
∗

i+n, p∗n =
∑
i∈Z

ψiψ
∗

i−n.

Note that H has two commutative subalgebras: H+, generated by pn for n ≥ 1, and H+
∗ , generated by

p∗n for n ≥ 1. We identify H+ with the algebra of symmetric functions of infinitely many variables,

H+ =
⊕
λ∈Part

Csλ � C[p1, p2, ...] = C[h1, h2, ...] = C[e1, e2, ...].

Here Part is the set of all partitions, sλ are the Schur functions, pi-s are the sums of powers, ei-s are the
elementary symmetric functions, hi-s are the sums of all monomials of degree i. Recall [M] that {hi}i≥1, {ei}i≥1
are expressed in terms of {pi}i≥1 as follows

(8) H(z)
de f
=

∑
n≥0

hnzn = exp

∑
n≥1

pnzn

n

 , E(z)
de f
=

∑
n≥0

enzn = exp

∑
n≥1

(−1)n−1 pnzn

n

 ,
where we set h0 := 1 and e0 := 1.

In a similar way
H+
∗ � C[p∗1, p

∗

2, ...] � C[h∗1, h
∗

2, ...] � C[e∗1, e
∗

2, ...],
and

(9) H∗(z)
de f
=

∑
n≥0

h∗nz−n = exp

∑
n≥1

p∗nz−n

n

 , E∗(z)
de f
=

∑
n≥0

e∗nz−n = exp

∑
n≥1

(−1)n−1 p∗nz−n

n

 ;

here again h∗0 := 1 and e∗0 := 1. Note that H∗(z),E∗(z) contain only non-positive powers of z.
It is possible to show [DJKM] that for each m ∈ Z there is an isomorphism of H-modules

F(m) ' H ⊗H+
∗
C.

In particular, each F(m) is an irreducible H-module. Moreover, as an H+-module F(m) can be identified with
H+. In what follows we consider hn, en, pn, h∗n, e∗n and p∗n as linear operators on H+ and the identities (8) and
(9) as identities relating these linear operators. Furthermore, it is a known fact that h∗n (respectively, e∗n) are
operators dual to hn (respectively, en) with respect to the natural inner product on H+ for which {sλ}λ∈Part
forms an orthonormal basis.

Set

(10) X(z) = H(z)E∗(−z), X∗(z) = E(−z)H∗(z).
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Roughly speaking, up to a shift, the coefficients of X(z) and X∗(z) are the fermionsψi andψ∗i . More precisely,
there exists an automorphism s of the H-module F such that s(F(m)) = F(m + 1) and the restrictions of ψi
and ψ∗i on F(m) are recovered by the formulas

(11)
∑
i∈Z

ψizi = szmX(z),
∑
i∈Z

ψ∗i z
i = s−1z−mX∗(z).

To prove (11) one has to show that the Fourier coefficients of the vertex operators X(z) and X∗(z)
satisfy a version of the Clifford relations (6). It is known [F] that (6) is equivalent to the following vertex
operator identities

(12) X(z)X(w) +
w
z

X(w)X(z) = 0,

(13) X∗(z)X∗(w) +
w
z

X∗(w)X∗(z) = 0,

(14) X(z)X∗(w) +
z
w

X∗(w)X(z) =
∑
n∈Z

zn

wn .

In Section 7 we provide a categorical proof of these identities by showing that they are corollaries of certain
relations between endofunctors on a category of sl(∞)-modules.

3. The category T and the projection functor

Denote by V and V∗ a pair of countable dimensional vector spaces in perfect duality, i.e. with a fixed
non-degenerate linear map 〈·, ·〉 : V × V∗ → C. As proved by G. Mackey [Mk], all such triples (V,V∗, 〈·, ·〉)
are isomorphic. The vector space V ⊗ V∗ is naturally endowed with the structure of an associative algebra
such that

(v ⊗ w) · (v′ ⊗ w′) = 〈v′ ⊗ w〉v ⊗ w′,

and hence also with a Lie algebra structure. It is easy to check that this Lie algebra is isomorphic to the Lie
algebra gl(∞) which by definition is the Lie algebra of infinite matrices (ai j)i, j∈Z with finitely many non-zero
entries. The subalgebra g = Ker〈·, ·〉 is isomorphic to sl(∞), i.e. to the subalgebra of traceless matrices in
gl(∞).

In [DPS] a category T of tensor g-modules has been introduced. More precisely, T is the category
of finite-length submodules (equivalently, finite-length subquotients) of direct sums of copies of the tensor
algebra T·(V ⊕V∗) considered as a g-module. It is also possible to define this category intrinsically, and this
is done in three different ways in [DPS]. Note that T is a monoidal category with respect to tensor product
of g-modules.

