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Abstract. This is an overview of basic properties of spherical varieties, based

on a talk given at the Mathematisches Forschungsinstitut Oberwolfach dur-

ing the MiniWorkshop “Spherical varieties and Automorphic representations”,
May 2013.

Let G be a reductive connected complex algebraic group, and X a normal irre-
ducible complex algebraic variety equipped with an action of G.

In the paper [4], D. Luna and T. Vust introduced an invariant of such an action,
with the goal of giving a sort of measure to which extent the properties of the G-
action determine the geometry of the variety. This invariant, called the complexity
of X and denoted by c(X), is defined as the minimal codimension of a B-orbit on
X, where B is a Borel subgroup of G. The idea is that the lower the complexity is,
the more influence the symmetries of X induced by G have on the geometry of X
itself.

Under this point of view varieties of complexity zero are the simplest cases of
G-varieties, yet include many varieties that are classically known and studied in the
theory of reductive groups. More precisely, normal varieties of complexity zero are
called spherical varieties, and have been studied extensively in the last 30 years.

The assumption of normality is of technical nature, but so fundamental for the
theory that only in the last few years the first results on some non-normal com-
plexity zero varieties appeared in the literature (see e.g. [2]). For the purposes of
this report, we may underline that a useful consequence of normality is that X is
covered by quasi-affine G-stable open subsets (see [6, Lemma 8]).

Examples of spherical varieties are complete homogeneous spaces X = G/P ,
where P is a parabolic subgroup of G; toric varieties, where in this case G = (Gm)n

is an algebraic torus; symmetric homogeneous spaces X = G/Gθ where θ : G→ G
is an involution. We report some other examples.

(1) G = SL(2) × SL(2) × SL(2) and X = G/diag(SL(2)) (notice that such a
homogeneous space is not spherical if a semisimple group of rank higher
than 1 is used instead of SL(2)).

(2) X = G/U where U is a maximal unipotent subgroup of G.
(3) X = SL(3)/H with H = TUα1+α2 , where T ⊂ B is a maximal torus, α1, α2

are simple roots associated to T and B, and Uα1+α2 is the one dimensional
unipotent subgroup of B associated to α1 + α2.

(4) The projective space of 2-by-2 matrices P(M2×2), with G = SL(2)× SL(2)
acting by left and right multiplication.

Sphericity is equivalent to various other properties, and has strong consequences
on the G- and B-action on X. We summarize in the next two theorems some basic
facts, and for other equivalent definition of sphericity we refer to Chapter 5 of [7].
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Theorem 1 ([9]). Let X be a normal irreducible G-variety. If X is affine, then X
is spherical if and only if the ring of regular functions C[X] is a multiplicity-free G-
module, i.e. any two distinct irreducible submodules are non-isomorphic. In general,
X is spherical if and only if the space of global sections Γ(X,L) is a multiplicity-free
G-module, for all linearized line bundle L on X.

Theorem 2 ([8] and [1]). Let X be a spherical G-variety. Then G and B have a
finite number of orbits on X, and the closure of any G-orbit is a spherical G-variety.

We remark that in general the inequality c(Z) ≤ c(X) holds for all Z closed,
irreducible, B-stable subset of X, without assuming X spherical. This implies the
finiteness of the number of B- and G-orbits whenever c(X) = 0. On the other
hand, if Y is also such a subset and Z ⊂ Y holds, then the inequality c(Z) ≤ c(Y )
is not true in general. A counterexample is found in the variety P(M2×2) under the
action of G = SL(2) by left multiplication.

Several discrete invariants of a spherical G-variety X can be naturally defined.
Due to the central role of Borel subgroups in the representation theory of G, most
invariants involve the action of B:

(1) the set ofB-eigenvalues of rational functions (onX) that areB-eigenvectors;
it is a subgroup, denoted by Λ(X), of the group of characters of B, and its
rank is by definition the rank of X as a spherical variety;

(2) the vector space Λ∗
Q(X) = HomZ(Λ(X),Q);

(3) the (finite) set D(X) of all B-stable but not G-stable prime divisors of X,
called colors.

A spherical variety X contains a dense G-orbit, which we denote by X0, and X
is also called an embedding of X0. Then the above invariants actually depend only
on X0; this can be made precise also for colors, e.g. replacing a color by its generic
point.

Notice that a B-eigenvector fχ ∈ C(X) is determined by its B-eigenvalue χ ∈
Λ(X) up to multiplication by a constant. Moreover, any Q-valued discrete valuation
ν : C(X)∗ → Q (over the constant functions) induces an element ρ(ν) of Λ∗

Q(X), by
requiring that ρ(ν) take the value ν(fχ) on χ ∈ Λ(X).

One may apply this construction to the valuation associated with any prime
divisor on X, but the advantage of considering valuations is that they are defined
on C(X0) = C(X) regardless of whether they come from some prime divisor.

Under this point of view G-invariant valuations are particularly useful in de-
scribing the difference set X \X0: since it is G-stable, the valuation associated to
any prime divisor contained in X \X0 is G-invariant.

Invariant valuations are also strictly related to the little Weyl group, a crucial
invariant of a spherical variety. The first result in this direction is the following.

Theorem 3 ([5]). Let X be a spherical variety. Then

V (X) = {ρ(ν) | ν is a G-invariant valuation }
is a convex polyhedral cone in Λ∗

Q(X).

In analogy with the classification of toric varieties, embeddings of a fixed spheri-
cal G-homogeneous space X0 can be classified by means of families of convex cones
in the vector space Λ∗

Q(X0). Some data has to be added however, taking into ac-
count the behaviour of colors. We outline this classification, referring to [3] and [4]
for details.
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The role of affine toric varieties is played here by simple spherical varieties, which
are by definition spherical varieties with a unique closed G-orbit.

Indeed, in general if Y ⊆ X is any G-orbit, then

XY,G = {x ∈ X | Gx ⊇ Y }
is open in X, quasi-projective and G-stable, spherical and simple with unique closed
orbit X. Therefore X is covered by simple spherical varieties.

Now to any simple spherical variety X with open orbit X0 and closed orbit Y
we associate two objects:

(1) the cone CX generated in Λ∗
Q(X0) by the image of the valuations associated

to all B-stable prime divisors containing Y ;
(2) the set DX of colors containing Y .

The couple (CX ,DX) is called the colored cone of X. “Admissible” colored cones
are defined combinatorially in [3, §3].

Theorem 4. Let X0 be a spherical G-homogeneous space. The map X 7→ (CX ,DX)
is a bijection between simple embeddings of X0 (up to G-equivariant isomorphisms
that are the identity on X0) and colored cones in Λ∗

Q(X0).

If X is not simple, then we consider its G-orbits Y1, . . . , Yn, and the set of the
colored cones

FX = {(CXYi,G
,DXYi,G

) | i ∈ {1, . . . , n}}
This set is called the colored fan of X, and admissible colored fans are also defined
combinatorially in [3, §3].

Theorem 5. Let X0 be a spherical G-homogeneous space. The map X 7→ FX is
a bijection between embeddings of X0 (up to G-equivariant isomorphisms that are
the identity on X0) and colored fans in Λ∗

Q(X0).
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2, 186–245.

[5] F. Pauer, “Caracterisation valuative” d’une classe de sous-groupes d’un groupe algébrique,
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