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Parabolic Subalgebras

G: conn. simply conn. complex semisimple Lie group

g: the Lie algebra of G

H: Cartan subgroup (centralizer of a Cartan subalg. h)

Σ = Σ(g, h): root system, so g = h+
∑

α∈Σ gα

Σ+ = Σ(g, h)+ is a choice of positive root system

Ψ = Ψ(g, h): simple system of roots for Σ+

Φ is an arbitrary subset of Ψ

q = qΦ := qnilp + qred parabolic subalgebra where
qnilp =

∑

Σ+\〈Φ〉 g−α is its nilradical and

qred = h+
∑

〈Φ〉 gα is the Levi (reductive) component

Notation example:
b b b × b b × b b〉
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Parabolic Subgroups

Q = QΦ = {g ∈ G | Ad(g)q = q}: parabolic subgroup of G.

A parabolic subgroup is its own normalizer

Each G–conjugacy class of parabolic subgroups contains
just one of the 2#Ψ groups QΦ

Extremes: Q∅ is a Borel subgroup and QΨ = G

Let πλ be an irreducible finite dimensional representation
of G of highest weight λ. Let vλ be a highest weight vector
and Φ = {ψ ∈ Ψ | 〈λ, ψ〉 = 0}. Then QΦ is the G–stabilizer
of the line vλC. In the action of G on the assoc. complex
projective space, QΦ is the isotropy subgroup of G at [vλ].

Let G0 be a real form of G. Then parabolic subgroup of
G0 means a subgroup that is a real form of a parabolic
subgroup of G.
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Complex Flag Manifolds

the Z = G/Q, Q parabolic in G, are the complex flag
manifolds

Qz and qz: isotropies of G and g at z ∈ Z

Gu: compact real form of G

can assume that Hu := Gu ∩H is a maximal torus in Gu
fact: Gu ∩Q is the centralizer of a subtorus of Hu and is a
compact real form Lu of the reductive part Qred of Q.

Complex flag manifolds Z = G/Q = Gu/Lu are
characterized by any of
Z = G/Q is a complex homogeneous projective variety
Z = Gu/Lu is a compact simply connected
homogeneous Kähler manifold
Z = Gu/Lu where Lu is the centralizer of a torus
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Homogeneous Vector Bundles

In general: let A/B be a homogeneous space and
β : B → End (Eβ) a linear representation

Define Eβ = A×β Eβ where
A×β Eβ = (A× Eβ)/{(ab, v) = (a, β(b)v)} for a ∈ A, b ∈ B.

Then µ : Eβ → A/B, by µ[a, v] = aB, is an
A–homogeneous vector bundle with typical fiber Eβ on
which B acts by β

Sections are given by f : A→ Eβ with f(ab) = β(b)−1f(a).

This works w/o change in the categories C0, Ck and C∞.

For the holomorphic category, one must define a complex
structure on Eβ for which there are sufficiently many local
holomorphic sections. This means local sections
annihilated by antiholomorphic vector fields on A/B.
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Borel–Weil Theorem

Again, G is a connected complex semisimple Lie group,
Q is a parabolic subgroup and Z = G/Q complex flag

τλ is an irreducible representation of Q with highest
weight λ and representation space Eλ
Eλ → Z = G/Q is the associated homogeneous
holomorphic vector bundle and O(Eλ) → Z is the sheaf of
germs of holomorphic sections.

Borel–Weil Theorem. Let H0(Z;O(Eλ)) denote the space of
global holomorphic sections of Eλ → Z. If λ is
Σ+–dominant, i.e. 〈λ, ψ〉 ≧ 0 for all ψ ∈ Ψ, then the action
of G on the H0(Z;O(Eλ)) is the irreducible representation
of G with highest weight λ.
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Proof of Borel–Weil

Recall q = qred + qnil with gu ∩ q = lu where l = qred.

Λ :=
{

ν ∈ h∗
∣

∣

∣

2〈ν,ψ〉
〈ψ,ψ〉 integer ≧ 0

}

, highest weights ν of

irreducible representations πν of G.

