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Abstract. We will give a survey on the classical symmetric R-spaces from

the point of view of projective and polar geometry. We will show that these

spaces are all implicitly discussed in Chow’s paper [Ch] and Dieudonné’s book
[Di].

1. Introduction

W.-L. Chow writes at the beginning of his paper [Ch] that its object is a ‘study
of those symmetric homogeneous spaces (in the sense of E. Cartan) which can
be represented as algebraic varieties.’ In the paper, four classes of spaces over
general fields are studied; one of these classes consists of the Grassmannians and the
other three are related to skew-symmetric and symmetric bilinear forms. Following
Dieudonné’s exposition of Chow’s work in [Di], Chapitre III, one can also consider
Hermitian and skew-Hermitian sesquilinear forms over a possibly noncommutative
field; see also the remarks on p. 50 of [Ch]. Now assuming the ground field to be the
reals R, the complex numbers C, or the quaternions H, our goal will be to show that
these four classes of spaces taken together are precisely the symmetric R-spaces of
classical type. The only references to [Ch] in papers on differential geometry that
we are aware of are in [Na2], [Pe], and [Ta2] where it is pointed out that the classical
compact Hermitian symmetric spaces are among the spaces considered by Chow.
We will discuss these papers in Section 5.

One of the goals of Chow in [Ch] is to generalize the fundamental theorem of
projective geometry to the four classes of spaces he is considering. Let V be a right
vector space of dimension at least three over a field F, which can be noncommu-
tative, and let P (V ) be the corresponding projective space whose points are the
one-dimensional subspaces of V . A line in P (V ) is the set of points in P (V ) consist-
ing of one-dimensional subspaces contained in a given two-dimensional subspace. A
collineation of P (V ) is a line preserving bijection of P (V ) to itself. The fundamen-
tal theorem of projective geometry says in a formulation that is sufficient for our
purposes that a collineation of P (V ) is induced by a semilinear automorphism of
V , i.e., a linear automorphism of V composed with an automorphism of F; see [Ar],
Chapter II, §10 or [Di], Chapitre III, §1. We will write Pn(F) instead of P (Fn+1)
when Fn+1 is the standard right vector space over the field F.

Here we are mostly interested in projective spaces over the fields R, C, and H
and collineations that are diffeomorphisms (or at least homeomorphisms). The real
field R has no nontrivial automorphisms, the continuous automorphism of C are
the identity and the conjugation (but there are uncountably many discontinuous
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automorphisms of C), and, finally, the automorphisms of H are all inner. If the
automorphisms of the ground field are inner, then the collineations of P (V ) are
induced by the linear automorphisms of V . Hence the collineation groups of the
projective spaces Pn(R) and Pn(H) for n ≥ 2 are the projective general linear
groups PGL(n + 1,R) and PGL(n + 1,H) respectively, where PGL(n + 1,F) is by
definition the quotient of the general linear group GL(n+ 1,F) by the kernel of its
action on Pn(F). The group of continuous collineations of Pn(C) is the semi-direct
product PGL(n+ 1,C) o {id,̄ }, where ¯ is the bijection of Pn(C) induced by the
conjugation in C. These collineation groups are noncompact Lie groups.

We would like to stress that the projective spaces Pn(R), Pn(C), and Pn(H)
have two geometric structures that are of interest to us. From the point of view of
differential geometry, they are Riemannian symmetric spaces with compact isom-
etry groups, which we will denote by G. Then they are also projective spaces (as
their name indicates) with noncompact automorphism groups, denoted by L, the
groups of continuous (or differentiable) collineations. Note that L contains G.

In Section 3, we will define (generalized) lines. It will turn out that these general-
ized lines exist in all classical symmetric R-spaces with the exception of the spheres.
In Section 3, we will also define the arithmetic distance between two points as the
minimal length of a chain of lines needed to connect the points. The group of
continuous line or arithmetic distance preserving transformations of symmetric R-
spaces will turn out to be a noncompact Lie group containing the isometry group
of the symmetric space. We will discuss this in Section 4.

The spheres were an exception in the above discussion. Still they have an addi-
tional geometric structure with a noncompact automorphism group. More precisely,
Möbius geometry is the study of the action on Sn of the Möbius group, which by
definition is the projective orthogonal group PO(1, n+ 1) acting on Sn considered
as a quadric in Pn+1(R).1 One can now prove that a not necessarily continuous
circle preserving bijection of Sn belongs to PO(1, n + 1); see [Je] for a proof. An-
other such result is Liouville’s theorem that a conformal diffeomorphism between
connected open sets in Sn for n ≥ 3 is the restriction of a Möbius transformation;
see [Her], p. 52, for a proof.

The question arises when a compact symmetric space admits the action of a
noncompact Lie group that contains its isometry group. More precisely, does a
compact symmetric space G/K, where (G,K) is an almost effective symmetric
pair, admit the action of a noncompact Lie group L containing G. Here we mean
by an almost effective symmetric pair (G,K) that the action of G on G/K has a
discrete kernel. Nagano answered this question in [Na1]. His result is as follows.

Assume we have a compact almost effective symmetric pair (G,K) and a noncom-
pact Lie group L containing G and acting on M = G/K. We assume furthermore
that the action of L on M is indecomposable in the sense that there is no nontrivial
splitting of M into a Riemannian product M1 ×M2 and a splitting of L into a
product L1 × L2 such that L1 acts on M1 and L2 acts on M2. We also assume
that the center of G is at most one-dimensional. Then the main result of [Na1] is

1The equation of Sn as a quadric in Pn+1(R) is x2
1 − x2

2 − · · · − x2
n+1 = 0 in homogeneous

coordinates. Hence Sn is invariant under the action of the orthogonal group O(1, n + 1). The
quotient of O(1, n + 1) by the kernel of its action on Pn+1(R) is the projective orthogonal group

PO(1, n + 1). See 4.3.1 and 4.4 for more details.
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that L is simple and G a maximal compact subgroup of L. In particular, L/G is a
symmetric space of noncompact type into which M is G-equivariantly embedded.

If L is a noncompact simple Lie group and G a maximal compact subgroup of
L, then it is true that L acts on all G-orbits in L/G. More precisely, the G-orbits
in L/G are precisely the quotients L/P where P is a parabolic subgroup of L.
Quotients of the type L/P are called R-spaces2 or generalized flag manifolds. If
L/P = G/K has the property that (G,K) is a symmetric pair, we will refer to it
as a symmetric R-space. The symmetric R-space G/K will be said to be indecom-
posable if L is simple. An indecomposable symmetric R-space is not necessarily an
irreducible symmetric space; see the tables in Section 4 for several examples.

The paper is organized as follows. In Section 2, we review the definition of (σ, ε)-
Hermitian forms and make some remarks on determinants over the quaternions. In
Section 3, we review projective and polar geometries. In Section 4, we come to the
main goal of this paper, which is to discuss the classical symmetric R-spaces from
the point of view of Chow’s paper. In Section 5, we discuss the contributions in
[Pe], [Na2], and [Ta2] to this circle of ideas. Finally, in Section 6, I explain in a
few lines how Sergio Console and I intended in an unfinished project to generalize
some of the results explained in this paper.

2. Some linear algebra

In this section, we first explain some basic facts about bilinear and sesquilinear
forms. Then we make some remarks on the determinant over the quaternions.

2.1. (σ, ε)-Hermitian forms. We will give a short review of basic facts on bilinear
and sesquilinear forms, which we expect to be known over R and C, but maybe less
so over H. A reference that stresses the three fields we are interested in, is [Br],
Kapitel VI; see also [Di], Chapitre I, for a more general discussion.

We will let V denote a right vector space over F where F is R, C, or H. We will
let ᾱ denote the conjugate of α if F is C or H. We recall that zw = w̄z̄ holds in
H, i.e., the conjugation is an antiautomorphism of H. Let σ : F → F either be the
identity or the conjugation in F (in the latter case F is C or H).

A map

f : V × V → F
that is additive in both arguments is said to be a σ-sesquilinear form if

f(xα, yβ) = σ(α)f(x, y)β

for all x and y in V and all α and β in F. If σ is the identity, we call f a bilinear
form, and if σ is the conjugation in F, we call f a sesquilinear form.

