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In geometry, like in many other fields of mathematics, one can distinguish
two kinds of problems: “in the small” (or “local”) and “in the large” (“im
Grossen”, or “global”). Local problems are concerned with the study of curves,
surfaces, functions, and so on, in sufficiently small domains. As examples one
can give the theorems of Meusnier, Euler and Rodrigues on the curvature of
a surface in a point, or Cauchy’s theorem on the existence of solutions of a
differential equation near the initial data. By contrast, in problems “in the
large”, the requirement that the “domain be sufficiently small” is removed, and
the focus is on the study of curves, surfaces, functions, and so on, extended as
far as possible. Thus, differential geometry “in the large” studies surfaces on
all their given span and especially surfaces that do not admit further natural
extension, such as, for example, closed surfaces or the pseudo-sphere, which
cannot be extended beyond its singular curve. In much the same way, the theory
of analytic functions “in the large” studies an analytic function in the whole
domain to which it can be continued analytically, and the theory of differential
equations “in the large” studies the solutions of those equations in their whole
domain of existence.

Here are some examples demonstrating the essential differences between “lo-
cal” and “global”. Darboux has shown that any sufficiently small piece of an-
alytic surface of positive (negative) curvature is bendable, while in 1899 Lieb-
man has shown that the sphere is not bendable. Darboux has shown that
if in a domain with coordinates u, v there is given a linear element ds2 =
Edu2 + 2Fdu dv + Gdv2, where E, F, G are analytic functions of u, v, then
for each point (u0, v0) one can find an analytic surface x̄ = x̄(u, v), whose lin-
ear element is equal to the given ds2 in some neighborhood (u0, v0), while in
1900 Hilbert proved that there exists no infinitely extendable regular surface of
constant negative curvature.

In the first stage of its development, differential geometry was concerned
almost exclusively with “local” problems, solving them by means of tools of
classical analysis. Once these type of problems became sufficiently well studied,
geometers became interested also in global problems. Thus at the dawn of our
(20th) century global geometry emerged, and it now represents a rather wide
independent direction of research.

In our opinion, the irresistible charm that problems in this domain have for
the true geometer is due to three elements. First, the formulation of problems
and the results of global differential provide a rich source of geometric intuition;
they, as a rule, have a transparent qualitative content, in the absence of which
geometry ceases altogether to be a genuine geometry.

Second, the material that this branch of geometry treats is qualitatively
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very diverse. Thus, in the theory of closed surfaces one immediately runs into
their topological classification, and so we are faced from the very beginning
with infinitely many distinct classes, not to mention other, metric differences
concerning the structure of closed surfaces.

And third, the methods to which global differential geometry makes appeal
are extremely diverse, ranging from elementary geometric considerations at one
end to topology, the theory of partial differential equations, the theory of integral
equations, and so on, at the other end.

A geometer working on problems of global differential geometry needs, with-
out leaving, on the one hand, the real ground of geometric intuition and trans-
parency, to penetrate the very core of modern general theories and meth-
ods of mathematics research. As an example we can mention Lyusternik and
Shnirel′man’s solution of the problem of closed geodesics on closed surfaces.

Stefan (Stephan) Emanuilovich Cohn-Vossen (1902–1936) was a geometer
in the precise meaning of this word; his mind blended the power of geometric
intuition, simplicity and clarity of thought with in-depth mastering of various
mathematical theories and methods. All his works, with a few exceptions, be-
long to the realm of global differential geometry, and they clearly display the
characteristics about which we were just talking above. To become convinced
of this, it suffices to read his splendid paper Bending of surfaces in the large,
which appeared in the first issue of the journal Uspekhi Matematiceskikh Nauk.

Cohn-Vossen spent the last part of his life in Soviet Union, working as a
professor at Leningrad State University and as a researcher at the Steklov In-
stitute. His scientific and academic teaching activity have exerted a significant
influence on the development of geometry in our country (see the obituary of
Cohn-Vossen in the first issue of Uspekhi Matematiceskikh Nauk).

In Cohn-Vossen’s work one can distinguish two main directions: the first
years of his life in research (1926–1929) were devoted to problems concerned
with bending of surfaces in the large; then, after an interruption in his work, he
turned his attention to questions pertaining to the intrinsic geometry of surfaces,
specifically, to the investigation of the total curvature and of geodesics on open
surfaces.

The problem of bending of surfaces in the large was studied by Liebman,
Hilbert, Blaschke, Weyl. The most important result of their works was the
proof of rigidity of ovaloids.1 Cohn-Vossen, in his 1927 paper Two propositions
on the rigidity of ovaloids [2] 2 proved, first, that ovaloids in fact admit no
isometric mappings except from motions (two isometric ovaloids are congruent)
and, second, that every ovaloid becomes nonrigid if one removes any piece of it.

Next, in his 1929 paper Nonrigid closed surfaces [4], Cohn-Vossen established
for the first time the existence of nonrigid closed surfaces,3 and thus the existence
of closed surfaces that admit nontrivial isometric mappings.

1An ovaloid is a closed convex surface whose curvature is positive everywhere. A surface
is said to be rigid if it admits no infinitesimal bendings except from motions.

2The notation [·] refers to the list of Cohn-Vossen’s works at the end of this paper.
3Except, of course, for surfaces containing flat pieces, which are always nonrigid.
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In this way, in the realm of problems concerning bending of surfaces in the
large Cohn-Vossen did contribute two major results.

In a somewhat different direction lies Cohn-Vossen’s large 1928 work Parabolic
curve [3], where he deals with the application of contact transformations to the
Cauchy problem for second-order partial differential equations and the related
problem of constructing a surface with a prescribed metric through a given
curve. He solved these problems in singular cases in which they were not solv-
able from the earlier point of view. Thus, this work of Cohn-Vossen also treats
bending problems, but this time locally. Nevertheless, its publication was a
logical outcome if one views it as a step in the development of geometry in the
large.

In the history of many mathematical theories one observes that mathemati-
cians first study locally regular cases of the problems under consideration; only
after that, in connection with global formulations of those problems, one starts
looking at singularities, precisely because they very often play a determining
role in such problems. For instance, the global—i.e., in the whole complex
plane—investigation of an analytic function is before anything else connected
with the investigation of its singular points. The same scenario is observed in
geometry.

In what follows we survey in sufficient detail the aforementioned works of
Cohn-Vossen.

In 1933 Cohn-Vossen publishes his first note [5] on the intrinsic geometry of
surfaces. This was followed by his two large papers on the same topic, [6] and
[10], and another two notes in Doklady Akad. Nauk SSSR, [7] and [8].4 These
works study the connection between the topological properties of a surface,
its total curvature, and the behavior of the geodesic curves on the surface.
The connection between the total curvature C(Φ) of a surface Φ and its Euler
characteristic χ(Φ) is expressed, in the case of closed surfaces, by the well-known
Gauss-Bonnet5 formula

C(Φ) = 2πχ(Φ).

