Modular Representation Theory of Endomorphism Rings

Natalie Naehrig

Lehrstuhl D für Mathematik
RWTH Aachen University

Bad Honnef, April 2010
Assumptions: Let G be a finite group and k be an algebraically closed field with characteristic $p > 0$.
Assumptions: Let G be a finite group and k be an algebraically closed field with characteristic $p > 0$.

Definition and Remark

Let X be an indecomposable kG-module.

1. Let $H \leq G$. Then X is called H-projective, if $X \mid (X_H)^G$.
2. Any minimal subgroup Q of G such that X is Q-projective is called a vertex of X.
3. Vertices are p-subgroups of G. The set of vertices of X is a conjugacy-class of G.
Alperin’s Weight Conjecture

Theorem (Green Correspondence)

Let $Q \leq G$ be a p-subgroup and $N_G(Q) \leq H \leq G$. Then there is a one-to-one-correspondence between

$$\{X : X \text{ indecomposable } kG\text{-module with vertex } Q\} \cong \{Y : Y \text{ indecomposable } kH\text{-module with vertex } Q\}$$

given via

1. $X_H = f(X) \oplus Z$, where each indecomposable direct summand of Z has a vertex in $\{Q^g \cap H : g \in G \setminus H\}$,

2. $Y^G = g(Y) \oplus W$, where each indecomposable direct summand of W has a vertex in $\{Q^g \cap Q : g \in G \setminus H\}$.
Definition

A weight for G is a tupel (Q, S), where Q is a p-subgroup of G and S is a simple $kN_{G}(Q)$-module with vertex Q. In this case, we call S a weight module and the Green correspondent $g(S)$ of S in G a weight Green correspondent (WGC).
Alperin’s Weight Conjecture

Definition

A weight for G is a tupel (Q, S), where Q is a p-subgroup of G and S is a simple $kN_G(Q)$-module with vertex Q. In this case, we call S a weight module and the Green correspondent $g(S)$ of S in G a weight Green correspondent (WGC).

- Weights are understood up to the natural equivalence \sim induced by conjugation of G.
- (Q, S) is a weight if and only if S is a simple and projective $kN_G(Q)/Q$-module.
- Any WGC is (isomorphic to) a direct summand of the permutation module k^G_P, where $P \in \text{Syl}_p(G)$.
Conjecture (Alperin’s Weight Conjecture, 1987)

The number of simple kG-modules (up to isomorphism) is equal to the number of weights for G (up to equivalence).
Let $Y := k^G_P = \bigoplus_{i=1}^n Y_i$ be a decomposition of k^G_P into indecomposable direct summands and put $E := \text{End}_{kG}(Y)$.

For $\varphi \in E$, $\varphi(y)$ denotes the image of $y \in Y$ under φ.

The Hom-Functor $\text{Hom}_{kG}(Y, -) : \text{mod-}kG \to \text{mod-}E$ induces a decomposition of E_E into the PIMs $P_i := \text{Hom}_{kG}(Y, Y_i)$ (Fitting Correspondence).

Of course, $\text{hd}(P_i)$ is a simple E-module, but $\text{soc}(P_i)$ is in general not simple.
Computational Experiments

With the computer algebra programs GAP, MeatAxe:
With the computer algebra programes GAP, MeatAxe:

- Construct $Y = k^G_P$, $Y = \bigoplus_{i=1}^n Y_i$, E_E, $E_E = \bigoplus_{i=1}^n P_i$.
- Analyze $\text{hd}(Y_i)$, $\text{soc}(Y_i)$, $\text{hd}(P_i)$, $\text{soc}(P_i)$.
- Determine character table, the Cartan- and decomposition matrix of E.
Computational Experiments

With the computer algebra programs GAP, MeatAxe:

- Construct $Y = k_G^G$, $Y = \bigoplus_{i=1}^n Y_i$, E_E, $E_E = \bigoplus_{i=1}^n P_i$.
- Analyze $\text{hd}(Y_i)$, $\text{soc}(Y_i)$, $\text{hd}(P_i)$, $\text{soc}(P_i)$.
- Determine character table, the Cartan- and decomposition matrix of E.

Observation

For almost all groups analyzed so far:

$$|\{\text{simple constituents of } \text{soc}(E_E)\}| \approx |\{\text{simple } kG\text{-modules}\}| \approx |\{\text{weights for } G\}|$$
Computational Experiments

With the computer algebra programs GAP, MeatAxe:

- Construct $Y = k^G_P$, $Y = \bigoplus_{i=1}^n Y_i$, E_E, $E_E = \bigoplus_{i=1}^n P_i$.
- Analyze $\text{hd}(Y_i)$, $\text{soc}(Y_i)$, $\text{hd}(P_i)$, $\text{soc}(P_i)$.
- Determine character table, the Cartan- and decomposition matrix of E.

