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Abstract. Let f be a sesquilinear form on Fn with positive Witt index r

where F is R, C, or H. Let Ni(Fn, f) denote the space of i-dimensional totally

isotropic subspaces of Fn with respect to f where i ≤ r. Then our main result
will be the observation that Ni(Fn, f) is a symmetric space if and only if

n = 2i. This gives us seven series of compact symmetric spaces. If we add the
three series of Grassmannians Gi(Fn) over F, we get all ten series of classical

compact symmetric spaces.

1. Introduction

1.1. Symmetric spaces. A symmetric space is a Riemannian manifold M with
the property that for every p in M there is an isometry σp of M to itself fixing p
and reversing the orientation of the geodesics passing through p. It easily follows
from the definition that a symmetric space M is homogeneous and can hence be
written as a coset space K/L where K is the isometry group of M ; see [4], Ch. IV,
§3.

We will phrase our main result in terms of symmetric pairs. Let (K,L) be a pair
consisting of a Lie group K and a compact subgroup L. We say that (K,L) is a
symmetric pair if there is an involutive automorphism σ of K with

Kσ
0 ⊂ L ⊂ Kσ

where Kσ is the fixed point group of σ and Kσ
0 denotes the identity component of

Kσ.
If (K,L) is a symmetric pair, then every K-invariant Riemannian metric on K/L

makes it into a symmetric space. A K-invariant Riemannian metric on K/L can
always be found by averaging.

If K is the isometry group of a symmetric space M and L the isotropy group of
some point in M , then (K,L) is a symmetric pair.

We will say that M = K/L is a classical symmetric space and (K,L) a classical
symmetric pair if K and L are classical matrix groups or finite quotients or coverings
of such groups.

1.2. Sesquilinear forms. We let F denote the reals R, the complex numbers C,
or the quaternions H. We will call F a field in spite of the noncommutativity of H.
We will consider the set Fn of n-tuples of elements in F (which we will call vectors)
as a right vector space over F, i.e., we will multiply a vector in Fn by a scalar from
F on the right hand side. It is the noncommutativity of the quaternions that makes
it necessary to decide on which side we multiply the scalars.
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We let σ : F→ F denote an anti-automorphism of F, i.e.,

σ(αβ) = σ(β)σ(α),

which we will assume to be continuous.1 These anti-automorphisms are the identi-
ties on R and C, the conjugation on C, and the conjugation composed with an inner
automorphism on H. For our purposes, we can disregard the inner automorphism
in the case of H and assume that an anti-automorphism is the conjugation. We let
ε denote either 1 or −1. A sesquilinear form is by definition a map

f : Fn × Fn → F
that is additive in both arguments and satisfies

f(xα, yβ) = σ(α)f(x, y)β

for all x and y in Fn and all α and β in F; see [1], §3 and especially [8], §8.1. A
sesquilinear form f is said to be (σ, ε)-Hermitian if

f(x, y) = εσ(f(y, x))

for all x and y in Fn.
A (σ, ε)-Hermitian form f is said to be nondegenerate if f(x, y) = 0 for all y in

Fn implies x = 0. In the following, we will assume all forms to be nondegenerate.

1.3. Totally isotropic subspaces. Let f be a (σ, ε)-Hermitian form on Fn. We
will say that a subspace of Fn is totally isotropic with respect to f if the restriction
of f to it is identically zero. The Witt index of f is defined to be the maximal
dimension r of a totally isotropic subspace of Fn with respect to f . Note that r is
at most half the dimension of Fn, i.e., 2r ≤ n.

The automorphism group Aut(Fn, f) is clearly a closed subgroup of GL(n,F)
and hence a Lie group. Let W1 and W2 be subspaces of Fn that are isometric with
respect to the restrictions of f . Then, by a theorem of Witt, there is an element of
Aut(Fn, f) that maps W1 to W2; see [1], p. 71.

Let Ni(Fn, f) denote the space of i-dimensional totally isotropic subspaces of
(Fn, f) for i ≤ r. Then it is clear from the theorem of Witt we just quoted that
Aut(Fn, f) acts transitively on Ni(Fn, f). The isotropy group of the action of
Aut(Fn, f) on Ni(Fn, f) at some given element is a closed subgroup. It follows that
we can write Ni(Fn, f) as a quotient space of Aut(Fn, f) and a closed subgroup
and hence that Ni(Fn, f) is a differentiable manifold, which is in fact a closed
submanifold of the Grassmannian Gi(Fn) and hence compact.

