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Abstract

We discuss Cartan’s classification of isoparametric hypersurfaces with three dif-
ferent principal curvatures in spheres. In particular, we explain how the Theorem
of Hurwitz on composition algebras relates to the Theorem of Cartan-Schouten
on Riemannian manifolds with a flat metric connection having a skew-symmetric
torsion.

1 Cartan’s isoparametric hypersurfaces

In 1938, Cartan wrote the paper Sur des familles remarquables d’hypersurfaces isoparamé-
triques dans les espaces sphèriques ([5]) where he classified isoparametric hypersurfaces
in spheres with three distinct principal curvatures. These families are now referred to as
Cartan’s isoparametric hypersurfaces. In modern terminology, he proved that a compact
isoparametric hypersurface in the sphere SN+1 with three distinct principal curvatures is
a tube around the standard embedding of either the real, complex, quaternionic or Cayley
projective plane. In particular, N = 3ν and the only possibilities for ν are 1, 2, 4 and 8.
Cartan already had proved that it is equivalent to classify the real homogeneous polyno-
mials F (x1, . . . , xN+2) of degree three that satisfy the following two properties.
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(i) The squared norm of the gradient ∆1(F ) :=
∑

i

(
∂F

∂xi

)2

is constant on the hyper-

sphere SN+1, or, equivalently, there is a real number λ such that

∆1F = λ(x2
1 + x2

2 + ... + x2
N+2)2. (1.1)

(ii) The polynomial F is harmonic:

∆2(F ) =
∑

i

∂2F

∂x2
i

= 0. (1.2)

Classically, ∆1F and ∆2F are called the first and the second differential parameters of F
respectively. The first and the second differential parameters of F are therefore constant
on the regular level sets of F intersected with SN+1, which explains why they are called
isoparametric hypersurfaces. Geometrically, condition (i) implies that the regular level
sets of F restricted to SN+1 are parallel and (ii) that they have constant mean curvature.
One can now prove that their principal curvatures are constant and it also follows that
they have three different values since F is of degree three.
Now Cartan uses the properties in (i) and (ii) to introduce new orthonormal coordinates
in which the polynomial F can be written in a simplified form. It turns out that N = 3ν
and that F can be reduced to the form

F = u3 − 3uv2 +
3
2
u
∑

i

(x2
i + y2

i ) − 3u
∑

i

z2
i +

3
√

3
2
v
∑

i

(x2
i − y2

i ) +
∑

i

ziQi(x, y) ,

where the first ν coordinates are denoted by x1, . . . , xν , the next ν by y1, . . . , yν, and then
by z1, . . . , zν . Finally one denotes the last two coordinates by u and v.
The polynomials Qi in the above formula are quadratic since F is of degree three. They
have the remarkable property that

ν∑

i=1

[Qi(x, y)]2 = 27(
ν∑

i=1

x2
i )(

ν∑

i=1

y2
i ) . (1.3)

It follows that the Qi(x, y) are bilinear. Setting Hi =
√

3
9
Qi, we get the identity

ν∑

i=1

[Hi(x, y)]2 = (
ν∑

i=1

x2
i )(

ν∑

i=1

y2
i ). (1.4)

Cartan comments these equations as follows.

La forme trilinéaire
∑
zkQk aux trois séries de variables xi, yi, zi jouit de

propriétés remarquables. Si nous posons

Qk = 3
√

3Hk

nous voyons que la première relation [here equation (1.3)] fournit une générali-
sation des formules bien connues de Lagrange et de Brioschi qui représentent
le produit de deux sommes de ν carrés par une somme de ν carrés. On a en
effet ∑

i

[Hi(x, y)]2 =
∑

x2
i

∑
y2
i ,

les ν quantités Hi(x, y) du premier membre étant bilinéaires par rapport aux
xi et aux yi.

