Flag Manifolds and Representation Theory

Winter School on Homogeneous Spaces and Geometric Representation Theory

Lecture II. Real Group Orbits and Tempered Representations 29 February 2012

Joseph A. Wolf

University of California at Berkeley

Harish–Chandra Class

- To minimize subscripts, in this lecture G will be the real group, $G_{\mathbb{C}}$ is its complexification, \mathfrak{g} is the Lie algebra of G and $\mathfrak{g}_{\mathbb{C}}$ is the complexification of \mathfrak{g} .
- A real reductive Lie group G is of Harish-Chandra class or class H if
 - the component group G/G^0 is finite,
 - the derived group $[G^0, G^0]$ has finite center, and
 - if $g \in G$ then $\operatorname{Ad}(g)$ is an inner automorphism of $\mathfrak{g}_{\mathbb{C}}$.
- The first two conditions can be weakened to allow infinite center. The third ensures that representations have infinitesimal characters.
- Now G is a real reductive Lie group of class H and G is its unitary dual (equivalence classes of irreducible unitary representations).

Characters

- $\blacksquare \pi \in \widehat{G}, \mathcal{H}_{\pi}$ representation space
 - $\dot{\pi}: L^1(G) \to \mathcal{B}(\mathcal{H}_\pi)$ by $\dot{\pi}(f)v = \int_G f(x)\pi(x)vdx$
 - If $f \in C_c^{\infty}(G)$ then $\dot{\pi}(f)$ is trace class and
 - $\Theta_{\pi}: C_c^{\infty}(G) \to \mathbb{C}$, by $f \mapsto \text{trace } \dot{\pi}(f)$, is a distribution
 - Θ_{π} is the *distribution character* of π . It determines π .

 - χ_{π} is the *infinitesimal character* of π

 - Θ_{π} is a joint eigendistribution of $Z(\mathfrak{g}_{\mathbb{C}})$: $z\Theta_{\pi} = \chi_{\pi}(z)\Theta_{\pi}$
 - Elliptic regularity: Θ_{π} is C^{ω} on regular set G', finite jumps across singular set, so is integration against a C^{ω} funct.

Discrete Series I

- $\pi \in \widehat{G}$ is *discrete series* if it is a subrep. of the left regular rep of G on $L^2(G)$, i.e. if its matrix coefficients are $L^2(G)$.
- $\widehat{G}_{disc} \neq \emptyset \text{ iff } G \text{ has a compact Cartan subgroup } T.$
- Let $\pi \in \widehat{G}_{disc}$. Then π is determined by $\Theta_{\pi}|_{T \cap G'}$. We parameterize \widehat{G}_{disc} by parameterizing the $\Theta_{\pi}|_{T \cap G'}$.
- Define $G^{\dagger} := TG^0 = Z_G(G^0)G^0$. The Weyl group
 $W^{\dagger} := W(G^{\dagger}, T)$ equals $W^0 := W(G^0, T^0)$ and is a normal
 subgroup of W = W(G, T).
- Let $\chi \in \widehat{T}$. Since T^0 is commutative, $d\chi(\xi) = \lambda(\xi)I$ where $\lambda \in i\mathfrak{t}_0^*$ and where I = ident on the rep. space of χ .
- Then χ (modulo W = W(G, T)) determines π as follows

Discrete Series II

- **•** Fact: λ is nonsingular: $\langle \lambda, \alpha \rangle \neq 0$ for all $\alpha \in \Sigma$.
- $\pi_{\chi}^{0} \in \widehat{G}_{disc}^{0}$ has distribution character such that • $\Theta_{\pi_{\chi}^{0}}(x) = \pm \frac{\sum_{w \in W^{0}} sign(w)e^{w\lambda}}{\prod_{\alpha \in \Sigma^{+}} (e^{\alpha/2} - e^{-\alpha/2})}$ for $x \in T^{0} \cap G'$
- $\pi_{\chi}^{\dagger} \in \widehat{G^{\dagger}}_{disc}$ has distribution character such that • $\Theta_{\pi_{\chi}^{\dagger}}(zx) = \chi(z)\Theta_{\pi_{\chi}^{0}}(x)$ for $x \in T^{0} \cap G'$ and $z \in Z_{G}(G^{0})G^{0}$

•
$$\Theta_{\pi_{\chi}}|_{G^{\dagger}} = \sum_{gG^{\dagger} \in G/G^{\dagger}} \Theta_{\pi_{\chi}^{\dagger}} \cdot \operatorname{Ad}(g^{-1})$$

• Conclusion: \widehat{G}_{disc} is paramerized by pairs (λ, ζ) modulo W(G, T) where $\lambda \in i\mathfrak{t}^*$ is nonsingular and $\zeta \in \widehat{Z_G(G^0)}$ equals $\exp(\lambda)$ on Z_{G^0} : $\pi_{\chi} \leftrightarrow (\lambda, \zeta)$ where $\chi = \zeta \otimes \exp(\lambda)$.