The connection between the topology of a surface and a metric that the
surface may admit was studied in the case of metrics of constant curvature al-
ready by Klein and Killing, and then in a more general case by Hopf and Rinow.
Hence, in this part of his investigations [6], Cohn-Vossen followed an already
traced path. However, his investigations of geodesics [10] created an original
direction and opened new horizons in global intrinsic geometry. Here, remark-
able are not just the novelty of the formulation of the problem and the results

4[5] is a preliminary announcement of the results proved in [6]; [9] reproduces the results
announced in [7].

5See, e.g., W. Blaschke’s Differential′naya geometriya, § 77 ONTI, 1935. The total curva-
ture is defined as the integral of the Gaussian curvature over the entire surface. Now suppose
that on the surface Φ there is given a triangulation with f triangles, k edges and e vertices;
the number f −k+ e := χ(Φ) does not depend on the choice of the triangulation and is called
the Euler characteristic of the surface Φ. In the general case, when the surface is open and
hence does not admit a finite triangulation, the Euler characteristic must be defined in terms
of the Betti numbers of the surface: χ(Φ) = p0−p1 +p2; see, e.g., H. Seifert and W. Threlfall
Lehrbuch der Topologie, B. G. Teubner, Leipzig und Berlin, 1934.
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obtained, but also—and in no lesser measure—the simplicity of the methods
employed, which are geometric despite the remoteness of the formulation of the
problem, and which dispense with any calculations that are so prevalent in the
field of local geometry nowadays and that threaten to drown geometric thinking
into tensor computations.

Cohn-Vossen considered finitely-connected open surfaces; each such surface
Φ is homeomorphic to some closed surface Φ′ with a finite collection of n points
removed. Thus, the plane is homeomorphic with the sphere with one point
removed, and the cylinder with the sphere with two points removed. The Euler
characteristic χ(Φ) of Φ can be calculated by the formula

χ(Φ) = χ(Φ′)− n.

Now suppose that Φ is covered by domains homeomorphic with a square,
and each such domain is parametrized by a pair u, v. Suppose further that in
the intersection of any two such domains the passage from one set of parame-
ters to the other is effected by a transformation that is sufficiently many times
differentiable (three is enough) and whose Jacobian does not vanish. Finally,
suppose that in each point there is given a positive quadratic form

ds2 = E(u, v)du2 + 2F (u, v)du dv +G(u, v)dv2,

which is invariant under transformations of parameters, i.e., when one goes
from parameters u1, v1 to u2, v2, the coefficients E1(u1, v1), ... transform into
E2(u2, v2), ... in such a way that the quantity ds2 does not change. In this case
we say that on the surface Φ there is given a metric ds, or that Φ becomes a
differential-geometric surface. To each smooth curve on Φ one assigns a length
s, which does not depend on the choice of the parameters, given by

s =
∫ √

ds2 =
∫ √

Eu′2 + 2Fu′v′ +Gv′2dt.

The distance between two points is defined as the infimum of the lengths of
the curves that connect the points. In this way the differential-geometric surface
Φ becomes a metric space. Φ is said to be complete if any bounded sequence
of points on Φ has an accumulation point. For example, a plane is complete,
whereas a cone with the vertex removed is not a complete differential-algebraic
surface.

If the coefficients E, F, G are twice differentiable, then by the well-known
Gauss formula 6 we can express in terms of them the Gauss curvature K in each
point of the surface Φ. If the surface is open, then its total curvature C(Φ) can

6See, e.g., W. Blaschke’s Differential′naya geometriya, § 45. The Gaussian curvature can
be also defined in alternative, geometric ways, for instance, as the limit of the ratio of the sum
of the angles of a triangle minus π to the area of the triangle when the triangle shrinks to a
point; or, upon denoting by L the length of the circle of radius r centered at the point O and
lying on the surface Φ, the curvature K0 in the point O is given by K0 = limr→0

3
π

2πr−L
r3

,
cf. Blaschke [op.cit.], § 71.
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be defined as an improper integral, i.e., as the limit of the integrals∫
K dS

(
dS =

√
EG− F 2 du dv

)
,

taken over bounded domains in the surface. Generally speaking, for an open
surface C(Φ) may not even exist.

Cohn-Vossen proved the following fundamental theorem [6]:
If the complete finitely-connected surface Φ has total curvature C(Φ), then

C(Φ) ≤ 2πχ(Φ).

From this he deduced the following statement:
Any complete surface with everywhere-positive Gaussian curvature is home-

omorphic to the sphere, or to the projective plane, or to the Euclidean plane.
P r o o f. Any surface Φ that is not homeomorphic to one of the surfaces

listed above has the plane E as an infinitely-sheeted covering space.7 If Φ is a
complete differential-geometric surface, then the metric ds lifts naturally from
Φ to the covering E, and one can verify that in this way E also becomes a
complete differential-geometric surface. If the curvature on Φ is positive, then
C(Φ) > 0, and then on E the curvature is also positive, and hence the total
curvature C(Φ) exists. But since C(E) > 0 and E covers Φ infinitely many
times, it follows that C(E) = +∞, which contradicts (1).

From the proved theorem one readily obtains the following theorem:
If Φ is a complete differential-geometric surface with everywhere-positive

Gaussian curvature and is homeomorphic to the plane, then on Φ there are
no closed (without multiple points) geodesic curves.

(If the metric ds is given, then the geodesic curves are defined as extremals
of the variational problem δ

∫
ds = 0; on sufficiently short segments, geodesic

curves are shortest curves.)
P r o o f. Since on Φ the Gaussian curvature is positive, C(Φ) exists and, by

(1), C(Φ) ≤ 2π. Hence, for any finite domain the total curvature is strictly less
than 2π. But from the well-known Gauss-Bonnet formula it follows that the
total curvature of a domain bounded by a closed geodesic is equal to 2π. (In
the plane such a domain is homeomorphic to a disc, and so the Gauss-Bonnet
formula is applicable.) This completes the proof.

We presented here these simple arguments of Cohn-Vossen [6] because they
already contain in embrio the idea of further, more profound results that he
obtained concerning geodesics on complete surfaces homeomorphic to the plane
[10]. Following Cohn-Vossen, this kind of surface will be here referred to as a
Riemannian plane. A geodesic curve is said to be complete if it can be extended
indefinitely in both directions. Finally, a complete geodesic curve, each segment
of which is the shortest curve between its endpoints, will be referred to as a line.
To provide a representation about the results obtained by Cohn-Vossen, we list
here a few of them.

7See, e.g., Seifert and Threlfall, Lehrbuch der Topologie, § 53.
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1) If in the Riemannian plane Φ there exist a line, then Φ cannot have
everywhere-positive total curvature.

2) Two complete geodesics on a Riemannian plane with everywhere-positive
curvature necessarily intersect.

3) Let Φ be a Riemannian plane with everywhere-positive curvature. Let L
be a complete geodesic on Φ with a multiple point. Then L contains one and
only one unigon E.8 Moreover, L−E lies entirely inside E and consists of two
geodesic rays with no multiple points.