100



The existence of isoparametric hypersurfaces with three different principal curvatures
depends on the solubility of equation (1.4). One can reformulate (1.4) by saying that there
is a nondegenerate bilinear form H : Rν ×Rν → Rν satisfying |H(x, y)| = |x||y| for every
x and y. Setting the i-th component of H equal to Hi, we get (1.4). The Euclidean space
(Rν , 〈 , 〉) endowed with a product H satisfying |H(x, y)| = |x||y| is called a composition
algebra, and will be discussed in Section 2 below. A theorem of Hurwitz ([8]) states that
a composition algebra with a unit is either the field of the real or the complex numbers,
the skew field of the quaternions, or the division algebra of the Cayley numbers. The
composition algebra defined by equation (1.4) does not necessarily have a unit, but that
can be corrected with a simple change of coordinates as we will explain in Section 2, thus
finishing the proof. In fact, Cartan never mentions in [5] the Theorem of Hurwitz although
it is closely related to the results of Lagrange and Brioschi mentioned in the quote above.
Instead he makes a detour and classifies himself composition algebras without saying so
explicitly. He does this by introducing with help of the composition algebra an “absolute
parallelism” on the unit sphere in Rν , which is a flat metric connection having the great
circles as geodesics. Now he can use a result of his with Schouten in [3] to finish the proof.
We quote Cartan again.

Il est connu [footnote referring to [3]] que les seuls espaces riemanniens ad-
mettant un parallélisme absolu isogonal sont les espaces représentatifs des
groupes simples clos et l’espace elliptique à 7 dimensions, auxquels il faut
ajouter l’espace repésentatif du groupe clos des rotations de la circonférence
(ν = 2) ainsi que les produits topologiques de deux ou plusieurs des espaces
précédents. Parmi tous ces espaces ceux qui sont á courbure constante sont les
espaces elliptiques à 1, 3 et 7 dimensions; aucun produit topologique ne peut
convenir, car le ds2 de l’espaces riemannien correspondant serait la somme de
deux ds2 portant sur des variables séparées ui et vj et le tenseur de Riemann
ne pourrait pas être de la forme qui convient à un espace à courbure constante
non nulle.

Par conséquent le problème proposé n’admet de solution que pour ν = 2, 4,
8, cas auxquels il faut naturellement ajouter ν = 1!

By “parallélisme absolu isogonal”, Cartan means a flat metric connection. One should
stress that the Theorem of Hurwitz is very elementary and can be stated and proved with
methods that do not go beyond high school mathematics; see e.g. the proof in [9], which
was written by an interested layman. The Theorem of Cartan and Schouten is of course
on a very different level. A modern proof can be found in [2].
After this detour, Cartan gives an explicit formula for the trilinear form F =

∑
kzkHk(x, y)

in the four possible cases for ν. In fact, F has the form

F =
1
2

((XY )Z + Z̄(Ȳ X̄)),

where X, Y , and Z are understood to be real numbers if ν = 1, complex numbers if
ν = 2, quaternions if ν = 4, and Cayley numbers if ν = 8. The bars over X, Y , and Z
can be ignored in the case of the reals and are otherwise understood to be conjugation.
With this Cartan can express the polynomial F in the following normal form

F = u3 − 3uv2 +
3
2
u(XX̄ + Y Ȳ − 2ZZ̄) +

3
√

3
2
v(XX̄ − Y Ȳ ) +

3
√

3
2

((XY )Z + Z̄(Ȳ X̄)),
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which finishes his classification of the polynomials satisfying (1.1) and (1.2).
The arguments of Cartan where he uses his result with Schouten instead of the more
straightforward Theorem of Hurwitz have been considered rather obscure. In Section 3
of this note, we fill in details missing in Cartan’s arguments and show how composition
algebras can be classified with help of “absolute parallelism.” His arguments turn out to
be completely correct as was to be expected, although not very detailed.
The story here told is missing in the survey [10] on isoparametric hypersurfaces and
their generalizations, which was written at the request of Franki Dillen. Saddened by his
untimely death, we dedicate this note to his memory.