In the following, we will simplify the notation by setting G = Aut(Fn, f). We
will say that a Lie group, which we do not assume to be connected, is reductive if
its Lie algebra is the direct sum of an Abelian and a semisimple Lie algebra.

We will need the following lemma on the structure of G.

Lemma 1.1. Assume the Witt index r of (Fn, f) is positive. Then G is a non-
compact, possibly disconnected, reductive Lie group. If K is a maximal compact
subgroup of G, then K acts transitively on Ni(Fn, f) for all i ≤ r.

We will prove the above lemma and the following theorem in Section 2 by looking
at the different possibilities for a (σ, ε)-Hermitian form f on Fn. The group G will
in all cases turn out to be a well-known classical Lie group, which we know to be
reductive. The center of G is in all cases either zero- or one-dimensional. It is also

1(Anti)-automorphisms of R and H are continuous, but C has discontinuous ones.
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well known that any two maximal compact subgroups in these reductive groups G
are conjugate to each other.

We can now formulate our main result.

Theorem 1.2. Assume the Witt index r of (Fn, f) is positive and that L is the
isotropy group of the action of K on Ni(Fn, f) at some given totally isotropic i-
plane. We assume furthermore that r ≥ 2 if F = R and ε = 1.

Then (K,L) is a symmetric pair if and only if i is equal to the Witt index r and
n = 2r.

If r = 1 and ε = 1, then K/L is diffeomorphic to a sphere for all three fields,
but only for the real field is (K,L) a symmetric pair; see the remark at the end of
2.1.1 for details.

Finally, we would like to point out that it is assumed in the definition of symmet-
ric pairs on p. 209 in [4] that the group here denoted by K is connected. We have
decided not to follow this since the spaces Nk(F2k, f) are not always connected.
This is of course not essential for our results and could be modified; see also the
remarks in Section 3.2 at the end of the paper.

2. The proofs of Lemma 1.1 and Theorem 1.2

It is an easy task to list the possible types of (σ, ε)-Hermitian forms by going
through the possibilities for F, σ, and ε . We bring the result in the following table.
In the last column, we explain how the forms are usually referred to.

R σ = identity ε = +1 symmetric forms
ε = −1 symplectic forms

C σ = identity ε = +1 symmetric forms
ε = −1 symplectic forms

σ = conjugation ε = +1 Hermitian forms
ε = −1 skew-Hermitian forms

H σ = conjugation ε = +1 Hermitian forms

ε = −1 skew-Hermitian forms

There are eight lines in the table. Note that a Hermitian form over C becomes
skew-Hermitian if we multiply it by i and vice versa. This will make these two cases
equivalent from our point of view since the automorphism groups and the spaces
Ni(Fn, f) do not change when we multiply f by i. In the quaternionic case, the
Hermitian and the skew-Hermitian forms are genuinely different.

We are therefore left with seven different types of (σ, ε)-Hermitian forms. It turns
out that each type has a normal form, which will lead to a complete classification of
these sesquilinear forms. These normal forms are well known from Linear Algebra
with the possible exception of the skew-Hermitian forms on Hn. All cases can be
found in [2], §12. We will use some elementary theory of symmetric spaces and Lie
groups in the proofs, but no use will be made of the classifications of symmetric
spaces and simple Lie groups.

It will be convenient to group the seven types of normal forms as follows:

(1) The symmetric forms over R and the Hermitian forms over C and H, which
we will refer to as inner products on Fn.

(2) The symplectic forms over R and C
(3) The symmetric forms over C and the skew-Hermitian forms over H.
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We will consider the seven cases separately and prove the lemma and the theorem
for each case.

2.1. Inner products. Let f be a form on Fn that is symmetric if F = R and
Hermitian if F = C or H. Then there is a basis of Fn such that f can be written as

f(x, y) =

k∑
i=1

x̄iyi −
n∑

i=k+1

x̄iyi

where we disregard the bars in the formula in the real case. The pair (k, n− k) is
called the signature of f . It is easy to see that the Witt index r of f is equal to
min{k, n− k}. We will mostly assume that k ≤ n− k and hence that r = k.