4) Let Φ be a Riemannian plane with everywhere-positive curvature and
with total curvature larger than π. Then through every point of Φ there passes
a complete geodesic with no multiple points. Moreover, for any bounded set M
in Φ there exists a bounded set N containing M with the property that every
point of the domain Φ−N is the vertex of a geodesic unigon that contains M
inside it. At the same time, on every complete geodesic with no multiple points
there is a point that is not the vertex of any geodesic unigon. Therefore, the set
of such points is nonempty and bounded.

We will not stop to discuss in detail the last works of Cohn-Vossen ([6]–[12]),
since we plan to publish in one of the future issues of Uspekhi Matematicheskikh
Nauk a translation of the main parts of the papers [6] and [10]; the papers [7] and
[8] were published in the Doklady Akad. Nauk SSSR in Russian and therefore
are easily accessible.

In what follows we review the first works of Cohn-Vossen ([1]–[4]). In ad-
dition to a presentation of the results of these works and, whenever possible,
of the proofs of these results, we will provide brief references to works of other
authors in which Cohn-Vossen’s ideas are considered or used.

1. Singularities of convex surfaces [1]

Among the surfaces of positive curvature, the most studies from the point of
view of global geometry are the closed convex surfaces—the ovaloids. Already
in 1855 Bonnet found an estimate for the diameter of an ovaloid in terms of
the bounds of its Gaussian curvature. Later, ovaloids were studied in various
directions by Blaschke in his book Circle and sphere9 The problem that Cohn-
Vossen decided to study was that of the global structure (Gesamterstrekung) of
an arbitrary surface of positive curvature.

In what follows we consider a twice-differentiable10 surface whose curvature
is positive everywhere.

Take an arbitrary point P on such a surface and consider the tangent plane
T0 at P . Let Tx denote the plane parallel to T0 drawn at distance x from T0

in the direction of the inward normal at the point P . From the positiveness of
8A unigon is a closed curve with no multiple points that is smooth everywhere, except for

one point, in which there exists only one-sided tangents that meet at some angle.
9W. Blaschke, Kreis und Kugel , Leipzig, 1916.

10This means that each point of the surface has a neighborhood U homeomorphic to a disk,
and in U on can choose parameters u, v such that the vector x̄(u, v) whose tip sweeps out U
is a twice-differentiable function of u, v.
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the curvature it follows that, for x sufficiently small, the plane Tx intersects the
surface along a closed convex curve Lx, which shrinks to P when x goes to zero.
(All intersections of the surface with a plane may a priori contain also other
curves and points).

For sufficiently small x the plane Tx cuts out from the surface, in a neigh-
borhood of the point P , a small “cap”, which together with the convex domains
bounded by the curve Lx in the plane Tx bounds a convex body.

By regular layer (of the surface with respect to the point P ) we mean the
collection of all the planes Tx with the property that all Tξ with 0 < ξ ≤ x
intersect the surface along closed convex curves Lξ which vary continuously
with ξ and which shrink to the point P when ξ → +0.

Two cases are possible: 1) the regular layer extends to infinity, i.e., all
planes Tx with 0 < x <∞ belong to the regular layer; 2) the regular layer has
a boundary plane Tx0 , i.e. all planes Tx with 0 < x < x0 belong to the regular
layer, but not Tx0 . In the first case, like in the case of an elliptic paraboloid
with vertex P , the surface extends to infinity and has no singularity. In the
second case, the following theorem holds:

If the regular layer of some point of the surface has a boundary plane Tx0 (in
addition to T0, of course), then either the surface is an ovaloid and the plane
Tx0 is tangent to it, or Tx0 contains singular points of the surface.

A point of a surface is called a singular point if it does not lie on the surface,
but one can approach it as close as one wants along a curve that lies on the sur-
face and has bounded length. If, for instance, we have a surface with boundary,
then the boundary is excluded from the surface, since its points have no disk
neighborhoods on the surface; each point of the boundary is singular, since one
can approach it as close as one wants along a curve of bounded length lying on
the surface.

The theorem formulated above represents the main result of Cohn-Vossen’s
work that we are discussing here. Its proof is carried out by elementary geo-
metric arguments. In the theory of surfaces of positive curvature this theorem
is, needless to say, one of the fundamental results, since it determines the form
of such surfaces.

Furthermore, Cohn-Vossen proved, again by elementary arguments, the fol-
lowing theorem:

If the Gaussian curvature of a surface is everywhere not smaller than some
positive constant, then the regular layer relative to any of its points has finite
width.

In fact, the width of a regular layer can be estimated from above. Thus,
suppose that everywhere on the surface the Gaussian curvature K ≥ ac > 0.
Pick a point P on the surface and take around it a “small cap” bounded by a
plane Ta that is parallel to the tangent plane to the surface at P and lies at
distance a from P . Let b denote the diameter of the surface’s section by the
plane Ta. Then the width xP of the regular layer at P obeys the estimate

xP < a+
4π
cb
.
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This result is interesting because here, with no analyticity or finite smooth-
ness assumptions, local characteristics of the surface allow one to estimate its
behavior in the large.

2. Two propositions on the rigidity of ovaloids [2]

1. As we already mentioned above, in this paper [2] Cohn-Vossen proved the
following two theorems:

a) Any two isometric ovaloids are congruent.

b) If from an ovaloid one cuts out any piece, then the resulting surface is
nonrigid.

Cohn-Vossen’s proof of the first theorem is given in his paper “Bending of
surfaces in the large”, published in the first issue of “Uspekhi Matematicheskikh
Nauk”. I have nothing to add to the simple and transparent treatment therein,
so I refer the reader to the paper. One needs to emphasize the deep and clear
formulation of problems of the theory of bending of surfaces given by Cohn-
Vossen in sections 7 and 8 of his “Uspekhi” paper.11

Cohn-Vossen’s method was developed and applied to other problems by a
series of authors. Thus, H. Hopf and H. Samelson12 gave a detailed and simpli-
fied re-proof of Cohn-Vossen’s theorem, O. K. Zhitomirskii13, provided a new,
extremely simple analytic method for calculating the indices of singular points
of direction fields, and, finally, H. Lewy14, using Cohn-Vossen’s method, proved
Minkowski’s theorem that an ovaloid is (uniquely) determined by its Gaussian
curvature, given as a function of the normal to the surface.

To demonstrate the elegance and power of Cohn-Vossen’s method, I will give
here the proof of a rather general uniqueness theorem for ovaloids.15

2. So, we will prove the following theorem.
Let f(x, y; n̄) be an analytic function of two variables x, y, ranging in the

domain x ≥ y > 0, and a unit vector n̄, such that

∂f

∂x
> 0,

∂f

∂y
> 0 (1)

everywhere.
11Some of the problems posed by Cohn-Vossen have been solved by S. P. Olovyanishnikov

(Mat. Sbornik 18 (60), pp. 429–446) and A. D. Aleksandrov (Doklady Akad. Nauk 36 (1942),
pp. 211–216).

12H. Hopf and H. Samelson, Zum Beweis des Kongruezsatzes für Eiflächen, Math. Zeitschr.,
vol. 43 (1938), pp. 749–766.

