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Abstract. We continue the study of the fundamental series of generalized Harish-Chandra modules initiated
in [PZ2]. Generalized Harish-Chandra modules are (g, k)-modules of finite type where g is a semisimple Lie
algebra and k ⊂ g is a reductive in g subalgebra. A first result of the present paper is that a fundamental
series module is a g-module of finite length. We then define the notions of strongly and weakly reconstructible
simple (g, k)-modules M which reflect to what extent M can be determined via its appearance in the socle of a
fundamental series module.

In the second part of the paper we concentrate on the case k ' sl(2) and prove a sufficient condition for
strong reconstructibility. This strengthens our main result from [PZ2] for the case k = sl(2). We also compute
the sl(2)-characters of all simple strongly reconstructible (and some weakly reconstructible) (g, sl(2))-modules.
We conclude the paper by discussing a functor between a generalization of the category O and a category of
(g, sl(2))-modules, and we conjecture that this functor is an equivalence of categories.

Mathematics Subject Classification (2000). Primary 17B10, 17B55.

Introduction

By gwe denote a semisimple Lie algebra and by k an arbitrary reductive in g subalgebra. The general
problem we are interested in is to describe g-modules on which k acts integrably, semisimply, and with
finite multiplicities. This problem has its roots in the description of Harish-Chandra modules as well as in
the description of weight modules, see [Z] for an introduction to this circle of ideas.

This paper is a continuation of our work [PZ2]. In [PZ2] we introduced the fundamental series
of generalized Harish-Chandra modules (or equivalently, (g, k)-modules of finite type over k) and proved
that any simple generalized Harish-Chandra module with generic minimal k-type arises as the socle of an
appropriate fundamental series module. Using this result we were able to show that any simple generalized
Harish-Chandra module with generic minimal k-type can be reconstructed from its n-cohomology. This led
to a classification of generalized Harish-Chandra modules with generic minimal k-type.

In the present paper we study the fundamental series further. After recalling the necessary prelimi-
naries from [PZ2], we prove in Section 2 that any fundamental series generalized Harish-Chandra module
has finite length. In Section 4 we introduce the concepts of a strongly reconstructible and a weakly re-
constructible simple generalized Harish-Chandra module. Theorem 3 from [PZ2] implies that any simple
Harish-Chandra module with generic minimal k-type is strongly reconstructible; however our aim is to
study strong and weak reconstructibility of simple generalized Harish-Chandra modules which do not
necessarily have a generic minimal k-type.

From Section 5 on, we concentrate on the case when the subalgebra k of g is isomorphic to sl(2), i.e. we
consider generalized Harish-Chandra (g, sl(2))-modules. Under this assumption we are able to considerably
strengthen the results of [PZ2] and establish new results about strong and weak reconstructibility. In
particular, we prove that if M is a simple (g, sl(2))-module with minimal k-type V(µ) satisfying µ ≥ 1

2 (λ1 +λ2)
(note that µ ∈ Z≥0 as k ' sl(2)), λ1, λ2 being the maximum and submaximum eigenvalues in k⊥ ∩ n of a
Cartan subalgebra t of k = sl(2), then M is reconstructible by its n-cohomology. This yields a classification
of simple (g, sl(2))-modules M with µ ≥ 1

2 (λ1 + λ2) and proves that all such simple (g, k)-modules have
finite type over k. For the principal sl(2)-subalgebra the bound 1

2 (λ1 + λ2) is linear in rk g, while the bound
established in [PZ2] is cubic in rk g. In addition, when k is a direct summand of a symmetric subalgebra k̃
of g, we obtain new reconstruction results for Harish-Chandra modules.

In Section 7 we prove that for µ ≥ 1
2λ1, the socle of the fundamental series module is isomorphic

to R1Γk,t(Lp(E)), where Lp(E) is the simple lowest weight module associated to the data (p,E). The relative
Kazhdan-Lusztig theory [CC] yields an explicit formula for the t-character of Lp(E). In turn, the theory of
the derived Zuckerman functors yields an explicit formula for the k-character of the strongly reconstructible
module R1Γk,t(Lp(E)).

Section 8 is devoted to examples. We consider six explicit pairs (g, sl(2)) with rk g = 2 and we compute
the respective sharp bounds on µwhich ensure that a simple (g, sl(2))-module with minimal sl(2)-type V(µ)
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is strongly reconstructible. For a principal sl(2)-subalgebra of sp(4) this sharp bound is the one established
in the present paper, in the other five cases this bound coincides with the bound from [PZ2].

In the final Section 9 we discuss the possibility that, for k ' sl(2) and a large enough n, the functor R1Γk,t
is an equivalence between a certain category of p̄-finite modules Cp̄,t,n+2 and a category of (g, k)-modules
Ck,n. Proving or disproving this statement is an open problem. We conjecture that if n ≥ 1

2 (λ1 + λ2), then
R1Γk,t is an equivalence of categories between Cp̄,t,n+2 and Ck,n.

Acknowledgements. We thank Vera Serganova for pointing out to us Examples 1 and 2 in Subsection
8.7. Both authors acknowledge partial support through DFG Grant PE 980/3-1(SPP 1388). I. Penkov
acknowledges the hospitality and partial support of Yale University, and G. Zuckerman acknowledges the
hospitality of Jacobs University Bremen.

1. Notation and preliminary results

We start by recalling the setup of [PZ2].

1.1. Conventions. The ground field is C, and if not explicitly stated otherwise, all vector spaces and Lie
algebras are defined over C. The sign ⊗ denotes tensor product over C. The superscript ∗ indicates dual
space. The sign ⊂+ stands for semidirect sum of Lie algebras (if l = l′⊂+ l′′, l′ is an ideal in l and l′′ � l/l′).
H·(l,M) stands for the cohomology of a Lie algebra l with coefficients in an l-module M, and Ml = H0(l,M)
stands for space of l-invariants of M. By Z(l) we denote the center of l. Λ·( ) and S·( ) denote respectively
the exterior and symmetric algebra.

If l is a Lie algebra, then U(l) stands for the enveloping algebra of l and ZU(l) denotes the center of
U(l). We identify l-modules with U(l)-modules. It is well known that if l is finite dimensional and M is
a simple l-module (or equivalently a simple U(l)-module), ZU(l) acts on M via a ZU(l)-character, i.e. via an
algebra homomorphism θM : ZU(l) → C.

We say that an l-module M is generated by a subspace M′ ⊂ M if U(l) ·M′ = M, and we say that M
is cogenerated by M′ ⊂ M, if for any non-zero homomorphism ψ : M → M̄, M′ ∩ kerψ , {0}. By SocM we
denote the socle (i.e. the unique maximal semisimple submodule) of an l-module M; by TopM we denote
the unique maximal semisimple quotient of M, when M has finite length.

If l is a Lie algebra, M is an l-module, and ω ∈ l∗, we put Mω := {m ∈ M | l · m = ω(l)m ∀l ∈ l}. By
supp

l
M we denote the set {ω ∈ l∗ |Mω , 0}.
A finite multiset is a function f from a finite set D into N. A submultiset of f is a multiset f ′ defined

on the same domain D such that f ′(d) ≤ f (d) for any d ∈ D. For any finite multiset f , defined on a subset D
of a vector space, we put ρ f := 1

2
∑

d∈D f (d)d.
If dim M < ∞ and M =

⊕
ω∈l∗ Mω, then M determines the finite multiset chlM which is the function

ω 7→ dim Mω defined on supp
l
M.

1.2. Reductive subalgebras, compatible parabolics and generic k-types. Let g be a finite-dimensional
semisimple Lie algebra. By g-mod we denote the category of g-modules. Let k ⊂ g be an algebraic
subalgebra which is reductive in g. We fix a Cartan subalgebra t of k and a Cartan subalgebra h of g such
that t ⊂ h. By ∆ we denote the set of h-roots of g, i.e. ∆ = {supp

h
g} \ {0}. Note that, since k is reductive in g, g

is a t-weight module, i.e. g =
⊕

λ∈t∗ g
λ. We set ∆t := {supp

t
g} \ {0}. Note also that the R-span of the roots

of h in g fixes a real structure on h∗, whose projection onto t∗ is a well-defined real structure on t∗. In what
follows, we will denote by Reλ the real part of an element λ ∈ t∗. We fix also a Borel subalgebra bk ⊂ kwith
bk ⊃ t. Then bk = t⊃+ nk, where nk is the nilradical of bk. We set ρ := ρchtnk . The quintet g, h, k, bk, t will be fixed
throughout the paper. By W we denote the Weyl group of g, and by C(·) - centralizer in g.

As usual, we will parametrize the characters of ZU(g) via the Harish-Chandra homomorphism. More
precisely, if b is a given Borel subalgebra of g with b ⊃ h (b will be specified below), the ZU(g)-character
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corresponding to κ ∈ h∗ via the Harish-Chandra homomorphism defined by bwill be denoted by θκ (θρchhb

is the trivial ZU(g)-character).
By 〈 , 〉 we denote the unique g-invariant symmetric bilinear form on g∗ such that 〈α, α〉 = 2 for any

long root of a simple component of g. The form 〈 , 〉 enables us to identify g with g∗. Then h is identified
with h∗, and k is identified with k∗. We will sometimes consider 〈 , 〉 as a form on g. The superscript ⊥
indicates orthogonal space. Note that there is a canonical k-module decomposition g = k ⊕ k⊥. We also set
‖ κ ‖2:= 〈κ, κ〉 for any κ ∈ h∗.

We say that an element λ ∈ t∗ is (g, k)-regular if 〈Reλ, σ〉 , 0 for all σ ∈ ∆t. To any λ ∈ t∗ we associate
the following parabolic subalgebra pλ of g:

pλ = h ⊕ (
⊕
α∈∆λ

gα),

where ∆λ := {α ∈ ∆ | 〈Reλ, σ〉 ≥ 0}. Bymλ and nλ we denote respectively the reductive part of p (containing
h) and the nilradical of p. In particular pλ = mλ⊃+ nλ, and if t is bk-dominant, then pλ ∩ k = bλ. We call pλ a
t-compatible parabolic subalgebra. A t-compatible parabolic subalgebra p = m⊃+ n (i.e. p = pλ for some λ ∈ t∗)
is minimal if it does not properly contain another t-compatible parabolic subalgebra. It is an important
observation that if p = m crplusn is minimal, then t ⊂ Z(m). In fact, a t-compatible parabolic subalgebra p
is minimal if and only if m equals the centralizer C(t) of t in g, or equivalently if and only if p = pλ with λ
(g, k)-regular. In this case n ∩ k = nk.

