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Harish–Chandra Class

To minimize subscripts, in this lecture G will be the real
group, GC is its complexification, g is the Lie algebra of G
and g

C
is the complexification of g.

A real reductive Lie group G is of Harish-Chandra class
or class H if

the component group G/G0 is finite,
the derived group [G0, G0] has finite center, and
if g ∈ G then Ad(g) is an inner automorphism of gC.

The first two conditions can be weakened to allow infinite
center. The third ensures that representations have
infinitesimal characters.

Now G is a real reductive Lie group of class H and Ĝ is its
unitary dual (equivalence classes of irreducible unitary
representations).
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Characters
π ∈ Ĝ, Hπ representation space

π̇ : L1(G) → B(Hπ) by π̇(f)v =
∫
G f(x)π(x)vdx

If f ∈ C∞
c (G) then π̇(f) is trace class and

Θπ : C∞
c (G) → C, by f 7→ trace π̇(f), is a distribution

Θπ is the distribution character of π. It determines π.

Z(g
C
): center of the universal enveloping algebra U(g

C
).

Z(g
C
) acts by scalars on Hπ, dπ(z)v = χπ(z)v

χπ is the infinitesimal character of π

Z(g
C
) = bi–invariant differential operators on G

Θπ is a joint eigendistribution of Z(g
C
): zΘπ = χπ(z)Θπ

Elliptic regularity: Θπ is Cω on regular set G′, finite jumps
across singular set, so is integration against a Cω funct.
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Discrete Series I

π ∈ Ĝ is discrete series if it is a subrep. of the left regular
rep of G on L2(G), i.e. if its matrix coefficients are L2(G).

Ĝdisc 6= ∅ iff G has a compact Cartan subgroup T .

Let π ∈ Ĝdisc. Then π is determined by Θπ|T∩G′. We
parameterize Ĝdisc by parameterizing the Θπ|T∩G′.

Define G† := TG0 = ZG(G
0)G0. The Weyl group

W † := W (G†, T ) equals W 0 := W (G0, T 0) and is a normal
subgroup of W = W (G, T ).

Let χ ∈ T̂ . Since T 0 is commutative, dχ(ξ) = λ(ξ)I where
λ ∈ it∗0 and where I = ident on the rep. space of χ.

Then χ (modulo W = W (G, T )) determines π as follows
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Discrete Series II
Fact: λ is nonsingular: 〈λ, α〉 6= 0 for all α ∈ Σ.

π0χ ∈ Ĝ0
disc has distribution character such that

Θπ0
χ
(x) = ±

∑
w∈W0sign(w)ewλ

∏
α∈Σ+(eα/2−e−α/2)

for x ∈ T 0 ∩G′

π†χ ∈ Ĝ†
disc has distribution character such that

Θπ†
χ
(zx) = χ(z)Θπ0

χ
(x) for x ∈ T 0 ∩G′ and z ∈ ZG(G

0)G0

πχ ∈ Ĝdisc has distribution character supported in G† and
such that
Θπχ |G† =

∑
gG†∈G/G† Θπ†

χ
· Ad(g−1)

Conclusion: Ĝdisc is paramerized by pairs (λ, ζ) modulo

W (G, T ) where λ ∈ it∗ is nonsingular and ζ ∈ ẐG(G0)
equals exp(λ) on ZG0: πχ ↔ (λ, ζ) where χ = ζ ⊗ exp(λ).
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Tempered Series

H Cartan subgroup of G; splits as H = T × A

Any χH ∈ Ĥ splits as χT ⊗ eγ with γ ∈ ia∗

ZG(A) = M × A and T Cartan subgroup of M

Choices Σ+(g, a) and Σ+(m
C
, t

C
) determine Σ+(g

C
, h

C
)

For any such choices p = m+ a+ n is a cuspidal
parabolic subalgebra of g where n =

∑
α∈Σ+(g,a) gα

P = NG(p) = MAN : cuspidal parabolic subgroup of G

If ηχ
T
∈ M̂disc, extend ηχ

T
⊗ eγ to P by man 7→ eγ(a)ηχ

T
(m).

Then πχ := IndG
P (ηχT

⊗ eγ) is independent of choice of
positive root systems

The πχ associated to H form the “H–series” of G
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Plancherel Formula

If H is compact then the H–series is the discrete series

If T is a Cartan subgroup of K, i.e. H is maximally
compact, then the H–series is the “fundamental series”

If A has maximal possible dimension then the H–series is
the “principal series”

The support of Plancherel measure on Ĝ is the union (for
H ∈ Car(G)) of the H–series.

The Plancherel formula for G has form

f(x) =
∑

Car(G)

∫
Ĥ
Θπχ

H
(rxf)dπχ

H

where rxf(y) = f(yx) and dπχ
H

is “Plancherel measure”

for the H–series part of Ĝ.
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Bundle over Open Orbit

Q
C
: parabolic subgroup of G

C
with L = Q

C
∩G compact.