Tempered Series

- H Cartan subgroup of G; splits as $H = T \times A$
- Any $\chi_{H} \in \widehat{H}$ splits as $\chi_{T} \otimes e^{\gamma}$ with $\gamma \in i\mathfrak{a}^{*}$
- $Z_G(A) = M \times A$ and T Cartan subgroup of M
- Choices $\Sigma^+(\mathfrak{g}, \mathfrak{a})$ and $\Sigma^+(\mathfrak{m}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ determine $\Sigma^+(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$
- ✓ For any such choices p = m + a + n is a cuspidal parabolic subalgebra of g where n = $\sum_{\alpha \in \Sigma^+(q,q)} g_\alpha$
- $P = N_G(\mathfrak{p}) = MAN$: *cuspidal* parabolic subgroup of G
- If $\eta_{\chi_T} \in \widehat{M}_{disc}$, extend $\eta_{\chi_T} \otimes e^{\gamma}$ to P by $man \mapsto e^{\gamma}(a)\eta_{\chi_T}(m)$.
- Then $\pi_{\chi} := \operatorname{Ind}_{P}^{G}(\eta_{\chi_{T}} \otimes e^{\gamma})$ is independent of choice of positive root systems
- The π_{χ} associated to *H* form the "*H*-series" of *G*

Plancherel Formula

- If H is compact then the H-series is the discrete series
- If T is a Cartan subgroup of K, i.e. H is maximally compact, then the H-series is the "fundamental series"
- If A has maximal possible dimension then the H-series is the "principal series"
- The support of Plancherel measure on \widehat{G} is the union (for H ∈ Car(G)) of the H−series.
- \checkmark The Plancherel formula for G has form

$$f(x) = \sum_{Car(G)} \int_{\widehat{H}} \Theta_{\pi_{\chi_H}}(r_x f) d\pi_{\chi_H}$$

where $r_x f(y) = f(yx)$ and $d\pi_{\chi_H}$ is "Plancherel measure" for the *H*-series part of \widehat{G} .

Bundle over Open Orbit

- $Q_{\mathbb{C}}^{red} = L_{\mathbb{C}} \text{ and } L \text{ contains a compact CSG } T \text{ of } G$
- ▶ $T = Z_G(G^0)T^0$ and $L = Z_G(G^0)L^0$
- $\checkmark Z = G_{\rm C}/Q_{\rm C}$ complex flag manifold
- $D = G(z) \cong G/L$: open G-orbit on Z
- $\chi \in \widehat{T}$, representation space E_{χ} :
 - $d\chi = \lambda \in i\mathfrak{t}^*$ and $\chi = \chi' \otimes e^{\lambda}$ where $\chi' \in \widehat{Z_G(G^0)}$,
 - $\tau_{\chi}^0 \in \widehat{L^0}$ with highest weight λ , and $\tau_{\chi} = \chi' \otimes \tau_{\chi}^0 \in \widehat{L}$,
 - τ_{χ} extends to holo. rep. of Q on E_{χ}

Square Integrable Dolbeault Cohomology

- $H^q(D; \mathcal{O}(\mathbb{E}_{\chi}))$: (Dolbeault) sheaf cohomology
- $H_2^q(D; \mathcal{O}(\mathbb{E}_{\chi}))$: classes with $L^2(D)$ representatives
- $\begin{array}{l} \bullet \quad q(\beta) \colon \#\{\alpha \in \Sigma^+(\mathfrak{k}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}) \mid \langle \beta, \alpha \rangle < 0\} + \\ \quad \#\{\alpha \in \Sigma^+(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}) \setminus \Sigma^+(\mathfrak{k}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}) \mid \langle \lambda, \alpha \rangle > 0\}. \end{array}$

• Theorem. If $\lambda + \rho$ is singular then every $H_2^q(D; \mathcal{O}(\mathbb{E}_{\chi})) = 0$

• Theorem. If $\lambda + \rho$ is regular and $q \neq q(\lambda + \rho)$ then $H_2^q(D; \mathcal{O}(\mathbb{E}_{\chi})) = 0$

• Theorem. If $\lambda + \rho$ is regular and $w \in W(G, T)$ such that $\langle \lambda + \rho, \alpha \rangle > 0$ for all $\alpha \in \Sigma^+(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ then G acts irreducibly on $H_2^{q(\lambda+\rho)s}(D; \mathcal{O}(\mathbb{E}_{\chi}))$ by the discrete series representation with parameter $w \cdot \chi := w(\chi) \otimes e^{w(\lambda+\rho)}$