13O. K. Zhitomirskii, On the rigidity of ovaloids, Dokl. Akad. Nauk SSSR, vol. XXV
(1939), pp. 347–349.

14H. Lewy, On differential geometry in the large, I (Minkowski’s problem), Trans. Amer.
Math. Soc., vol. 43 (1938), pp. 258–270)

15A. D. Aleksandrov, A general uniqueness theorem for closed surfaces, Dokl. Akad. Nauk
SSSR, vol. XIX (1938), no. 4. In this Doklady note the theorem is proved in a different way,
without resorting to indices, which is simpler; but, as we will see here, the index method has
a higher degree of generality.
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Let H and H ′ be two piece-wise analytic ovaloids and let R1, R2 and R′1, R
′
2

be their principal radii of curvature, considered as functions of the normal n;
assume that R1 ≥ R2 and R′1 ≥ R′2. Then, if

f(R1, R2; n̄) = f(R′1, R
′
2; n̄) (2)

for all directions of the normal n̄(R1, R2, R
′
1, R

′
2) are taken in points with one

and the same normal, and hence f(R1, R2; n̄) and f(R′1, R
′
2; n̄) are functions of

the normal n̄), then the ovaloids H and H ′ are identical and lie parallel to one
another.

This theorem includes as a particular case Minkowski’s theorem asserting
that an ovaloid is determined by the Gaussian curvature K, as a function of the
normal. In this case

f(R1, R2; n̄) = R1R2 =
1
K
,

and since R1 > 0, R2 > 0, it follows that

∂f

∂R1
= R2 > 0,

∂f

∂R2
= R1 > 0.

Further, our theorem also includes a theorem of Christoffel16 which asserts
that an ovaloid is (uniquely) determined by the sum of its principal radii of
curvature, given as a function of the outer normal. In this case, f(R1, R2; n̄) =
R1 +R2.

Equally well, one can take

f(R1, R2; n̄) = −
(

1
R1

+
1
R2

)
.

In the special case when when the mean curvature is constant, we obtain
as a corollary a theorem of Liebman which asserts that the sphere is the only
surface of constant mean curvature.

Now let us turn to the proof of our theorem. Let H and H ′ be two piecewise
analytic ovaloids and H(ū) and H ′(ū) be their support functions.17 Suppose

16See Blaschke, Differential′naya geometriya, §§ 92 and 95.
17If ū is the outer normal vector to the ovaloid H, then the right-hand side of the equation

ūx̄ = H(ū) of the tangent plane to H, regarded as a function of ū, is called the support
function. Since replacing ū by λū with any λ > 0 gives the same tangent plane, H(λū) =
λH(ū) for any λ > 0. The ovaloid itself is the envelope of the family of planes ūx̄ = H(ū);
therefore, the coordinates of its points are expressed in terms of H(ū) = H(u1, u2, u3) as

xi =
∂H(u1, u2, u3)

∂ui
, i = 1, 2, 3.

As is known, the principal directions on the surface are characterized by the fact that along
them the displacement dx̄ is connected with the differential of the normal by the Rodrigues
relation dx̄ = Rdn̄. If we replace the unit normal by an arbitrary vector ū and use the
expressions of xi in terms of H(u1, u2, u3), we obtain the system Huiu1du1 + Huiu2du2 +
Huiu3du3 = Rdui (i=1,2,3). Since H(u1, u2, u3) is homogeneous, one of the solutions of this
system corresponds to R = 0. The other two solutions, R1 and R2, give the principal radii of
curvature and the corresponding principal directions of the surface.
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that for these ovaloids

f(R1, R2; n̄) = f(R′1, R
′
2; n̄) = g(n̄), (2)

where f(R1, R2; n̄) is the function our theorem is concerned with.
Consider d2H(ū), which is a quadratic form in the variables du1, du2, du3.

As is known, its eigenvalues are R1, R2 and 0, and to this last eigenvalue
there corresponds the principal direction along n̄, i.e., along the normal to the
ovaloid H. The principal directions corresponding to R1 and R2 are precisely
the principal directions on the surface of the ovaloid.

3. Denote
H(ū)−H ′(ū) = Z(ū). (3)

Let us prove that d2Z(ū) is, in each point, either a sign-changing or an identically
null quadratic form.

From (1) and the equality

f(R1, R2; n̄) = f(R′1, R
′
2; n̄)

it follows that the differences R1 −R′1 and R2 −R′2 either have different signs,
or are simultaneously equal to zero. Further, the definition of Z(ū) gives

d2H(ū) = d2H ′(ū) + d2Z(ū).

Now if the form d2Z(ū) were, say, positive, then the eigenvalues of the form
d2H(ū) would be larger than those of the form d2H ′(ū), and consequently the
differences R1−R′1 and R2−R′2 would have the same sign, which is impossible.
Similarly, the form d2Z(ū) cannot be negative.

4. Since R1 and R2 are the eigenvalues of the second differential of the
support function, f(R1, R2; n̄) is a second-order differential expression in H(n̄)
on the unit sphere (i.e., in the domain where unit vector n̄ ranges).18 Let us
show that for any choice of the parameters u, v in a neighborhood of an arbitrary
point of the unit sphere, the differential equation

f(R1, R2; n̄) = g(n̄), (4)

i.e.,
F (Huu, Huv, Hvv, Hu, Hv, H, u, v) = g(u, v), (5)

can be solved for Huu.
To do this, we replace the components u1, u2, u3 of the vector ū by new

variables: r = |ū| and the parameters u, v on the unit sphere. Then, thanks to
the positive homogeneity of H(ū),

H(ū) = rH(u, v). (6)

18R1 and R2 are the roots of the characteristic equation of the matrix of second derivatives
‖Huiuk‖ and hence are expressible through those derivatives.
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Hence, for r = 1 we get

d2H(ū) = Huudu
2 + 2Huvdu dv +Hvvdv

2 + 2(Hudu+Hvdv)dr + · · · . (7)

(Here the dots denote the further terms of the form Hudu
2 which are necessarily

present, since d2H(ū) is a quadratic form in the dui. We used the standard rule
of transformation of the second differential.) When one increases Huu, the
eigenvalues of the quadratic form (7) do not decrease and at least one of them
increases. Let us assume that, say,

∂R1

∂Huu
> 0,

∂R2

∂Huu
≥ 0 (8)

Then (8) and (1) yield

∂F

∂Huu
=

∂f

∂R1
· ∂R1

∂Huu
+

∂f

∂R2
· ∂R2

∂Huu
> 0. (9)

By the well-known implicit function theorem, it follows that if in a given point
u, v the values of Huu, Huv, Hvv, Hu, Hv, H are given so that (5) is satisfied,
then in a neighborhood of that point equation (5) can be solved with respect to
Huu:

Huu = Φ(Huv, Hvv, Hu, Hv, H, u, v). (10)

The conclusions obtained above are specific to our theorem; the ensuing argu-
ments follow exactly Cohn-Vossen’s method.