Any t-compatible parabolic subalgebra p = pλ has a well-defined opposite parabolic subalgebra
p̄ := p−λ; clearly p is minimal if and only if p̄ is minimal.

A k-type is by definition a simple finite-dimensional k-module. By V(µ) we denote a k-type with
bk-highest weight µ (µ is then k-integral and bk-dominant).

Lemma 1.1. If Reλ|Z(k) = 0, then pλ and k generate the Lie algebra g.

Proof Assume the contrary, that pλ and k generate a proper parabolic subalgebra q of g. Then for
any simple k-constituent V(ν) of g/q we have 〈Reλ, κ〉 < 0 for any t-weight κ of V(ν). Denoting by hReλ the
element in t corresponding to Reλ via the form 〈 , 〉, we see that our assumption on λ implies hReλ ∈ [k, k].
Therefore, κ(hReλ) < 0 for all k-weights κ of V(ν). This however contradicts the well-known fact that

∑
κ κ = 0

(following from the semisimplicity of k). Hence the existence of V(ν) is contradictory, i.e. pλ and k generate
g. �

Let V(µ) be a k-type such that µ + 2ρ is (g, k)-regular, and let p = m⊃+ n be the minimal compatible
parabolic subalgebra pµ+2ρ. Put ρ̃n := ρchhn and ρn := ρchtn. Clearly ρn = ρ̃n|t. We define V(µ) to be generic if
the following two conditions hold:

(1) 〈Reµ + 2ρ − ρn, α〉 ≥ 0 ∀α ∈ supp
t
nk;

(2) 〈Reµ + 2ρ − ρS, ρS〉 > 0 for every submultiset S of chtn.
It is easy to show that there exists a positive constant C depending only on g, k and p such that

〈Reµ + 2ρ, α〉 > C for every α ∈ supp
t
n implies pµ+2ρ = p and that V(µ) is generic.

In agreement with [PZ2], we define a g-module M to be a (g, k)-module if M is isomorphic as a k-module
to a direct sum of isotypic components of k-types. If M is a (g, k)-module, we write M[µ] for the V(µ)-isotypic
component of M, and we say that V(µ) is a k-type of M if M[µ] , 0. We say that a (g, k)-module M is of finite
type if dim M[µ] , ∞ for every k-type V(µ). We will also refer to (g, k)-modules of finite type as generalized
Harish-Chandra modules.

Let Θk be the discrete subgroup of Z(k)∗ generated by suppZ(k)g. ByM we denote the class of (g, k)-
modules M for which there exists a finite subset S ⊂ Z(k)∗ such that suppZ(k)M ⊂ (S + Θk). If M is a module
inM, a k-type V(µ) of M is minimal if the function µ′ 7→‖ Reµ′ + 2ρ ‖2 defined on the set {µ′ ∈ t∗ |M[µ′] , 0}
has a minimum at µ. Any non-zero (g, k)-module M inM has a minimal k-type. This follows from the fact
that the squared length of a vector has a minimum on every shifted lattice in Euclidean space.
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1.3. The fundamental series of generalized Harish-Chandra modules. Recall that the functor of k-locally
finite vectors Γk,t is a well-defined left exact functor on the category of (g, t)-modules with values in (g, k)-
modules,

Γk,t(M) =
∑

M′⊂M,dim M′=1,dim U(k)·M′<∞

M′.

By R·Γk,t :=
⊕

i≥0 RiΓk,t we denote as usual the total right derived functor of Γk,t, see [PZ1] and the references
therein.

If M is a (g, k)-module of finite type, then Γk,0(M∗) is a well-defined (g, k)-module of finite type and
Γk,0(·∗) is an involution on the category of (g, k)-modules of finite type. We put Γk,0(M∗) = M∗

k
. There is an

obvious g-invariant non-degenerate pairing M ×M∗
k
→ C.

Lemma 1.2. Let W be a finite-dimensional g-module and M be a finite length (g, k)-module of finite type over k. Then
a) W ⊗M is a (g, k)-module of finite type.
b) W ⊗M is a g-module of finite length.

Proof a) Since k is finite dimensional and reductive in g, the class of (g, k)-modules is closed under tensor
products. Let V(µ) be a k-type. Since W is finite dimensional, Homk(V(µ),W ⊗M) � Homk(V(µ) ⊗W∗,M),
which is finite dimensional, since V(µ) ⊗W∗ is finite dimensional and M has finite type over k.

b) Since M has finite length, M is finitely generated over g. Note that M∗
k
, the k-finite dual of M is

a (g, k)-module of finite length and hence M∗
k

is finitely generated over g and likewise W∗ ⊗M∗
k

is finitely
generated. Hence, (W ⊗M)∗

k
is finitely generated, and satisfies the ascending chain condition. We have

already seen that W ⊗ M is finitely generated; thus W ⊗ M satisfies the ascending chain condition. We
conclude that W ⊗M has finite length. �

We also introduce the following notation: if q is a subalgebra of g and J is a q-module, we set
indgqJ := U(g) ⊗U(q) J and progqJ := HomU(q)(U(g), J). For a finite-dimensional p- or p̄-module E we set
Np(E) := Γt,0(progp(E⊗Λdim n(n))), Np̄(E∗) := Γt,0(prog

p̄
(E∗ ⊗Λdim n(n∗))). Note that both Np(E) and Np̄(E∗) have

simple socles, as long as E itself is simple.
The fundamental series of (g, k)-modules of finite type F·(p,E) is defined as follows. Let p = m⊃+ n be a

minimal compatible parabolic subalgebra, E be a simple finite dimensional p-module on which t acts via
the weight ω ∈ t∗, and µ := ω + 2ρ⊥n where ρ⊥n := ρn − ρ. Set

F·(p,E) := R·Γk,t(Np(E)).

Then the following assertions hold under the assumptions that p = pµ+2ρ and that µ is bk-dominant,
k-integral and yields a generic k-type V(µ) (Theorem 2 of [PZ2]).
a) F·(p,E) is a (g, k)-module of finite type in the class M, and ZU(g) acts on F·(p,E) via the ZU(g)-character
θν+ρ̃ where ρ̃ := ρchhb for some fixed Borel subalgebra b of gwith b ⊃ h, b ⊂ p and b∩ k = bk, and where ν
is the b-highest weight of E (note that ν|t = ω).

b) Fi(p,E) = 0 for i , s := dim nk .
c) There is a k-module isomorphism

Fs(p,E)[µ] � Cdim E
⊗ V(µ),

and V(µ) is the unique minimal k-type of Fs(p,E).
d) Let F̄s(p,E) be the g-submodule of Fs(p,E) generated by Fs(p,E)[µ]. Then F̄s(p,E) is the unique simple

submodule of Fs(p,E), and moreover, Fs(p,E) is cogenerated by Fs(p,E)[µ]. This implies that Fs(p,E)∗
t

is
generated by Fs(p,E)∗

t
[wm(−µ)], where wm ∈ Wk is the element of maximal length in the Weyl group Wk

of k.
e) For any non-zero g-submodule M of Fs(p,E) there is an isomorphism of m-modules

Hr(n,M)ω � E.
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2. On the fundamental series of (g, k)-modules

In the rest of the paper, p is a minimal t-compatible parabolic subalgebra and E is a simple finite-
dimensional p-module. Then n · E = 0 and E is a simple m = C(t)-module. Fix a Borel subalgebra bm in m
such that h ⊆ bm. Write b = bm⊃+ n; then b is a Borel subalgebra of g. Set ρ̃ = ρchhb.

Theorem 2.1. Assume that p = pµ+2ρ and that µ is generic. Assume in addition that Np(E) is a simple g-module.
Then Fs(p,E) is a simple (in particular, non-zero) g-module.

Proof By the Duality Theorem from [EW],

(1) (RiΓk,t(X))∗
k
� R2s−iΓk,t(X∗t )

for any (g, t)-module X of finite type over t. Set X = Np(E). Then X is a (g, t)-module of finite type over t
(see for instance [Z]), and (1) yields for i = s

Fs(p,E)∗
k
� RsΓk,t(Np(E)∗

t
).

We have (indgp(E∗ ⊗Λdim n(n)∗))∗ � progp(E ⊗Λdim n(n)). Thus

Np(E) = Γk,0(prog
p
(E ⊗Λdim n(n))) � (indgp(E

∗
⊗Λdim n(n∗)))∗

t
.

Moreover, Np(E) has finite type over t. Hence, Np(E)∗
t
� indgp(E∗ ⊗Λdim n(n∗)).

By Frobenius reciprocity, there is a canonical g-module homomorphism

Np(E)∗
t
� indgp(E

∗
⊗Λdim n(n∗))

ϕ
→ Np̄(E∗)

whose restriction to E∗ ⊗ Λdim n(n∗) is the identity. As Np(E)∗
t

is simple by our assumption, ϕ is injective.
Moreover, ϕ must be surjective as the t-characters of Np(E)∗

t
and Np̄(E∗) are equal. Therefore there is a

commutative diagram of isomorphisms

RsΓk,t(Np(E)∗
t
) ∼
→ RsΓk,t(Np̄(E∗))

o ↓ o ↓

γ : Fs(p,E)∗
k

∼
→ Fs(p̄,E∗).

The fact that V(µ) is generic for p implies immediately that V(µ)∗ is generic for p̄. Thus Fs(p,E)
is cogenerated by its minimal k-isotypic component Fs(p,E)[µ], and Fs(p̄,E∗) cogenerated by its minimal
k-isotypic component. On the other hand, the isomorphism γ implies that Fs(p̄,E∗) is also generated by its
minimal k-isotypic component as Fs(p,E)∗

k
is generated by its minimal k-isotypic component. We conclude

that Fs(p̄,E∗) � Fs(p,E)∗
k

is simple, which in turn shows that Fs(p,E) � (Fs(p,E)∗
k
)∗
k

is simple. �
Assume that the b-highest weight of E is ν ∈ h∗. Set ω := ν|t and µ := ω + 2ρ⊥n .

Corollary 2.2. Let ν + ρ̃ be b-dominant, i.e. Re〈ν + ρ̃, γ〉 ≥ 0 for any root γ of h in b. Then, under the assumption
that µ is generic and that p = pµ+2ρ, we have Fi(p,E) = 0 for i , s. Moreover Fs(p,E) is simple. Thus, Fi(p,E) has
finite length for all i ≥ 0.

Proof Under the hypothesis on ν, indgp(E∗ ⊗ Λdim n(n∗)) � Np(E)∗
t

is simple, hence Np(E) is simple, and
the statement follows from Theorem 2.1 �

In the rest of this section, p is an arbitrary minimal t-compatible parabolic subalgebra.