2.1.1. Inner products on Rn. The automorphism group G = Aut(Rn, f) is denoted
by O(k, n − k) and called the orthogonal group of type (k, n − k). The group
G = O(k, n − k) has four connected components when k ≥ 1. The group G =
O(k, n− k) is simple except in some exceptional cases where it is semi-simple.2 We
set O(n) = O(n, 0). The group O(n) is compact and has two components. The
group O(k)×O(n− k) is a maximal compact subgroup in O(k, n− k). It is easy to
see that the action of O(k)×O(n− k) on Ni(Rn, f) for all i ≤ r = k is transitive.

We would now like to prove Theorem 1.2 in this case. Let P be the i-plane in
Ni(Rn, f) spanned by e1+ek+1, . . . , ei+ek+i where e1, . . . , en is the standard basis of
Rn. We denote by L the isotropy group of P under the action of K = O(k)×O(n−
k). Our goal is to show that (K,L) is a symmetric pair if and only if n = 2i. Now it
is easy to see that a block matrix (A,B) in K = O(k)×O(n−k) is contained in L if
and only if A is a block matrix of the form (C,D) in O(k) and B is a block matrix
of the form (C,E) in O(n−k) where C ∈ O(i), D ∈ O(k− i), and E ∈ O(n−k− i).
In particular, L is equal to the diagonal group ∆(O(k)) in K if i = k = n− i. This
proves that (K,L) is a symmetric pair when i = k and 2k = n since then ∆(O(k))
is the fixed point group of the involution of K = O(k) × O(k) that switches the
two factors. The corresponding symmetric space O(k) × O(k)/∆(O(k)) can easily
be seen to coincide with

O(k).

Note that the symmetric space Nk(R2k, f) has two components.
It is left to prove that (K,L) is not a symmetric pair when 1 < i < k or 2k < n.

We give an indirect proof and assume that i < k or 2k < n and that L is open and
closed in the fixed point group of an involution σ on K. Note that (the identity
component of) K can consist of two, three, or four simple factors. We first assume
that K has two factors. Now we know from [4], Theorem 5.3 on p. 379, that the
involution σ either leaves the simple factors of K invariant or interchanges two such
factors. The fact that L cannot be written as a product of subgroups of O(k) and
O(n−k) shows that σ must interchange the factors which is not possible if 2k < n,
and L would have smaller dimension than the fixed point group if i < k and 2k = n.
Similar arguments can be used when K has more than two simple factors. This
finishes the proof of both Lemma 1.1 and Theorem 1.2 in this case.

It is easy to see that (K,L) is a symmetric pair and K/L a sphere when i = r = 1.
In fact, if f is an inner product with signature (n, 1) on Rn+1, then G = O(n, 1)

2It will not be important for us to know when O(k, n − k) is simple, but one finds necessary
and sufficient conditions for this in [5] on p. 362.
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and (K,L) is the symmetric pair (O(n) × O(1),O(n − 1) × O(1)) which has the
more familiar symmetric pair (SO(n),SO(n− 1)) as its identity component.3

2.1.2. Inner products on Cn. This case is very similar to the case of inner products
on Rn, see 2.1.1, so we only sketch it.

The automorphism group G = Aut(Cn, f) is denoted by U(k, n− k) and called
the unitary group of type (k, n−k). Note that G has a one-dimensional center that
consists of multiples of the identity by complex numbers with absolute value one.
The group G modulo the center is isomorphic to the kernel of the map

det : G = U(k, n− k)→ C,

which is denoted by SU(k, n−k) and called the special unitary group of type (k, n−
k). The group SU(k, n−k) is simple which implies thatG is reductive. Furthermore,
K = U(k) × U(n − k) is a maximal compact subgroup of G where U(k) = U(k, 0)
and U(n − k) = U(n − k, 0). It is easy to see that the action of U(k) × U(n − k)
on Ni(Cn, f) for i ≤ min{k, n− k} is transitive. The group K is connected and its
center is two-dimensional.

The proof Theorem 1.2 in this case is very similar to the arguments in 2.1.1.
The symmetric space Nk(C2k, f) coincides with

U(k).

Note that Nk(C2k, f) has a one-dimensional Euclidean factor.

2.1.3. Inner products on Hn. We will be very brief since this case is very similar to
the previous two cases; see 2.1.1 and 2.1.2.