2 Composition algebras

We will let 〈 , 〉 denote the standard scalar product on Rn and | | its norm. We will assume
that n ≥ 1 and let · denote a bilinear product on Rn.
An algebra A = (Rn, 〈 , 〉, · ) is called a composition algebra if

|x · y| = |x| |y| . (2.1)

for every x and y in Rn; see [6], Chapter 10. A unit in a composition algebra is an element
e such that e · x = x · e = x for every x ∈ Rn. We will sometimes write H(x, y) instead
of x · y for the product in a composition algebra. We do this in particular in Section 3
where we explain Cartan’s proof, since it is closer to his original notation.
The fields of the real numbers R and the complex numbers C, the skew field of the
quaternions H, and the division algebra of the Cayley numbers (or octonions) O are
examples of composition algebras with a unit. One can modify the product · in C, H and
O by setting H(x, y) = x̄ · y for example, thus arriving at composition algebras without
a unit.
Note that a composition algebra cannot have divisors of zero. Since the bilinear form ·
is clearly not degenerate, a composition algebra is also a division algebra, i.e., the two
equations a ·x = b and y ·a = b have unique solutions in V for every a and b in V as long
as a 6= 0.

Theorem 2.1 (Hurwitz [8]). A composition algebra with a unit is isomorphic to R, C,
H, or O.

We can use the Theorem of Hurwitz to classify composition algebras in general; see [11],
Prop. 1, p. 25. To see this let A = (Rn, 〈 , 〉, · ) denote a composition algebra that does
not necessarily have a unit. We choose a unit vector x0 in Rn and define orthogonal
endomorphisms A and B of Rn by setting A(x) = x0 ·x and B(x) = x ·x0. Now we define
a new product H on Rn by setting H(x, y) = B−1(x) ·A−1(y). Then x2

0 = x0 ·x0 is a unit.
Indeed,

H(x2
0, x) = B−1(x2

0) · A−1(x) = x0 · A−1(x) = A(A−1(x)) = x

for all x in Rn. Similarly H(x, x2
0) = x for all x in Rn. Now we can use the Theorem of

Hurwitz to classify the possibilities for H . In the proof of Cartan described in Section 1,
we only need to know H up to an orthogonal transformation in each of the two entries.
We can therefore assume that the composition algebra defined by (1.4) is R, C, H, or
O, thus finishing the classification of the polynomials F satisfying (1.1) and (1.2). These
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considerations now show that we have the following corollary of the Theorem of Hurwitz
in which we do not assume the existence of a unit.

Corollary 2.1. If A = (Rn, 〈 , 〉, · ) is a composition algebra, then n = 1, 2, 4, or 8.

For later, we remark that polarizing (2.1) first in x and then in y, we get

〈x · y, x′ · y〉 = 〈x, x′〉〈y, y〉 ,
〈x · y, x · y′〉 = 〈x, x〉〈y, y′〉 . (2.2)

3 Cartan’s arguments

We let H denote a product on Rn such that A = (Rn, 〈 , 〉, H) is a composition algebra.
Following Cartan we modify H as follows. If H1(x, y) is the first component of H(x, y)
in Rn, we can write

H1(x, y) = a1(x)y1 + a2(x)y2 + · · ·an(x)yn
= 〈Ax, y〉,

where A is an endomorphism of Rn. Let us fix x. Using that left multiplication by x is a
vector space isomorphism, we find a y ∈ Rn such that only the first component of H(x, y)
is nonzero. Hence

H1(x, y)2 = |H(x, y)|2 = |x|2 |y|2.
Now

H1(x, y)2 = 〈Ax, y〉2 ≤ |Ax|2 |y|2

implies |x| ≤ |Ax|.
Since

|x||Ax| = |H(x,Ax)| ≥ |H1(x,Ax)| = |〈Ax,Ax〉| = |Ax| |Ax|,
we also get |x| ≥ |Ax| for every x in Rn. It follows that |x| = |Ax| for every x ∈ Rn and
we have proved that A is an orthogonal endomorphism.
We modify the product H by setting

H̃(x, y) = H(A−1x, y).

Clearly (Rn, 〈 , 〉, H̃) is still a composition algebra. The first component H̃1(x, y) of H̃(x, y)
now clearly satisfies

H̃1(x, y) = 〈x, y〉.
To simplify the notation, we will write H(x, y) instead of H̃(x, y). We will let I(x, y) in
Rn−1 denote the image of H(x, y) under the projection of Rn onto Rn−1 that we get by
deleting the first component. Then

|H(x, y)|2 = 〈x, y〉2 + |I(x, y)|2.