5. The function Z(ū) = H(ū)−H ′(ū) is piecewise analytic, being the differ-
ence of the support functions of two piece-wise analytic ovaloids. On the unit
sphere take some domain G where Z(ū) is analytic. If d2Z(ū) = 0 identically
in some point of G, this means that all the second derivatives of Z(ū) vanish in
that point. Hence, the set of points where d2Z(ū) ≡ 0 is the set of zeroes of sev-
eral analytic functions. By a well-known theorem of Weierstrass, we conclude
that this set has one of the following four forms: (1) it is the entire domain
G; (2) consists of analytic curves and, possibly, isolated points; (3) consists of
isolated points; (4) is empty.

Accordingly, ifM denotes the set of points on the unit sphere where d2Z(ū) ≡
0, then the following three situations are possible:

1) M contains a curve (in particular, it may also contain a whole domain);
2) M consists of only isolated points;
3) M is empty.
We will prove that only the first case is possible, and that then M is in

fact the entire surface of the unit sphere. This means that d2Z(ū) vanishes
identically, and so Z(ū) is a linear function:

Z(ū) = āū

(there is no constant term, due to the homogeneity of Z(ū)). As is known, if
the support functions of two ovaloids H and H ′ differ by a linear term āū (i.e.,
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H(ū) − H ′(ū) = āū), then one of the ovaloids is obtained from the other by
translation by the vector ā. Thus we will conclude that our ovaloids H and H ′

are identical and parallel to one another.
6. Suppose the set M contains a curve L. Then on L one has

d2H(ū) = d2H ′(ū). (11)

Now transport H ′ in a parallel manner so that some point A′ with normal n̄0,
pointing to the curve L (if n̄0 emanates from the center of the unit sphere) will
coincide with the corresponding point A of the ovaloid H. Then equality (11)
remains valid, because the parallel transport results only in the addition of a
linear term to the support function. Moreover, in order for the points A and A′

to coincide, the following relations must hold for the normal n̄0:

H(n̄0) = H ′(n̄0) and dH(n̄0) = dH ′(n̄0). (12)

Thanks to (11), relations (12) will hold on the entire curve L. Choosing the
parameters u, v so that on the curve L we have u = 0, we reach the the following
conclusion: on the line u = 0, H(u, v) and H ′(u, v) coincide, and so do their
first and second derivatives. By what we established in Subsection 4 above, in a
neighborhood of the line n̄0, H and H ′ satisfy the same equation (10). Hence,
by Cauchy’s theorem, H and H ′ coincide in a neighborhood of the curve L.

This (local) coincidence of the functions H(u, v) and H ′(u, v) extends to the
entire unit sphere: inside a domain of analyticity thanks to the analyticity of the
functions, and across the boundary of such a domain by virtue of the argument
just presented: just take for L a segment of this boundary.

Since H(u, v) = H ′(u, v), it follows that H(ū) = H ′(ū), and so the oval-
oids coincide. Hence, before translation they were identical and parallel to one
another.

7. Now suppose that M is empty or consists of isolated points.
In each point of the unit sphere F where the quadratic form d2Z(ū) does not

vanish identically, two of its principal directions lying on the sphere correspond
to eigenvalues of opposite signs. Take in each point the direction corresponding
to the positive eigenvalue. In this way we obtain on F a continuous direction
field R0, and the points where d2Z(ū) vanishes identically are precisely the
singular points of this field.

However, it is known that the sphere admits no direction field without sin-
gularities, so we conclude that the set M is not empty.

Furthermore, it is known that the sum of the indices of singular points of a
direction field on the sphere must be equal to 4. We are going to show that the
index of any singular point in our direction field is ≤ 0, which will imply that
M cannot consists of isolated points, thus completing the proof of the theorem.

8. Let D denote the envelope surface of the family of planes

ūx̄ = Z(ū).

Here Z(ū) is, so to say, the support function of the surface D.
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The surface D and the unit sphere F are in a correspondence via parallel
normals, and the tangent planes to D and F in the corresponding points are
parallel.

Since the form d2Z(ū) is not definite, and its eigenvalues are the principal
radii of curvature of the surface D, it follows that D has negative curvature.
Hence, the correspondence between D and F reverses the direction of motion
along circuits.

The principal axes of the quadratic form d2Z(ū) give the principal directions
on the surface. By Rodrigues’s theorem, the principal directions are parallel to
their images on the sphere. Thus, on D we have a field S0 of directions that are
parallel to the directions of the field R0 on F .

Notice that here we have a complete analogy with the problem of bending
of ovaloids. The role of the middle surface F is played here by the unit sphere
F , and the role of the rotation diagram D — by the surface D. For this reason
we will not prove explicitly that the index of any singular point of the field R0

is ≤ 0. In the repeatedly aforementioned paper of Cohn-Vossen “Bending of
surfaces in the large” (starting with the third row from below on its page 58)
one can read his proof; it is not even needed to change notations.

Thus, verbatim repetition of Cohn-Vossen’s arguments leads us to the proof
of our theorem.

9. In the second part of his paper “Two propositions on the rigidity of
ovaloids” Cohn-Vossen proved the following statement:

If from an ovaloid one removes any piece, one obtains a nonrigid surface.
Let us explain the idea of Cohn-Vossen’s proof.
Let H be an ovaloid. Pick a point O inside H and introduce spherical

coordinates r, θ, φ centered at O. Suppose that on H

ds2 = Edu2 + 2Fdu dv +Gdv2. (1)

We also have
ds2 = dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (2)

Hence,
1
r2
(
ds2 − dr2

)
= dθ2 + sin2 θ dφ2. (3)

This is precisely the length element of the unit sphere, and so the corresponding
Gaussian curvature is equal to 1. On the other hand,

1
r2

(ds2 − dr2) =
1
r2
{(
E − r2u

)
du2 + 2 (F − rurv) du dv +

(
G− r2v

)
dv2
}
. (4)

Therefore, this linear element is expressible through r(u, v), its derivatives, and
E, F, G. Calculating the expression for the Gaussian curvature of this linear
element and setting it equal to 1, we obtain an equation for r(u, v). In this
equation the third-order derivatives nicely cancel out and one arrives at the
Monge-Ampère type equation

A
(
ρτ − σ2

)
+Bρ+ Cσ +Dτ +Q = 0, , (5)
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where ρ = ruu, σ = ruv, τ = rvv, and A, B, C, D, Q are polynomials in R, ru,
rv, E, F , G and derivatives of E, F , G.

This equation must be satisfied also by the radius r(u, v) for every ovaloid
that is isometric to the given one, or for any piece of such an ovaloid, but then
only in the corresponding domain of variation of u, v.

Once r(u, v) is found from this equation, θ(u, v) and φ(u, v) are obtained by
solving ordinary differential equations.

All that we discussed to this point goes back to Darboux and is now included
in textbooks on differential geometry.

Now let us remove a piece from the ovaloid H; then we are left with a surface
Φ with boundary L.

In order that Φ be nonrigid, it is necessary that there exist isometric (to
first order) surfaces that are infinitesimally close to Φ (this is the meaning of
infinitesimal bending). Consider such a surface and let the radius going to the
point (u, v) be given by r(u, v) + δr(u, v). Then δr(u, v) satisfies the linear
equation in variations resulting from (5). This is a linear second-order partial
differential equation, and is in fact of elliptic type thanks to the positivity of
the curvature of the surface Φ.