The automorphism group G = Aut(Hn, f) is denoted by Sp(k, n − k) and is
called the quaternionic unitary group of type (k, n− k). The group Sp(k, n− k) is
simple and connected and has Sp(k)× Sp(n− k) as a maximal compact subgroup
acting transitively on Ni(Hn, f) for i ≤ min{k, n− k} where Sp(k) = Sp(k, 0) and
Sp(n− k) = Sp(n− k, 0).

Again, we can argue as in 2.1.1 to prove Theorem 1.2 in this case. Here there
is a slight simplification since K has precisely two simple factors. The symmetric
space Nk(H2k, f) coincides with

Sp(k),

which is irreducible.

2.2. The symplectic forms. Let f be a symplectic form on Fn. It follows that n
must be even, i.e., n = 2k, and F is either R or C, and there is a basis of Fn such
that f can be written as

f(x, y) =

k∑
i=1

(xiyk+i − xk+iyi).

The Witt index of f is equal to k, which is half the dimension n.
The maximal totally isotropic subspaces in (Fn, f) are usually called Lagrangian

subspaces and Nk(Fn, f) is called a Lagrangian Grassmannian (over F).

3Putting an S in front of the symbol for a group will always mean passing to the subgroup of
elements with determinant equal to one.
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2.2.1. Symplectic forms on R2k. The automorphism group G = Aut(R2k, f) is de-
noted by Sp(2k,R) and called the symplectic group over R.4 It is well known that
the group Sp(2k,R) is simple and connected. The form f is the imaginary part
of the standard inner product on Ck that we assume to be identified with R2k.
It now follows easily that U(k) is a maximal compact group in Sp(2k,R). To see
that U(k) acts transitively on Ni(R2k, f) for i ≤ k, let P be a plane in Ni(R2k, f)
with an orthonormal basis ê1, . . . êi. Then ê1, . . . êi is clearly also orthonormal with
respect to the unitary scalar product on Ck and it follows at once that U(k) acts
transitively on Ni(R2k, f).

We would now like to write Nk(R2k, f) as a coset space. We let P be the
subspace of R2k spanned by the first k standard basis vectors. It is clear that P
is a Lagrangian subspace and that an element of U(k) leaves it invariant if and
only if it is contained in O(k). The involution σ on U(k) that sends A to the
conjugated matrix Ā has O(k) as a fixed point group. It follows that (U(k),O(k))
is a symmetric pair and the symmetric space Nk(R2k, f) coincides with

U(k)/O(k).

Note that Nk(R2k, f) has a one-dimensional Euclidean factor.
It is left to prove that Ni(R2k, f) is not a symmetric space for i < k. Assume it is

a symmetric space and let P be the plane in Ni(R2k, f) spanned by e1, . . . , ei. Then
the isotropy group at P of the action of U(k) on Ni(R2k, f) is O(i)×U(k−i). Let σ
be an involution of U(k) corresponding to the symmetric pair (U(k),O(i)×U(k−i)).
Let k and p be the +1- and −1-eigenspaces of dσe, respectively. A straightforward
calculation now shows that [p, p] is not a subspace of k as it should be since dσe
is a Lie algebra automorphism. This contradiction shows that Ni(R2k, f) is not a
symmetric space for i < k and finishes the proof of Theorem 1.2 in this case.

2.2.2. Symplectic forms on C2k. The automorphism group G = Aut(C2k, f) is de-
noted by Sp(2k,C) and called the symplectic group over C.5 It is well known that
the group Sp(2n,C) is simple and connected. Similar to the real case in 2.2.1, we
identify C2k with Hk and use the fact that f is the j-part of the standard quater-
nionic scalar product on Hk; see [3], Ch. I, §VIII. It follows that Sp(k) is a maximal
compact subgroup of Sp(2k,C). It now follows as in 2.2.1 that the action of Sp(k)
on Ni(R2k, f) is transitive for i ≤ k. We let P be the subspace of C2k spanned
by the first k standard basis vectors. Then we see with arguments as in 2.2.1 that
U(k) is the isotropy subgroup at P under the action of Sp(k). We would now like
to define an involution σ on Sp(k) having U(k) as a fixed point group. We write
the quaternionic matrix A ∈ Sp(k) as A = C + jD, where C and D are matrices
with complex entries. We set σ(C + jD) = C̄ + jD̄ and calculate directly that
σ is the inner group automorphism that we get by conjugating by Ikj. The fixed
point group of σ consists of those elements of Sp(k) that leave Rk + jRk invariant.
By the definition of Sp(k), the fixed point group can be described as the subgroup
that leaves the inner product restricted to Rk + jRk invariant, i.e., it is U(k). It
follows that (Sp(k),U(k)) is a symmetric pair and the symmetric space Nk(C2k, f)
coincides with

Sp(k)/U(k),

which is irreducible.