Qred
C

= L
C

and L contains a compact CSG T of G

T = ZG(G
0)T 0 and L = ZG(G

0)L0

Z = G
C
/Q

C
complex flag manifold

D = G(z) ∼= G/L: open G–orbit on Z

χ ∈ T̂ , representation space Eχ:

dχ = λ ∈ it∗ and χ = χ′ ⊗ eλ where χ′ ∈ ẐG(G0),

τ0χ ∈ L̂0 with highest weight λ, and τχ = χ′ ⊗ τ0χ ∈ L̂,
τχ extends to holo. rep. of Q on Eχ

Eλ → Z associated G
C
–homogeneous holomorphic

vector bundle; Eλ|D → D hermitian because L is compact
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Square Integrable Dolbeault Cohomology

O(Eχ) → D: sheaf of germs of holomorphic sections

Hq(D;O(Eχ)): (Dolbeault) sheaf cohomology

Hq
2(D;O(Eχ)): classes with L2(D) representatives

q(β): #{α ∈ Σ+(k
C
, t

C
) | 〈β, α〉 < 0}+

#{α ∈ Σ+(g
C
, t

C
) \ Σ+(k

C
, t

C
) | 〈λ, α〉 > 0}.

Theorem. If λ+ ρ is singular then every Hq
2(D;O(Eχ)) = 0

Theorem. If λ+ ρ is regular and q 6= q(λ+ ρ) then
Hq

2(D;O(Eχ)) = 0

Theorem. If λ+ ρ is regular and w ∈ W (G, T ) such that
〈λ+ ρ, α〉 > 0 for all α ∈ Σ+(g

C
, t

C
) then G acts irreducibly

on H
q(λ+ρ)s
2 (D;O(Eχ)) by the discrete series

representation with parameter w · χ := w(χ)⊗ ew(λ+ρ)
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Other Cohomology Realizations

One can replace Hq(D;O(Eχ)) by the space of square
integrable Eχ–valued harmonic (0, q)–forms on D; the
result is the same.

One can also replace Hq(D;O(Eχ)) by the space of
Eχ–valued harmonic spinors on D; the result is the same.

Let L is reductive but not necessarily compact. Then D is
s–convex (normalization: “Stein” is 0-convex) where
s = dimC0. If E → D is sufficiently negative then
Dolbeault Hq(D;O(Eχ)) = 0 for q 6= s while Hs(D;O(Eχ))
is a nuclear Fréchet space on which G acts irreducibly.

Yet another approach is to consider the cases where L is
reductive but noncompact, and use the resulting
pseudo–Kähler metric on D to construct representations.
This works under limited circumstances. More later.
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Partially Complex Orbits

Every orbit X = G(x) ⊂ Z has constant CR dimension

Holomorphic arc components of X are the equiv classes
under: x ∼ x′ if there is a chain of holomorphic maps
fi : (|z| < 1) → Z with image in X, where x in the first,
where each meets the next, and where x′ in the last.

Let H = T × A ∈ Car(G) and P = MAN an associated
cuspidal parabolic in G. Then there are parabolics Q

C
in

G
C

and orbits X = G(x) ⊂ Z = G
C
/Q

C
such that

the holo arc components S[x] of X are complex in Z

the G–normalizer N[x] of S[x] is open in P

U := M ∩Qx,C is compact and U = ZU (U
0)U0

Theorem G ∩Qx,C = UAN , N[x] = M †AN and S[x] = M †/U

is an open M †–orbit on the complex flag M †
C
/(M †

C
∩Qx,C).
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Partially Complex Bundles

If µ ∈ Û and σ ∈ a∗ then µ⊗ eρa+iσ defines a
G–homogeneous vector bundle Eµ,σ → G/UAN = X

Eµ,σ → X is holomorphic over each holo arc component

K is transitive on the space of holo arc components of X

Λp,q → X: bundle s.t. Λp,q|S[kx]
= (p, q)–form bundle on S[kx]

Hp,q
2 (X;Eµ,σ): Eµ,σ–valued (p, q)–forms ω on X, in other

words sections of Eµ,σ ⊗ Λp,q, such that
ω|S[kx]

harmonic with L2 norm ‖ω|S[kx]
‖ < ∞ a.e. k ∈ K

global square norm ‖ω‖2 :=
∫
K ‖ω|S[kx]

‖2dk < ∞.

Hp,q
2 (X;Eµ,σ) is a Hilbert space with inner product

〈ω, ω′〉 =
∫
K〈ω|S[kx]

, ω′|S[kx]
〉
L
p,q
2

(S[kx];Eµ,σ |S[kx]
)
dk
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Partially Holomorphic Cohomology

Theorem. If dµ is Σ(m
C
, t

C
)–singular then every

H0,q
2 (X;Eµ,σ) = 0

Theorem. If dµ is Σ(m
C
, t

C
)–regular and if q 6= qm(dµ+ ρm)

then H0,q
2 (X;Eµ,σ) = 0

Theorem. If dµ is Σ(m
C
, t

C
)–regular and if q = qm(dµ+ ρm)

then the natural action πµ,σ of G on H0,q
2 (X;Eµ,σ) is the

H–series representation defined by (µ, σ).
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