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Parabolic Subalgebras

D (. conn. simply conn. complex semisimple Lie group T
# g: the Lie algebra of G

H: Cartan subgroup (centralizer of a Cartan subalg. h)

¥ =3(g,h): root system,sog=h+> s 0a

>t =X(g,h)" is a choice of positive root system

U = U(g, h): simple system of roots for X+

® Is an arbitrary subset of ¥

© o o o o 0

q = qq := q"'P 4 gq"¢? parabolic subalgebra where
s 0" =3 o1\ (g 0-a IS its nilradical and

o g4 =ph+ Z@ go IS the Levi (reductive) component

O

: : o—%—o0—o0—%—a
L » Notation example: J
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Parabolic Subgroups
i Q=Qs ={g9g € G| Ad(g)qg = q}: parabolic subgroup of G. T
# A parabolic subgroup is its own normalizer

#® Each G—-conjugacy class of parabolic subgroups contains
just one of the 27V groups Qs

® Extremes: @ is a Borel subgroup and Qg = G

® Let 7, be an irreducible finite dimensional representation
of G of highest weight \. Let v, be a highest weight vector
and ® = {¢y € ¥ | (\,¥) = 0}. Then Q¢ Is the G—stabilizer
of the line v,C. In the action of G on the assoc. complex
projective space, Q¢ IS the isotropy subgroup of G at [v,].

® Let Gy be areal form of G. Then parabolic subgroup of
GGp means a subgroup that is a real form of a parabolic

~ subgroup of G. o
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Complex Flag Manifolds

. N

the Z = G/Q, Q parabolic in GG, are the complex flag
manifolds

® (), and q,: Isotropiesof Gand gat z € 7
® (5. compact real form of G
#® can assume that H, := G, N H 1s a maximal torus in Gy,

o fact: G, N Q Is the centralizer of a subtorus of #, and is a
compact real form L,, of the reductive part Q"¢ of Q.

o Complex flag manifolds 7 = G/Q = G, /L, are
characterized by any of
s 7 = (G/@Q Is a complex homogeneous projective variety

s 7/ =G,/L, 1s a compact simply connected
L homogeneous Kahler manifold

s 7/ =G,/L,where L, Is the centralizer of a torus J
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Homogeneous Vector Bundles

. N

In general: let A/B be a homogeneous space and
5 : B — End (E3) a linear representation

® Define Eg = A x5 Eg where
A xgEg=(Ax Eg)/{(ab,v) = (a,B(b)v)} fora e A,b e B.
® Then p:Eg — A/B, by pla,v] = aB, Is an
A-homogeneous vector bundle with typical fiber £z on
which B acts by 3

® Sections are given by f: A — Ejg with f(ab) = 8(b)"' f(a).
® This works w/o change in the categories C?, C* and C*°.

# For the holomorphic category, one must define a complex
structure on Eg for which there are sufficiently many local
holomorphic sections. This means local sections

L annihilated by antiholomorphic vector fields on A/B. J
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Borel-Well Theorem

. N

Again, GG Is a connected complex semisimple Lie group,
() 1s a parabolic subgroup and Z = G/ complex flag

# 7, IS an irreducible representation of () with highest
weight \ and representation space E)

® E, — 7 =_G/Q Is the associated homogeneous
holomorphic vector bundle and O(E)) — Z Is the sheaf of
germs of holomorphic sections.

® Borel-Weil Theorem. Let H'(Z; O(E,)) denote the space of
global holomorphic sections of Ey, — Z. If XIS
Y T—dominant, i.e. (), ¢) = 0 for all ¢» € ¥, then the action
of G on the HY(Z;: O(E,)) is the irreducible representation
of G with highest weight .

o |
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Proof of Borel-Well

® Recall q = "¢ + " with g, N q = [, where [ = q".

o A= {u € bh* zéf”ff; integer 2> O}, highest weights v of

Irreducible representations =, of (.
® HY(Z;O(Ey)) = (L*(Gu/Ly) ® Ey)"

nil nil
» =3 AMeVyeE)) =3 ((VeVyeE)! )
using the Peter—Weyl Theorem
and because [ = g"°¢ normalizes g™

ntl

ntl

» — ZVEA(VV & (Vl/* & EA)CI )[ — ZVEA(VV & E;k & EA)[
because q** ignores E, and pushes V to E?

s =5 _\V,®(E;®E))" =V,asG-module.