4This group is frequently denoted by Sp(k,R).
5This group is frequently denoted by Sp(k,C).
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It is left to prove that Ni(C2k, f) is not a symmetric space for i < k. Here we
can use arguments similar to those in the previous case; see 2.2.1.

2.3. Symmetric forms on Cn and skew-Hermitian forms on Hn. Here we
are considering two cases that turn out to have rather similar normal forms.

2.3.1. Symmetric forms on Cn. Let f be a symmetric form on Cn. Then there is
a basis of Cn such that f can be written as

f(x, y) =

n∑
i=1

xiyi.

The automorphism group of (Cn, f) is called the complex orthogonal group and
is denoted by O(n,C). The group O(n,C) has two connected components that
coincide with the preimages of 1 and −1 under the determinant. Furthermore, it
has O(n) as a maximal compact subgroup. The Witt index r of f is equal to

[
n
2

]
.

We will now show that the action of O(n) is transitive on Ni(Cn, f) for all
i ≤

[
n
2

]
. To do this we split f into real and imaginary parts. Let u+ iv and w+ iz

be elements in Cn = Rn + iRn. Then

f(u+ iv, w + iz) =

n∑
j=1

(ujwj − vjzj) + i

n∑
j=1

(ujzj + vjwj).

Let P be an element in Ni(Cn, f). We choose an orthogonal basis z1 = u1 +
iv1, . . . , zi = ui+ ivi in P with respect to the standard Hermitian scalar product in
Cn where uj and vj are elements in Rn and assume that ‖zj‖2 = 2 for all i. Then
the equations ‖zj‖2 = 2 and f(zj , zj) = 0 imply

‖uj‖2 = ‖vj‖2 = 1 and 〈uj , vj〉 = 0.

Furthermore, the equations 〈zh, zj〉 = 0 and f(zh, zj) = 0 for h 6= j imply

〈uh, uj〉 = 〈vh, vj〉 = 0 and 〈uh, vj〉 = 0.

As a consequence, we see that u1, . . . , ui, v1, . . . , vi is an orthonormal set in Rn.
Conversely, we see that every such orthonormal set u∗1, . . . , u

∗
i , v
∗
1 , . . . , v

∗
i of Rn gives

rise to a subspace in Cn spanned by z∗1 = u∗1+iv∗1 , . . . , z
∗
i = u∗i +iv∗i that is contained

in Ni(Cn, f). Note that 2i ≤ n since i is less than or equal to the Witt index, which
is equal to

[
n
2

]
. It follows that the maximal compact subgroup O(n) of O(n,C)

acts transitively on Ni(Cn, f) for all i ≤
[
n
2

]
.

Now assume that n = 2k and let P ∈ Nk(C2k, f). Then the above considerations
make clear that the isotropy group of the action of O(2k) at P is U(k). Let σ be
the involution of O(2k) defined as the conjugation by

Jk =

(
0 Ik

−Ik 0

)
.

Then U(k) is the fixed point group of σ and it follows that (O(2k),U(k)) is a
symmetric pair. We have therefore proved that Nk(C2k, f) is a symmetric space
that coincides with

O(2k)/U(k).

We see that Nk(C2k, f) has two connected components. One frequently refers to
one to the components as an orthogonal Grassmannian.
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It is left to prove that Ni(Cn, f) is not a symmetric space if i <
[
n
2

]
. To do this,

we use methods analogous to those for the symplectic forms in 2.2; see the end of
2.2.1.