It is easy to see that σ must be the conjugation if F = H, i.e., there are no
bilinear forms on vector spaces over H. We therefore have the following four cases:
bilinear forms if F = R, bilinear and sesquilinear forms if F = C, and sesquilinear
forms if F = H.

2The terminology ‘R-space’ was, at least as far as we have been able to verify, introduced

by Tits in the paper [Ti1] where these spaces are considered from the point of view of incidence

geometry, assuming that L is a complex simple group. It is of course in the spirit of Tits’ incidence
geometry to call these spaces ‘generalized flag manifolds.’ Chow’s point of view is of course also

incidence geometric.
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We will only be interested in forms that satisfy the following symmetry property.
Let f be a σ-sesquilinear form on V and ε be either 1 or −1. Then f is said to be
(σ, ε)-Hermitian if

f(x, y) = ε σ(f(y, x))

for all x and y in V .
We have the following four cases.

(1) σ is the identity and ε = 1. Then f is referred to as a symmetric bilinear
form.

(2) σ is the identity and ε = −1. Then f is referred to as a skew-symmetric
bilinear form.

(3) σ is the conjugation and ε = 1. Then f is referred to as an Hermitian
sesquilinear form.

(4) σ is the conjugation and ε = −1. Then f is referred to as a skew-Hermitian
sesquilinear form.

If F = C, a skew-Hermitian form becomes Hermitian after multiplying it by i
and vice versa. We will therefore assume that sesquilinear forms on vector spaces
over C are Hermitian.

We therefore have the following seven cases: symmetric and skew-symmetric
bilinear forms over R, symmetric, skew-symmetric, and Hermitian forms over C,
and Hermitian and skew-Hermitian sesquilinear forms over H.

A (σ, ε)-Hermitian form f is said to be nondegenerate if f(x, y) = 0 for all y in V
implies that x = 0. In the following we will always assume that f is nondegenerate.
Nondegenerate skew-symmetric bilinear forms are usually said to be symplectic.

Let f be a nondegenerate (σ, ε)-Hermitian form on V . An automorphism of
(V, f) is a linear automorphism A : V → V such that

f(Ax,Ay) = f(x, y)

for all x and y in V . The automorphisms form a group that we will denote by
Aut(V, f). It is clear that Aut(V, f) is a closed subgroup in the general linear
group GL(V ) and hence a Lie group.

Let f be a nondegenerate (σ, ε)-Hermitian form on V . A subspace W in V is
said to be totally isotropic if f(x, y) = 0 for all x and y in W . It is a consequence of
Witt’s Theorem, see [Br], p. 373, that given totally isotropic subspaces V1 and V2
of (V, f) with the same dimension, there is an automorphism A in Aut(V, f) that
maps V1 to V2. It follows that all maximal totally isotropic subspaces of (V, f) have
the same dimension. The Witt index of (V, f) is now defined to be the dimension
of a maximal totally isotropic subspace of (V, f).

We will denote by Ni(V, f) for i ≤ r the space of totally isotropic subspaces of
(V, f) with dimension i where r denotes the Witt index of (V, f). By Witt’s theorem
Aut(V, f), acts transitively on Ni(V, f). It follows that Ni(V, f) is a differentiable
manifold that can be represented as a coset space.

2.2. Determinants over H and the groups SL(n,H) and SU∗(2n). In books
on linear algebra, the determinant is usually only defined for matrices with entries
in a commutative field. There is an extension due to Dieudonné of the theory of
determinants to noncommutative fields that is explained in Chapter IV, §1 of the
book [Ar] by E. Artin. In the case of quadratic matrices with quaternion entries,
the image of the determinant is in R≥0, the set of nonnegative real numbers. The
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determinant is multiplicative, vanishes if and only if applied to a singular matrix,
and is equal to one on the identity matrix. We can now define SL(n,H) to be
the group of quaternionic matrices with determinant equal to one. One can avoid
the Dieudonné determinant by embedding the n × n quaternionic matrices into
the vector space of 2n× 2n complex matrices and define SU∗(2n) to be the group
of matrices in the image whose determinant over C is equal to one. The groups
SL(n,H) and SU∗(2n) turn out to be isomorphic.

There is an interesting survey on quaternionic determinants in [As].

3. Projective and polar geometry

3.1. Geometries. We set I = {0, 1, . . . , n − 1} and define following Tits [Ti3] a
geometry over I as a triple Γ = (V, τ, ∗) consisting of a set V , a surjective map
τ : V → I, and a binary symmetric relation ∗ on V such that x ∗ y holds for
elements x, y ∈ V with τ(x) = τ(y) if and only if x = y. The relation ∗ is called
the incidence relation of the geometry Γ, the image of x under τ is the type of x,
and the cardinality n of I is called the rank of Γ.

We denote the set of elements of V of type i by Vi and think of V0 as the space
of points, V1 as the space of lines, V2 as the space of 2-planes, and so on.

If x ∈ V , we define the shadow of x on Vi to be the set of elements of Vi that
are incident to x.

A flag of Γ is a set of pairwise incident elements. The set ∆(Γ) of all flags of
Γ is called the flag complex of Γ. It is clear that ∆(Γ) is an (abstract) simplicial
complex in the sense that every subset of a set in ∆(Γ) is contained in ∆(Γ).

A point-line geometry is a geometry of rank two with the property that any two
points (elements of type 0) are incident with at most one line (element of type 1).
Another way to say this is that the shadows of different lines on the space of points
meet in at most one point or, equivalently, that the shadows of two different points
on the space of lines meet in at most one line.

3.2. Projective geometry. Let F be a field that can be noncommutative. Let
Gk(Fn+1) denote the space of k-planes in Fn, the Grassmannian of k-planes in
Fn+1, where we consider Fn+1 to be a right vector space.

We set V (Fn+1) = G1(Fn+1) ∪ · · · ∪ Gn(Fn+1) and define a type map τ :
V (Fn+1) → I by setting τ(R) = i − 1 for R ∈ Gi(Fn+1). We set R ∗ S for
R,S ∈ V (Fn+1) if R ⊂ S or S ⊂ R.

The geometry Γ(Fn+1) = (V (Fn+1), τ, ∗) is called projective geometry. We set
Pn(F) = G1(Fn+1) and call it the n-dimensional projective space over F or the
point space of the projective geometry Γ(Fn+1).

The flag complex ∆(Γ(Fn+1)) of projective geometry over F satisfied the axioms
of a building in the sense of Tits; see [Ti2], p. 38. As such it has a Coxeter group
attached to it. The Coxeter diagram of the Coxeter group of ∆(Γ(Fn+1)) is of type
An.

We will now define a point-line geometry with Gk(Fn) as a point space for every
k ∈ I.

Let X be a (k − 1)-plane and Y a (k + 1)-plane in Fn+1. Let LX,Y denote the
set of k-planes in Gk(Fn+1) containing X and contained in Y . We will call LX,Y
a (generalized) line in Gk(Fn+1). Let Lk(Fn+1) denote the set of all lines LX,Y in
Gk(Fn+1). Then we obviously have a point-line geometry Γk(Fn+1) with Gk(Fn)
as a point space and Lk(Fn+1) as a space of lines.
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If k = 1 or k = n, then LX,Y is nothing but a projective line in the projective
space Pn(F) = G1(Fn+1) or in its dual projective space Gn(Fn+1).

Let V and W be elements in the Grassmannian Gk(Fn+1). We say that V and
W are adjacent if dim(V ∩W ) = k − 1. It is clear that V and W are adjacent
if and only if there is a generalized line containing both of them. We define the
arithmetic distance da(V,W ) between V and W to be k− dim(V ∩W ). The arith-
metic distance between V and W can be characterized as the shortest length of a
chain of generalized lines in Gk(Fn+1) joining V and W in which consecutive lines
intersect. Clearly, da(V,W ) can also be characterized as the shortest length of a
chain of k-planes in Gk(Fn+1) joining V and W in which consecutive planes are
adjacent.

It is clear that PGL(n+1,F) acts transitively on Gk(Fn+1), leaves the arithmetic
distance invariant, and maps lines to lines. The following theorem addresses the
question to which extend the converse holds; see Theorem I in [Ch].