Consider the tensor algebra T·(V). By Schur–Weyl duality,

T·(V) =
⊕
λ∈Part

Vλ ⊗ Aλ

where Vλ is the image of a Young projector corresponding to λ and Aλ stands for the irreducible represen-
tation of the symmetric group S|λ| corresponding to the partition λ; here |λ| is the degree of λ, i.e. |λ| =

∑
i λi,

where λ = {λi}. Note that each Vλ is an irreducible g-module. Similarly,

T·(V∗) =
⊕
λ∈Part

(V∗)λ ⊗ Aλ.
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The tensor algebra T·(V ⊕ V∗) is not a semisimple g-module. More precisely, the g-module Tm,n =
V⊗m
⊗V⊗n

∗ is g-semisimple if and only if mn = 0. In [PStyr] the socle filtration of Tm,n is described as follows.
Let Φi1...ik | j1... jk : Tm,n

→ Tm−k,n−k be the contraction map given by

Φi1...ik | j1... jk(v1⊗...⊗vm⊗w1⊗...⊗wn) = 〈vi1 ,w j1〉...〈vik ,w jk〉v1⊗...⊗v̂i1⊗...⊗v̂ik⊗...⊗vm⊗w1⊗...⊗ŵ j1⊗...⊗ŵ jk⊗...⊗wn.

Then the socle filtration of Tm,n is given by

(15) sock(Tm,n) =
⋂

i1...ik | j1... jk

Ker(Φi1...ik | j1... jk).

Here k = 1, . . . ,min(m,n) + 1 and we use the convention soc = soc1.
The modules Vλ⊗(V∗)µ are indecomposable and represent the isomorphism classes of indecomposable

direct summands in T·(V ⊕ V∗). Moreover, using (15) it is shown in [PStyr] that Vλ ⊗ (V∗)µ has a simple
socle. Denote this simple module by Vλ,µ. Then, for variable λ and µ, Vλ,µ exhaust all (up to isomorphism)
simple modules of T. In this way, the simple objects of T are labeled by pairs of partitions λ, µ. Note that
Vλ = Vλ,∅ and (V∗)λ = V∅,λ.

Furthermore, Vλ ⊗ (V∗)µ is an injective hull of Vλ,µ. It is shown in [DPS] that any indecomposable
injective object ofT is isomorphic to Vλ⊗(V∗)µ for someλ, µ. For the layers of the socle filtration of Vλ⊗(V∗)µ
we have

(16) [sock+1(Vλ ⊗ (V∗)µ)/sock(Vλ ⊗ (V∗)µ) : Vλ′,µ′] =
∑

γ∈Part, | γ|=k

Nλ
λ′,γNµ

µ′,γ

where Nν
ν′,γ denote the Littlewood–Richardson coefficients [PStyr].

Lemma 1. Let |λ| − |λ′| = |µ| − |µ′| = 1. Then

dim Hom(Vλ ⊗ (V∗)µ,Vλ′ ⊗ (V∗)µ′) ≤ 1,

and
Hom(Vλ ⊗ (V∗)µ,Vλ′ ⊗ (V∗)µ′) ' C

if and only if λ′ and µ′ are obtained from λ and µ respectively by removing one box.

Proof The statement follows from (16) and the injectivity of Vλ′ ⊗ (V∗)µ′ . �
Twisting by an outer involution of g yields an involution (equivalence of monoidal categories whose

square is the identity functor)
( · )∗ : T→ T

which maps Vλ,µ to Vµ,λ.
By T+ we denote the full semisimple subcategory of T consisting of g-modules whose simple con-

stituents are isomorphic to Vλ for λ ∈ Part. Note that Vλ is injective as an object of T, hence any object of
T+ is injective in T.

By DT+ we denote the derived category of T+. As T+ is semisimple, DT+ is semisimple, and its
simple objects Vλ[n] are labeled by pairs λ ∈ Part,n ∈ Z.

If M is an object of T, T+ orDT+, then [M] denotes the class of M in the corresponding Grothendieck
ring; furthermore,K (·) stands for complexified Grothendieck ring.

Lemma 2. The map [Vλ] 7→ sλ extends to an isomorphsim ch : K (T+)→ H+.

Proof The character of any representation in T+ is a symmetric function on the diagonal subalgebra
of gl(∞). By definition, the homomorphism ch assigns to any element of the complexified Grothendieck
ring the corresponding linear combination of characters of modules. It is well known that ch([Vλ]) = sλ.
Since {sλ}λ∈Part is a basis in H+, ch is an isomorphism. �
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We denote by Sch the map from T+
→ H+ defined by Sch(·) := ch([·]). For a given exact functor

F : T+
→ T+ there exists a unique linear operator [F ] : H+

→ H+ such that [F ] ◦ Sch = Sch ◦F .
Define a functor ( )+ : T→ T+ by setting

M+ := M/(
⋂

ϕ∈Homg(M,T·(V))

Kerϕ)

for M ∈ T.

Lemma 3. Let Mgr denote the semisimplification of M ∈ T. Then (Mgr)+
'M+.

Proof Since T·(V) is semisimple, radM ⊂
⋂
ϕ∈Homg(M,T(V)) Kerϕ, where radM stands for the radical of M

considered as a g-module. Therefore M+
' (M/radM)+. On the other hand, the Jordan-Hölder multiplicity

of Vλ in radM is zero for any partition λ, as Vλ is injective and simple. Therefore (radM)+ = ((radM)gr)+ = 0.
This shows that

(Mgr)+
' ((M/radM) ⊕ (radM)gr)+

' (M/radM)+
⊕ ((radM)gr)+ = (M/radM)+

'M+.

�

Corollary 4. ( )+ : T→ T+ is an exact functor.