2.3.2. Skew-Hermitian forms on Hn. Let f be a skew-Hermitian form on Hn. Then
there is a basis of Hn such that f can be written as

f(x, y) =

n∑
i=1

x̄ijyi;

see [2], Satz on p. 434.6 Another normal form will turn out to be more important
for us. Analogous to the splitting of f into real and imaginary parts in 2.3.1, we
will write Hn = Cn + jCn. We consider u+ jv and w + jz in Hn = Cn + jCn. As
in [7], we consider the form f on Hn defined by setting

f(u+ jv, w + jz) = i

n∑
k=1

(ūkwk − v̄kzk) + j

n∑
k=1

(ukzk + vkwk).

and verify that it is both nondegenerate and skew-Hermitian over H. This form
is not equal to the normal form above, but they are of course equal up to a basis
change. The first sum in the definition of f is a nondegenerate Hermitian form with
Witt index n on C2n = Cn +Cn and the second sum is a nondegenerate symmetric
form on C2n = Cn + Cn.

The automorphism group of (Hn, f) is called the quaternionic anti-unitary group
and is denoted by Uα(n,H).7 The group Uα(n,H) is connected and simple, and has
U(n) as a maximal compact subgroup where we have embedded U(n) into Uα(n,H)
by letting A ∈ U(n) send u + jv to Au + jĀv. The Witt index r of f is equal to[
n
2

]
.

We will now show that the action of U(n) is transitive on Ni(Hn, f) for all
i ≤

[
n
2

]
. The arguments will be very similar to those we saw in 2.3.1, so we will

only sketch them. Let P be an element in Ni(Hn, f) for some i ≤
[
n
2

]
and let

z1 = u1 + jv1, . . . , zi = un + jvi be a basis in P such that

〈zh, zj〉 = 2δhj

where 〈zh, zj〉 denotes the standard quaternionic inner product in Hn. The equation
〈zh, zh〉 = 2 is equivalent to

(uh, uh) + (vh, vh) = 2

where (u, v) is the standard Hermitian scalar product in Cn.
On the other hand, f(zh, zh) = 0 is equivalent to

(uh, uh)− (vh, vh) = 0 and φ(uh, vh) = 0

6There is no proof of this normal form in [2]. A very short and elementary proof that any two

nondegenerate skew-Hermitian forms on Hn are equivalent can be found in [6].
7Our notation is similar to the one on p. 435 in [2], but one should note that many authors

denote this group by SO∗(2n). The reason for this notation is that Uα(n,H) is isomorphic to
SO(2n,C)∩SU(n, n). One sees this with help of the second normal form above. First one observes
that an automorphism of C2n that comes from an automorphism of Hn has real determinant, which

must be positive since GL(n,H) is connected. Such an endomorphism of C2n preserving the first
sum in the normal form belongs to SU(n, n) and to SO(2n,C) if it preserves the second sum.

Finally one shows, that SO(2n,C) ∩ SU(n, n) belongs to the image of GL(n,H) in GL(2n,C).

One can find a definition of a special quaternionic anti-unitary group SUα(n,H) in the litera-
ture, but our remarks show that this group actually coincides with Uα(n,H).
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where φ is the standard symmetric form φ(u, v) =
∑n
k=1 ukvk on Cn. Note that

φ(u, v) = 0 is equivalent to (u, v̄) = 0. Hence we get

(uh, uh) = (vh, vh) = 1 and (uh, v̄h) = 0.

Furthermore, 〈zh, zj〉 = 0 für h 6= j is equivalent to

(uh, uj) + (vh, vj) = 0 and (uh, v̄j)− (vh, ūj) = 0

and f(zh, zj) = 0 is equivalent to

(uh, uj)− (vh, vj) = 0 and (uh, v̄j) + (vh, ūj) = 0.

As a consequence of these considerations, we see that u1, . . . , ui, v̄1, . . . , v̄i is an
orthonormal set in Cn. Note that i ≤

[
n
2

]
. Conversely, every such orthonormal set

in Cn gives rise to a subspace P ′ in Ni(Hn, f). It is now clear that the action of
U(n) is transitive on Ni(Hn, f) since we are assuming by definition that A ∈ U(n)
sends u+ jv to Au+ jĀv.

We now assume that n = 2k. We would like to show that Nk(H2k, f) is a
symmetric space. To see this we determine the isotropy group of the action of
U(2k) on Nk(H2k, f) at the k-plane P spanned by the quaternionic orthogonal
basis z1 = e1 + jek+1, . . . , zk = ek + je2k, where the norms of the elements are
all equal to

√
2. Assume that A ∈ U(2k) leaves P invariant. Then A sends the

orthogonal basis into Az1 = Ae1 + jĀek+1, . . . , Azk = Aek + jĀe2k, which is an
another quaternionic orthogonal basis of P . This shows that the isotropy group at
P is isomorphic to Sp(k).