Therefore, if one prescribes δr(u, v) on the boundary of Φ in arbitrary man-
ner, the by a known existence theorem, δr(u, v) is determined on the entire
surface Φ. Now that δr(u, v) is found, δθ(u, v) and δφ(u, v) are obtained by
solving the ordinary differential equations that result from the equations for θ
and φ. This establishes the existence of an infinitesimally close isometric surface
(r + δr, θ + δθ, φ+ δφ), and hence the nonrigidity of Φ.

The arguments above show also that the vector of an infinitesimal bending
depends on an arbitrary function given on the boundary of the surface Φ.

3. Parabolic curve [3]

1. A point on a surface is called parabolic if the Gaussian curvature in that
point vanishes. A curve such that all its points are parabolic is called a parabolic
curve. For example, the two circles that separate a convex set of the torus from
a concave one are parabolic curves. If one subjects some surface F to a polar
transformation with respect to a second-order surface then, generally speaking,
one obtains again a surface F ′. The points of F where the Gaussian curvature
K is different from zero are transformed into regular points of F ′; however,
the points where K = 0 become singular points on F ′. This elementary result
is of the same nature as the fact that under a polar transformations in the
plane, inflexion points of curves are transformed into turning points. A similar
situation occurs also in the case of arbitrary contact transformations that are
not simply point transformations.

Cohn-Vossen’s work we are dealing with here is devoted to a multifaceted
investigation of the singularities that arise in this way. It consists of three parts.

The first studies the geometric nature and the structure of the indicated
singularities, as well as their relationship with contact transformations.
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The second part explores the possibility of, conversely, removing a singular-
ity of a surface by means of an appropriate contact transformation. This idea
is applied to the Cauchy problem for second-order partial differential equations;
specifically, by applying contact transformations one can, in Cohn-Vossen’s
words, “regularize” and solve the Cauchy problem in the case when this prob-
lem is not solvable in the usual meaning of the word. Thus, as Cohn-Vossen
remarks, the notion of integral and the Cauchy-Kovalevskaya existence theorem
are extended, similarly to the way in which, in the theory of functions of a com-
plex variables, one passes, via regularization of poles, from the notion of regular
function to that of meromorphic function.

In the third part of the work this method is applied to investigate singular
boundary lines which, as a rule, arise when one bends surfaces. (It suffices to
recall the turning edge of developable surfaces and the boundary and the api-
cal curve of the known surfaces of constant Gaussian curvature.) In exactly
the same manner one proves various transparent and interesting propositions
concerning the formation and shape of such lines. The results obtained by
Cohn-Vossen in the work under considerations are so numerous that it is im-
possible to present all of them here. To avoid complicating the exposition with
differentiability and other assumptions on the functions involved, Cohn-Vossen
assumes everywhere that the functions are analytic. We will proceed in the
same manner.

2. Suppose there is given a 3-parameter family (termed here a complex) of
surfaces (S), and some other surface F that does not belong to the complex.
Then, as a simple counting of parameters shows, for each point P on F there
exists, generally speaking, a surface S in the family (S) that is tangent to F
in P (we ignore here the exceptions connected with the nonsolvability of the
equations that are involved here).

When we pass along the surface F from the point P to a neighboring point
P ′, the corresponding surface S of the complex also goes over into a neighboring
surface S′, which in general is different from S. However, from P can emanate
a direction d such that S is tangent to F also in the points that are close to P
in the direction d, i.e., when one moves from P in the direction d the surface
of the complex (S) that is tangent to F does not change (is stationary). In
this case the point P will be referred to as a parabolic point of the surface F
with respect to the complex (S), and the direction d as a contact direction in the
point P . (The case when the direction d is not uniquely determined, i.e., when
S has conctact with F in more than one direction, will not be considered here.)
A curve consisting of parabolic points of the surface F with respect to (S) will
be referred to as a parabolic curve of the surface F with respect to the complex
(S).

The ordinary parabolic points and curves are included in this definition—in
their case (S) is the complex of all surfaces. Indeed, ordinary parabolic points
are those points where the tangent plane in at least one direction is stationary.
In this case d is the principal direction corresponding to the null curvature.

If for a parabolic curve the tangent at each of its points has contact direction
d, then the entire curve lies on a surface of the complex; this is an obvious
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consequence of the above definitions.
An example of how this can happen is provided by the following assertion:

a parabolic (in the usual sense) curve lies entirely in a single tangent plane if
it is an envelope of asymptotic lines (indeed, in this case the curve has in any
point an asymptotic direction, which is precisely the principal direction of null
curvature).

Let’s take for (S) the complex of all spheres of radius a. The parabolic
points of this complex are the points in which one of the principal curvatures is
equal to 1/a; d will be the corresponding principal direction. Then the following
theorem holds: if along a curvature line L the principal curvature is constant
and equal to 1/a, then the surface is tangent along L to a sphere of radius a.

3. By surface element one means, as is known, a pair consisting of a point
and a plane passing through it. An element is specified by five numbers: the
coordinates of the point, x, y, z, and two quantities that specify the direction of
the plane, for which we one takes the coefficients p, q of its equation z = px+y.

Recall also that a strip is defined to be a one-parameter family of elements
(x(t), y(t), z(t), q(t)) such that

ż = p ẋ+ qẏ, (1)

i.e., the planes of the element are tangent to the curve formed by its points
(note, however, that this curve is allowed to degenerate, so that, for example, a
pencil of planes is also a strip).

Suppose we have a complex of surfaces (S), given in parametric form:

f(x, y, z; ξ, η, ζ) = 0, (2)

where x, y, z are the coordinates of points in space, and ξ, η, ζ are parameters
specifying a surface in (S). Formula (2) defines a mapping of surfaces in (S) into
points with coordinates ξ, η, ζ. In the terminology introduced by S. Lie, this
mapping defines a contact transformation, as follows: if an element in the given
“x-space” is specified by numbers x, y, z, p, q and in some auxiliary “ξ-space”
we regard ξ, η, ζ as Cartesian coordinates and specify an element by numbers
ξ, η, ζ, π, κ, then a contact transformation is given by the formulas

1. f(x, y, z; ξ, η, ζ) = 0,
2. fx + pfz = 0,
3. fy + qfz = 0,
4. fξ + πfζ = 0,
5. fη + κfζ = 0,


(3)

where, as usual, fx = ∂f(x, y, z; ξ, η, ζ)/∂x and so on.19

19By definition, a contact transformation is an element-to-element transformation
(x, y, z, p, q)→ (ξ, η, ζ, π, κ) which preserves strips, and hence preserves tangency of surfaces,
since every surface can be regarded as a family of strips: the curve of the strip lies on the
surface, while the planes of the strip are tangent planes to the surface along this curve. Analyt-
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Under this transformation the surface F in x goes over into a surface Φ in
ξ-space. Moreover, a parabolic curve ` on F with respect to (S) goes over into a
singular line λ of Φ. Here by singular one means that the second derivatives of
the functions that represent Φ become infinite on λ, whereas the surface F and
the contact transformation are regular in a neighborhood of `. To understand
how such singularities arise it suffices to consider strips, since any surface can
be assembled from strips.