4. The functorsDN and TN

Let N ∈ T, then TN(·) := (N ⊗ ·)+ is an exact functor T+
→ T+. If Endl(T+) denotes the category

of all linear endofunctors of T+ (i.e. all functors from T+ to T+ which induce linear operators on Homs),
then T : T → Endl(T+) is a faithful functor. In particular, for any M,N ∈ T, a morphism ϕ ∈ Homg(M,N)
induces a morphism of functors

Tϕ : TM → TN,

Tϕ(X) := (ϕ ⊗ id)+ : (M ⊗ X)+
→ (N ⊗ X)+

for X ∈ T+. In particular, any exact sequence in T

0→ N→M→ L→ 0

induces an exact sequence of linear endofunctors on T+

0→ TN → TM → TL → 0.

In what follows we use the notationDN := TN∗ .

Lemma 5. If N ∈ T+, thenDN is left adjoint to TN.

Proof We have to construct a canonical isomorphism

(17) Homg((N∗ ⊗ X)+,Y)) ∼−→ Homg(X,N ⊗ Y)

for any X,Y ∈ T+. First, from the definition of ·+ we have a canonical isomorphsim

(18) Homg(N∗ ⊗ X,Y)) ∼−→ Homg((N∗ ⊗ X)+,Y).

Next, define a morphsim
γ : Homg(X,N ⊗ Y)→ Homg(N∗ ⊗ X,Y)

by setting γ(ϕ)(m ⊗ x) =
∑

i〈ni,m〉yi if ϕ(x) =
∑

i ni ⊗ yi. By construction γ is injective. It remains to show
that

(19) dim Homg(X,N ⊗ Y) = dim Homg(N∗ ⊗ X,Y).

SinceT+ is semisimple, it suffices to check (19) for simple N = Vµ, X = Vλ and Y = Vν. By the very definition
of the Littlewood-Richardson coefficients, the left-hand side equals Nλ

µ,ν. The equality (16) implies that the
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right-hand side is given by the same Littlewood-Richardson coefficient. Therefore γ is an isomorphism and
the desired isomorphism (17) is the composition of (18) with γ−1. �

Corollary 6. If N ∈ T+, then [DN] and [TN] are mutually dual operators on H+.

It is clear that for all L,N ∈ T+ we have isomorphisms of functors

TN ◦ TL ' TN⊗L

and
DL ◦ TN ' TL∗⊗N.

Lemma 7. For L,N ∈ T+ there is an isomorphism of functorsDN ◦ DL ' DN⊗L.

Proof Consider the natural exact sequence

0→ K→ L∗ ⊗M→ (L∗ ⊗M)+
→ 0,

where M ∈ T+. It implies the exact sequence

0→ N∗ ⊗ K→ N∗ ⊗ L∗ ⊗M→ N∗ ⊗ (L∗ ⊗M)+
→ 0.

By Lemma 3 K+ = 0 and therefore, again by Lemma 3, (N∗⊗K)+ = 0. Since (·)+ is an exact functor, we obtain
a natural isomorphism

DN⊗L(M) = (N∗ ⊗ L∗ ⊗M)+
' (N∗ ⊗ (L∗ ⊗M)+)+ = DN ◦ DL(M).

�
Under a direct sum of linear operators Li : A→ Bi we understand the operator ⊕Li : A→

⊕
i Bi.

Lemma 8. (a) (Tm,n)+ = 0 if m < n.
(b) If m ≥ n, then (Tm,n)+

' Im
(⊕

i1...in
Φi1...in|1...n

)
.

(c) If M is a submodule of Tm,n, then M+
'

(⊕
i1...in

Φi1...in|1...n

)
(M).

Proof By (16) all simple constituents of sock+1(Tm,n)/(sock(Tm,n)) are isomorphic to Vλ,µ with |λ| = n−k,
|µ| = m − k. Therefore (a) follows from Lemma 3.

In the case n ≥ m we have (Tm,n)+
' Tm,n/(socn+1(Tm,n)). Since socn+1(Tm,n) =

⋂
i1...in Ker(Φi1...in|1...n),

statement (b) follows.
To prove (c) note that T·(V) is an injective object of T. Therefore any ϕ ∈ Homg(M,T·(V)) extends to

ϕ̃ ∈ Homg(Tm,n,T·(V)), ϕ̃|M = ϕ. This shows that M+
'M/(M ∩ (

⋂
i1...in

KerΦi1...in|1...n)), and (c) follows. �

Proposition 1. For any L,N ∈ T+ there is an isomorphism of functors

Tsoc(L∗⊗N) ' TN ◦ DL.

Proof One has to prove that for any M ∈ T+ there exists a canonical isomorphsim

(soc(L∗ ⊗N) ⊗M)+
' TN ◦ DL(M).

Without loss of generality we may assume that L ⊂ V⊗l, M ⊂ V⊗m, N ⊂ V⊗n. By Lemma 8,

(soc(L∗ ⊗N) ⊗M)+ =

 ⊕
1≤ j1,..., jl≤m+n

Φ1...l| j1... jl

 (soc(L∗ ⊗N) ⊗M).

If ji ≤ n at least for one ji, then Φ1...l| j1... jl(soc(L∗ ⊗N) ⊗M) = 0. Therefore

(soc(L∗ ⊗N) ⊗M)+ =

 ⊕
n< j1,..., jl≤m+n

Φ1...l| j1... jl

 (soc(L∗ ⊗N) ⊗M).
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We will prove that

(20)

 ⊕
n< j1,..., jl≤m+n

Φ1...l| j1... jl

 ((soc(L∗ ⊗N) ⊗M) =

 ⊕
n< j1,..., jl≤m+n

Φ1...l| j1... jl

 (L∗ ⊗N ⊗M).