We would now like to prove that (U(2k),Sp(k)) is a symmetric pair. Note that
the group Sp(k)) is embedded into U(2k) as the subgroup of matrices of the form(

A B
−B̄ Ā

)
.

where A and B are complex k×k-matrices. This subgroup is the fixed point group
of the automorphism σ of U(2k) defined by σ(C) = JkC̄J

−1
k where Jk is defined as

in 2.3.1. This shows that (U(2k),Sp(k)) is a symmetric pair and we have proved
that Nk(H2k, f) is a symmetric pair that coincides with

U(2k)/Sp(k),

which has a one-dimensional Euclidean factor. It is called the quaternionic orthog-
onal Grassmannian.

It is left to prove that Ni(Hn, f) is not a symmetric space if i <
[
n
2

]
. This we

do with arguments analogous to those we used in 2.2.1.

3. Final Remarks

3.1. The classification of compact symmetric spaces. If we go through the
seven cases of (σ, ε)-Hermitian forms in the proof in Section 2, then we see that the
different Nn(F2n, f) are the symmetric spaces in the following table.
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inner product on R2n O(n)
inner product on C2n U(n)
inner product on H2n Sp(n)

symplectic form on R2n U(n)/O(n)
symplectic form on C2n Sp(n)/U(n)

symmetric form on C2n O(2n)/U(n)
skew-Hermitian form on H2n U(2n)/Sp(n)

Note that O(n) and O(2n)/U(n) both have two connected components, and that
U(n), U(n)/O(n), and U(2n)/Sp(n) all have a one-dimensional Euclidean factor. If
we consider a connected component or split off a one-dimensional Euclidean factor
where needed, the table above leads to the following seven irreducible compact
symmetric spaces:

SO(n),SU(n),Sp(n),SU(n)/SO(n),Sp(n)/U(n),SO(2n)/U(n),SU(2n)/Sp(n).

We would now like to compare these spaces with É. Cartan’s classification of
classical symmetric spaces, which can be found in [4], pp. 516 and 518. Cartan
divides the class of irreducible compact symmetric spaces into type I and type II.
The classical spaces in type I consist of the three series of Grassmann manifolds
Gk(Fn) of k-planes in Fn and the four series

SU(n)/SO(n),Sp(n)/U(n),SO(2n)/U(n),SU(2n)/Sp(n),

which are all in our list. Type II consists of the classical compact groups

SO(n),SU(n),Sp(n).

(Cartan divides the series SO(n) into two series according to their root systems,
but that is not of importance to us).

Summarizing, the ten series of classical compact symmetric spaces in Cartan’s
classification are all related to the seven series Nn(F2n, f) except the three series
of Grassmannians Gk(Fn).

3.2. Classical R-spaces. The connected components of the spaces Ni(Fn, f) for
i ≤ r that we have been considering are all examples of the R-spaces that were
introduced by J. Tits in the 1950’s in a study that would later lead to the notion
of a spherical building; see [8].

Let G be a noncompact connected semisimple Lie group and P a parabolic
subgroup. Then the quotient G/P is called an R-space. Let K be a maximal
compact subgroup of G. Then the action of K on G/P is transitive and we can
write G/P = K/L. If (K,L) is a symmetric pair, we call G/P = K/L a symmetric
R-space. It is now common to refer to R-spaces as (real) generalized flag manifolds.

The automorphism groups Aut(Fn, f) we have been studying so far are in general
neither connected nor semisimple, but reductive. If we take the identity components
of these reductive groups, one can still define R-spaces and symmetric R-spaces as
above, but it would not lead to anything new since these spaces coincide for a
reductive group and that same reductive group modulo center. In the two cases
O(k, n − k) and O(n,C), the automorphism groups are not connected. If we had
considered instead the identity components SO0(k, k) and SO(2k,C), we would
have been led to one of the two components of Nk(F2k, f).



SESQUILINEAR FORMS AND SYMMETRIC SPACES 11

It turns out that the classical symmetric R-spaces are precisely the three series
of Grassmannians and the connected components of the spaces Nn(F2n, f). We do
not go into further detail since we have discussed these spaces in detail in [7].
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