Lemma 2.3. For any C ∈ Z≥0, there exists a b-dominant integral weight σ0 of g such that 〈σ0|t, α〉 > C for every
weight α of t in n.

Proof Since p is t-compatible, there exists κ ∈ t∗ such that 2〈κ, γ|t〉
〈γ, γ〉 ∈ Z≥0 for every root γ of h in n.

Regard t∗ as a subspace of h∗ via the Killing form of g restricted to h. Then, 2〈κ, γ〉
〈γ, γ〉 ∈ Z≥0 for every root γ of

h in n and 〈κ, γ〉 = 0 for every root γ of h in m. Hence, κ is a dominant integral weight of h in g. Finally,
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choose a positive integer r such that 〈rκ, α〉 > C for every weight α of t in n. Then σ0 = rκ is a b-dominant
weight of g as required. �

Proposition 2.4. Suppose that ν + ρ̃ is b-dominant. Then, Fi(p,E) = 0 for i , s, and Fs(p,E) has finite length.

Proof Fix a constant C ∈ Z>0. Chose m ∈ Z>0 such that 〈Reµ+ 2ρ, α〉 ≥ −mC for every α ∈ supp
t
n. Set

σ1 = (m + 1)σ0, where σ0 is defined in Lemma 2.3. Then 〈Reµ+ σ1 + 2ρ, α〉 ≥ C for every α ∈ supp
t
n, and by

possibly making C larger, we can assume that µ + σ1 is generic. In particular, pµ+σ1+2ρ = p.
Next, let ν1 := ν + σ1, and E1 be a simple finite-dimensional m-module with highest weight ν1. Set

µ1 := µ+σ1|t. Then, by Corollary 2.2, Fi(p,E1) = 0 for i , s, and Fs(p,E1) is a simple g-module. Furthermore,
by Propositions 2.6 and 2.12 in [Z], Fi(p,E) is a direct summand of Vg(σ1)∗ ⊗ Fi(p,E1) where Vg(σ1) stands
for the finite-dimensional g-module with b-highest weight σ1. Lemma 1.2 implies the statement. �

Remark. By a more refined argument with translation functors [BG] one can show using the result
of [PZ3] that Fs(p,E) is simple and hence non-zero,while Fi(p,E) = 0 if i , s.

Theorem 2.5. The (g, k)-module Fi(p,E) has finite length for any simple p-module E and any i ∈ Z≥0.

Proof We will assume at first that ν+ ρ̃ is a regular weight of h in g. Then, there exists a unique element
w ∈W such that w−1(ν+ ρ̃) is dominant for h in g. Denote by d(ν) the length l(w). We will argue by induction
on d(ν). The theorem is true for d(ν) = 0 by Proposition 2.4.

Suppose we assume the theorem for d(ν) = n ∈ Z>0, n being fixed. If d(ν) = n+1, we can choose a root
γ of h in g such that d(sγ(ν)) = n. Let D have highest weight sγ(ν + ρ̃) − ρ̃. We will show that the finiteness
of the length of Fi(p,D) for all i implies the finiteness of the length of Fi(p,E) for all i.

Case I: 2〈Reν+ρ̃, γ〉
〈γ, γ〉 ∈ Z≥0.

Choose a translation functor Ψ so that Ψ(Np(D)) has a central character which is singular with respect
to precisely γ. Let Φ be the translation functor adjoint to Ψ. By highest weight module theory we have a
short exact sequence

0→ Np(D)→ Φ ◦Ψ(Np(D))→ Np(E)→ 0.
This short exact sequence yields a long exact sequence

...→ RiΓk,t(Np(D))→ RiΓk,tΦ ◦Ψ(Np(D))→ RiΓk,t(Np(E))→ Ri+1Γk,t(Np(D))→ ... .

We can rewrite this long exact sequence as

...→ Φ ◦Ψ(Fi(p,D))→ Fi(p,E)→ Fi+1(p,D)→ ....

By assumption, Fi(p,D) and Fi+1(p,D) have finite length. Hence, by Lemma 1.2 Φ ◦Ψ(Fi(p,D)) has
finite length. By the long exact sequence, Fi(p,E) has finite length.

Case II: 2〈Reν+ρ̃, γ〉
〈γ, γ〉 < Z≥0.

Choose an integral weight σ ∈ h∗ such that if w(ν+ ρ̃) is dominant, sγw(ν−σ+ ρ̃) is dominant. Let D be
a finite-dimensional simple m-module such that the highest weight of D is ν − σ. There exists a translation
functor Ψ such that Ψ(Np(E)) = Np(D).

For the adjoint functor Φ, Φ(Np(D)) = Np(E). Then RiΓk,t(Φ(Np(D))) = RiΓk,t(Np(E)).
Hence, Fi(p,E) = Φ(Fi(p,D)), and by Lemma 1.2 the finiteness of the length of Fi(p,D) implies the

same for Fi(p,E). �

Corollary 2.6. Let A be a finite-dimensional (p, t)-module. Then RiΓk,t(Np(A)) has finite length for all i.

Proof Induction on the length of A as a p-module: if A has length 1, then n ·A = 0, and we are back to
Theorem 2.5. �

In what follows we denote by Cp̄,t the full subcategory of g-modules consisting of finitely generated
(g, t)-modules which are locally p̄-finite.
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Lemma 2.7. Let N ∈ Cp̄,t. Then N has finite length, each simple constituent of N is isomorphic to SocNp(D) for
some simple finite-dimensional m-module D, and N has finite type over t.

Proof Let {v1, ..., vn} generate N over U(g) and let B = (U(p̄))v1 + (U(p̄))v2 + ... + (U(p̄))vn. Then B is a
finite-dimensional p-module. Moreover, N is a quotient of indg

p̄
B, for which the lemma is well known. �

Proposition 2.8. Let N ∈ Cp̄,t. Then RiΓk,t(N) has finite length for all i.

Proof By Lemma 2.7, N∗
t
∈ Cp,t. Any module in Cp,t admits a resolution by modules of the form indgpC.,

where each Ck is a finite-dimensional (p, t)-module: indgpC. → N∗
t
→ 0. By considering the t-finite dual

of this resolution, we obtain a resolution of (N∗
t
)∗
t
� N by modules of the form Np(A·), where each Ak is a

finite-dimensional (p, t)-module.
Write this resolution as N ↪→ Np(A·). We have a convergent spectral sequence of g-modules with

Ea,b
2 = RaΓk,t(Np(Ab)), and which abuts to R·Γk,t(N). If we fix i ∈ Z≥0, there are only finitely many terms Ea,b

2
with a + b = i, since both a ≥ 0 and b ≥ 0. Hence,

⊕
a+b=i Ea,b

∞ has finite length. Finally, RiΓk,t(N) has finite
length �

By Ck we denote the full subcategory of g-mod consisting of (g, k)-modules which have finite type
over k and have finite length over g.

Theorem 2.9. If N ∈ Cp̄,t and i ≥ 0, then RiΓk,t(N) ∈ Ck.

Proof The statement follows from Proposition 2.8 and from the ”finiteness statement” of Theorem 2.4
c) in [Z]. �

IfA is a full abelian subcategory of g-mod, let K0(A) be the Grothendieck group ofA.

Definition 2.1. If N ∈ Cp̄,t, let Θk,t(N) =
∑

(−1)i[RiΓk,t(N)] in K0(Ck).

The fact that Θk,t(N) is well-defined follows from the vanishing statement of Theorem 2.4 b) in [Z].

Proposition 2.10. The map N 7→ Θk,t(N) yields a non-zero homomorphism Θk,t : K0(Cp̄,t)→ K0(Ck).

Proof This is a well-known fact which follows from the long exact sequence of cohomology. �
Example.
a) If E is a finite-dimensional simple m-module with highest weight ν such that ν + ρ̃ is regular and

g-dominant, then Θk,t(Np(E)) = (−1)s[Fs(p,E)]. If µ is bk-dominant and k-integral, then Θk,t(Np(E)) , 0 by the
remark after Proposition 2.4.

b) Θk,t(C) = |Wk|[C], where Wk is the Weyl group of k. Indeed, in the proof of Theorem 2.4 in [Z] it is
shown that

Homk(V,RiΓk,t(C)) � Exti
k,t(V,C)

for any simple finite-dimensional k-module V. Since Exti
k,t(V,C) = 0 for V ; C, we conclude that Θk,t(C) =∑

i(−1)i dim Exti
k,t(C,C). Moreover, Exti

k,t(C,C) = Hi(k, t,C), where Hi(k, t,C) stands for the relative Lie algebra
cohomology.

It is well-known that Hi(k, t,C) is the cohomology of the variety K0/T0, K0 being a connected affine
real algebraic group with Lie algebra k and T0 being a torus in K0 with Lie T0 = t0. Moreover, K0/T0 is
homeomorphic to the flag variety of K and hence the Euler characteristic of K0/T0 is |Wk|, by the Bruhat
decomposition of the flag variety. Thus,∑

i

(−1)i dim Hi(k, t,C) = |Wk|.
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3. On the n-cohomology of (g, k)-modules

We start by recalling [PZ2, Proposition 1] in the case when k is semisimple. In what follows, M will
denote a (g, k)-module. Note that M is automatically in the classM.

Proposition 3.1. In the category of t-weight modules, there exists a bounded (not necessarily first quadrant)
cohomology spectral sequence which converges to H·(n,M), with

Ea,b
1 = Ha+b−R(a)(nk,M) ⊗ V∗a,

where a runs over {0, . . . , y} for some y,R is a monotonic function on {0, . . . , y} with values in Z>0 such that
R(a) ≤ a and R(y) = r, Va is a t-submodule of ΛR(a)(n ∩ k⊥) for every a, and Vy = Λr(n ∩ k⊥). We also have⊕

R(a)=p Va = Λp(n ∩ k⊥).

Suppose we are interested in H j(n,M) for a fixed j. Write

E j
1 :=

r⊕
p=0

H j−p(nk,M) ⊗Λp(n ∩ k⊥)∗.

Then E j
1 =

⊕
a+b=l Ea,b

1 .

Lemma 3.2. Fix κ ∈ t∗ and j, 0 ≤ j ≤ dim n = n. Assume that (E j−1
1 )κ = (E j+1

1 )κ = 0. Then

(2) H j(n,M)κ ' (E j
1)κ =

r⊕
p=0

(
H j−p(nk,M) ⊗Λp(n ∩ k⊥)∗

)κ
.

Proof This follows immediately from the definition of a convergent spectral sequence of vector spaces.
�

As a special case we have the following lemma. Recall that s := dim(n ∩ k), r := dim(n ∩ k⊥).