Theorem 3.1. An adjacency preserving bijection of Gk(Fn) is induced by a semi-
linear automorphism of Fn if n− 1 > k > 1.

Theorem 3.1 cannot hold if k = 1 or k = n−1, since then Gk(Fn) is a projective
space or its dual in which any two points are adjacent. Combining the fundamental
theorem of projective geometry and Theorem 3.1, one sees that a line preserving
bijection of Gk(Fn) is induced by a semilinear automorphism of Fn if n ≥ 3 and
n > k ≥ 1.

3.3. Polar geometry. We will assume that F is R, C, or H, and that f is a (σ, ε)-
Hermitian form on a vector space W over F with Witt index r ≥ 2. We will phrase
the results from [Ch] and [Di] in terms of polar geometry, which was only introduced
later by Veldkamp in [Ve]. We will also refer to oriflamme geometry, which was as
well introduced later by Tits; see [Ti2], 7.12.

As in 2.1, we let Ni(W, f) denote the space of i-dimensional totally isotropic
subspaces of (W, f) where 1 ≤ i ≤ r. We set V (W, f) = N1(W, f)∪ · · · ∪Nr(W, f).
We have a type map τ : V (W, f) → {0, . . . , r − 1} defined by setting τ(R) = i− 1
for R ∈ Ni(W, f). We set R∗S for R,S ∈ V (W, f) if one of the spaces is a subspace
of the other. This gives rise to a geometry Γ(W, f) = (V (W, f), τ, ∗), which we call
a polar geometry of rank r.

One can show that a polar geometry of rank r satisfies one of the following two
conditions.

(i) Every plane R in Nr−1(W, f) is contained in at least three different maximal
isotropic subspaces in Nr(W, f). We say that the polar geometry is thick if this
condition is satisfied.

(ii) Every plane R in Nr−1(W, f) is contained in precisely two different maximal
isotropic subspaces in Nr(W, f). This case gives rise to oriflamme geometry, which
we will discuss in 3.3.2.

It turns out that Nr(W, f) is connected when the polar geometry is thick and
that it consists of precisely two components when it is not thick.

Our next goal is to define the dual space of Γ(W, f) as a point-line geometry.
The definition will depend on whether Γ(W, f) is a thick polar space or not.

3.3.1. The dual space of a thick polar geometry. We consider a thick polar geometry
Γ(W, f) of rank r. In this case the flag complex of Γ(W, f) is a thick building of
type Cr.
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The point space of the dual geometry will be Nr(W, f). A (generalized) line LT
in Nr(V, f) is the set of all R in Nr(V, f) containing T where T ∈ Nr−1(W, f). We
denote the set of generalized lines in Nr(W, f) by Lr(W, f). Then it is clear that
we have a point-line geometry with Nr(W, f) as space of points and Lr(W, f) as
space of lines. Let R and S be elements of Nr(W, f). Then R and S are said to be
adjacent if dim(R∩S) = r− 1. The arithmetic distance da(R,S) between R and S
is defined by setting da(R,S) = r − dim(R ∩ S).

The arithmetic distance between R and S can be characterized as the shortest
length of a chain of lines in Nr(V, f) joining R and S in which consecutive lines
intersect, or, equivalently, as the shortest length of a chain of r-planes in Nr(V, f)
joining R and S in which consecutive planes are adjacent.

It is clear that Aut(V, f) leaves the arithmetic distance invariant and maps lines
to lines. The following theorem can be found in [Di], p. 82; see also Theorem II in
[Ch].

Theorem 3.2. A bijection of Nr(W, f) for r ≥ 3 that is adjacency preserving in
both directions is induced by elements of Aut(V, f) composed with an automorphism
of F.

3.3.2. Oriflamme geometry and its dual. Now we assume that Γ(W, f) is not a
thick polar geometry. In this case the flag complex of Γ(W, f) is a only a weak
building in the sense of [Ti2], p. 38. We will now explain a modification of the the
geometry Γ(W, f) = (V (W, f), τ, ∗) due to Tits in [Ti2], 7.12. This geometry leads
to a building of type Dn.

We now divide Nr(W, f) into two parts that correspond to its connected com-
ponents. To this end, we choose an element R in Nr(W, f). Let N+

r (W, f) be the
subset of all S ∈ Nr(W, f) such that r − dim(S ∩ R) is an even number. The set
N−
r (W, f) is now defined to be the complement of N+

r (W, f) in Nr(W, f).
We now set O(W, f) = N1(W, f)∪· · ·∪Nr−2(W, f)∪N+

r (W, f)∪N−
r (W, f). If we

compare this with the definition of V (W, f), then we have skipped Nr−1(W, f) and
split Nr(W, f) into two sets. We define a type map τ : O(W, f)→ {0, . . . , r− 1} by
setting τ(R) = i− 1 if R ∈ N−

i (W, f) for i ≤ r− 2, τ(R) = r− 2 if R ∈ N−
r (W, f),

and τ(R) = r − 1 if R ∈ N+
r (W, f). If R is of type i ≤ r − 3 and S is of type j

where i ≤ j ≤ r−1, then we define the incidence relation by setting R∗S if R ⊂ S.
If R is of type r − 2 and S of type r − 1 we set R ∗ S if dim(R ∩ S) = r − 1. We
will refer to Γor(W, f) = (O(W, f), τ, ∗) as oriflamme geometry. The flag complex
of an oriflamme geometry is called an oriflamme complex. It is a building of type
Dr. A maximal flag (R0, . . . , Rr−1) in an oriflamme complex can be schematically
represented as in the following diagram.3

Rr−1

⊂
R0 ⊂ · · · ⊂ Rr−3

⊂
Rr−2

We now define the dual oriflamme space. Its point space will be N+
r (W, f). Let

S ∈ Nr−2(W, f) be given. Then we define the (generalized) line LS as the subset of
those R ∈ N+

r (W, f) that contain S. We let L+
r (W, f) denote the set of generalized

3The oriflamme (golden flame) was a sacred banner used by the kings of France in the Middle
Ages. The diagram is supposed to remind us of its elongated swallow tailed form.
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lines in N+
r (W, f). Then (N+

r (W, f),L+
r (W, f)) gives rise to a point-line geometry

that we will refer to as the dual oriflamme geometry. We say that that two elements
in N+

r (W, f) are adjacent if there is line passing through them. Again, we define
the arithmetic distance between two elements in N+

r (W, f) as the minimal length
of a chain of lines joining one to the other. These definitions agree with those in
[Ch], p. 52, and [Di], p. 86.

Clearly, Aut(W, f) preserves lines and arithmetic distance in the dual oriflamme
geometry. The following result is Theorem VII on p. 55 in [Ch]; see also [Di], p. 86.

Theorem 3.3. A bijection of N+
r (W, f) for r ≥ 5 that is adjacency preserving in

both directions is induced by elements of Aut(V, f) composed with an automorphism
of F.

There is also a fundamental theorem when r = 4, but it is more complicated to
state since it involves triality; see [Ch], p. 55 and [Di], p. 87. We will therefore not
explain it in detail.

4. Classical symmetric R-spaces

The triples (L,G,K) in Nagano’s theorem that we mentioned in the introduction
are completely classified. In [Na1], p. 445, there is a list in which some of the spaces
M = G/K have been replaced by locally isometric ones. One finds a discussion of
all the symmetric R-spaces in [Ta1], but they are not listed in one table. There is a
classification of an equivalent problem in [KN], albeit in a somewhat hidden form.
A complete list of the symmetric R-spaces with L simple can be found in the table
on p. 41 in [Oh]. A symmetric R-space is indecomposable if and only if L is simple.

In this section, we will discuss those triples (L,G,K) in which all three groups
are classical. We will assume that L is a connected simple Lie group and that the
symmetric pairs (L,G) and (G,K) are almost effective.

It turns out that the triples (L,G,K) of classical groups giving rise to indecom-
posable symmetric R-spaces are either related to projective or polar geometry, and
that the type of the geometry depends on the Coxeter group of the restricted root
system of L that can be found in the tables in Appendix C of [Kn] or in the table
on p. 119 in [Lo]. This Coxeter group is equivalently the Coxeter group of the
symmetric space L/G. Since we are only interested in the Coxeter group and not
in the Weyl group of the restricted root system, the cases Bn, Cn, and (BC)n in
Appendix C of [Kn] all coincide and the type of the corresponding Coxeter group
will be given by the symbol Cn.