Observation

For almost all groups analyzed so far:

\[
\left| \left\{ \text{simple constituents of } \text{soc}(E_E) \right\} / \cong \right| \quad \bigg| \bigg| \quad \left| \left\{ \text{simple } kG\text{-modules} \right\} / \cong \right| = \left| \left\{ \text{weights for } G \right\} / \cong \right|
\]

Exception: M_{11} in characteristic 3.
From this, the following questions and ideas arise:

- Generalize analysis to more general modules than k^G_P, e.g. $\bigoplus k^G_{Q_i}$ for certain p-subgroups Q_i of G.
- Which role does the Hom-functor, and especially its evaluation at a simple kG-module play?
- Characterize families of groups for which the observation hold.
M_{11} in characteristic 3

$p = 3$, $G = M_{11}$, $P \in \text{Syl}_3(G)$, $|G| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$

<table>
<thead>
<tr>
<th>k^G_P</th>
<th>1</th>
<th>10</th>
<th>54</th>
<th>11^2</th>
<th>551</th>
<th>552</th>
<th>65_1^2</th>
<th>65_2^2</th>
<th>992</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>1</td>
<td>101</td>
<td>101</td>
<td>52</td>
<td>51</td>
<td>103</td>
<td>102</td>
<td>10324</td>
<td>24</td>
</tr>
<tr>
<td>soc</td>
<td>1</td>
<td>101</td>
<td>101</td>
<td>51</td>
<td>52</td>
<td>102</td>
<td>10224</td>
<td>103</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_E</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>3^2</th>
<th>71</th>
<th>72</th>
<th>9^2_1</th>
<th>9^2_2</th>
<th>11^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>k^G_P</td>
<td>1</td>
<td>10</td>
<td>54</td>
<td>11</td>
<td>551</td>
<td>552</td>
<td>651</td>
<td>652</td>
<td>99</td>
</tr>
<tr>
<td>hd</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>21</td>
<td>14</td>
<td>15</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>soc</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13142124</td>
<td>22</td>
<td>2224</td>
<td>1523</td>
<td>24</td>
</tr>
</tbody>
</table>
Generalize k^G_P to $k^G_P \oplus k^G_Q$, where $|Q| = 3$.

$Y := (k^G_P \oplus k^G_Q)/(\text{Defect 0, multiplicities})$
\[Y := \left(k_P^G \oplus k_Q^G \right) / \text{(Defect 0, multiplicities)} \]

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>1</th>
<th>55_1</th>
<th>11</th>
<th>66</th>
<th>126_1</th>
<th>120</th>
<th>126_2</th>
<th>54^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>1</td>
<td>1</td>
<td>5_1</td>
<td>5_2</td>
<td>5_1</td>
<td>5_2</td>
<td>5_2</td>
<td>10_3</td>
<td>5_1</td>
</tr>
<tr>
<td>soc</td>
<td>1</td>
<td>1</td>
<td>5_2</td>
<td>5_1</td>
<td>5_2</td>
<td>5_2</td>
<td>5_1</td>
<td>10_3</td>
<td>5_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>99^*</th>
<th>10</th>
<th>55_2</th>
<th>81_1</th>
<th>65_1</th>
<th>75</th>
<th>65_2</th>
<th>81_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>24</td>
<td>10_1</td>
<td>10_3</td>
<td>10_2</td>
<td>10_2</td>
<td>10_2</td>
<td>10_2</td>
<td>10_3</td>
</tr>
<tr>
<td>soc</td>
<td>24</td>
<td>10_1</td>
<td>10_2</td>
<td>10_2</td>
<td>10_2</td>
<td>24</td>
<td>10_2</td>
<td>10_1</td>
</tr>
</tbody>
</table>