Lemma 3.3. If Hs(nk,M)κ
′

= 0 for κ′ := κ + 2ρ⊥n , then Hn(n,M)κ = 0.

Proof The isomorphism (2) implies Hn(n,M)κ ' Hs(nk,M)κ
′

⊗Λr((n ∩ k⊥)∗). �
As a consequence we have the following.

Proposition 3.4. If κ′ = κ + 2ρ⊥n is k-dominant integral, then Hn(n,M)κ = 0.

Proof Kostant’s theorem [Ko] implies that if η is k-dominant integral, Hs(nk,V(η)) has pure weight
−wm(η) − 2ρ, where wm is the longest element of Wk. We have as a consequence that Hs(nk,V(η))κ

′

= 0 if κ′

is k-dominant integral. Since M is a direct sum of simple finite dimensional k-modules V(η) for various η,
we conclude that Hs(nk,M)κ

′

= 0. (We have used our assumption that rk kss > 0). Then Hn(n,M)κ = 0 by
Lemma 3.3. �

We now recall that H·(n,M) is an (m,m∩ k)-module. This is established in [V2, Ch. 5] in the case when
k is a symmetric subalgebra but the argument extends to the case of a general reductive in g subalgebra k.
Note that m ∩ k = t. The following statement is identical to [PZ2, Corollary 3].

Proposition 3.5. a) If M is a (g, k)-module of finite type, then H·(n,M) is an (m, t)-module of finite type. Moreover,
if M is ZU(g)-finite (i.e. the action of ZU(g) on M factors through a finite-dimensional quotient of ZU(g) ) then H·(n,M)
is ZU(m)-finite.

b) If p is a minimal compatible parabolic subalgebra and M is a (g, k)-module of finite type which is in addition
ZU(g)-finite, then H·(n,M) is finite dimensional.
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4. Reconstruction of (g, k)-modules

Suppose M is simple. Let V(µ) be a minimal k-type of M (a priori V(µ) is not unique). Suppose µ+ 2ρ
is (g, k)-regular and p = pµ+2ρ.

Definition 4.1. The pair (M, µ) as above is strongly reconstructible if Hr(n,M)µ−2ρ⊥n is a simple m-module and
there is an isomorphism of g-modules

(3) M ' SocFs(p,Hr(n,M)µ−2ρ⊥n ).

The isomorphism (3) implies via Theorem 2 of [PZ3] that V(µ) is the unique minimal k-type of
M. Moreover, dim Homk(V(µ),M) ≤ dim E. Therefore, if the pair (M, µ) is strongly reconstructible, µ is
determined by M as the highest weight of the unique minimal k-type of M. This allows us to simply speak
of strongly reconstructible simple (g, k)-modules rather than of strongly reconstructible pairs.

The first reconstruction theorem of [PZ2] now implies the following.

Theorem 4.1. If M is a simple (g, k)-module of finite type with a generic minimal k-type V(µ), then M is strongly
reconstructible.

Below we will see (in particular in Subsection 8.2) that the converse to the above theorem is false. We
will also see (in Subsection 8.7) examples of simple finite-dimensionalm-modules E such that Fs(p,E) has a
reducible socle.

Definition 4.2. A simple (g, k)-module M of finite type over k is weakly reconstructible if for some minimal k-compatible
parabolic subalgebra p, there exists an injective homomorphism of g-modules

M ↪→ Fs(p,TopHr(n,M)).

Theorem 4.2. Let M1,M2 ∈ Ck be simple with central characters θλ1 and θλ2 respectively. Assume λ1 and λ2 are
dominant regular with respect to a Borel subalgebra b ⊂ g; assume further that λ2 −λ1 is dominant integral . Finally
assume that Φ is a translation functor such that Φ(M1) � M2. Then, M2 is weakly reconstructible if and only if M1
is weakly reconstructible.

Proof Assume that M1 is weakly reconstructible. Then for some simple quotient E1 of Hr(n,M1), we
have an injection of g-modules α1 : M1 → Fs(p,E1). By assumption, Φ is an equivalence of categories.
Hence we have an injection α2 : M2 → Φ(Fs(p,E1)). By [Z], we have an isomorphism Φ(Fs(p,E1)) � Fs(p,E2)
for a simple m-module E2. Moreover, we have a translation functor Φm such that Φm(E1) � E2. Thus, we
have an injection α1

2 : M2 → Fs(p,Φm(E1)).
Now let θmχi

be the central character of Ei for i = 1, 2. Let Pmχ1
and Pmχ2

be the respective projec-
tion functors. By assumption we have a surjection of m-modules β1 : Pmχ1

(Hr(n,M1)) → E1. Apply the
translation functor Φm to β1 to obtain a surjection β2 : ΦmPmχ1

(Hr(n,M1)) → Φm(E1) � E2. By [KV, Ch. 7],
ΦmPmχ1

(Hr(n,M1)) � Pmχ2
(Hr(n,M1)). Thus, E2 is a quotient of Hr(n,M2). Finally, the injection α1

2 yields an
injection M2 → Fs(p,TopHr(n,M2)). Hence M2 is weakly reconstructible. �

5. Preliminary results on (g, sl(2))-modules

From now on we assume that k is isomorphic to sl(2,C). We fix a standard basis {e, h, f } for k; the
eigenvalues of ad h in g will be integers. Let t = Ch be the Cartan subalgebra of k generated by h, and
let p = ph∗ where h∗ ∈ t∗, h∗(h) = 1. The subalgebra p is automatically a minimal t-compatible parabolic
subalgebra.

For k ' sl(2), our Lemma 3.2 simplifies to the following.

Lemma 5.1. Fix κ ∈ t∗ and j, 0 ≤ j ≤ r + 1. Write

E j
1 = H0(nk,M) ⊗Λ j(n ∩ k⊥)∗ ⊕H1(nk,M) ⊗Λ j−1(n ∩ k⊥)∗.
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Suppose that (E j−1
1 )κ = (E j+1

1 )κ = 0. Then there is an isomorphism of t-modules

H j(n,M)κ ' (E j
1)κ � (H0(nk,M) ⊗Λ j(n ∩ k⊥)∗ ⊕H1(nk,M) ⊗Λ j−1(n ∩ k⊥)∗)κ.

In particular, let j = r and assume κ′ = κ + 2ρ⊥n is dominant integral for k. Then (Er−1
1 )κ = 0 implies

(4) Hr(n,M)κ ' H0(nk,M)κ
′

⊕

(
H1(nk,M) ⊗ (n ∩ k⊥)

)κ′
.

More generally, κ′ dominant integral implies

(5) dim Hr(n,M)κ ≤ dim H0(nk,M)κ
′

+ dim
(
H1(nk,M) ⊗ (n ∩ k⊥)

)κ′
.

From now on we identify integral weights κ of t with the corresponding integers, κ(h). Let λ1 and
λ2 be the maximum and submaximum weights of t in n ∩ k⊥ (we consider λ1 and λ2 as integers); if λ1 has
multiplicity at least two in n ∩ k⊥, then λ2 = λ1, and if dim n ∩ k⊥ = 1, then λ2 = 0.

Proposition 5.2. Let µ be a nonnegative integer and let M be a (g, k)-module with the property that δ < µ implies
M[δ] = 0.
a) If µ ≥ 1

2λ1, then dim Hr(n,M)ω ≤ dim H0(nk,M)µ.
b) If µ ≥ 1

2 (λ1 + λ2), then
dim Hr(n,M)ω = dim H0(nk,M)µ.

Proof a) Our hypothesis on M implies that if M[δ] , 0, then δ ≥ µ ≥ 1
2λ1. Since H1(nk,M) has weights

−δ − 2 with δ as above, we see that(
H1(nk,M) ⊗ (n ∩ k⊥)

)µ
= 0. Hence (2) implies the inequality in a).

b) It suffices to show that (Er−1
1 )ω = 0. Then the statement from (4), taking into account the vanishing of

(H1(nk,M) ⊗ (n ∩ k⊥))µ, implies (b).
We now check that (Er−1

1 )ω = 0. We have

(Er−1
1 )ω = (H0(nk,M) ⊗Λr−1((n ∩ k⊥)∗))ω ⊕ (H1(nk,M) ⊗Λr−2((n ∩ k⊥)∗))ω.

Furthermore,
Λr−1((n ∩ k⊥)∗) � (n ∩ k⊥) ⊗Λr((n ∩ k⊥)∗),
Λr−2((n ∩ k)∗) � Λ2(n ∩ k⊥) ⊗Λr((n ∩ k⊥)∗)

implies

(6) (Er−1
1 )ω = (H0(nk,M) ⊗ (n ∩ k⊥))µ ⊕ (H1(nk,M) ⊗Λ2(n ∩ k⊥))µ

as the weight of Λr(n ∩ k⊥) equals 2ρ⊥n . The first term of (6) vanishes as the t-weights of m ∩ k⊥ are
strictly positive and the smallest t-weight of H0(nk,M) is µ. The maximal t-weight of the second term is
−µ − 2 + λ1 + λ2, hence the inequality µ ≥ λ1+λ2

2 implies the vanishing of the second term of (6). �
Our next task is to state and prove a vanishing theorem for F0(p,E), where E is a simple finite

dimensional m-module. Let ω ∈ t∗ be the weight of t in E.

Proposition 5.3. Suppose µ = ω + 2ρ⊥n and µ ≥ 0. Then F0(p,E) = 0.

Proof By definition
F0(p,E) = Γk,t(Np(E)).

We have Np(E)∗
t
� indgp(E∗⊗Λdim(n)(n∗)) and the b-highest weight of indgp(E∗⊗Λdim n(n∗)) equals −ν−2ρ̃n ∈ h∗.

On the other hand, ν′(h) ≥ 0 for any b-dominant weight. This follows from the fact that any b-
dominant weight is a non-negative linear combination of roots of b (see for instance [Kn], Lemma 6.97).

The g-module Np(E) has a finite-dimensional submodule if and only if Np(E)∗
t

has a finite-dimensional
quotient. Note that Γk,t(Np(E)) is an integrable g-module as Np(E) is p̄-locally finite and k and p̄ generate g.
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Therefore, Γk,t(Np(E)) = 0 whenever Np(E) has no finite-dimensional submodule, i.e. whenever −γ − 2ρ̃n is
not b-dominant. The fact that (−γ − 2ρ̃n)(h) = −ω − 2ρn = µ − 2ρ < 0, allows us to conclude that ν − 2ρ̃n is
not b-dominant, i.e. that Γk,t(Np(E)) = 0. �

Proposition 5.4. F2(p,E) = 0.