We will divide the triples into four classes that are more and less the same as
the four classes of Chow in [Ch]. The main difference is that we allow sesquilinear
forms in (II).

(I) The first class corresponds to triples (L,G,K) with Coxeter group of L/K of
type An. These triples are related to n-dimensional projective geometry; see 3.2.
The corresponding symmetric R-spaces G/K are the Grassmannians Gk(Fn) where
1 ≤ k ≤ n− 1.

(II) The second class corresponds to triples (L,G,K) where the Coxeter group
of L/K is of type Cn. These triples are related to thick n-dimensional polar geome-
tries; see 3.3. The corresponding symmetric R-spaces are then the Grassmannians
of hyperplanes in a thick polar geometry, or, equivalently, Grassmannians of maxi-
mal isotropic subspaces with respect to a (σ, ε)-Hermitian form f on FN that is not
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symmetric. It turns out that the Grassmannians of maximal isotropic subspaces
are symmetric R-spaces if and only if N = 2n, where n is the Witt index of f ; see
the classification in 4.2. The symmetric R-spaces in this class can be seen as the
point spaces of the dual of thick polar geometries; see 3.3.1.

(III) The third class corresponds to triples (L,G,K) where the Coxeter group of
L/K is of type Dn. These triples are related to n-dimensional oriflamme geometry;
see 3.3.2. Analogous to what we saw in class (II), the connected components of the
Grassmannians of maximal isotropic subspaces with respect to a symmetric bilinear
f form on FN with Witt index equal to n are symmetric if and only if N = 2n. Here
the symmetric R-spaces are the point spaces of the dual of an oriflamme geometry;
see 3.3.2.

(IV) In the forth class, the symmetric R-spaces are nondegenerate quadrics con-
taining projective lines in PN (R) and PN (C) and hence the point spaces of certain
polar geometries. The point spaces of polar geometries defined by (σ, ε)-Hermitian
forms that are not symmetric do not give rise to symmetric R-spaces.

We now start the discussion of these four classes of symmetric R-spaces. Low
dimensional examples are typically spheres and quadrics that we will exclude in the
tables. We make some remarks on these excluded cases. To facilitate the reading
for those who are not interested, we put these remarks in square brackets.

4.1. Class (I). Grassmannians of k-planes in Fn. The triples (L,G,K) giving
rise to Grassmannians are listed in the following table.

L G/K Symbol Description of G/K
SL(n,R) SO(n)/S(O(k)×O(n− k)), Gk(Rn) Grassmannian of

n ≥ 3, n > k ≥ 1 k-planes in Rn
SL(n,C) SU(n)/S(U(k)×U(n− k)) Gk(Cn) Grassmannian of

n ≥ 3, n > k ≥ 1 k-planes in Cn
SL(n,H) Sp(n)/Sp(k)× Sp(n− k)) Gk(Hn) Grassmannian of

n ≥ 3, n > k ≥ 1 k-planes in Hn

The group SL(n,H) in the above table is explained in 2.2.

[We have restricted n to be at least three in the above table since G/K is a one
dimensional projective space for n = 2 and hence trivial from our point of view
having only the space itself as a generalized line. As manifolds these spaces are S1,
S2, and S4. The group L acts on S1 by projective transformations and on S2 and
S4 by Möbius transformations.]

Theorem 3.1 now applies to the spaces in the table. We are assuming that F
is either R, C, or H. Hence we are in the same situation as when explaining the
fundamental theorem of projective geometry for these fields in the introduction.
It follows from the remark after Theorem 3.1 that the group of line preserving
bijections of Gk(Fn) if n ≥ 3 and n > k ≥ 1 (continuous or not) is the projective
linear group PGL(n,F) if F is R or H. The group of such bijections of Gk(Cn)
that are continuous is the semidirect product PGL(n,C) o {id,̄ }, where ¯ is the
bijection of Gk(Cn) induced by the conjugation in C.
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4.2. Class (II). Grassmannians of hyperplanes in thick polar spaces. We
saw in 2.1 that there are the following seven classes of (σ, ε)-Hermitian forms.
Symmetric and skew-symmetric bilinear forms over R, symmetric, skew-symmetric,
and Hermitian forms over C, and Hermitian and skew-Hermitian sesquilinear forms
over H.

The symmetric forms over R and C fall under class (III); see 4.3. The remaining
five cases belong to class (II).

4.2.1. Hermitian forms over C and H. Let f be an Hermitian sesquilinear form
on a right vector space V over F where F is either C or H. We will assume that
f is nondegenerate. There is a basis (e1, . . . , eN ) of V and numbers p and q with
p+ q = N such that

f(x, y) =

p∑
i=1

x̄iyi −
p+q∑
i=p+1

x̄iyi.

The numbers p and q do not depend on the choice of such a basis and we will say
that f is of type (p, q). The Witt index of (V, f) is min{p, q}.

If F = C, we denote the automorphism group of (V, f) by U(p, q) and call it the
unitary group of type (p, q); the special unitary group of type (p, q) is its subgroup
SU(p, q) of automorphisms with determinant equal to one.

If F = H, we denote the automorphism group of (V, f) by Sp(p, q) and call it the
quaternionic unitary group of type (p, q). We made a remark on the determinant
over H in 2.2. It turns out that all elements of Sp(p, q) have determinant equal to
one.

If (p, q) = (N, 0), we denote the above groups by U(N), SU(N), and Sp(N),
respectively.

By the classification of symmetric R-spaces, we only have to consider the Her-
mitian forms of type (n, n), i.e., N = 2n. We have the following table in which
∆(G) denotes the diagonal in G×G. In the third column, we have the usual symbol
for G/K.

L G/K Symbol Description of G/K

SU(n, n) S(U(n)×U(n))/∆(SU(n)), n ≥ 3 U(n) unitary group
Sp(n, n) Sp(n)× Sp(n)/∆(Sp(n)), n ≥ 2 Sp(n) quaternionic

unitary group

[We assume that n ≥ 3 in the first line of the table. If n = 1, then G/K is S1

on which L acts by projective transformations. If n = 2, then G/K is the quadric
Q1,3(R) on which L acts as SO0(2, 4).4 This example belongs to class (IV); see 4.4.

In the second line of the table, we assume that n ≥ 2. If n = 1, G/K is S3 on
which L acts by Möbius transformations.5 We do not exclude n = 2 in the second
line although it is an exception since we do not have a fundamental theorem for it
as we will see further down.]

We use the notation in 2.1 and let Nn(F2n, f) denote the Grassmannian of maxi-
mal totally isotropic subspaces in (V, f) where f has Witt index n and and we have

4Here we are using that SU(2, 2) and SOo(2, 4) are locally isomorphic; see 4.3.1 for the definition

of the latter group and 4.4 for the quadric.
5Here we are using that Sp(2, 2) and SOo(4, 1) are locally isomorphic.
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identified V with F2n. Our goal is to identify Nn(F2n, f) with U(n) if F is C and
Sp(n) if F = H.

We first consider the case F = C and identify V with C2n = Cn + Cn in such a
way that

f((x1, x2), (y1, y2)) = 〈x1, y1〉 − 〈x2, y2〉

where 〈x, y〉 is the usual Hermitian scalar product on Cn.
Let W be a maximal totally isotropic subspace in Nn(C2n, f) and let (x, y) be an

element in W . Then ‖x‖ = ‖y‖ which implies that the projections π1 and π2 of W
onto the first and the second factor of C2n = Cn + Cn, respectively, are bijections.
Furthermore, W ∈ Nn(C2n, f) induces the map AW = π2 ◦ π−1

1 from the first to
the second factor of C2n = Cn +Cn that we identify with an endomorphism of Cn.
It is clear that AW ∈ U(n).

Conversely, let A ∈ U(n) be given and let VA = {(x,Ax)|x ∈ Cn} be the graph
of A. Clearly, VA ∈ Nn(C2n, f) and the map that sends A to VA is the inverse of
the map that sends V to AV . We have thus identified Nn(C2n, f) with U(n). Note
that U(n) is not an irreducible symmetric space.