Natalie Naehrig
Modular Representation Theory of Endomorphism Rings
M_{11} in characteristic 3

$$Y := (k^G_P \oplus k^G_Q)/(\text{Defect 0, multiplicities})$$

<table>
<thead>
<tr>
<th>Y</th>
<th>12</th>
<th>1</th>
<th>55_1</th>
<th>11</th>
<th>66</th>
<th>126_1</th>
<th>120</th>
<th>126_2</th>
<th>54*</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>1</td>
<td>1</td>
<td>5_1</td>
<td>5_2</td>
<td>5_1</td>
<td>5_2</td>
<td>5_2</td>
<td>10_3</td>
<td>5_1</td>
</tr>
<tr>
<td>soc</td>
<td>1</td>
<td>1</td>
<td>5_2</td>
<td>5_1</td>
<td>5_2</td>
<td>5_2</td>
<td>5_1</td>
<td>10_3</td>
<td>5_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>99*</th>
<th>10</th>
<th>55_2</th>
<th>81_1</th>
<th>65_1</th>
<th>75</th>
<th>65_2</th>
<th>81_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>24</td>
<td>10_1</td>
<td>10_3</td>
<td>10_2</td>
<td>10_2</td>
<td>10_2</td>
<td>10_2</td>
<td>10_3</td>
</tr>
<tr>
<td>soc</td>
<td>24</td>
<td>10_1</td>
<td>10_2</td>
<td>10_2</td>
<td>10_2</td>
<td>24</td>
<td>24</td>
<td>10_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_E</th>
<th>9_1</th>
<th>2</th>
<th>13</th>
<th>18</th>
<th>26_1</th>
<th>7</th>
<th>26_2</th>
<th>27</th>
<th>9_2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>12</th>
<th>1</th>
<th>55_1</th>
<th>66</th>
<th>126_2</th>
<th>11</th>
<th>126_1</th>
<th>120</th>
<th>54*</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>1</td>
<td>1_2</td>
<td>1_3</td>
<td>1_4</td>
<td>1_5</td>
<td>1_6</td>
<td>1_7</td>
<td>1_8</td>
<td>1_9</td>
</tr>
<tr>
<td>soc</td>
<td>1</td>
<td>1_5</td>
<td>1_1</td>
<td>1_5</td>
<td>1_5</td>
<td>1_7</td>
<td>1_7</td>
<td>1_7</td>
<td>1_9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_E</th>
<th>3</th>
<th>17_1</th>
<th>11</th>
<th>16_1</th>
<th>14_1</th>
<th>17_2</th>
<th>14_2</th>
<th>16_2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>10</th>
<th>99*</th>
<th>55_2</th>
<th>81_1</th>
<th>65_1</th>
<th>75</th>
<th>65_2</th>
<th>81_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd</td>
<td>1_10</td>
<td>1_11</td>
<td>1_12</td>
<td>1_13</td>
<td>1_14</td>
<td>1_15</td>
<td>1_16</td>
<td>1_17</td>
</tr>
<tr>
<td>soc</td>
<td>1_9</td>
<td>1_11</td>
<td>1_17</td>
<td>1_13</td>
<td>1_13</td>
<td>1_13</td>
<td>1_17</td>
<td>1_17</td>
</tr>
</tbody>
</table>
$\mathcal{F} := \text{Hom}_{kG}(Y, -)$ evaluated at simple kG-module - what can happen?
\(\mathcal{F} := \text{Hom}_{kG}(Y, -) \) evaluated at simple \(kG \)-module - what can happen?

- In general: \(\mathcal{F}(S) \) for a simple \(kG \)-module \(S \) not simple.
 For example: \(A_6 \) in characteristic 5: \(\mathcal{F}(8) = \begin{pmatrix} 1 \cr 1 \end{pmatrix} \).

- Even \(\text{soc}(\mathcal{F}(S)) \) may not be simple.
 For example: \(M_{11} \) in characteristic 3. Then \(\mathcal{F}(10_3) = 1_5 \oplus 2_3 \).
Assumptions for this section:
Assumptions for this section:

- Consider some kG-module Y such that
 \[\{ S : S \mid \text{hd}(Y) \text{ simple} \} / \cong = \{ T : T \mid \text{soc}(Y) \} / \cong. \]

- Let $Y = \bigoplus_{i=1}^{n} Y_i$ be a decomposition into indecomposable direct summands.

- Assume: Head of Y_i is simple for all $1 \leq i \leq n$.

- $Y_i \cong Y_j \iff i = j$.

- Set $E := \text{End}_{kG}(Y)$.

Natalie Naehrig
Modular Representation Theory of Endomorphism Rings
Hom-Functor

Assumptions for this section:

- Consider some kG-module Y such that
 \[\{ S : S \mid \text{hd}(Y) \text{ simple} \} / \cong = \{ T : T \mid \text{soc}(Y) \} / \cong. \]

- Let $Y = \bigoplus_{i=1}^{n} Y_i$ be a decomposition into indecomposable direct summands.