Now |H(x, x)| = |x||x| implies that I(x, x) = 0 for all x in Rn. Polarizing, we get

I(x, y) = −I(y, x)
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for every x and y in Rn. In particular,

H(x, y) = −H(y, x)

if 〈x, y〉 = 0.
We now start defining the parallelism on Sn−1 according to Cartan. Let two points x and
x′ in Sn−1 be given. Let y be a vector in TxSn−1. Then there is a unique element y′ in Rn

such that
H(x, y) = H(x′, y′).

First note that 〈x, y〉 = 0 is equivalent to 〈x′, y′〉 = 0, i.e., y′ is in Tx′Sn−1. Also |y| =
|H(x, y)| = |H(x′, y′)| = |y′| shows that the map from TxSn−1 to Tx′Sn−1 that sends y to
y′ is an isometry. We say that y and y′ are parallel if they correspond under this map. We
now say that a vector field is parallel if its values are parallel in this sense. This defines a
flat metric connection on Sn−1 that we denote by ∇. We can easily describe the geodesics
with respect to this connection.

Lemma 3.1. The geodesics on Sn−1 with respect to ∇ are the great circles.

Proof. We consider the great circle

γ(t) = cos tx+ sin ty,

where 〈x, y〉 = 0. To prove that γ′(t) is parallel along γ(t), we need to show that
H(γ(t), γ′(t)) = H(x, y). This now follows immediately since H(x, y) = −H(y, x).

We now recall the Theorem of Cartan and Schouten in [3]; see also [2].

Theorem 3.1 (Cartan-Schouten). Let (M, g,∇) be a simply connected, complete and
irreducible Riemannian manifold equipped with a flat metric connection ∇ that does not
coincide with, but has the same geodesics as the Levi Civita connection of (M, g). Then
M is either isometric to a compact simple Lie group with a bi-invariant metric or to a
round sphere S7.

Using the result of Cartan, see [4], p. 197, that the third Betti number of a compact
simple Lie group never vanishes, we see that the only sphere having the structure of a
simple Lie group is S3. Hence we see that the spheres Sn−1 carrying Cartan’s parallelism
can only be S3 and S7 to which we have to add S0 and S1. This proves that the dimension
n of the composition algebra can only be 1, 2, 4, and 8. The absolute parallelisms on the
compact simple Lie groups are known, and Cartan and Schouten also classified those on
S7 although it is not stated in the above formulation of their theorem. One can therefore
use absolute parallelism to give a proof of the Hurwitz Theorem, albeit not a simple one.

Remark 3.1. In the case of the classical composition algebras, the endomorphism A is
conjugation. Cartan’s modified product is therefore H(x, y) = x̄y.

4 Composition algebras and skew-symmetric torsion

We would now like to give an explicit formula for the torsion tensor of the flat connection
that Cartan associated to a composition algebra; see Section 3. The torsion is skew-
symmetric since the connection is metric and has the same geodesics as the Levi Civita
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connection. Connections with skew-symmetric torsion were already studied by Cartan
and are still today an active field of research; see e.g. [1].
We first review some elementary formulas. Suppose a connection ∇ is given on a Rie-
mannian manifold (M, g). We let ∇LC denote the Levi Civita connection of (M, g). The
difference

A(X, Y ) = ∇XY − ∇LC
X Y

is a (2, 1)-tensor which we use to define a (3, 0)-tensor A by setting

A(X, Y, Z) = 〈A(X, Y ), Z〉.

It clearly follows that A(X, Y, Z) = −A(X,Z, Y ) if and only if ∇ is metric. It is also
obvious that A(X, Y, Z) = −A(Y,X, Z) if and only if the geodesics of ∇ and ∇LC coincide.
Note that a (3, 0)-tensor is skew-symmetric with respect to all three transpositions if it
is skew-symmetric with respect to two of them. Hence A is skew-symmetric if and only
if ∇ is metric and has the same geodesics as ∇LC . Applying the calculations in the proof
of the uniqueness of the Levi Civita connection to a metric connection ∇, we get