The automorphism group of (V, f) is U(n, n). The action of U(n, n) on U(n) =
Nn(C2n, f) is not effective. On can either replace it by its quotient by the kernel
of the action, the projective unitary group PU(n, n), or by the special unitary
group SU(n, n) as in the above table, whose action on U(n) = Nn(C2n, f) is almost
effective.

The continuous bijections of U(n) = Nn(C2n, f) for n ≥ 3 that are adjacency
preserving in both directions are induced by elements of SU(n, n) possibly composed
with the conjugation; see Theorem 3.2.

The quaternionic case F = H is completely analogous to the complex case we have
been discussing, and we can identify Nn(H2n, f) with Sp(n). Again by Theorem
3.2, the group of bijections of Sp(n) = Nn(H2n, f) for n ≥ 3 that are adjacency
preserving in both directions is Sp(n, n) modulo the kernel of its action on Sp(n) =
Nn(H2n, f). Theorem 3.2 does not apply to the case n = 2 in the table.

4.2.2. Symplectic forms. Let f be a symplectic form on a vector space V over F
where F is either R or C. It follows that the dimension of V is an even number 2n.
There is a basis (e1, . . . , e2n) of V such that f can be written in the form

f(x, y) =

n∑
i=1

(xiyn+i − xn+iyi).

We identify V with F2n with help of this basis. The Witt index of f is equal to n.
The maximal totally isotropic subspaces of (V, f) are said to be Lagrangian. Let
GL(F2n) denote the set of all Lagrangian subspaces in (F2n, ω); i.e., GL(F2n) =
Nn(V, f) in the notation of 2.1. The automorphism group of (V, f) is called the
symplectic group over F and denoted by Sp(2n,F). As we remarked in 2.1, the
action of Sp(2n,F) on GL(F2n) is transitive by Witt’s Theorem.

The possibilities for the triples (L,G,K) according to the classification of sym-
metric R-spaces when L = Sp(2n,F) is given in the following table.
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L G/K Symbol Description of G/K
Sp(2n,R) U(n)/O(n), n ≥ 3 GL(R2n) Grassmannian of

Lagrangians in R2n

Sp(2n,C) Sp(n)/U(n), n ≥ 3 GL(C2n) Grassmannian of
Lagrangians in C2n

[If F = R and n = 1, then GL(R2) coincides with S1 on which L acts by
projective transformations. If F = C and n = 1, then GL(C2) coincides with S2.
The group L = Sp(2,C) is isomorphic to SL(2,C), which acts on S2 by Möbius
transformations.

If n = 2, then the spaces in the table are quadrics and therefore belong to class
(IV); see 4.4. More precisely, if F = R and n = 2, then GL(R4) coincides with the
three-dimensional quadric Q2,1(R) in P 4(R), which has S2 × S1 as a double cover.
The group L = Sp(2n,R) is a double cover of the connected component SOo(3, 2)
of SO(3, 2), which acts on P 4(R) leaving the quadric Q2,1(R) invariant; see 4.3.1
for definitions. If F = C and n = 2, then GL(C4) coincides with the quadric Q3(C)
in P 4(C). The group L = Sp(4,C) is locally isomorphic to SO(5,C), which acts on
P 4(C) leaving the quadric Q3(C) invariant.]

Our goal is now to identify GL(F2n) with G/K as in the table.
We first consider the real case (R2n, f). We identify R2n with Cn = Rn + iRn

by setting (x, y) = x + iy = z. If 〈z, w〉 is the usual Hermitian scalar product on
Cn, then f(z, w) = Im〈z, w〉, i.e. f is the imaginary part of the Hermitian scalar
product. Furthermore, Re〈z, w〉 is the standard real scalar product on R2n.

Let e1, . . . , en be the standard basis of Cn and W be its real span. It is clear
that W is Lagrangian. Let Ŵ be an other Lagrangian subspace and ê1, . . . , ên an
orthonormal basis of Ŵ . Then ê1, . . . , ên is clearly a unitary basis of Cn and there
is a unitary matrix A ∈ U(n) that maps W to Ŵ . The stabilizer of W under the
action of U(n) is clearly O(n). Hence we see that GL(R2n) = U(n)/O(n). The
space U(n)/O(n) is not an irreducible symmetric space.

The complex case is very similar to the real case. We identify C2n with Hn =
Cn + jCn by setting (x, y) = x + jy = z. Now f is the j-part of the standard
quaternionic scalar product on H2n; see [Che], Chapter I, §VIII. Let e1, . . . , en be
the standard basis of Hn and W be its complex span. Then W is in GL(C2n). Let

Ŵ be another element in GL(C2n) and let ê1, . . . , ên be a unitary basis of Ŵ . Then

ê1, . . . , ên is also a quaternionic unitary basis of Hn since Ŵ is Lagrangian. Hence
there is an element A ∈ Sp(n) that maps W to Ŵ . The stabilizer of W under the
action of Sp(n) is clearly U(n). Hence we see that GL(C2n) = Sp(n)/U(n).

Theorem 3.2 now says that the bijections of GL(F2n) for n ≥ 3 that are adjacency
preserving in both directions are induced by elements of Sp(2n,F) composed with an
automorphism of F. Hence the group of continuous bijections of GL(F2n) that are
adjacency preserving in both directions is Sp(2n,R) in the real case and Sp(2n,C)o
{id,̄ } in the complex case.

4.2.3. Skew-Hermitian forms over H. Let now V be a right vector space over H
with a skew-Hermitian form f . Then there is a basis (e1, . . . , eN ) of V such that f
can be written as

f(x, y) =

N∑
k=1

x̄kjyk
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where j is the the third element in the standard basis of H over R. We will actually
work with a different normal form below, since it is more practical for our purposes,
although it might look more complicated. The automorphism group of (V, f) is
called the quaternionic anti-unitary group and denoted by Uα(N,H). One can
show that the quaternionic determinant of an endomorphism in Uα(N,H) is equal
to one. The Witt index of (V, f) is [N2 ].

One frequently finds the group Uα(N,H) in the guise of SO∗(2N). The reason
for this is that one can define Uα(N,H) over C instead of H. The group is then the
intersection of SO(2N,C) with SU(N,N) as can be seen from the normal form for
f that we introduce below. This is similar to the two different notations SL(n,H)
and SU∗(2n) in 2.2.

Only the case N = 2n gives rise to a symmetric R-space.
We will set OG(H2n) = Nn(H2n, f) and call it the quaternionic orthogonal Grass-

mannian. Our goal ist to identify OG(H2n) with the symmetric space U(2n)/Sp(n)
and thus verify the following table.

L G/K Symbol Description of G/K
Uα(2n,H) U(2n)/Sp(n), n ≥ 3 OG(H2n) quaternionic

orthogonal
Grassmannian

[We first look at the values of n excluded in the table. The space U(2n)/Sp(n) is
S1 if n = 1 on which L = Uα(2,H) acts by projective transformations. If n = 2, it is
the quadric Q1,5(R) in P 7(R) on which L = Uα(4,H) acts as the locally isomorphic
group SO(2, 6). Hence the case n = 2 belongs to class (IV); see 4.4.]

We will write H2n = C2n + jC2n. We consider u + jv and w + jz in H2n =
C2n + jC2n and the form f on Hn defined by setting

f(u+ jv, w + jz) = i

2n∑
k=1

(ūkwk − v̄kzk) + j

2n∑
k=1

(ukzk + vkwk).

One easily checks that f is nondegenerate and skew-Hermitian over H. It is not
equal to the form f defined at the beginning of this subsection, but it can be
brought in that form by changing the basis. The first sum in the definition of f is
a nondegenerate Hermitian form with Witt index 2n on C4n = C2n + C2n and the
second sum is a nondegenerate symmetric form on C4n = C2n + C2n.

We will now show that OG(H2n) can be identified with U(2n)/Sp(n). Let S be
a maximal isotropic subspace in OG(H2n) and let z1 = u1 + jv1, . . . , zn = un + jvn
be a basis in S such that

〈zi, zj〉 = 2δij

where 〈zi, zj〉 denotes the standard quaternionic inner product in H2n and δij is
the Kronecker delta. Splitting 〈u+ jv, w + jz〉 into its complex and j-part, we get

〈u+ jv, w + jz〉 =

2n∑
k=1

(ūkwk + v̄kzk) + j

2n∑
k=1

(ukzk − vkwk).