H0(Z;O(Eλ)) = (L2(Gu/Lu)⊗ Eλ)
qnil

=
∑

ν∈Λ((Vν ⊗ V ∗
ν ⊗ Eλ)

l)q
nil

=
∑

ν∈Λ((Vν ⊗ V ∗
ν ⊗ Eλ)

qnil

)l

using the Peter–Weyl Theorem
and because l = qred normalizes qnil

=
∑

ν∈Λ(Vν ⊗ (V ∗
ν ⊗ Eλ)

qnil

)l =
∑

ν∈Λ(Vν ⊗ E∗
ν ⊗ Eλ)

l

because qnil ignores Eλ and pushes V ∗
ν to E∗

ν

=
∑

ν∈Λ Vν ⊗ (E∗
ν ⊗ Eλ)

l = Vλ as G–module.
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Bott–Borel–Weil Theorem

W = Wg,h: Weyl group, generated by reflections in the
roots, wα : ν 7→ ν − 2〈ν,α〉

〈α,α〉 α

ρ: half the sum of the positive roots

if w ∈ W then length ℓ(w) = #{α ∈ Σ+ | −w(α) ∈ Σ+}
if λ ∈ h∗ nonsingular (λ 6⊥ α for α ∈ Σ) then q(λ) = ℓ(w)
where w = wλ ∈ W s.t. 〈w(λ), α〉 > 0 for every α ∈ Σ+

Bott–Borel–Weil Theorem Let λ ∈ h∗, highest weight of a
representation τλ of Q, defining Eλ → Z. If λ+ ρ is
singular then every Hq(Z;O(Eλ)) = 0. If λ+ ρ is
nonsingular then Hq(Z;O(Eλ)) = 0 for q 6= q(λ+ ρ), and
Hq(λ+ρ)(Z;O(Eλ)) is the irreducible G–module of highest
weight wλ+ρ(λ+ ρ)− ρ.
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Proofs

Bott’s proof of the Bott–Borel–Weil Theorem combines
the Borel–Weil Theorem, the Leray spectral sequence,
and the Kodaira Vanishing Theorem. It is an analytic
proof based on the theory of compact Kähler manifolds.

Kostant’s proof is based more on the structure of
parabolic subalgebras q ⊂ g (new at the time) and his
idea of looking at Lie algebra cohomology.

More recent proofs are based on Lie algebra cohomology
and/or the Bernstein–Gelfand–Gelfand resolution of
certain modules

Because of time constraints that’s all I’ll say about it.
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Real Group Orbits

G0: real form of G

Qz ∩Qz and qz ∩ qz: complexifications of real isotropies
G0 ∩Qz and g0 ∩ qz

fact: g0 ∩ qz contains a Cartan subalgebra of g0
consequence: only finitely many G0–orbits on Z

consequence: G0 has open orbits on Z

if G0(z) is open then Cartan H0 ⊂ G0 ∩Qz is fundamental
(maximally compact for CSG of G0)

If H0 ⊂ G0 ∩Qz is a fundamental Cartan denote
W (g, h)h0 = {w ∈ W (g, h) | w(h0) = h0}

open orbits are given by a double coset space of the
Weyl group, W (g0, h0)\W (g, h)/W (g, h)h0
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Examples

G0 = SU(p, q) defined by h(z, w) =
∑p

1 ziwi −
∑q

1 zp+iwp+i

Z = {q–dim subspaces of Cp+q}
G0–orbits given by signature (+,−) of h
Open: Di = {z ∈ Z | sign h|z = (i, q − i)}
D0

∼= {W ∈ Cp×q | I −WW ∗ >> 0} bounded symmetric
domain
Closed: S = {z ∈ Z | null h|z = min(p, q)}
Bergman-Shilov boundary of D0

Z = CPn and G0 = SL(n+ 1;R).
Orbits: G0(u+ iv) with u, v ∈ Rn+1

If u, v linearly independent: open orbit G0([e1 +
√
−1e2])

If u, v linearly dependent: closed orbit G0([e1])
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Compact Subvarieties

D = G0(z): open G0–orbit on Z = G/Q

K0: maximal compact subgroup of G0

C0: unique K0–orbit on D that is a complex submanifold

Properties: Can assume C0 = K0(z). Then the “base
cycle” C0 = K(z) ∼= K/(K ∩Q) is a flag manifold

The “cycle space” MD of D is the component of C0 in
{gC0 | g ∈ G and gC0 ⊂ D}
MD is a contractible Stein manifold of known structure

Suppose that G0/K0 is a bounded symmetric domain B.
Then MD is B or B (hermitian holomorphic case) or
B × B (hermitian non–holomorphic case)

More precisely:
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Hermitian Types

Let G0 be simple and of hermitian type: the symmetric
space G0/K0 is an irreducible bounded symmetric domain
B. If D is of holomorphic type in the sense that µ and ν in
the double fibration

G0/(Q
r
0 ∩K0)

D = G0/Q
r
0

�
��	

µ

B = G0/K0

@
@@R

ν

can be made simultaneously holomorphic, then MD is
holomorphically equivalent to B or to B. If D is of
nonholomorphic type in the sense that µ and ν cannot be
made simultaneously holomorphic, then MD

∼= B × B.
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