Note that the left-hand side of (20) is a submodule of the right-hand side.
We use the fact that

U := {w1 ⊗ ... ⊗ wn ⊗ x1 ⊗ ... ⊗ xm|w1, ...,wn, x1, . . . , xm ∈ V, span(w1, ...,wn) ∩ span(x1, . . . , xm) = {0}}

spans T0,m+n. Let u = v1 ⊗ ... ⊗ vl ⊗ w1 ⊗ ... ⊗ wn ⊗ x1 ⊗ ... ⊗ xm ∈ Tl,m+n. Set

π(u) = πL∗(v1 ⊗ ... ⊗ vl) ⊗ πN(w1 ⊗ ... ⊗ wn) ⊗ πM(x1 ⊗ ... ⊗ xm),

where πL∗ : V⊗l
∗ → L∗, πN : V⊗n

→ N and πM : V⊗m
→ M are respective projectors. To prove (20)

it is sufficient to show that for any u such that span(w1, ...,wn) ∩ span(x1, . . . , xm) = {0} there exists ũ ∈
soc(Tl,n) ⊗ V⊗m such that

(21) Φ1...l| j1... jl(π(u)) = Φ1...l| j1... jl(π(ũ))

for any choice of j1... jl, n < j1, ..., jl ≤ m + n.
For this purpose consider ũ = ṽ1 ⊗ · · · ⊗ ṽl ⊗ w1 ⊗ ... ⊗ wn ⊗ x1 ⊗ ... ⊗ xm, where ṽi ∈ V∗ satisfy the

conditions 〈ṽi,w j〉 = 0 for 1 ≤ i ≤ l, 1 ≤ j ≤ n, and 〈ṽi, x j〉 = 〈vi, x j〉 for 1 ≤ i ≤ l, 1 ≤ j ≤ m. Such a choice of
ṽi is possible since span(w1, ...,wn)∩ span(x1, . . . , xm) = {0}. It is a direct computation to verify that ũ satisfies
(21).

To finish the proof, note that Lemma 8 (c) implies ⊕
n< j1,..., jl≤m+n

Φ1...l| j1... jl

 (L∗ ⊗N ⊗M) ' N ⊗


 ⊕

1≤ j1,..., jl≤m

Φ1...l| j1... jl

 (L∗ ⊗M)

 = TN ◦ DL(M).

�
It is an interesting problem to characterize the image T̂ ofT inside the category of linear endofunctors

Endl(T+).

5. Categorifying identities for halfs of vertex operators

As a preliminary step to categorifying the identites (12)–(14), in this section we categorify the following
identities:

(22) H(z)E(−z) = E(−z)H(z) = 1,

(23) H∗(z)E∗(−z) = E∗(−z)H∗(z) = 1,

(24) H(z)H∗(w) = (1 − z/w)H∗(w)H(z),

(25) E(−z)E∗(−w) = (1 − z/w)E∗(−w)E(−z),

(26) (1 − z/w)H(z)E∗(−w) = E∗(−w)H(z),

(27) (1 − z/w)E(−z)H∗(w) = H∗(w)E(−z).

For n ∈ Z≥0, there are two “extreme” partitions of n: n itself and 1n = (1, ..., 1)︸  ︷︷  ︸
n

. Set Sn := Sn(V) = Vn,

Λn := Λn(V) = V1n . Set furthermore

Hn := TSn , En := TΛn , H ∗n := DSn , E∗n := DΛn
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(cf (5)).

Proposition 2. For m,n ∈ Z>0 there are exact sequences of functors

(28) 0→Hn ◦ H
∗

m →H
∗

m ◦ Hn →H
∗

m−1 ◦ Hn−1 → 0,

(29) 0→ En ◦ E
∗

m → E
∗

m ◦ En → E
∗

m−1 ◦ En−1 → 0,

(30) 0→Hn ◦ E
∗

m → E
∗

m ◦ Hn →Hn−1 ◦ E
∗

m−1 → 0,

(31) 0→ En ◦ H
∗

m →H
∗

m ◦ En → En−1 ◦ H
∗

m−1 → 0.

Proof We claim that there are the following exact sequences:

(32) 0→ Vm,n → Sm
⊗ (Sn)∗ → Sm−1

⊗ (Sn−1)∗ → 0,

(33) 0→ V1m,1n → Λm
⊗ (Λn)∗ → Λm−1

⊗ (Λn−1)∗ → 0,

(34) 0→ V1m,n → Λm
⊗ (Sn)∗ → V1m−1,n−1 → 0,

(35) 0→ Vm,1n → Sm
⊗ (Λn)∗ → Vm−1,1n−1 → 0.

Let us for instance construct (32). By Lemma 1 there is a non-zero homomorphism ϕ : Sm
⊗ (Sn)∗ →

Sm−1
⊗ (Sn−1)∗. Clearly, Vm,n = soc(Sm

⊗ (Sn)∗) ⊂ Kerϕ since Vm,n is not a constituent of Sm−1
⊗ (Sn−1)∗ by (16).

Again by (16),
[Sm
⊗ (Sn)∗] = [Sm−1

⊗ (Sn−1)∗] + [Vm,n]
in the Grothendieck ring of T, and the socle of (Sm

⊗ (Sn)∗)/Vm,n is isomorphic to the socle of Sm−1
⊗ (Sn−1)∗.