Proof The statement is a direct corollary of Proposition 3 a) in [PZ2]. Note that this proof does not use
genericity. �

Proposition 5.5. (cohomological Frobenius reciprocity) Let µ ≥ 0. If M is a (g, k)-module such that H·(n,M) is finite
dimensional, then we have a natural isomorphism

Homg(M,F1(p,E)) � Homm(Hr(n,M)ω,E).

Proof This follows from the existence of a (not necessarily first quadrant) spectral sequence with E2-
term Ea,b

2 = Exta
m,t(H

r−b(n,M),E) converging to Exta+b
g,k (M,F1(p,E)), see Proposition 6 of [PZ2]. By assumption

H·(n,M) is finite dimensional. Choose b0 to be the least possible integer with Ext·
m,t(H

r−b0(n,M),E) , 0.
By the same argument as in the proof of Theorem 2, b) in [PZ2], we conclude that

Homm(Hr−b0(n,M),E) , 0. Thus, E0,b0
2 , 0 and Ea,b

2 = 0 for b < b0. Consequently, E0,b0
2 � E0,b0

∞ and we
deduce that Extb0

g,k(M,F
1(p,E)) , 0. Hence, b0 ≥ 0 and the spectral sequence is a first quadrant spectral

sequence, with corner isomorphism Homg(M,F1(p,E)) � Homm(Hr(n,M),E). �

Corollary 5.6. Suppose µ ∈ Z≥0.
a) Let X be any g-submodule of F1(p,E). Then E is a quotient of Hr(n,X)ω. In particular, if X is simple, then

X is weakly reconstructible.
b) Let M be a simple (g, k)-module such that H·(n,M) is finite dimensional and E is isomorphic to a quotient of

Hr(n,M)ω. Then M is isomorphic to a submodule of SocF1(p,E). In particular M is weakly reconstructible and M
has finite type over k.

Corollary 5.7. Fix a central character θ. The set of isomorphism classes of simple (g, k)-modules M with central
character θ such that dim Hr(n,M) < ∞ and Hr(n,M)κ , 0 for some κ ∈ Z≥−2ρ⊥n is finite.

Proof A g-module M as in the corollary is isomorphic by Corollary 5.6 (b) to a g-submodule of F1(p,E′),
where E′ runs over finitely many simple finite-dimensional p-modules. Since F1(p,E′) has finite length for
each E′ by Theorem 2.5, the statement follows. �

Theorem 5.8. Suppose k is regular in g. Let M be a simple (g, k)-module, not necessarily of finite type over k, with
lowest k-type V(µ) for µ ≥ 0.

a) If Hr(n,M)ω , 0, there exists a 1-dimensional simple quotient E of Hr(n,M)ω. For any such E we have an
injective homomorphism M→ F1(p,E). Hence M is weakly reconstructible and M is of finite type over k.

b) If M is of infinite type over k, then Hr(n,M)ω = 0.1

Proof a) Since M is simple, Proposition 3.5 b) implies that H·(n,M) is finite dimensional. Note that the
regularity of k in g implies that m is a Cartan subalgebra of g. Hence there exists a 1-dimensional simple
m-quotient E of Hr(n,M)ω. Proposition 5.5 implies now that any such E induces an injective homomorphism
of M into F1(p,TopHr(n,M)). In particular, M is weakly reconstructible and is of finite type over k.

b) Follows from a). �

1See Theorem 9 of [PZ1].
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6. Strong reconstruction of (g, sl(2))-modules

In the rest of the paper E, p,m, t, µ, ω are as in Section 1. We start with the following result on the of
(g, k)-modules.

Theorem 6.1. Let µ ≥
1
2λ1. Then SocF1(p,E) = F̄1(p,E) and F̄1(p,E) is simple. In particular,

dim Homk(V(µ), SocF1(p,E)) = dim E.

Proof Let X be a non-zero submodule of F1(p,E). Since F1(p,E) is a (g, k)-module of finite type and
is ZUg-finite, Proposition 3.5 b) and Proposition 5.5 apply to X, yielding a surjective homomorphism of
m-modules Hr(n,X)ω → E. Hence dim E ≤ dim Hr(n,X)ω. Next, by [PZ3],

dim H0(nk,F1(p,E))ω = dim E,

therefore dim H0(nk,X)ω ≤ dim E by the left exactness of H0(nk, ·). Finally, by Proposition 5.2 a),
dim Hr(n,X)ω ≤ dim H0(nk,X)µ. Combining these inequalities we see that

dim Hr(n,X)ω = dim H0(nk,X)µ = dim E.

Hence X[µ] = F1(p,E)[µ], or equivalently X ⊇ F̄1(p,E). Since in this way F̄1(p,E) is contained in any non-zero
submodule of F1(p,E), F̄1(p,E) is simple and F̄1(p,E) = SocF1(p,E). �

Corollary 6.2. Under the assumptions of Theorem 6.1, let X , 0 be a g-submodule of F1(p,E). Then the minimal
k-type of X is V(µ), dim Homk(V(µ),X) = dim E, and there is an isomorphism of m-modules Hr(n,X)ω � E.

Proof The statement was established in the proof of Theorem 6.1. �

Corollary 6.3. Let M be a simple (g, k)-module whose minimal k-type V(µ) satisfies µ ≥ 1
2λ1. Then, if H·(n,M) is

finite-dimensional and Hr(n,M)ω , 0, M is strongly reconstructible.

Proof Let E′ be a simple quotient of the m-module Hr(n,M)ω. By Proposition 5.5, M is a simple
submodule of F1(p,E′), hence by Theorem 6.1

M � SocF1(p,E′).

�

Corollary 6.4. Let M be a simple (g, k)-module of finite type such that its minimal k-type V(µ) satisfiesµ ≥ 1
2 (λ1 +λ2).

Then H·(n,M) is finite-dimensional, and Hr(n,M)ω , 0, hence M is strongly reconstructible by Corollary 6.3.

Proof The statement follows from Corollary 6.4 via Proposition 5.2 b). �

Corollary 6.5. The correspondences
M Hr(n,M)ω

E SocF1(p,E)

induce mutually inverse bijections between the set of isomorphism classes of simple (g, k)-modules of finite type M
whose minimal k-type V(µ) satisfies µ ≥ 1

2 (λ1 +λ2) and the set of isomorphism classes of finite dimensionalm-modules
on which t acts via ω = µ − 2ρ⊥n , where Z≥0 3 µ ≥ 1

2 (λ1 + λ2).

Corollary 6.6. Suppose k is regular in g (i.e. let t contain an element regular in g). Suppose M is a simple (g, k)-
module (not necessarily of finite type over k) with lowest k-type V(µ). If µ ≥ 1

2 (λ1 + λ2), then E = Hr(n,M)ω is a
1-dimensionalm-module and M � F̄1(p,E). Thus M is strongly reconstructible. In particular, M has finite type over
k.
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Proof We apply Theorem 5.8 a) and Proposition 5.2 b) to conclude that, for any 1-dimensional quotient
E of Hr(n,M)ω, we have an injection M→ F1(p,E). Since µ ≥ 1

2 (λ1 +λ2), there are isomorphisms M � F̄1(p,E)
and Hr(n,M)ω � E (the latter is an isomorphism of m-modules). �

Example. Let g be a classical simple Lie algebra of rank n and k � sl(2) be a principal subalgebra. Then
the claim of Corollary 6.5 is proved in [PZ2] under the assumption that µ+ 1 ≥ 2(

∑
i ri), where ρ̃ = 1

2
∑

i riαi,
αi being the simple roots of b. It is well-known that 2(

∑
i ri) grows cubically with the growth of n, while

the value 1
2 (λ1 + λ2) has linear growth in n. Therefore, for large n, the result of Corollary 6.5 strengthens

considerably Theorem 3 of [PZ2] for k being a principal sl(2)-subalgebra . On the other hand, we will see in
Section 8 that for n = 2, there are cases where the bound 2(

∑
i ri) − 1 is lower that 1

2 (λ1 + λ2).
Set now k̃ := k ⊕ C(k) and note that k̃ is a reductive in g subalgebra. Recall that C(k)ss ⊂ mss. Moreover,

mss ⊂ C(k)⇔ mss = C(k)ss.

Proposition 6.7. If mss = C(k)ss, then for any simple (g, k̃)-module M of finite type over k̃, H·(n,M) is finite
dimensional.

Proof By Proposition 3.5 a), H·(n,M) is an (m,m∩ k̃)-module of finite type as p is k̃-compatible (see also
[V2, Corollary 5.2.4]). But m ∩ k̃ = (Zm ∩ k̃) ⊕mss. Hence H·(n,M) is an integrable m-module. Finally, [PZ2,
Corollary 3 a)] implies now that H·(n,M) is finite dimensional. �

We conclude this section with some applications to the case when k̃ is a symmetric subalgebra.

Proposition 6.8. Assume that g is simple and k̃ is symmetric.
a) If g is classical with rank ≥ 4, the only case of a symmetric pair of the form (g, k̃) for which mss is not equal

to C(k)ss is the series (so(n), so(3) ⊕ so(n − 3)), where k = so(3).
b) If g is exceptional, thenmss = C(k)ss. In fact, k̃ is symmetric if and only if k is conjugate to the sl(2)-subalgebra

of a highest root of g.

Proof Follows from the classification of symmetric pairs. �

Corollary 6.9. Assume that k̃ is symmetric and mss = C(k)ss. Let M be a simple (g, k̃)-module.
a) If Hr(n,M)ω , 0, then M is strongly reconstructible as a (g, k)-module; in particular M has finite type over

k.
b) If µ ≥ 1

2 (λ1 + λ2), then M is strongly reconstructible as a (g, k)-module; in particular M has finite type over
k.

7. k-characters and composition multiplicities of the fundamental series of (g, sl(2))-modules

Assume µ ∈ Z. Set Lp(E) = SocNp(E) and recall that Lp(E) is simple. Also note that Np(E) and
Lp(E) are objects of Cp̄,t. Denote by D a variable simple finite-dimensional p-module on which t acts via
µD − 2ρ⊥n . Non-negative integers m(E,D) are determined from the equality [Np(E)] =

∑
m(E,D)[Lp(D)] in

the Grothendieck group K0(Cp̄,t). We arrange the integers m(E,D) into a matrix (m(E,D)) with rows indexed
by all possible E and columns indexed by all possible D; the rows and columns of (m(E,D)) are finitary, i.e.
each row and each column have finitely many non-zero entries. The algorithm for computing the integers
m(E,D) is discussed in [CC].

Lemma 7.1. Suppose D is not isomorphic to E. Then m(E,D) > 0 implies µD ≥ µ.