Suppose the point P in x-space sweeps some strip `. The contact transfor-
mation associated with the complex (S) maps the strip ` into a strip λ, which
in turn is swept by the point Π corresponding to P . Let us take the arc length
s of the curve ` as a parameter on ` and λ. Let dσ be the differential of the arc
λ and dτ be the differential of the angle of rotation of the plane of the strip λ.
The derivatives dσ/ds and dτ/ds are bounded and do not vanish simultaneously.
This follows from the assumed regularity of the contact transformation which,
as usual, requires that, first, the derivatives of the form ∂ξ/∂x, ... ∂π/∂x, ...
be bounded (which implies the boundedness of dσ/ds and dτ/ds) and, second,
that when dx, dy, dz, dp, dq are not simultaneously zero, the same holds true
for dξ, dη, dζ, dπ, dκ (which immediately implies that dσ/ds and dτ/ds do not
vanish simultaneously).

As long as dσ/ds and dτ/ds are bounded and not simultaneously zero, the
curvature of the strip λ can become infinite only when dσ/ds = 0, i.e., only
when the point Π does not move, though P does. But by the very definition of
the ξ-space, a point in this space is a surface of the complex (S) which passes
through the element P . Therefore, the fact that P does not move means that
the surface of (S) that is tangent to the strip is stationary. We thus proved the
following statement: the image of the strip ` under the contact transformation
defined by the complex (S) has a singularity when ` has contact with a surface
from (S).

In the particular case when the whole strip ` lies on one of the surfaces of
the complex, this strip is mapped into a pencil of elements that pass through
a single point. For example, under a polar transformation parabolic circles on
the torus are mapped into conical points.

In the case of higher-order contact, is is useful to note the following theorem:

ically, the condition that the strips be preserved is expressed by the fact that from ż = pẋ+qẏ
must follow that ζ̇ = πξ̇+ κη̇. Formulas (3) do indeed give a contact transformation because,
first, they connect one 5-tuple of variables with another 5-tuple via 5 equations and, second,
in view of these formulas the relation ż − pẋ− qẏ = 0 implies ζ̇ − πξ̇ − κη̇ = 0. Let us verify
this last assertion. From formulas (3) and (1) it follows that if x, y, z, ξ, η, ζ are given as
functions of t, then

ḟ = fxẋ+ fy ẏ + fz ż + fξ ξ̇ + fη η̇ + fζ ζ̇ = 0.

Now let us express fx, fy , fξ, fη through fz , p, q, fζ , pi, κ using the remaining formulas (3)
and substitute the resulting expressions in the above equation. We get

fz(ż − pẋ− qẏ) + fζ(ζ̇ − πξ̇ − κη̇) = 0,

and so when ż − pẋ− qẏ = 0 we necessarily have ζ̇ − πξ̇ − κη̇ = 0. (Here we have to assume
that the partial derivatives fx, ... fζ are different from zero, since otherwise the transformation
would have singularities.)
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Under a contact transformation of a strip `, only contacts of odd order are
mapped into turning points of the strip λ, while contacts of odd order are mapped
into a “hidden singularity.”

4. Let r, s, t denote, as usual, the second derivatives of z with respect to x
and y, and let ρ, σ, τ denote the analogous derivatives of ζ with respect to ξ
and η. We introduce new quantities by the formulas

r =
r1
r5
, s =

r2
r5
, t =

r3
r5
, rt− s2 =

r4
r5
,

ρ =
ρ1

ρ5
, σ =

ρ2

ρ5
, τ =

ρ3

ρ5
, ρτ − σ2 =

ρ4

ρ5
.

 (4)

Here the quantities ρ1, . . . , ρ5 and r1, . . . , r5 are of course related via

ρ1ρ3 − ρ2
2 = ρ4ρ5, r1r3 − r22 = r4r5. (5)

One has the following result, due to Engel and Spitz: under contact trans-
formations, the quantities ri and ρi change according to the formulas

ρi =
5∑
k=1

cikrk (i = 1, . . . , 5) (6)

(with |cik| 6= 0 if the transformation is not singular).
We will derive this result for a particular case that is important in the sequel,

namely, for the so-called Legendre transformation, which is nothing else but the
polar transformation with respect to a paraboloid.

In the general case formulas (6) are derived using the same idea.
For the Legendre transformation formulas (3) read

1. f(x, y, z; ξ, η, ζ) ≡ z + ζ − xξ − yη = 0,
2. − ξ + p = 0,
3. − η + q = 0,
4. − x+ π = 0,
5. − y + κ = 0.


(7)

Suppose that on the surface z = z(x, y) we have a strip given by equations
x = x(t), . . . , q = q(t), with ż = p ẋ+ qẏ. Then

ṗ = rẋ+ sẏ, q̇ = sẋ+ tẏ. (8)

But from equations (7) it follows that ξ̇ = ṗ, η̇ = q̇ and ẋ = π̇, ẏ = κ̇, whence

ξ̇ = rπ̇ + sκ̇, η̇ = sπ̇ + tκ̇. (9)

Solving these equations for π̇ and κ̇ we get

π̇ =
tξ̇ − sη̇
rt− s2

, κ̇ =
−sξ̇ + rη̇

rt− s2
. (10)
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Moreover,
π̇ = ρξ̇ + ση̇, κ̇ = σξ̇ + τ η̇. (11)

Relations (10) and (11) completely independent of the choice of the strip, so
the coefficients in them must be equal to one another. Therefore,

ρ =
t

rt− s2
, σ =

−s
rt− s2

, τ =
r

rt− s2
. (12)

If we now introduce the quantities ri and ρi via formulas (4), we obtain

ρ1 = r3, ρ2 = −r3, ρ3 = r1, ρ4 = r5, ρ5 = r4. (13)

5. After all this formula preparation, we will address now the application of
contact transformations to the Cauchy problem for second-order partial differ-
ential equations. This will allow us to solve (in a somewhat generalized sense)
this problem in a case in which it was considered as unsolvable in the usual
sense.

Suppose we are given a second-order partial differential equation

Φ(ξ, η, ζ;π, κ; ρ, σ, τ) = 0 (14)

and an analytic strip λ

ξ = ξ(t), η = η(t), ζ = ζ(t), π = π(t), κ = κ(t);

ζ̇ = πξ̇ + κη̇.

The Cauchy problem is: construct a surface ζ = ζ(ξ, η) which satisfies the given
equation and passes through the strip λ.

The partial derivatives ρ, σ, τ must satisfy on the strip the three equations

1. Φ = 0,

2. π̇ = ρξ̇ + ση̇,

3. κ̇ = σξ̇ + τ η̇.