Hence ϕ is surjective and Vm,n = Kerϕ. The sequences (33)-(35) are constructed by similar considerations.
We will now show that the sequence (32) implies the existence of (28). Indeed, by the remark at the

beginning of Section 4, the exact sequence (32) induces an exact sequence

0→ TVm,n →DSm ◦ TSn →DSm−1 ◦ TSn−1 → 0.

Since TVm,n ' TSn ◦ DSm by Proposition 1, the existence of (28) follows.
The existence of sequences (29)-(31) is proved in a similar way by using the sequences (33)-(35). �

Lemma 9. For any n ≥ 0
[Hn] = hn, [En] = en, [H ∗n] = h∗n, [E∗n] = e∗n,

where hn, en, h∗n, e∗n are considered as operators on H+ as explained in Section 1.

Proof First, observe that [TN] = Sch(N) for N ∈ T∗. This implies the equalities [Hn] = hn, [En] = en.
The two other equalities follow via Corollary 6. �

We now see that the exact sequences (28)-(31) categorify the identities (24)-(27). More precisely we
have the following.

Corollary 10. Proposition 2 implies (24)-(27).

Proof Consider for instance the identity (24)

H(z)H∗(w) = (1 − z/w)H∗(w)H(z).

It is equivalent to the equality
h∗mhn − hnh∗m = h∗m−1hn−1

which follows immediately from (28) and Lemma 9.
The arguments in the remaining three cases are similar. �
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Now we proceed to the categorification of the identities (22)-(23). Clearly, H(z) and E(−z) commute,
therefore (22) is equivalent to

(36) H(z)E(−z) = 1

The equality (36) can be rewritten as

(37)
∑

m+n=k

(−1)mhnem = 0 for k > 0.

Similarly, (23) can be rewritten as

(38)
∑

m+n=k

(−1)mh∗ne∗m = 0 for k > 0.

Lemma 9 together with Lemma 11 below give a categorical proof of (37) and (38).

Lemma 11. The complexes Ck,

0→ Sk
→ ...→ Sm

⊗Λk−m
→ Sm−1

⊗Λk−m+1
→ ...→ Λk

→ 0,

and (Ck)∗,
0→ (S∗)k

→ · · · → (S∗)m
⊗ (Λ∗)k−m

→ ...→ (Λ∗)k
→ 0,

are exact except for k = 0. They induce complexes of functors

(39) 0→Hk
δ
−→ ...

δ
−→ Hm ◦ Ek−m

δ
−→ ...

δ
−→ Ek → 0,

(40) 0→H ∗k
δ∗
−→ ...

δ∗
−→ H

∗

m ◦ E
∗

k−m
δ∗
−→ ...

δ∗
−→ E

∗

k → 0,

which are exact for k ≥ 1.

Proof Note that
⊕

k≥0 Ck and
⊕

k≥0(Ck)∗ are Koszul complexes. Hence they are exact except for k = 0.
In particular, Ck and (Ck)∗ are exact for k ≥ 1. After application of the functor T , we obtain that the
complexes (39) and (40) are also exact for k ≥ 1. �

6. Categorification of Clifford algebra

Write the vertex operators X(z) and X∗(z) as

X(z) =
∑
a∈Z

Xaza, X∗(z) =
∑
a∈Z

X∗aza.

Our next goal is to categorify the coefficients Xa and X∗a. Let

Ra(q) := Sa+q
⊗Λ

q
∗ ⊗ T·(V), Ra :=

⊕
q≥max(−a,0)

Ra(q),

and
R∗a(p) := Λa+p

⊗ Sp
∗ ⊗ T·(V), R∗a :=

⊕
p≥max(−a,0)

R∗a(p).

Define θa : Ra → Ra and θ∗a : R∗a → R∗a by the formulas

θa(x1 . . . xp ⊗ y1 ∧ · · · ∧ yq ⊗ v1 ⊗ · · · ⊗ vk) :=∑
i, j,s

(−1)i
〈yi, v j〉x1 . . . x̂s . . . xp ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yq ⊗ v1 ⊗ · · · ⊗ v j−1 ⊗ xs ⊗ v j+1 ⊗ · · · ⊗ vk,

θ∗a(x1 ∧ · · · ∧ xp ⊗ y1 . . . yq ⊗ v1 ⊗ · · · ⊗ vk) :=
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i, j,s

(−1)i
〈yi, v j〉x1 ∧ · · · ∧ x̂s ∧ · · · ∧ xp ⊗ y1 . . . ŷi . . . yq ⊗ v1 ⊗ · · · ⊗ v j−1 ⊗ xs ⊗ v j+1 ⊗ · · · ⊗ vk.

Define also operators d : Ra → Ra and d∗ : R∗a → R∗a:

d(x1 . . . xp ⊗ y1 ∧ · · · ∧ yq ⊗ v) :=
∑

i, j

(−1)i
〈yi, x j〉x1 . . . x̂ j . . . xp ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yq ⊗ v,

d∗(x1 ∧ · · · ∧ xp ⊗ y1 . . . yq ⊗ v) :=
∑

i, j

(−1) j
〈yi, x j〉x1 ∧ · · · ∧ x̂ j ∧ · · · ∧ xp ⊗ y1 . . . ŷi . . . yq ⊗ v

for v = v1 ⊗ · · · ⊗ vk.