Other Cohomology Realizations

- One can replace $H^q(D; \mathcal{O}(\mathbb{E}_{\chi}))$ by the space of square integrable \mathbb{E}_{χ} -valued harmonic (0, q)-forms on D; the result is the same.
- One can also replace $H^q(D; \mathcal{O}(\mathbb{E}_{\chi}))$ by the space of \mathbb{E}_{χ} -valued harmonic spinors on D; the result is the same.
- Let *L* is reductive but not necessarily compact. Then *D* is s-convex (normalization: "Stein" is 0-convex) where $s = \dim C_0$. If $\mathbb{E} \to D$ is sufficiently negative then Dolbeault $H^q(D; \mathcal{O}(\mathbb{E}_{\chi})) = 0$ for $q \neq s$ while $H^s(D; \mathcal{O}(\mathbb{E}_{\chi}))$ is a nuclear Fréchet space on which *G* acts irreducibly.
- Yet another approach is to consider the cases where L is reductive but noncompact, and use the resulting pseudo-Kähler metric on D to construct representations. This works under limited circumstances. More later.

Partially Complex Orbits

- Every orbit $X = G(x) \subset Z$ has constant CR dimension
- Holomorphic arc components of X are the equiv classes under: $x \sim x'$ if there is a chain of holomorphic maps $f_i: (|z| < 1) \rightarrow Z$ with image in X, where x in the first, where each meets the next, and where x' in the last.
- Let $H = T \times A \in Car(G)$ and P = MAN an associated cuspidal parabolic in G. Then there are parabolics $Q_{\mathbb{C}}$ in $G_{\mathbb{C}}$ and orbits $X = G(x) \subset Z = G_{\mathbb{C}}/Q_{\mathbb{C}}$ such that
 - the holo arc components $S_{[x]}$ of X are complex in Z
 - the G-normalizer $N_{[x]}$ of $S_{[x]}$ is open in P
 - $U := M \cap Q_{x,\mathbb{C}}$ is compact and $U = Z_U(U^0)U^0$
- Theorem G ∩ Q_{x,C} = UAN, N_[x] = M[†]AN and S_[x] = M[†]/U
 is an open M[†]-orbit on the complex flag $M^{\dagger}_{C}/(M^{\dagger}_{C} ∩ Q_{x,C})$.

Partially Complex Bundles

- If $\mu \in \widehat{U}$ and $\sigma \in \mathfrak{a}^*$ then $\mu \otimes e^{\rho_{\mathfrak{a}} + i\sigma}$ defines a *G*-homogeneous vector bundle $\mathbb{E}_{\mu,\sigma} \to G/UAN = X$
- $\mathbb{E}_{\mu,\sigma} \to X$ is holomorphic over each holo arc component
- \checkmark K is transitive on the space of holo arc components of X
- $\Lambda^{p,q} \to X$: bundle s.t. $\Lambda^{p,q}|_{S_{[kx]}} = (p,q)$ -form bundle on $S_{[kx]}$
- $H_2^{p,q}(X; \mathbb{E}_{\mu,\sigma})$: $\mathbb{E}_{\mu,\sigma}$ -valued (p,q)-forms ω on X, in other words sections of $\mathbb{E}_{\mu,\sigma} \otimes \Lambda^{p,q}$, such that
 - $\omega|_{S_{[kx]}}$ harmonic with L_2 norm $\|\omega|_{S_{[kx]}}\| < \infty$ a.e. $k \in K$ • global square norm $\|\omega\|^2 := \int_K \|\omega|_{S_{[kx]}}\|^2 dk < \infty$.
- $H_2^{p,q}(X; \mathbb{E}_{\mu,\sigma})$ is a Hilbert space with inner product

$$\langle \omega, \omega' \rangle = \int_{K} \langle \omega |_{S_{[kx]}}, \omega' |_{S_{[kx]}} \rangle_{L_{2}^{p,q}(S_{[kx]};\mathbb{E}_{\mu,\sigma}|_{S_{[kx]}})} dk$$

Partially Holomorphic Cohomology

- Theorem. If $d\mu$ is $\Sigma(\mathfrak{m}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ -singular then every $H_2^{0,q}(X; \mathbb{E}_{\mu,\sigma}) = 0$
- Theorem. If $d\mu$ is $\Sigma(\mathfrak{m}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ -regular and if $q \neq q_{\mathfrak{m}}(d\mu + \rho_{\mathfrak{m}})$ then $H_2^{0,q}(X; \mathbb{E}_{\mu,\sigma}) = 0$
- Theorem. If $d\mu$ is $\Sigma(\mathfrak{m}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ -regular and if $q = q_{\mathfrak{m}}(d\mu + \rho_{\mathfrak{m}})$ then the natural action $\pi_{\mu,\sigma}$ of G on $H_2^{0,q}(X; \mathbb{E}_{\mu,\sigma})$ is the H-series representation defined by (μ, σ) .