- Assume: Head of Y_i is simple for all $1 \leq i \leq n$.

- $Y_i \cong Y_j \iff i = j$.

- Set $E := \text{End}_{kG}(Y)$.

Remark

There is a partial order '\geq_*' on $\{Y_i : 1 \leq i \leq n\}$, given via:

$Y_i \geq_* Y_j$, if and only if there is a surjection $\varphi : Y_i \to Y_j$.
Hom-Functor

Notation:

- Fix $S = \text{hd}(Y_i)$ for some $1 \leq i \leq n$.
- Then $i\varphi_* : Y_i \to S$ may be considered as an element of $F(S) = \text{Hom}_{kG}(Y, S) \leq E$.

Natalie Naehrig
Modular Representation Theory of Endomorphism Rings
Hom-Functor

Notation:

- Fix $S = \text{hd}(Y_i)$ for some $1 \leq i \leq n$.
- Then $i\varphi_* : Y_i \rightarrow S$ may be considered as an element of $\mathcal{F}(S) = \text{Hom}_{kG}(Y, S) \leq E$.

Lemma

(a) Let $\langle \psi \rangle_k \leq \mathcal{F}(S)$ be simple E-submodule. Then ψ is of the form $\psi = i\varphi_*$ for some $1 \leq i \leq n$ such that $\text{hd}(Y_i) \cong S$.

(b) The following are equivalent.

- (i) Y_i is maximal w.r.t. \succeq_* for some $1 \leq i \leq n$.
- (ii) $\langle i\varphi_* \rangle_k$ is a simple E-submodule of $\mathcal{F}(S)$.
Theorem

Let S be a simple socle constituent of Y and assume (possibly after renumbering) that $\text{hd}(Y_k) \cong S$ for all $1 \leq k \leq l$ for some $l \leq n$ and that $\text{hd}(Y_k) \not\cong S$ for all $l + 1 \leq k \leq n$.

(a) The following are equivalent:

(i) The E-submodule $\text{soc}(\mathcal{F}(S))$ has exactly r non-isomorphic constituents.

(ii) Among $\{Y_k : 1 \leq k \leq l\}$ there are exactly r maximal elements with respect to \leq_*.

(b) Let $\langle \psi \rangle_k \leq E_E$ be simple E-submodule. Then there is $1 \leq i \leq n$ such that $\langle \psi \rangle \cong_E \langle \varphi_\ast \rangle$.
Corollary

Assume that for each simple module occurring in the head of Y there is exactly one maximal element with respect to \leq^*.
Corollary

Assume that for each simple module occurring in the head of Y there is exactly one maximal element with respect to \leq^*. Then $\text{soc}(\mathcal{F}(S))$ is a simple E-module for each simple constituent S of $\text{hd}(Y)$. Moreover,

$$\{S : S \mid \text{hd}(Y) \text{ simple}\}/\cong \rightarrow \{T : T \mid \text{soc}(E) \text{ simple}\}/\cong$$

$$S \mapsto \text{soc}(\mathcal{F}(S))$$

is a bijection.
For which families of groups does observation hold?
For which families of groups does observation hold?
Joint work with Gerhard Hiss.
Indecomposable Liftable Modules in Cyclic Blocks

For which families of groups does observation hold?
Joint work with Gerhard Hiss.
Assumptions: Let \(\mathcal{B} \) be cyclic \(kG \)-block with defect group \(Q \).
Question 3*: Which indecomposable \(\mathcal{B} \)-modules are liftable?
For which families of groups does observation hold?
Joint work with Gerhard Hiss.
Assumptions: Let B be cyclic kG-block with defect group Q.

Question 3*: Which indecomposable B-modules are liftable?

Kupisch 1969: Description of indecomposable B-modules in terms of paths on the Brauer tree:
Paths of Type I:

Brauer tree, with multiplicity $m = 3$ of exceptional vertex:
Paths of Type I:
Choose path:
Paths of Type I:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

\[
egin{array}{ccccccccc}
& E_1 & A_2 & A_1 & E_2 & \chi_1 & B_2 & B_1 & \chi_0 & E_3 & \chi_3
\end{array}
\]
Indecomposable Liftable Modules in Cyclic Blocks

Paths of Type I:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

From this, we get the following indecomposable kG-module:
Paths of Type I:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

$$\cdot \quad E_1 \chi_0 \quad E_2 \chi_1 \quad A_2 \quad A_1 \quad E_3 \chi_3$$
Paths of Type I:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