-
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Bott—Borel-Welil Theorem

-

W =Wyy: Weyl gro;p, ?enerated by reflections in the
(.

roots, w, : V= v —

p. half the sum of the positive roots
if w € W then length /(w) = #{a € X7 | —w(a) € X7}

If A\ € h* nonsingular (A f « for a € ¥) then ¢()\) = ¢(w)
where w = wy € W s.t. (w(\),a) > 0 forevery a € X

Bott—Borel-Weil Theorem Let A € h*, highest weight of a
representation 7, of ), definingEy, — Z. If A+ p s
singular then every HY(Z; O(E))) =0. lf A+ ps
nonsingular then H4(Z; O(E,)) = 0 for ¢ # q¢(\ + p), and
1) (7. O(E,)) is the irreducible G—-module of highest
weight wy,(A + p) — p.

|
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Proofs

. N

Bott's proof of the Bott—Borel-Weil Theorem combines
the Borel-Well Theorem, the Leray spectral sequence,
and the Kodaira Vanishing Theorem. It is an analytic
proof based on the theory of compact Kahler manifolds.

o Kostant’s proof is based more on the structure of
parabolic subalgebras q C g (new at the time) and his
iIdea of looking at Lie algebra cohomology.

#® More recent proofs are based on Lie algebra cohomology
and/or the Bernstein—Gelfand—Gelfand resolution of
certain modules

# Because of time constraints that’s all I'll say about it.

o |
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Real Group Orbits
.

® ().NQ, and q, Ng,: complexifications of real isotropies
GO M Qz and go .

# fact: gg N g, contains a Cartan subalgebra of g

Gy. real form of G

# consequence: only finitely many Gy—orbits on Z
#® consequence: GGy has open orbits on 7

® If Gy(z) Is open then Cartan Hy C Gy N Q. Is fundamental
(maximally compact for CSG of G)

® If Hy C GoN @, is a fundamental Cartan denote
W(g, )" = {w e W(g,bh) | w(ho) = ho}
# open orbits are given by a double coset space of the

L Weyl group, W (go, bo)\W (g, b)/W (g, h)" J
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Examples

-

® Gy = SU(p,q) defined by h(z,w) =>4 2w0; — > { 2p+iWp+i
s 7 = {q—dim subspaces of CP*7}
s Gy—orbits given by signature (+, —) of 4
e Open: D;={z€ Z|signh|, = (i,q—1)}
o Do ={W e CP*1| I —WW* > 0} bounded symmetric
domain
s Closed: S ={z € Z | nullh|, = min(p, q)}
Bergman-Shilov boundary of D
® 7/ =CP"and Gy = SL(n+ 1;R).
» Orbits: Go(u + iv) with u,v € R*™
s If u,v linearly independent: open orbit Go([e1 + v/ —1es])
s If u,v linearly dependent: closed orbit Gy([e1])

-

|

-p. 11



Compact Subvarieties

-

® D = Gy(z): open Gy—orbiton Z = G/Q
#® Kj: maximal compact subgroup of G

-

#® (. unigue Kyp—orbit on D that is a complex submanifold

# Properties: Can assume Cy = Ky(z). Then the “base
cycle” Cop = K(z) =2 K/(K N Q) Is a flag manifold

® The “cycle space” Mp of D is the component of Cy Iin
{gCy | g € G and gCy C D}

® Mp iIs a contractible Stein manifold of known structure

# Suppose that G/ Ky Is a bounded symmetric domain B5.
Then Mp is B or B (hermitian holomorphic case) or
B x B (hermitian non—holomorphic case)

u More precisely: J
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Hermitian Types

-

Let GGy be simple and of hermitian type: the symmetric
space Gg/ Ky Is an irreducible bounded symmetric domain
B. If D is of holomorphic type in the sense that ; and v In
the double fibration

-

Go/(Qpy N Ko)
y / \
D = Gy /Q); B =Gy/Ky

can be made simultaneously holomorphic, then Mp is
holomorphically equivalent to B or to B. If D is of
nonholomorphic type in the sense that ;4 and v cannot be
made simultaneously holomorphic, then Mp = B x B.

o |
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