The equation 〈zi, zi〉 = 2δij is therefore equivalent to

(ui, ui) + (vi, vi) = 2

where (u, v) is the standard Hermitian scalar product in C2n.
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On the other hand f(zi, zi) = 0 is equivalent to

(ui, ui)− (vi, vi) = 0 and φ(ui, vi) = 0

where φ is the standard symmetric form φ(u, v) =
∑2n
k=1 ukvk on C2n. Note that

φ(u, v) = 0 is equivalent to (u, v̄) = 0. Hence we get

(ui, ui) = (vi, vi) = 1 and (ui, v̄i) = 0.

Furthermore, 〈zi, zj〉 = 0 für i 6= j is equivalent to

(ui, uj) + (vi, vj) = 0 and (ui, v̄j)− (vi, ūj) = 0

and f(zi, zj) = 0 is equivalent to

(ui, uj)− (vi, vj) = 0 and (ui, v̄j) + (vi, ūj) = 0.

As a consequence of these considerations, we see that u1, . . . , un, v̄1, . . . , v̄n is
a unitary basis of basis of C2n. Conversely, every unitary basis of C2n gives rise
to a maximal isotropic subspace S in Hn. In fact, if we write the basis in the
form u1, . . . , un, v̄1, . . . , v̄n, then S is the subspace of H2n spanned by z1 = u1 +
jv1, . . . , zn = un + jvn.

We would like to show that U(2n) acts transitively on OG(H2n) where we have
embedded U(2n) into Uα(2n,H) by letting A ∈ U(2n) send u + jv in H2n =
C2n + jC2n to Au+ jĀv.

Let S and S∗ be in OG(H2n). We choose as above bases z1 = u1 + jv1, . . . , zn =
un + jvn of S and z∗1 = u∗1 + jv∗1 , . . . , z

∗
n = u∗n + jv∗n of S∗. We would like to find an

A in U(2n) that maps the basis of S to the basis of S∗, or more precisely such that
Au1 = u∗1, . . . , Aun = u∗n, Āv1 = v∗1 , . . . , Āvn = v∗n. This is equivalent to finding an
A ∈ U(2n) that maps the unitary basis u1, . . . , un, v̄1, . . . , v̄n of C2n to the unitary
basis u∗1, . . . , u

∗
n, v̄

∗
1 , . . . , v̄

∗
n. Such an A clearly exists.

Finally, we have to determine which A in U(2n) leave a given S in OG(H2n)
invariant. Let z1 = u1 + jv1, . . . , zn = un + jvn be a quaternionic unitary basis of
S. Then A sends this basis into Az1 = Au1 + jĀv1, . . . , Āzn = Āun + jĀvn, which
is an another quaternionic unitary basis of S. It follows that A ∈ Sp(n). Hence we
have proved that OG(H2n) = U(2n)/Sp(n) as we wanted to do.

4.3. Class (III). Grassmannians of hyperplanes in oriflamme geometries.
We have two such geometries related to symmetric forms over R and C. We discuss
the two cases separately.

4.3.1. Symmetric forms over R. This case is very similar to 4.2.1. Let f be a
nondegenerate symmetric form on a real vector space V . There is then a basis
(e1, . . . , eN ) of V and numbers p and q with p+ q = N such that

f(x, y) =

p∑
i=1

xiyi −
p+q∑
i=p+1

xiyi.

As in 4.2.1, the Witt index of (V, f) is min{p, q} and p and q do not depend on the
basis.

We denote the automorphism group of (V, f) by O(p, q) and call it the orthogonal
group of type (p, q). The subgroup of O(p, q) consisting of elements with determi-
nant equal to one is denoted by SO(p, q) and called the special orthogonal group of
type (p, q). The group SO(p, q) has two connected components when p, q ≥ 1. We
denote its identity component by SOo(p, q). If (p, q) = (N, 0) or (0, N), we denote
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the automorphism group by O(N). The group O(N) has two components; its iden-
tity component consists of automorphism with determinant equal to one and will
be denoted by SO(N).

According to the classification of symmetric R-spaces, only symmetric forms of
type (n, n) give rise to such spaces. Hence N = 2n. In this case the polar geometry
of (V, f) is not thick, and we have a corresponding oriflamme geometry. Our goal is
to show that N+

n (V, f) can be identified with SO(n) as in the following table where
∆(SO(n)) denotes the diagonal in SO(n)× SO(n).

L G/K Symbol Description of G/K
SOo(n, n) SO(n)× SO(n)/∆(SO(n)), n ≥ 4 SO(n) special

orthogonal group

[We assume n ≥ 4 for the following reasons. If n = 2, then SOo(2, 2) is not
simple, contradicting our assumption on L. If n = 3, then SOo(3, 3) is locally
isomorphic to SL(4,R) and the space N3(V, f) = O(3) corresponds to the union of
the SL(4,R) orbits G1(R4) = P 3(R) and its dual projective space G3(R4). This
example belongs more to class (I) than class (III).6 There cannot be a fundamental
theorem for oriflamme geometry when n = 3 since any two elements in N+

3 (V, f)
are adjacent making the hypothesis of Theorem 3.3 vacuous, but the fundamental
theorem of projective geometry applies to this case. We allow n = 4 since the action
of SOo(4, 4) on SO(4) is indecomposable, and SO(4) is an indecomposable R-space,
although SO(4) is reducible as a Lie group and a symmetric space. Theorem 3.3
does not apply when n = 4, but there is a fundamental theorem for this case that
involves triality.]

We first identify Nn(R2n, f) with O(n) only sketching the arguments since they
are very similar to those in 4.2.1.

We are dealing with a symmetric bilinear form f of type (n, n) on R2n. We
consider R2n as a direct sum R2n = Rn+Rn where each factor is endowed with the
usual Euclidean scalar product in such a way that f((x1, x2), (y1, y2)) = 〈x1, y1〉 −
〈x2, y2〉. The automorphism group of (R2n, f) is O(n, n).

Let W be a maximal totally isotropic subspace in Nn(R2n, f) . Then the projec-
tions π1 and π2 of W onto the first and the second factor of R2n = Rn+Rn, respec-
tively, are bijections. Furthermore, W ∈ Nn(R2n, f) induces the map AW = π2◦π−1

1

from the first to the second factor of R2n = Rn + Rn that we identify with an en-
domorphism of Rn, which is clearly in O(n). Conversely, let A ∈ O(n) be given
and let WA = {(x,Ax)|x ∈ Rn} be the graph of A. Clearly, WA ∈ Nn(R2n, f) and
the map that sends A to WA is the inverse of the map that sends W to AW . We
have thus identified Nn(R2n, f) with O(n). In particular, we have confirmed that
Nn(R2n, f) consists of two components. One of these components corresponds to
SO(n) and will be our choice of N+

n (R2n, f). It is now clear that the connected
component SOo(n, n) acts transitively on SO(n) = N+

n (R2n, f).
We now come to the adjacency preserving automorphisms of SO(n) = N+

n (R2n, f).
According to Theorem 3.2, a bijection of N+

n (R2n, f) for n ≥ 5 that is adjacency
preserving in both directions is induced by an element of SO(n, n). The situation
is more complicated and involves triality if n = 4.

6This ambiguity reflects the fact that the Coxeter diagrams D3 and A3 coincide.
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4.3.2. Symmetric forms over C. This case is similar to 4.2.3, but somewhat easier
since we are dealing with complex numbers instead of quaternions.

Let V be a complex vector space with a nondegenerate symmetric form f . Then
there is a basis (e1, . . . , eN ) of V such that f can be written as

f(x, y) =

N∑
i=1

xiyi.

The automorphism group of (V, f) is called the complex orthogonal group and de-
noted by O(N,C). The determinant of an endomorphism in O(N,C) is 1 or −1.
The special complex orthogonal group SO(N,C) consists by definition of the ele-
ments in O(N,C) with determinant equal to one. One can show that SO(N,C) is
one of the two connected components of O(N,C). The Witt index of (V, f) is [N2 ].