Lemma 12. (a) θa, θ∗a, d and d∗ commute with the action of the symmetric group Sk on V⊗k;
(b) d2 = 0, (d∗)2 = 0 and the complexes (Ra, d), (R∗a, d∗) are acyclic for all a ∈ Z;
(c) θ2

a = dθa = −θad, (θ∗a)2 = d∗θ∗a = −θ∗ad∗.

Proof (a) is straightforward, (b) is well known and also follows from (34)-(35). We will prove (c) by a
direct calculation. Indeed, set

z := x1 . . . xp ⊗ y1 ∧ · · · ∧ yq ⊗ v1 ⊗ · · · ⊗ vk.

Furthermore, let Xs,t stand for x1 . . . xp with xs and xt removed, and Yi,c stand for y1 ∧ · · · ∧ yq with yc and yi

removed and multiplied by (−1)i+c if i < c and (−1)i+c−1 if i > c . Then

θa(θa(z)) =
∑

s,t, j,i,c

〈yi, v j〉〈yc, xs〉Xs,t ⊗ Yc,i ⊗ v1 ⊗ · · · ⊗ v j−1 ⊗ xs ⊗ v j+1 ⊗ · · · ⊗ vk =

θa

∑
c,s

(−1)c
〈yc, xs〉x1 . . . x̂s . . . xp ⊗ y1 ∧ · · · ∧ ŷc ∧ · · · ∧ yq ⊗ v1 ⊗ · · · ⊗ vk

 = θa(d(z)) =

−d

∑
i,t, j

(−1)i
〈yi, v j〉x1 . . . x̂t . . . xp ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yq ⊗ v1 ⊗ . . . v j−1 ⊗ xt ⊗ · · · ⊗ vk

 = d(θa(z)).

Checking (c) for θ∗a and d∗ is similar. �
Let M be a submodule of T·(V), and πM ∈ Endg(T·(V)) denote a projector onto M. Since pM is an

element of the direct sum
⊕

n≥oC[Sn], Lemma 12(a) implies that d, d∗ andθa, θ∗a commute withπM. Therefore
d, d∗ and θa, θ∗a are well defined linear operators in Ra(M) = πMRa and in R∗a(M) = πMR∗a. Moreover, since
any M ∈ T+ is a submodule of a direct sum of finitely many copies of T·(V), Schur–Weyl dualty implies that
Ra(M), R∗a(M) and d, θa ∈ Endg(Ra(M)), d∗, θ∗a ∈ Endg(R∗a(M)) are well-defined for any M ∈ T+.

Lemma 12(c) shows that Kerd is θa-stable and Kerd∗ is θ∗a-stable. If we define

Sa(M) := Kerd ∩ Ra(M), S∗a(M) := Kerd∗ ∩ R∗a(M),

and denote by θa(M) (respectively, θ∗a(M)) the restriction of θa (respectively, θ∗a) on Sa(M) (respectively,
S∗a(M)) then, again by Lemma 12(c), (Sa(M), θa(M)) and (S∗a(M), θ∗a(M)) become complexes. Next we set

Xa(M) := (Sa(M))+, X∗a(M) := (S∗a(M))+.

The exact sequences (30) and (31) imply Kerd ∩ Ra(q)(M) = TSa+q ◦ DΛq(M) and Kerd ∩ R∗a(p)(M) =
TΛa+p ◦ DSp(M). Therefore we have

(41) Xa(M) =
⊕
p−q=a

Hp ◦ E
∗

q(M), X∗a(M) =
⊕
p−q=a

Ep ◦ H
∗

q(M),
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or simply
Xa =

⊕
p−q=a

Hp ◦ E
∗

q, X
∗

a =
⊕
p−q=a

Ep ◦ H
∗

q .

Moreover, Xa and X∗a are well-defined complexes of linear endofunctors on T+:

Xa(q) = Hq+a ◦ E
∗

q, X
∗

a(q) = Eq+a ◦ H
∗

q ,

and the differentialsXa(q)→ Xa(q−1),X∗a(q)→ X∗a(q−1) are simply the restrictions of θa and θ∗a respectively.
By abuse of notation we denote these differentials by the same letters θa and θ∗a. These complexes can be
considered as functors from T+ to DT+. However, we will consider them as functors from DT+ to DT+.
Indeed, an object of DT+ is isomorphic to a direct sum of simple objects Vλ[n] for λ ∈ Part,n ∈ Z. Then
applying Xa (or X∗a) yields a direct sum of appropriately shifted complexes.

Lemma 13. Let χ : DT+
→ H+ denote the Euler characteristic map. Then

χ ◦ Xa = Xa ◦ χ, χ ◦ X
∗

a = X∗a ◦ χ.

Proof By (41) for any M ∈ T+ we have

χ(Xa(M)) =
∑

p−q=a
(−1)q[Hp ◦ E

∗

q(M)], χ(X∗a(M)) =
∑

p−q=a
(−1)p[Ep ◦ S

∗

q(M)].

Therefore the statement follows from Lemma 9 and (10). �
Recall that by (11) the operators Xa and X∗a up to a shift coincide with the generators ψi, ψ∗i of Cf.

Therefore for an irreducible M ∈ T+, we have Xa[M] (or X∗a[M]) is either zero or equals the class of an
irreducible object in T+ . This suggests the following.