Proof We claim that the minimum t-weight of Np(E) is µ + 2. To see this it suffices to note that
Np(E)∗

t
' indgp(E ⊗ Λdim n(n))∗ � U(n̄) ⊗ (E ⊗ Λdim n(n))∗, as the maximum weight of Np(E)∗

t
is −ω − 2ρn =

−ω − 2ρ⊥n + 2ρ⊥n − 2ρn = −µ − 2ρ = −µ − 2 (note that ρ = 1). Thus, if Lp(D) is a composition factor of Np(E)
and D � E, we have µD + 2 > µ + 2, or equivalently, µD > µ. �

Proposition 7.2. Let µ ≥ 0. Then [F1(p,E)] =
∑

D m(E,D)[R1Γk,t(Lp(D))].
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Proof Taking into account that Θ is a homomorphism, it suffices to prove:
a) Fi(p,E) = RiΓk,t(Np(E)) = 0 for i , 1 and µ ≥ 0;
b) RiΓk,t(Lp(D)) = 0 for i , 1, m(E,D) > 0, µ ≥ 0.
Part a) follows from Proposition 5.3 and Proposition 5.4.
To prove part b), note that m(E,D) > 0 implies µD ≥ µ ≥ 0 by Lemma 7.1. Then F0(p,D) = 0

implies R0Γk,t(Lp(D)) = 0 as R0Γk,t(Lp(D)) ⊆ F0(p,D). To see that R2Γk,t(Lp(D)) = 0, note that, by the Duality
Theorem in [EW], (R2Γk,t(Lp(D)))∗

k
� Γk,t(Lp(D)∗

t
). The g-module Lp(D)∗

t
is p-locally finite, simple and infinite

dimensional. As p and k generate g, Γk,t(Lp(D)∗
t
) , 0 would imply dim Lp(D)∗

t
< ∞. As the latter is false,

Γk,t(Lp(D)∗
t
) = 0. Part b) is proved. �

Proposition 7.3. Suppose µ ≥ 0.
a) Then R1Γk,t(Lp(E)) , 0, and the lowest k-type of R1Γk,t(Lp(E)) is V(µ) of multiplicity dim E.
b) We have the following inclusions of (g, k)-modules:

F̄1(p,E) ⊆ R1Γk,t(Lp(E)) ⊆ F1(p,E).

c) If Np(E) is reducible then the submodule R1Γk,t(Lp(E)) of F1(p,E) is proper and non-zero, and hence F1(p,E)
is reducible.

Proof a) By Proposition 7.2, we have under our hypothesis

(7) F1(p,E)[µ] =
∑

D

R1Γk,t(Lp(D))[µ].

By Theorem 2 from [PZ3], F1(p,E)[µ] � (dim E)V(µ).
Next, apply Proposition 7.2 to D. We see that [R1Γk,t(Lp(D))] is a summand of [F1(p,D)]. Thus,

dim(R1Γk,t(Lp(D))[µ]) ≤ dim(R1Γk,t(Np(D))[µ]).
Assume now that m(E,D) > 0 and E � D. Then µD > µ by Lemma 7.1. Applying Theorem 2 from

[PZ3] a second time, we have F1(p,D)[µ] = 0.
We conclude that if m(E,D) > 0 and D � E, R1Γk,t(Lp(D))[µ] = 0. So, from formula (7) above, we

deduce that

(8) F1(p,E)[µ] = R1Γk,t(Lp(E))[µ].

This proves part a).
b) By the vanishing theorems a) and b) in the proof of Proposition 7.2, the inclusion of Lp(E) into Np(E)

yields an injection of R1Γk,t(Lp(E)) into F1(p,E); part b) follows immediately from (8) and the definition of
F̄1(p,E).

c) If Np(E) is reducible then for some D with µD > µ ≥ 0, m(E,D) , 0. So, part c) follows from
Proposition 7.2 and Proposition 7.3 a). �

Conjecture 7.4. If µ ≥ 0, then R1Γk,t(Lp(E)) is a semisimple g-module.

If true, this conjecture would imply that all simple constituents of R1Γk,t(Lp(E)) are weakly recon-
structible for µ ≥ 0. This would follow from Corollary 5.6 a). See Subsection 8.7, Examples 1 and 2 for cases
when R1Γk,t(Lp(E)) is reducible.

Theorem 7.5. Assume µ ≥ λ1
2 . Then R1Γk,t(Lp(E)) is a simple (in particular, non-zero) submodule of F1(p,E) and

R1Γk,t(Lp(E)) = F̄1(p,E) = SocF1(p,E).

Proof By Proposition 7.3, we have F̄1(p,E) ⊆ R1Γk,t(Lp(E)). By the Duality Theorem, (R1Γk,t(Lp(E)))∗
k
�

R1Γk,t(Lp(E)∗
t
).
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Let F̄1(p,E)⊥ be the submodule of R1Γk,t(Lp(E)∗
t
) consisting of vectors which are orthogonal to

R1Γk,t(Lp(E)) via the above duality. By Proposition 7.3, F̄1(p,E)[µ] = R1Γk,t(Lp(E))[µ]. Hence, F̃1(p,E)⊥[−µ] =
0.

By construction, F̄1(p,E)⊥ is a submodule of F1(p̄,E∗). It follows from the proof of Corollary 6.2 that
F̃1(p,E)⊥ = 0 and hence F̄1(p,E) = R1Γk,t(Lp(E)).

The statement of Theorem 6.1 implies the remainder of the proof of Theorem 7.5. �

Corollary 7.6. If µ ≥ λ1
2 , then:

a) [F1(p,E)] =
∑

m(E,D)[F̄1(p,D)].
b) If Np(E) is irreducible, then F̄1(p,E) = R1Γk,t(Lp(E)) = F1(p,E), and F1(p,E) is irreducible. 2

c) F̄1(p,E)[µ] = F1(p,E)[µ](� Cdim EV(µ)).
d) [F̄1(p,E)] =

∑
p(E,D)[F1(p,D)], where (p(E,D)) is the matrix inverse to (m(E,D)).

e) chkF̄1(p,E) =
∑

p(E,D)chkF1(p,D). (See [PZ1] for a formula for chkF1(p,D).)
f) Hr(n,R1Γk,t(Lp(E)))ω � E; in particular, the g-module R1Γk,t(Lp(E)) determines E up to isomorphism.

Proof a) Apply Proposition 7.2 and Theorem 7.5.
b) If Np(E) is irreducible, then m(E,D) = 0 for D � E and m(E,E) = 1. Now apply Corollary 7.6 a).
c) Combine formula (8) with Theorem 7.5.
d) Follows from a) and the definition of the matrix (p(E,D)).
e) Follows from c).
f) Apply Corollary 6.2 and Theorem 7.5. �
Let n ∈ Z and let Cp̄,t,n be the full subcategory of Cp̄,t consisting of (g, t)-modules N whose weight

spaces Nα satisfy α ∈ Z and α ≥ n. Let Ck,n be the full subcategory of Ck consisting of (g, k)-modules M with
minimal k-type V(µ) for µ ≥ n.

Assume N is a non-zero object in Cp̄,t,2.

Lemma 7.7. RiΓk,t(N) = 0 for i = 0 and 2; R1Γk,t(N) , 0.

Proof N has a finite composition series with simple subquotients Lp(D) in Cp̄,t,2. We know that
RiΓk,t(Lp(D)) = 0 for i = 0 and 2. Therefore our claim follows from the long exact sequence for right derived
functors. �

Proposition 7.8. The restriction of R1Γk,t(·) to the full subcategory Cp̄,t,2 is a faithful exact functor.

Proof The exactness follows from Lemma 7.7. Every map in Cp̄,t,2 factors into a composition of
surjection followed by an injection. Lemma 7.7 implies that R1Γk,t(·) maps a nonzero surjection to a nonzero
surjection and a nonzero injection to a nonzero injection. �

Proposition 7.9. Suppose M is a (g, k)-module. Then Exti
g,k(M,R

1Γk,t(N)) � Exti+1
g,t (M,N) for i ≥ 0.

Proof Apply the Frobenius Reciprocity Spectral Sequence in Ch. 6 of [V2], then quote Lemma 7.7. �

Corollary 7.10. a) If M is a finite dimensional g-module, then Exti
g,k(M,R

1Γk,t(N)) � Exti+1
g,t (M,N).

b) Suppose N1 and N2 are objects in Cp̄,t,2. Then, Homg,k(R1Γk,t(N1),R1Γk,t(N2)) � Ext1
g,t(R

1Γk,t(N1),N2) as
finite-dimensional vector spaces.Thus, dim Homg(N1,N2) ≤ dim Ext1

g,t(R
1Γk,t(N1),N2).

Assume again that k̃ is symmetric. Let E be a simple finite dimensionalm-module. Then R1Γk,t(Np(E)) is
a (g, k)-module of finite type, and hence a (g, k̃)-module of finite type over k̃, i. e. a Harish-Chandra module.
By the Comparison Principle [PZ4,Proposition 2.6], we have a g-module isomorphism R1Γk,t(Np(E)) �
R1Γk̃,t⊕C(k)(Np(E)).

2Corollary 7.6 b) is a strengthening of Theorem 2.1 under the assumption that k � sl(2).
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The (g, k)-module R1Γk̃,t⊕C(k)(Np(E)), denoted by A(p,E), has been studied extensively in the Harish-
Chandra module literature. (See for example [KV].)

Corollary 7.11. If µ ≥ 1
2λ1, the Harish-Chandra module A(p,E) has a simple socle, and SocA(p,E) � R1Γk,t(Lp(E)).

8. Six examples

In this section we consider six different pairs (g, k) such that rk g = 2 and k ' sl(2).

8.1. Background on the principal series of Harish-Chandra modules. We start by recalling the construc-
tion of the algebraic principal series of (g, s)-modules for a symmetric subalgebra s ⊂ g, [D]. We use this
construction in subsections 8.3 - 8.6 below. Let s ⊂ g be a symmetric subalgebra of g. Denote by aI a
maximal toral subalgebra of s⊥. If s is proper, aI is non-zero. Let hI be a Cartan subalgebra of g such that
hI = (hI∩s)⊕aI. Choose an element a ∈ aI such that the eigenvalues of a on g are real and C(a) = (C(a)∩s)⊕aI.
Let pI,a =

⊕
α(a)≥0 g

α = mI⊃+ nI.
The following results are proved in [D].

Proposition 8.1. a) g = s + pI,a; s ∩ pI,a = mI = C(aI).
b) If bI is a Borel subalgebra of mI such that hI ⊂ bI, then bI⊃+ nI is a Borel subalgebra of g. Hence, pI,a is a

parabolic subalgebra of g.
c) If a′ ∈ aI such that C(a′) = C(a), then pI,a′ is conjugate to pI,a under the connected algebraic subgroup

S ⊂ Autg whose Lie algebra is s.