By the classification of symmetric R-spaces, only the case N = 2n gives rise to
such a space.

We will from now assume that N = 2n. Hence f has Witt index n and we are in
the situation of oriflamme geometry; see 3.3.2. The space Nn(C2n, f) of maximal
isotropic subspaces is homogeneous under the action of O(2n,C) and consists of two
connected components N+

n (C2n, f) and N−
n (C2n, f), each of which is homogeneous

under the action of SO(2n,C). We will denote the space N+
n (C2n, f) by OG+(C2n)

and call it the orthogonal Grassmannian.
By the classification of symmetric R-spaces, we have the following table.

L G/K Symbol Description of G/K

SO(2n,C) SO(2n)/U(n), n ≥ 4 OG+(C2n) orthogonal
Grassmannian

[We first look at the values excluded in the table. If n = 2, then SO(4,C) is
not simple, contradicting our assumptions on L. If n = 3, then the situation is as
explained after the table in 4.3.1, and we are more in class (I) than in class (III).
More precisely, OG+(C6) coincides with the complex projective space P 3(C) on
which SO(6,C) acts as the locally isomorphic group SL(4,C) by projective trans-
formations. Finally, if n = 4, then OG+(C2n) coincides with the quadric Q6(C)
in P 7(C) that we will again encounter in class (IV); see 4.4. This last case is not
excluded, although it might contradict the principles of taxonomy to allow things
to belong to two different classes. The fundamental theorem of oriflamme geometry
as stated in Theorem 3.3 does not apply to this case; see the remark after Theorem
3.3.]

We would now like to identify OG+
n (C2n) with the compact Hermitian symmetric

space SO(2n)/U(n). We only sketch the arguments since they are very similar to
those in 4.2.3.

We write C2n = R2n + iR2n. Let u + iv and w + jz be elements in C2n =
R2n + iR2n. Then

f(u+ iv, w + iz) =

2n∑
i=1

(uiwi − vizi) + i

2n∑
i=1

(uizi + viwi).

Let S be a maximal isotropic subspace contained in OG+
n (C2n). We choose an

orthogonal basis z1 = u1 + iv1, . . . , zn = un + ivn in S with respect to the standard
Hermitian scalar product in C2n where ui and vi are elements in R2n and assume
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that ‖zi‖2 = 2 for all i. Then the equations ‖zi‖2 = 2 and f(zi, zi) = 0 imply

‖ui‖2 = ‖vi‖2 = 1 and 〈ui, vi〉 = 0.

Furthermore, the equations 〈zi, zj〉 = 0 and f(zi, zj) = 0 for i 6= j imply

〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = 0.

As a consequence, we see that u1, . . . , un, v1, . . . , vn is an orthonormal basis of
R2n. Conversely, we see that every such basis u∗1, . . . , u

∗
n, v

∗
1 , . . . , v

∗
n of R2n gives

rise to a maximal isotropic subspace in (C2n, f) spanned by z∗1 = u∗1 + iv∗1 , . . . , z
∗
n =

u∗n+iv∗n that is contained in OG+
n (C2n) if and only if it induces the same orientation

on R2n as u1, . . . , un, v1, . . . , vn. It follows that the compact subgroup SO(2n) of
SO(2n,C) acts transitively on OG+

n (C2n). We now need to determine the subgroup
of SO(2n) that stabilizes a subspace S in OG+

n (C2n). We choose the subspace S in
C2n that is spanned by e1 + ien+1, . . . , en + ie2n where e1, . . . , e2n is the standard
basis of R2n. Let A in SO(2n) be such that A(S) = S. Then A is complex linear
since it is belongs to SO(2n,C). The above considerations show that A maps a
unitary basis of S to another such basis of S. It follows that A belongs to U(n).
This finishes the proof that OG+

n (C2n) is the symmetric space SO(2n)/U(n).
We now discuss the adjacency preserving continuous bijections of OG+

n (C2n).
According to Theorem 3.3, a continuous bijection of OG+

n (C2n) with n ≥ 5 that
is adjacency preserving in both directions is induced by an element of SO(2n,C)
possibly composed with the conjugation in C. If n = 4, there is a fundamental
theorem for oriflamme geometry involving triality.

4.4. Class (IV). Quadrics. We are left with the following two examples of sym-
metric R-spaces, the real quadric Qp,q(R) and the complex quadric Qn(C). These
quadrics lie in the projective space Pn+1(F) where n = p+ q in the real case.

L G/K Symbol
SOo(p+ 1, q + 1) SO(p+ 1)× SO(q + 1)/S(O(p)×O(q)), Qp,q(R)

1 ≤ p ≤ q and 2 < p+ q
SO(n+ 2,C) SO(n+ 2)/SO(n)× SO(2), n ≥ 3 Qn(C)

[In the first line, we have excluded L = SOo(2, 2) since it is not simple. The
assumption 1 ≤ p ≤ q is to guarantee that Qp,q(R) contains projective lines. In
the second line we exclude n = 1 since Q1(C) is S2. The group SO(3,C) is locally
isomorphic to SL(2,C) and acts on S2 by Möbius transformations. We exclude
n = 2 since SO(4,C) is not simple.]

Let f be a nondegenerate symmetric bilinear form on Fn+2.
If F = R, we saw in 4.3.1 that the normal form of f is

f(x, y) =

p+1∑
i=1

xiyi −
p+q+2∑
i=p+2

xiyi

where p+ q = n. The Witt index of f is equal to p+ 1 and hence at least two by
the assumption that p ≥ 1. The corresponding quadric Qp,q(R) in Pn+1(R) is by
definition

Qp,q(R) = {x = (x1 : · · · : xn+2) | f(x, x) = 0}.
where (x1 : · · · : xn+2) denotes homogeneous coordinates. It follows that Qp,q(R)
contains projective lines since the Witt index is at least two. One can show that
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the action of SOo(p+ 1, q + 1) on Qp,q(R) is transitive and that Qp,q(R) coincides
with the symmetric space SO(p+ 1)× SO(q + 1)/S(O(p)×O(q)). In fact Qp,q(R)
has Sp × Sq as a double cover. It is therefore not an irreducible symmetric space,
but it is an indecomposable symmetric R-space under our assumptions on p and q.

If F = C, we saw in 4.3.2 that the normal form of f is

f(x, y) =

n+2∑
i=1

xiyi.

with Witt index [n+2
2 ]. We are assuming that n ≥ 2. Hence the Witt index of f is

at least two. The corresponding quadric Qn(C) in Pn+1(C) is defined by

Qn(C) = {x = (x1 : · · · : xn+2)|f(x, x) = 0}.

The quadric Qn(C) contains projective lines since the Witt index of f is at least two.
The group SO(n+2,C) acts transitively on Qn(C). As a compact symmetric space,
Qn(C) coincides with SO(n+ 2)/SO(n)× SO(2), which might be more familiar as
the Grassmannian G+

2 (Rn) of oriented 2-planes in Rn. The quadric Qn(C) is an
irreducible symmetric space since n ≥ 3 (but Q2(C) = S2 × S2).

In the following theorem, we will let Q refer to either Qp,q(R) or Qn(C) assuming
p, q, and n to satisfy the conditions in the table. The theorem is a fundamental
theorem for these quadrics. Tits proved a much more general result in Theorem
8.6 (II) on p. 135 in [Ti2], which we only state in our special case.

Theorem 4.1. Let Q be a quadric in Pn+1(F) defined with help of a nondegenerate
symmetric form f with Witt index at least two where F is either R or C. Let
φ : Q → Q be a bijection that preserves the set of projective lines contained in Q.
If n ≥ 3, then the map φ extends in a unique way to a collineation of Pn+1(F).

The theorem does not hold if n = 2; see the counterexample on p. 520 in [Ve].
This is not surprising since the corresponding L is not simple and the quadrics
decomposable into two factors of S1 in the real case and two factors of S2 in the
complex case. In the theorem on p. 526 in [Ve], a weaker version of the theorem of
Tits is stated under the assumption that the Witt index of f is at least three.

Other special cases of Theorem 4.1 were known. Theorem VI in [Ch] implies
Theorem 4.1 for the complex quadrics Qn(C), n ≥ 3, and for the real quadrics
Qp,p+1(R) for p ≥ 1 and Qp,p(R) for p ≥ 2.