〈∇XY, Z〉 = 〈∇LC
X Y, Z〉 +

1
2

[
〈Z, T (X, Y )〉 + 〈Y, T (Z,X)〉 − 〈X, T (Y, Z)〉

]
,

where T is the torsion tensor of ∇; see [7], p. 87. It follows that

A(X, Y, Z) =
1
2

[
〈Z, T (X, Y )〉 + 〈Y, T (Z,X)〉 − 〈X, T (Y, Z)〉

]
. (4.1)

It follows from equation (4.1) that A is skew-symmetric if and only if the (3, 0)-tensor

T(X, Y, Z) = 〈T (X, Y ), Z〉

is skew-symmetric. If the (3, 0)-tensor T is skew-symmetric, (4.1) implies that

A(X, Y, Z) =
1
2

T(X, Y, Z); (4.2)

see also [1]. We will refer to the (3, 0)-tensor T as the torsion 3-tensor.

Next we turn to the connection defined by Cartan; see Section 3. We saw in Lemma 3.1
that it has the same geodesics as the Levi Civita connection. Thus A and T are both
skew-symmetric. We now give an explicit formula for T in terms of the modified product
H in Section 3.

Proposition 4.1. We have Tx(y, z, w) = 2〈H(y, z), H(x, w)〉 for every y, z and w ∈
TxSn−1.

Proof. We will calculate A which by equation (4.2) suffices to determine T.
Let x ∈ Sn−1 and y a unit vector in TxSn−1. We consider the great circle γ(t) = cos t x+
sin t y. A vector field Z(t) along γ(t) is by definition ∇-parallel if H(γ(t), Z(t)) = H(x, z)
for all t, where z = Z(0). Taking derivative and setting t = 0, we get

H(x, Z ′(0)) = −H(y, z). (4.3)

Clearly,
Ax(y, z, w) = −〈∇LC

y Z(0), w〉 = −〈Z ′(0), w〉.
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Using (2.2), we get Ax(y, z, w) = −〈H(x, Z ′(0)), H(x, w)〉. By (4.3), we now get

Ax(y, z, w) = 〈H(y, z), H(x, w)〉

which implies the formula we wanted to prove.

It is very easy to use the formula for A in the proof of Proposition 4.1 to prove directly
that A and hence also T is skew-symmetric.

Remark 4.1. Cartan’s modified product applied to the classical composition algebras
would give rise to the torsion 3-tensor

Tx(y, z, w) = 2〈ȳz, x̄w〉

on Sn−1; see Remark 3.1.

Cartan’s approach is not the only possibility to associate a flat metric connection with
skew-symmetric torsion to a composition algebra. We sketch another way to do this.
Let a composition algebra A = (Rn, 〈 , 〉, H) be given. We can then use both right and
left multiplication in the composition algebra to define a natural parallelism on Sn−1. We
will use right multiplication.
We fix a point x in Sn−1 and let z be an element of TxSn−1. We now define a vector field
Z on Sn−1 by setting Zy = z · a where a is the unique element of Rn such that y = x · a.
Notice that Zy ∈ TySn−1 since 〈Zy, y〉 = 〈z · a, x · a〉 = 〈z, x〉 = 0 by (2.2). Similarly, we
see that 〈Zy,Wy〉 = 〈z, w〉 where the vector field W with Wx = w is defined as Z.
We now endow Sn−1 with the flat metric connection ∇R such that the vectors fields
defined as Z and W are parallel. We will first calculate the difference tensor A.
Let x be a point in Sn−1 and let ex ∈ Rn the unique vector such that x · ex = x. The
tangent space TxSn−1 is the orthogonal complement of x. Therefore we can assume that
a tangent vector to the unit sphere at x has the form x · y, with y ∈< ex >

⊥.

Proposition 4.2. The (3, 0)-tensor A at a point x ∈ Sn−1 is given by

A(x · u, x · v, x · w) = −〈(x · v) · u, x · w〉,

for every u, v, w ∈< ex >
⊥.

We skip the proof of this proposition since it is similar to the one of Proposition 4.1. It
follows easily from the formula in Proposition 4.2 that A is skew-symmetric. Hence the
torsion is also skew-symmetric and satisfies the formula

T(x · u, x · v, x · w) = −2〈(x · v) · u, x · w〉

for u, v, w ∈< ex >
⊥.
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