We define an element a ∈ s⊥ to be nondegenerate if C(a) ∩ s⊥ is a toral subalgebra of s⊥. Moreover,
an Iwasawa parabolic subalgebra for the pair (g, s) is any subalgebra of the form pI,a for some nondegenerate
element a ∈ s⊥, such that ada has real eigenvalues in g.

Fix an Iwasawa parabolic subalgebra pI ⊂ g. Let L be a finite-dimensional simple module over mI.
Endow L with a pI-module structure by setting nI · L = 0.

Definition 8.1. a) The Iwasawa principal series module corresponding to the pair (pI,L) is the (g, s)-module

X(pI,L) = Γs(HomU(pI)(U(g),L)).

b) A degenerate principal series module corresponding to the pair (pI,L) is the (g, s)-module

Y(q,L) = Γs(HomU(q)(U(g),L)),

where q is a subalgebra containing pI and the pI-module structure of L extends to a q-module structure.

Lemma 8.2. There is an isomorphism of s-modules

X(pI,L) � Γs(HomU(mI∩s)(U(s),L)).

In particular, X(pI,L) is a (g, s)-module of finite type; if V is a simple finite-dimensional s-module, then
Homs(V,X(pI,L)) � HommI∩s(V,L), hence

dim Homs(V,X(pI,L)) ≤ dim V.

A similar statement holds for Y(q,L).

Theorem 8.3. (Harish-Chandra’s subquotient theorem) Let M be a simple (g, s)-module. Then there exists a simple
finite-dimensional m-module L such that M is a subquotient of X(pI,L).

Corollary 8.4. For any simple (g, s)-module M and for any s-type V,

dim Homs(V,M) ≤ dim V.
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8.2. g = sl(2)⊕sl(2), k is a diagonal sl(2)-subalgebra. Let g = sl(2)⊕sl(2) and kbe the diagonal sl(2)-subalgebra
of g. The subalgebra k is regular in g. The pair (g, k) is symmetric and its Harish-Chandra modules have
been studied for over half century, see [GN], [B] and [HC].

The parabolic subalgebra p is a Borel subalgebra, and λ1 = 2, λ2 = 0. Hence any simple (g, k)-module
M with minimal k-type µ ≥ 1 is strongly reconstructible by Corollary 6.5. On the other hand, we have ρn = 2,
therefore Theorem 4 in [PZ2] implies strong reconstructibility under the same assumption µ ≥ 1. Note also
that for each µ, there exists a 1-dimensional complex family of simple (g, k)-modules with minimal k-type
V(µ). These modules are multiplicity-free; a self-contained purely algebraic description of these modules
is given in [PS].

We now consider the case µ = 0.

Proposition 8.5. For any infinite-dimensional simple (g, k)-module M with minimal k-type C = V(0) (i. e. spherical
simple (g, k)-module), there exists an h-module E such that

M ' F1(p,E).

Proof As a k-module, M is isomorphic to
⊕

j∈Z≥0
V(2 j), and there is no finite-dimensional simple

g-module with the same central character as M (see for instance [PS]).
Now choose a 1-dimensional h-module E (in the case we consider, m = h) such that ω = −2 and

F1(p,E) has the same central character as M. Then F0(p,E) = 0, since otherwise F0(p,E) would be a finite-
dimensional (g, k)-module with the same central character as M. By an application of the Euler characteristic
principle [PZ1, Theorem 11], F1(p,E) is isomorphic as a k-module to

⊕
j∈Z≥0

V(2 j). Therefore, F1(p,E) has
the same central character and the same k-character as M, i.e. M � F1(p,E). �

Note that modules M as in Proposition 8.5 are not strongly reconstructible. Indeed, if the central
character of M is regular, it is not difficult to show that there are precisely two 1-dimensional modules
E1 and E2 such that M ' F1(p,Ei) for i = 1, 2. In addition, in this case H1(n,M)ω=−2 � E1 ⊕ E2. In the
case of a singular central character H1(n,M)ω=−2 is a non-trivial self-extension of the unique 1-dimensional
m-module E such that M ' F1(p,E).

Finally, it is true that any simple (g, k)-module for the pair considered is weakly reconstructible. We
also remark that for any µ ≥ 0, F1(p,E) can be either irreducible or reducible.

8.3. g = sl(3), k is a root sl(2)-subalgebra. Let g = sl(3) and k be the sl(2)-subalgebra of g generated by
the root spaces g±(ε1−ε2). The subalgebra k is regular in g and k̃ = k ⊕ C(k) is a symmetric subalgebra of g
isomorphic to gl(2).

The parabolic subalgebra p is a Borel subalgebra with roots ε1 − ε3, ε3 − ε2 and ε1 − ε2. Hence
ρ̃n = ε1 − ε2, ρn = 2, and any simple (g, k)-module M of finite type over k is strongly reconstructible for
µ ≥ ρn − 1 ≥ 1 by Theorem 4 in [PZ2].

On the other hand, λ1 = 1, λ2 = 1, hence Corollary 6.3 above implies the strong reconstructibility
under the same assumption µ ≥ 1. For completeness we note that for a k-type V(µ̃) of k̃, a necessary, but
not sufficient condition for V(µ̃) to be generic is that µ̃(h) ≥ 1.

Next, ρ⊥n = 1
2 ((ε1 − ε3) + (ε3 − ε2))(h) = 1

2 (ε1 − ε2)(h), and hence 2ρ⊥n = 2.
Fix µ ∈ Z≥1. As k is regular in g, by Theorem 4 of [PZ2] there exists a bijection between isomorphism

classes of simple (g, k)-modules with lowest k-type µ and h-weights ν such that ν(h) = µ−2. If k is a generator
of C(k), observe that ν(k) is a free continuous parameter of ν.

An Iwasawa parabolic subalgebra pI ⊂ g relative to k̃ ⊂ g is a Borel subalgebra of g. Hence a
finite-dimensional simple pI-module L is 1-dimensional. Write pI = hI⊃+ nI, and L = Lχ for χ ∈ h∗I .

Proposition 8.6. The principal series module X(pI,Lχ) has finite type over k and has lowest k-type C = V(0).
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Proof By Frobenius reciprocity for the principal series,

(9) Homk̃(V(µ̃),X(pI,Lχ)) � Homk̃∩pI
(V(µ̃),Lχ).

The right hand side can be computed explicitly. Write t̃ = t + Z(k̃), t̃ being a Cartan subalgebra of k̃
with basis h and k. Let ζ ∈ t̃∗ satisfy ζ(h) = 0, ζ(k) = 1. Then {ρ, ζ} is the basis of t̃∗ dual to the basis {h, k} of
t̃. If V(µ̃) is a k̃-type we can now write µ̃ = aρ + bζ, with a ∈ Z≥0 and b ∈ C.

Next, k̃ ∩ pI is a toral subalgebra of t̃ and is spanned over C by hI := 3h + k. The eigenvalues of hI in
V(µ̃) are 3a + b − 6 j for j ∈ Z≥0, 0 ≤ j ≤ a, all of multiplicity one.

The single eigenvalue of hI in Lχ is χ(hI). Hence, HomChI (V(µ̃),Lχ) , 0 precisely when there exists
j ∈ N with 0 ≤ j ≤ a such that 3a + b − 6 j = χ(hI) ∈ C. Thus, by Frobenius reciprocity, V(µ̃) is a k̃-type of
X(pI,Lχ) iff there exists j ∈ Z≥0 with 0 ≤ j ≤ a such that b = χ(hI) − 3a + 6 j. As a consequence, if V(µ̃) is a
k̃-type of X(pI,Lχ), then χ(hI) − 3a ≤ b ≤ χ(hI) + 3a.

If we restrict the action on X(pI,Lχ) from k̃ to k we see that the multiplicity of V(a) in X(pI,Lχ) is
a + 1 = dim V(a). In Figure 1 we indicate the convex hull of the k̃-support of X(pI,Lχ). In general, χ(hI) ∈ C,
but in the figure we take χ(hI) > 0.

Figure 1

�

Proposition 8.7. There exists an open dense subset U ⊂ h∗I such that X(pI,Lχ) is simple and not weakly recon-
structible for every χ ∈ U.

Proof The existence of an open dense subset U′ ⊂ h∗I such that X(pI,Lχ) is simple for χ ∈ U′ is
established in [Kra]. Moreover, this implies the claim as the set of weakly reconstructible modules depends
on one complex and one integer parameters, while the set of irreducible principal series modules depends
on two complex parameters. �

Corollary 8.8. The bound µ ≥ 1 is sharp relative to weak (and also strong) reconstruction for (g, k)-modules of finite
type over k.

For a classification of simple (g, k̃)-modules, see [Kra].

8.4. g = sl(3), k is a principal sl(2)-subalgebra. Let g = sl(3) and k = so(3), the principal sl(2)-subalgebra of g.
The subalgebra k is regular in g and it is a symmetric subalgebra of g. The parabolic subalgebra p is a Borel
subalgebra and has positive roots ε1 − ε2, ε2 − ε3 and ε1 − ε3. Hence, ρ̃n = ε1 − ε3. Moreover, it is easy to
check that ρn = 4, which shows that µ ∈ Z>0 is generic if µ ≥ ρn − 1 = 3. On the other hand, λ1 = 4, λ2 = 2,
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so the condition µ ≥ 1
2 (λ1 +λ2) is equivalent to the same inequality: µ ≥ 1

2 (4 + 2) = 3. Furthermore, we have
2ρ⊥n = 4.

Fix µ ∈ Z≥3. By Theorem 4 of [PZ2], there exists a bijection between isomorphism classes of simple
(g, k)-modules with lowest k-type µ and h-weights ν such that ν(h) = µ − 4. If k is a generator of k⊥ ∩ h,
observe that ν(k) is a free continuous parameter of ν.

Let pI ⊂ g be an Iwasawa parabolic subalgebra relative to k. The principal series X(pI,Lχ) has two free
complex parameters. Let Iχ be the sum in X(pI,Lχ) of the k-types V(0),V(2),V(4), .... Since g � k ⊕ V(4), it is
easy to see that Iχ is a g-submodule of X(pI,Lχ) (see for instance [V2, Ch. 4]). A much deeper fact is that Iχ
splits as a direct summand of two submodules Jχ and Kχ, where the lowest k-type of Jχ is 0 and the lowest
k-type of Kχ is 2. Furthermore, we have the following.

Proposition 8.9. There exists an open dense subset U ⊂ h∗I such that Kχ, for χ ∈ U, is simple and not weakly
reconstructible.