Conjecture 14. If M ∈ T+ is irreducible, then the cohomology of each complex Xa(M) and X∗a(M) is nonzero in at
most one degree and is an irreducible g-module.

To obtain a categorification of the Clifford generators ψi, ψ∗i we use the equation (11). First, we
identify F with the Grothendieck group of DT+ by identifying K (T+[m]) with F(m) for m ∈ Z. Denote
by S the autoequivalence DT+

→ DT+ arising from shifting the grading: S(M) := M[1]. Define functors
Ψa : T[m]→ T[m + 1] and Ψ∗a : T[m]→ T[m − 1]:

Ψa := S ◦ Xa+m, Ψ∗a := S−1
◦ Xa−m.

Using the semisimplicity ofDTwe extend Ψa and Ψ∗a by additivity to functorsDT+
→ DT+. To check that

they satisfy the Clifford relations it suffices to categorify the identities (12)–(14).

7. Categorifying vertex operator identities

In this section we categorify the identities (12)–(14) by using the complexes of functors Xa and X∗a.
Let us start with (12). From Proposition 2 we have the following exact sequences of linear endofunctors

on T+

0→Hm ◦ Hp ◦ E
∗

n ◦ E
∗

q →Hm ◦ E
∗

n ◦ Hp ◦ E
∗

q →Hm ◦ Hp−1 ◦ E
∗

n−1 ◦ E
∗

q → 0,

0→Hp−1 ◦ Hm ◦ E
∗

q ◦ E
∗

n−1 →Hp−1 ◦ E
∗

q ◦ Hm ◦ E
∗

n−1 →Hp−1 ◦ Hm−1 ◦ E
∗

q−1 ◦ E
∗

n−1 → 0.

Combining these sequences we obtain a long exact sequence

(42) · · · → Hm ◦ E
∗

n ◦ Hp ◦ E
∗

q →Hp−1 ◦ E
∗

q ◦ Hm ◦ E
∗

n−1 →Hm−1 ◦ E
∗

n−1 ◦ Hp−1 ◦ E
∗

q−1 → . . . .

Consider the Z ×Z-graded functor

Xa ◦ Xb =
⊕

n,q
Xa(n) ◦ Xb(q),
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where here and belowK (n) stands for the n-th term of a complex of endofunctorsK . Let

χ(Xa ◦ Xb) =
∑
n,q

(−1)n+q[Xa(n)] ◦ [Xb(q)].

We rewrite (42) in the form

(43) · · · → Xa(n) ◦ Xb(q)→ Xb−1(q) ◦ Xa+1(n − 1)→ Xa(n − 1) ◦ Xb(q − 1)→ · · · .

Then (43) implies
χ(Xa ◦ Xb) + χ(Xb−1 ◦ Xa+1) = 0

which yields (12). The proof of (13) is similar.
Note that we can define two morthisms of functors :

θ′ab : Xa(n) ◦ Xb(q)→ Xa(n) ◦ Xb(q − 1),

θ′′ab : Xa(n) ◦ Xb(q)→ Xa(n − 1) ◦ Xb(q)
by setting

θ′ab
(
Xa(n) ◦ Xb(q)(M)

)
:= Xa(n)(θb(Xb(q)(M))),

θ′′ab
(
Xa(n) ◦ Xb(q)(M)

)
:= θa(Xa(n)(Xb(q)(M)))

for every M ∈ T+. It is easy to check that (θ′ab)2 = (θ′′ab)2 = 0, and moreover we have the following.

Conjecture 15. (a) Xa ◦ Xb is a bicomplex of functors with differentials θ′ab, θ
′′

ab.
(b) (43) is the cone of a map of total complexes Xa ◦ Xb → Xb−1 ◦ Xa+1 .
(c) Analogous statements hold for X∗a ◦ X∗b.

It remains to prove (14). Define the functorsZa,b(n, q) : T+
→ T+ by setting

Za,b(n, q) := Ha+n ◦ Eb+q ◦ E
∗

n ◦ H
∗

q .

We rewrite (28) and (29) in the form

(44) 0→Za,b(n, q)→ Xa(n) ◦ X∗b(q)→ Xa+1(n − 1) ◦ X∗b−1(q)→ 0,

(45) 0→Za,b(n, q)→ X∗b(n) ◦ Xa(q)→ X∗b+1(q − 1) ◦ Xa−1(n)→ 0.

Conjecture 16. Za,b =
⊕

n,qZa,b(n, q) has the structure of a bicomplex, and the morphisms in (44) and (45)
commute with the differentials.

Set
Xa ◦ X

∗

b =
⊕

n,q
Xa(n) ◦ X∗b(q), X∗b ◦ Xa =

⊕
n,q
X
∗

b(q) ◦ Xa(n).

Observe that for any fixed M ∈ T+ we have Za,b(M) = 0 for sufficiently large negative b. Therefore
(44) implies

Xa ◦ X
∗

b '
⊕
i>0

Za+i,b−i.

Similarly by (45) we have
X
∗

b ◦ Xa '
⊕
i<0

Za+i,b−i.

Hence
Xa ◦ X

∗

b ⊕ X
∗

b+1 ◦ Xa−1 =
⊕
i∈Z

Za+i,b−i.

Set
χ(Za,b) =

∑
(−1)n+q[Za,b(n, q)].
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Lemma 17. ∑
i∈Z

χ(Za+i,b−i) = δa+b,0 Id .