Chow points out that this result for Q1,2(R) was already proved by Lie and is
what is known as the fundamental theorem of the Lie geometry of circles. In the
Lie geometry of circles, there is a one to one correspondence between the points
of the Lie quadric Q1,2(R) and the oriented circles in S2 = R2 ∪ {∞}. The line
in P 4(R) through two different points in Q1,2(R) lies in the Lie quadric if and
only if the corresponding oriented circles are in oriented contact. The fundamental
theorem of the Lie geometry of circles is therefore a description of the bijections of
the space of oriented circles that preserve oriented contact; see [Li], p. 437, where
this is explained with references to papers of Lie from the years 1871 and 1872.

All of this has been generalized to the space of oriented spheres in Sn = Rn∪{∞}
by Pinkall in [Pi] where a one to one correspondence is defined between the oriented
spheres in Sn and the Lie quadric Q1,n(R). Again two oriented spheres in Sn are in
oriented contact if the line through the corresponding points in Q1,n(R) is contained
in the Lie quadric. Pinkall then proves independently of [Ti2] and with different
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methods the ‘fundamental theorem of Lie sphere geometry,’ which is Theorem 4.1
for the quadric Q1,n(R), n ≥ 2; see Lemma 4 in [Pi]. A good introduction to this
material and Lie sphere geometry in general is the book [Ce] by Cecil.

5. Maximally curved spheres in symmetric spaces

We would like to make some comments on the papers [Pe], [Na2], and [Ta2],
which all refer to Chow’s work in [Ch].

Let M be an irreducible symmetric space of compact type. We denote the
maximum of the sectional curvature on M by κ. Then it is proved in [He1] (see
also [He2], Chapter VII, §11) that M contains totally geodesics submanifolds of
constant curvature κ and that any two such submanifolds of the same dimension
are conjugate under the isometry group of M . The maximal dimension d of such
submanifolds is d = 1+m(α) where m(α) is the multiplicity of a longest (restricted)
root α of M . Hence d ≥ 2. We will refer to the d-dimensional totally geodesic
submanifolds of constant curvature κ in M as Helgason spheres. It is remarked on
the first page of [He1] that these submanifolds are actually diffeomorphic to spheres
except when M is a real projective space, where they obviously coincide with M
itself.

If M is a projective space over C or H, or the projective plane over the octonions
O, then it turns out that the Helgason spheres Sd in M are precisely the projective
lines. It is also not difficult to see that the Helgason spheres in the Grassmannians
Gk(Cn) and Gk(Hn) coincide with their (generalized) lines as we defined them in
3.2. In Pn(R) and Gk(Rn), this is not true since the (generalized) lines in these
spaces are one-dimensional.

Peterson mentions in [Pe] the action of SL(n,C) on Gk(Cn) and writes that
Chow gives in [Ch] ‘a ‘geometric’ characterization of this action in the case of
classical hermitian symmetric spaces.’ He proves in Theorem 2 that there is for any
given points p and q in a compact irreducible symmetric space M a chain of length
k ≤ rank(M) connecting the two points. Motivated by Chow’s work he defines the
arithmetic distance between p and q to be the shortest chain of Helgason spheres
connecting p and q.

Peterson defines L to be the group of diffeomorphisms of M that preserve the
arithmetic distance. In the main theorem of the paper the (identity component) of
L is determined for the Grassmannians Gk(Rn), Gk(Cn), Gk(Hn) for k ≥ 2, and
the space SU(n)/SO(n). His result is then that L is the special linear group over
the corresponding field in the case of the Grassmannians and SU(n) in the last
case. This result agrees with the one of Chow (see Theorem 3.1) in the case of the
Grassmannians over C and H, but is different for Gk(R) since the Helgason spheres
do not in that case coincide with the (generalized) lines as we have pointed out. The
space SU(n)/SO(n) is not a symmetric R-space and Chow’s results do therefore not
apply to it. It is of course related to the symmetric R-space U(n)/O(n) that we
considered in 4.2.2.

Nagano, who was the advisor of the doctoral thesis of Peterson on which [Pe] is
based, continuous this study in [Na2]. He also writes that Chow defined arithmetic
distance on ‘every classical hermitian symmetric space M ’ and then says that ‘Pe-
terson generalized this by dropping ‘hermitian’.’ Nagano then determines L for the
symmetric space F4/Sp(3)× SU(2), which is not an R-space.
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Note that the result of Nagano from [Na1] that we quoted in the introduction
would answer the question about the group L if we can prove that L is a Lie group.
Then L must be the isometry group of M if M is not a symmetric R-space.

The paper [Ta2] of Takeuchi was a major breakthrough. He restricts his attention
to symmetric R-spaces and changes the definition of Helgason spheres in these
spaces. To avoid misunderstanding, we will refer to the objects in this new definition
as maximally curved spheres.

Let M be a symmetric R-space. A maximally curved sphere in M is a Helga-
son sphere if M is simply connected and a shortest nonconstant closed geodesic
otherwise. Now it is not difficult to see that the maximally curved spheres in the
Grassmannians Gk(Rn), Gk(Cn) and Gk(Hn) coincide with their (generalized) lines
as we defined them in 3.2. The same is clearly true for the quadrics Qn(C) and
Qp,q(R) that we considered in 4.4. This is also very likely to be true for all classical
symmetric R-spaces, but it has not been verified in all cases as far as we know.
Takeuchi does not say that the spaces considered by Chow are the classical sym-
metric R-spaces, but he points out that if ‘the ground field is the complex number
field, these manifolds are the irreducible compact Hermitian symmetric spaces M
of classical type.’ For these spaces he says on p. 260 that the Helgason spheres
coincide with the (generalized) lines of Chow. There is no proof of this claim in
[Ta2], but there is a hint in Example 5.11 on p. 291. Note that the compact Her-
mitian symmetric spaces are simply connected symmetric R-spaces in which the
maximally curved spheres are Helgason spheres.

Takeuchi proves in Lemma 6.1 that there is for any two points in an indecom-
posable symmetric R-space7 a finite chain of of maximally curved spheres joining
the points. He then defines arithmetic distance between two points in M as the
length of a shortest such chain that is needed to connected the points.

Now let the symmetric R-space M = G/L belong to the triple (L,G,K). If
M is an indecomposable symmetric R-space with rank at least two, then the the
main result of Takeuchi in [Ta2] is that the (identity component of the) group of
diffeomorphisms of M preserving the arithmetic distance is L.

We believe that this theorem generalizes the results of Chow that we have been
explaining to all symmetric R-spaces (if one is satisfied with diffeomorphisms in-
stead of homeomorphisms or even more general line preserving bijections). To see
this, one needs to identify the maximally curved spheres with the lines in the clas-
sical symmetric R-spaces. This is clear in many cases as we have pointed out.
Takeuchi’s theorem has for example Theorem 4.1 as a corollary if one assumes that
the line preserving bijection is a diffeomorphism.

6. An unfinished project

Some of the results in Dieudonné’s book [Di] that we have been quoting, apply
to more general R-spaces than those that are symmetric. Theorem 3.2 gives many
examples of such nonsymmetric R-spaces if the Witt index of f is not equal to half
the dimension of W .

If we introduce the usual partial order on the orbit types of the G-action on the
symmetric space L/G, then the symmetric R-spaces are all of minimal type. The
R-spaces of minimal type play a similar role as the Grassmannians among the flag

7Our ‘indecomposable symmetric R-spaces’ are called ‘irreducible symmetric R-spaces’ in [Ta2];
see the introduction for our definition.
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manifolds. Most of the R-spaces of minimal type are not symmetric. The R-spaces
to which the results in [Di] apply are all of minimal type, also those that are not
symmetric.

Sergio Console and I were working on a fundamental theorem for these more
general R-spaces of minimal type in an unfinished project. Our approach was
differential geometric and to some extend in the spirit of the theory of isoparametric
submanifolds.
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Boston, Inc., Boston, MA, 1996.

[KN] S. Kobayashi, T. Nagano, On filtered Lie algebras and geometric structures. I. J. Math.

Mech. 13 (1964), 875–907.
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