Note: The module Y is of Type I if and only if, $\text{soc}(Y)$ and $\text{hd}(Y)$ have no common constituents.
Paths of Type II:

Brauer tree, with multiplicity $m = 3$ of exceptional vertex:
Indecomposable Liftable Modules in Cyclic Blocks

Paths of Type II:

Choose path:

\[\begin{align*}
E_1 & \rightarrow E_2 & \rightarrow E_3 \\
B_1 & \rightarrow B_2 & \rightarrow \Lambda \\
A_1 & \rightarrow A_2 & \rightarrow \ldots \ldots
\end{align*} \]
Indecomposable Liftable Modules in Cyclic Blocks

Paths of Type II:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

From this, we get the following indecomposable kG-module:
Indecomposable Liftable Modules in Cyclic Blocks

Paths of Type II:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

From this, we get the following indecomposable kG-module:

$$E_2 \quad B_2$$

$$A_1 \quad E_2$$
Paths of Type II:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

From this, we get the following indecomposable kG-module:
Paths of Type II:

Choose marking on path and multiplicity $t = 2 \leq m = 3$:

From this, we get the following indecomposable kG-module:

Note: The module Y is of Type II if and only if, $\text{soc}(Y)$ and $\text{hd}(Y)$ have common constituents.
Let τ be a path of Type I on the Brauer tree of \mathfrak{B}. Then the indecomposable module X constructed from τ is liftable if and only if τ is as in the following figure and one of the following cases occurs:

(a) χ_1 is not the exceptional vertex. Then the character of a lift of X equals χ_1.

\[\begin{array}{ccc}
\cdots & \circ & \circ & \circ & \cdots \\
\chi_0 & E_0 & \chi_1 & E_1 & \\
\end{array} \]
Theorem

Let \(\tau \) be a path of Type I on the Brauer tree of \(B \). Then the indecomposable module \(X \) constructed from \(\tau \) is liftable if and only if \(\tau \) is as in the following figure and one of the following cases occurs:

(a) \(\chi_1 \) is not the exceptional vertex. Then the character of a lift of \(X \) equals \(\chi_1 \).

(b) \(\chi_1 \) is the exceptional vertex, which has multiplicity \(m \). Each of \(E_0 \) and \(E_1 \) occurs \(t \) times as composition factor of \(X \) for some \(1 \leq t \leq m \). The character of any lift of \(X \) is a sum of \(t \) distinct exceptional characters.
Note: If X of Type I, then

- X is uniserial in both cases.
- The head of X is either isomorphic to E_0 or E_1.
- If the head of X is isomorphic to E_0, the successor of E_1 around χ_1 equals E_0, and if the head of X is isomorphic to E_1, the successor of E_0 around χ_1 equals E_1.

Theorem

Let τ be a path of Type II on the Brauer tree. Then the indecomposable module X constructed from τ is liftable if and only if τ satisfies one the following three cases:

Case 1: The vertex χ_0 is a leaf of the Brauer tree.
Let τ be a path of Type II on the Brauer tree. Then the indecomposable module X constructed from τ is liftable if and only if τ satisfies one of the following three cases:

Case 1: The vertex χ_0 is a leaf of the Brauer tree.

Case 2: Either E_{u0} is in the head or in the socle of X. If E_{u0} is in the head of X, the successor of E_0 around χ_0 is E_{u0}. If E_{u0} is in the socle of X, the successor of E_{u0} around χ_0 is E_0.
Let τ be a path of Type II on the Brauer tree. Then the indecomposable module X constructed from τ is liftable if and only if τ satisfies one of the following three cases:

Case 3: The successor of E_{u0} around χ_0 is E_0 and E_{u0} is in the socle of X.

![Diagram of Brauer tree with nodes and edges labeled as χ_{u0}, E_{u0}, χ_{d0}, E_{d0}, χ_0, E_0, χ_1, χ_s, E_s, χ_Λ, and t. The edge from E_{u0} to χ_0 is highlighted.]
Theorem

Let τ be a path of Type II on the Brauer tree. Then the indecomposable module X constructed from τ is liftable if and only if τ satisfies one of the following three cases:

Case 3: The successor of E_{u0} around χ_0 is E_0 and E_{u0} is in the socle of X.

The character of any lift of X equals $\chi_0 + \chi_1 + \cdots + \chi_s + \mu$, where μ is a sum of t distinct exceptional characters.
Thank you for listening!