Proof Using the complex Ck (see Lemma 11) we obtain∑
m+p=k

(−1)p[Hm ◦ Ep] = δk,0 Id,

and from the complex (Cl)∗ we obtain ∑
n+q=l

(−1)q[E∗n ◦ H
∗

q] = δl,0 Id .

Combining the both above identities we have∑
m+p=k,n+q=l

(−1)p+q[Hm ◦ Ep ◦ E
∗

n ◦ H
∗

q] = δk,0δl,0 Id .

After summation over all k − l = s we get∑
m+p−n−q=s

(−1)p+q[Hm ◦ Ep ◦ E
∗

n ◦ H
∗

q] = δs,0 Id .

The left-hand side of the last identity is equal to
∑

i∈Z χ(Zs+i,−i). Hence the statement. �

Corollary 18. We have
χ(Xa ◦ X

∗

b) + χ(X∗b+1 ◦ Xa−1) = δa+b,0 Id .
Hence (14) holds.

8. Categorification ofWeyl algebra

We will now construct certain graded endofunctors Pn,P∗n categorifying pn, p∗n, and will use Pn,P∗n
to show that pn and p∗n satisfy the relations (7). Recall that the partitions (or equivalently, diagrams) of the
form (p, 1q) are called hooks. Define Pk(i) := TVk−i,1i

, Pk(i) := DVk−i,1i
and set

Pk :=
k−1⊕
i=0

Pk(i), P∗k :=
k−1⊕
i=0

P
∗

k(i).

Consider again the complexes of functors (39) and (40) with differentials δ and δ∗.

Lemma 19. We have the following exact sequence of functors

0→ Pk(i)→Hk−i ◦ Ei
δ
−→ Hk−i−1 ◦ Ei+1,

and
0→ P∗k(i)→H ∗k−i ◦ E

∗

i
δ
−→ H

∗

k−i−1 ◦ E
∗

i+1.

Proof The first exact sequence follows from the following well-known exact sequence (see, for instance,
[FH], Exercise 6.20)

0→ Vp,1q → Sp
⊗Λq−1

→ Sp−1
⊗Λq.

The second one follows from the exact sequence

0→ (V∗)p,1q → Sp
∗ ⊗Λ

q−1
∗ → Sp−1

∗ ⊗Λ
q
∗ .

�
Lemma 19 motivates us to definePk andP∗k as complexes of endofunctors inT+ with zero differentials.

As in the fermion case we will consider Pk and P∗k as functors fromDT+ toDT+.
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Lemma 20.
χ ◦ Pk = pk ◦ χ, χ ◦ P

∗

k = p∗k ◦ χ.

Proof The well-know identity [M] in H+

pk =

k−1∑
i=0

(−1)isk−i,1i

implies

χ ◦ Pk =

k−1∑
i=0

(−1)i[Pk(i)] =

k−1∑
i=0

(−1)i[TVk−i,1i
] = pk ◦ χ.

The second equality is similar. �
Now we are going to use Pn and P∗n in order to show that pn and p∗n satisfy the relations (7). The

equality [pn, pm] = 0 follows directly from the commutativity of the tensor product, and the equality
[p∗n, p∗m] = 0 follows from Lemma 7 and the commutativity of the tensor product. So it remains to prove that

[p∗m, pk] = kδm,k.

At this time we do not have a truly categorical proof of the last identity. Instead we will pass to the
Grothendieck ring ofT+. Note that by Proposition 1 it is sufficient to prove the following identity inK (T+):

k−1∑
i=0

m−1∑
j=0

(−1)i+ j[(V(k−i,1i) ⊗ (V(m− j,1 j))∗/V(k−i,1i),(m− j,1 j)] = kδm,k[C].

We are going to use (16). If λ is a hook, then Nλ
γ,ν ≤ 1. Moreover, Nλ

γ,ν = 1 implies that γ and ν

are also hooks. If λ = (c, 1d), ν = (p, 1q) and γ = (s, 1t), then Nλ
γ,ν = 1 if and only if s + p = c, t + q = d or

s + p = c− 1, t + q = d + 1. If γ = (p, 1q) we set s(γ) = (−1)q. The above implies that for any ν such that |ν| < m
and for any hook γ

(46)
m−1∑
j=0

(−1) jN
m− j,1 j
ν,γ = (−1)s(γ)δν,∅δ|γ|,m.

Now by (16) we have
k−1∑
i=0

m−1∑
j=0

(−1)i+ j[(V(k−i,1i) ⊗ (V(m− j,1 j))∗)/V(k−i,1i)),(m− j,1 j) : Vµ,ν] =

k−1∑
i=0

m−1∑
j=0

∑
γ

(−1)i+ jN(k−i,1i)
µ,γ N

(m− j,1 j)
ν,γ .

By (46) we obtain
k−1∑
i=0

m−1∑
j=0

∑
γ

(−1)i+ jN(k−i,1i)
µ,γ N

(m− j,1 j)
ν,γ =

∑
γ

 k−1∑
i=0

(−1)iNm−i,1i
µ,γ


m−1∑

j=0

(−1) jN
m− j,1 j
ν,γ

 =
∑
γ

δµ,∅δ|γ|,kδν,∅δ|γ|,m = kδk,mδν,∅δµ,∅.
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