Proof The existence of an open dense subsetU′ ⊂ h∗I , such that the modules Jχ and Kχ are simple for
χ ∈ U′, is established in [V2, Ch. 8]. This implies the claim as (similarly to the proof of Proposition 8.7) the
set of weakly reconstructible modules depends on one complex and one integer parameters, while the set
of irreducible principal series modules depends on two complex parameters. �

Corollary 8.10. The bound µ ≥ 3 is sharp relative to weak (and also strong) reconstruction for (g, k)-modules of finite
type over k.

8.5. g = sp(4), k is a long root sl(2)-subalgebra. Let g = sp(4). The h-roots of g are±2ε1,±2ε2,±(ε1−ε2),±(ε1+
ε2) ∈ h∗. Let k be the sl(2)-subalgebra generated by g±2ε1 . The nilradical of p has roots ε1 − ε2, ε1 + ε2, 2ε1.
Hence, ρ̃n = 2ε1, ρn = 2, and a weight µ ≥ 0 is generic if µ ≥ ρn − 1 = 1. On the other hand, λ1 = 1, λ2 = 1,
so the condition µ ≥ 1

2 (1 + 1) ≥ 1 is equivalent to the genericity condition. Note that 2ρ⊥n = 2. Finally,
m = t ⊕ C(k), where C(k) is the sl(2)-subalgebra generated by g±2ε2 .

Fix µ ∈ Z≥1. By Theorem 3 of [PZ2], we have a bijection between the following sets:
a) isomorphism classes of simple (g, k)-modules M having finite type over k and lowest k-type µ;
b) isomorphism classes of simple, finite-dimensional m-modules E such that the highest weight ν of

E satisfies ν(h) = µ − 2.
Moreover, if k is a generator of h∩C(k), ν(k) is a free but discrete parameter of ν; in this the fundamental

series of (g, k)-modules depends on two discrete parameters.
Let pI ⊂ g be an Iwasawa parabolic subalgebra relative to the symmetric subalgebra k̃ = k ⊕ C(k). We

can choose a Levi decomposition pI = mI⊃+ nI such that mI ∩ k̃ is the diagonal sl(2)-subalgebra in k̃. Let Lχ be
a simple finite-dimensional mI-module with highest weight χ ∈ h∗I , where hI is a Cartan subalgebra of mI.
The weight χ has one discrete and one continuous parameter.

Proposition 8.11. The principal series module X(pI,Lχ) has finite type over k and has lowest k-type C = V(0).

Proof It is completely analogous to the proof of Proposition 8.6, and Figure 2 is the analogue of Figure
1.

�

Corollary 8.12. Every simple (g, k̃)-module has finite type over k.

Proposition 8.13. If χ is nonintegral as a weight of g, then X(pI,Lχ) is simple and not weakly reconstructible.

Proof See [Co], Theorem 2.3.1. �

Corollary 8.14. The bound µ ≥ 1 is sharp relative to weak (and also strong) reconstruction for (g, k)-modules of finite
type over k.

Proof The set of simple modules of the form X(pI,Lχ) is not countable while the set of simple weakly
reconstructible (g, k)-modules is countable. This implies the claim. �
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Figure 2

8.6. g = sp(4), k is a short root sl(2)-subalgebra. Let g = sp(4) and k be generated by g±(ε1−ε2). Then
ε1(h) = 1, ε2(h) = −1. The nilradical of the parabolic subalgebra p has roots ε1 − ε2, 2ε1 and −2ε2. Hence,
ρ̃n = 3

2 (ε1 − ε2), ρn = 3, and µ ∈ Z≥0 is generic if µ ≥ ρn(h) − 1 = 2. On the other hand, λ1 = 2, λ2 = 2, so the
condition µ ≥ 1

2 (λ1 + λ2) ≥ 2 is equivalent to being generic. Note that 2ρ⊥n = 4. Finally, m = t ⊕ C(k), where
C(k) is the sl(2)-subalgebra generated by g±(ε1+ε2).

Fix µ ∈ Z≥2. Theorem 3 of [PZ2], or equivalently Corollary 6.5, implies that we have a bijection
between the following sets:

a) isomorphism classes of simple (g, k)-modules M having finite type over k and lowest k-type µ;
b) isomorphism classes of simple finite-dimensionalm-modules E such that the highest weight ν of E

satisfies ν(h) = µ − 4.
If h′ is a generator of [gε1+ε2 , g−ε1−ε2], observe that ν(h′) is a free but discrete parameter for ν.
We will exhibit a simple (g, k)-module M of finite type over k such that M has lowest k-type 1 but M is

not weakly reconstructible. Let k̃ = k ⊕ C(k) � gl(2). Let pI be an Iwasawa parabolic subalgebra of g relative
to k̃. This is a Borel subalgebra. Let q be a maximal parabolic subalgebra of g such that q ⊃ pI, q , pI. (There
are two choices for q.) Write q = l⊃+ u, where l is a reductive part of q and u is the nilradical of q. Note that
we can choose l so that l ∩ k = 0 and l ∩ k̃ is a 1-dimensional toral subalgebra of l.

Next, let Lχ be a simple finite-dimensional l-module with hI-highest weight χ. Write Y(q,Lχ) for the
degenerate principal series module Γk̃(HomU(q)(U(g),Lχ)). Since g � k̃ ⊕ 2V(2) as a k-module, Y(q,Lχ) is a
direct sum of two submodules, Y(q,Lχ)0 and Y(q,Lχ)1 corresponding to even highest weights of k and odd
highest weights of k, respectively.

Lemma 8.15. a) Y(q,Lχ) is a (g, k)-module of finite type over k.
b) The lowest k-type of Y(q,Lχ)0 is C = V(0); the lowest k-type of Y(q,Lχ)1 is V(1).
c) We can choose χ so that the central character of Y(q,Lχ) is not equal to the central character of a fundamental

series module for (g, k).

Proof Straightforward calculation. �

Proposition 8.16. The bound µ ≥ 2 is sharp relative to weak reconstruction for (g, k)-modules of finite type over k.

Proof We take M to be a simple quotient of U(g) · (Y(q,Lχ)0[1]) and we chose χ so that M does not have
the central character of a fundamental series module. �
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8.7. g = sp(4), k is a principal sl(2)-subalgebra. Let g = sp(4) and let k be a principal sl(2)-subalgebra. Here
m = h. It is easy to check that ρn = 7, and the results of [PZ2] (see formula (16) in [PZ2]) imply that any
simple (g, k)-module with minimal k-type V(µ) for µ ≥ 6 is strongly reconstructible (and in particular is of
finite type). The same follows from Corollary 6.6 under the weaker assumption that µ ≥ 5.

Since ρ⊥n = 6, λ1 = 6, λ2 = 4, Corollary 6.6 implies that, for any µ ∈ Z≥5, we have a bijection between
the set {ν ∈ h∗ | ν(h) = µ− 12} and the set of isomorphism classes of (g, k)-modules with minimal k-type V(µ).

Proposition 8.17. The bound µ ≥ 5 is sharp relative to the theorem on strong reconstruction for (g, k)-modules of
finite type over k.

Proof In [PS] a simple multiplicity-free (g, k)-module M0 with k-character V(4) ⊕ V(10) ⊕ V(16) ⊕ ...
and central character θM0 = θ 3

2 e1+ 1
2 e2

is exhibited: see equation 6.2 in [PS]. On the other hand, there are 8

fundamental series modules of the form F1(b,E) such that θF1(b,E) = θ 3
2 ε1+ε2

. A non-difficult computation
shows that their respective minimal k-types are V(10),V(9),V(8),V(5),V(5),V(2),V(1) and V(0). This shows
that M0 is not strongly reconstructible. �

We do not know whether the bound µ ≥ 5 is sharp relative to weak reconstruction. The following
examples demonstrate that Theorem 7.5 does not extend to the case 0 ≤ µ < λ1

2 .
Example 1. There is a unique 1-dimensional b-module E0 such that θF1(b,E0) = θ 3

2 ε1+ε2
and such that

the minimal k-type of F1(b,E0) is V(0). By direct computation, X0 = R1Γk,t(Lb(E0)) is multiplicity free over k.
By comparison with the simple multiplicity free modules discussed in [PS], we conclude that chkX0 is the
sum of two simple characters. By the Duality Theorem and the fact that X0 is multiplicity free, we conclude
that X0 is the direct sum of two simple submodules with lowest k-types V(0) and V(4) respectively.

This decomposition is consistent with Conjecture 7.4. Moreover, the proper inclusions of (g, k)-
modules F̄1(b,E0) ⊂ R1Γk,t(Lb(E0)) ⊂ F1(b,E0) demonstrate that the inclusions discussed in Proposition 7.3
b) are generally proper.

Example 2. There is a unique 1-dimensional b-module E1 such that θF1(b,E1) = θ 3
2 ε1+ε2

and the minimal

k-type of F1(b,E1) is V(1). As in Example 1, we find that R1Γk,t(Lb(E1)) is a direct sum of two simple
multiplicity free (g, k)-modules with lowest k-types V(1) and V(3) respectively.

9. Towards an equivalence of categories

Recall the categories Cp̄,t,n and Ck,n introduced in Section 7. Proposition 7.2 and Proposition 7.8 imply
that R1Γk,t is a well-defined faithful and exact functor between Cp̄,t,n+2 and Ck,n for n ≥ 0.

Conjecture 9.1. Let n ≥ 1
2 (λ1 + λ2). Then R1Γk,t is an equivalence between the categories Cp̄,t,n+2 and Ck,n.

Theorem 7.5 implies that if n ≥ λ1
2 , the simple objects L(E) of the category Cp̄,t,n+2 are being mapped

by R1Γk,t into simple objects of Ck,n, and Corollary 6.4 ensures that, under the stronger condition n ≥ λ1+λ2
2 ,

R1Γk,t induces a bijection on the isomorphism classes of simple objects of Cp̄,t,n+2 and Ck,n.
Conjecture 9.1 implies the existence of an isomorphism

Ext1
Cp̄,t,n+2

(L(E1),L(E2)) � Ext1
g(R

1Γk,t(L(E1)),R1Γk,t(L(E2)))

for any simple objects L(E1),L(E2) of Cp̄,t,n+2 where n ≥ 1
2 (λ1 + λ2). We have checked the existence of such

an isomorphism by direct computations in the cases of subsections 8.2 and 8.4.
In conclusion we note that it is easy to check that Conjecture 9.1 holds for the case when k = g � sl(2).

In this case 1
2 (λ1 + λ2) = 0 and R1Γk,t is an equivalence of the categories Cp̄,t,n+2 and Ck,n for any n ≥ 0.
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