 (15)

Equations (15) for ρ, σ, τ may: 1) have a finite or countable number of solutions;
or 2) have a continuum of solutions; or 3) have no solutions. In the first case
to each solution there corresponds a solution to the Cauchy problem, and the
derivatives ρ, σ, τ of resulting integral on the strip λ are precisely the solutions
of equations (15). In the second case λ is a characteristic strip of equation (14)
and the solutions of (14) are determined only up to an arbitrary function of a
single variable.

In the third case the problem has no solutions in the ordinary sense. Using
contact transformations, we reduce this third case to the first.

If, following formulas (4), we replace ρ, σ, τ by ρ1, . . . , ρ5, then equations
(15) become the homogeneous equations

1. Ψ(ξ, η, ζ;π, κ; ρ1, ρ2, ρ3, ρ4, ρ5) = 0,

2. ρ1ρ3 − ρ2
2 − ρ4ρ5 = 0,

3. ρ5π̇ − ρ1ξ̇ − ρ2η̇ = 0,

4. ρ5κ̇− ρ2ξ̇ − ρ3η̇ = 0,

 (16)

19



where in the second equation we recognize relation (5).
Four homogeneous equations with five unknowns always have a system of

solutions, in which not all unknowns are equal to zero. In the first two cases,
1) and 2), discussed for system (15), these solutions have ρ5 6= 0; in the third
case, ρ5 = 0.

6. Let us perform a contact transformation

(ξ, η, ζ;π, κ)→ (x, y, z; p, q).

Under this transformation the strip λ is mapped into a strip ` such that in this
new strip ` the equations obtained from (16) as a result of the transformation
have on ` a solution with r5 6= 0. We can then pass (upon dividing by r5 and
eliminating r4) to an ordinary system of the form (15). Thus, we have succeeded
to transform the third case of the original Cauchy problem into the first case
for the transformed equation. We cannot run into the second case, since that
case, as one can verify, is invariant under contact transformations; hence, if it
did not ocurr for the original system, it also cannot occur for the transformed
system.

Thus, the transformed Cauchy problem has solutions z = z1(x, y),.... If we
now use the inverse contact transformation to return to the original ξ-space,
then the surfaces z = z1(x, y), . . . go into surfaces ζ = ζ1(ξ, η), . . . . The latter
satisfy the original equation Φ = 0 and pass through the given strip λ. Because
of these properties we take them as solutions of the given Cauchy problem,
and we say that the contact transformation ξ → x “regularizes” the (Cauchy)
problem.

The surfaces ζ = ζ1(ξ, η), . . . have on the strip λ a singularity of precisely
the type considered above in Subsection 3.

7. Let us prove that the method proposed above is always applicable. To
this end we will look for a regularizing Legendre transformation. From formulas
(13) it is seen that if ρ5 = 0, but ρ4 6= 0, then this transformation gives r5 6= 0,
r4 = 0 and thus regularizes the Cauchy problem.

Now let us assume that ρ5 = 0 and ρ4 = 0. Then, since ρ1, ρ2, ρ3 do not
vanish simultaneously, the strip can be covered by a finite number of intervals,
in each of which ρi 6= 0 (i = 1, 2, 3) and, generally, α1ρ1 + 2α2ρ2 + α3ρ3 6= 0,
where α1, α2, α3 are some constants.

Let us make the point transformation

ξ̄ = ξ, η̄ = η, ζ̄ = ζ +
1
2
(
α3ξ

2 − 2α2ξη + α1η
2
)
.

If in these new variables we differentiate ζ̄ with respect to ξ̄ and η̄, we get
ρ̄ = ρ+ α3, σ̄ = σ − α2, τ̄ = τ + α1, whence

ρ̄τ̄ − σ̄2 = ρτ − σ2 + α1ρ+ 2α2σ + α3τ + α1α3 − α2
2

or, passing to the homogeneous variables ρi,

ρ̄4 = ρ4 + α1ρ1 + 2α2ρ2 + α3ρ3 +
(
α1α3 − α2

2

)
ρ5.
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Since ρ4 = ρ5 = 0, we finally get

ρ̄4 = ρ4 + α1ρ1 + 2α2ρ2 + α3ρ
3 6= 0,

thanks to the choice of the constants α1, α2, α3.
Since now ρ̄4 6= 0, the Legendre transformation regularizes the problem in

the variables ξ̄, η̄, ζ̄, and so the problem in the original variables is regularized
as well.20

Suppose that, upon regularizing the Cauchy problem, we found some surface
F that solves the regularized problem. Then, under the inverse contact trans-
formation from the x-space to the ξ-space, the set of elements that form surface
F goes over into a set of elements Φ which, however, may turn out not to be a
surface, but a pencil of strips with a common supporting curve λ. Obviously,
in this case regularization gives nothing, and we say that the integral obtained
through regularization degenerates. Cohn-Vossen gave a necessary and suffi-
cient condition for this degeneracy to occur for any regularizing transformation.
To explain this we confine ourselves here to the Legendre transformation.

Suppose that as the result of applying the Legendre transformation (inverse
to the regularizing transformation) the surface F becomes a pencil Φ of strips
with a common curve λ. Let us apply the inverse Legendre transformation from
Φ to F . The Legendre transformation is a polar transformation. Consequently,
the curve λ is mapped into a one-parameter family of planes, and the pencils
of planes passing through the tangents to λ (such planes form precisely the
strips emanating from Φ) are mapped into linear series of points. Therefore,
the surface F is developable. Obviously, the converse also holds, i.e., if the
surface F is developable, then Φ is a pencil of strips with a common curve λ,
and not a surface.

We conclude that the integral obtained through regularization degenerates
if and only if the problem regularized by means of the Legendre transformation
admits a developable surface as solution.

If on the strip λ we have ρ5 = 0, then after applying the Legendre transfor-
mation we obtain r4 = 0, i.e., rt−s2 = 0. This means that the curve λ is mapped
into a parabolic curve, which under the inverse transformation goes over in a
singular line. If we obtain a developable surface, then on that surface r4 = 0
everywhere, and hence, after we apply the inverse to the regularizing transfor-
mation we obtain ρ5 = 0 not only on the strip λ, but everywhere, i.e., the entire
“surface” consists of singularities. This means precisely that the integral found
via regularization degenerates.

8. Let us prove that the solution of the Cauchy problem obtained via regu-
larization does not depend on the regularizing transformation.

All the solutions found by means of some or another regularization satisfy
on the strip λ the system (16) with ρ5 = 0; the remaining ρis take determined

20This is true only for some piece of the given strip. But such pieces cover the entire
strip, and since in the sequel we will prove that the resulting solution does not depend of the
transformation used, the solutions for the pieces of the strip compose a solution for the entire
strip.
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values. Let F1 and F2 be two solutions that are obtained by different regular-
izations, but which give on the strip λ the same values of the ρis. Let us show
that then F1 and F2 coincide. We perform a regularizing transformation; then
the set of values ρi goes into a set of values ri with r5 6= 0, which does not
depend at all on F1 and F2. Under this regularization the surfaces F1 and F2

go into surfaces that solve a regularized Cauchy problem: they solve the trans-
formed equation, pass through the given strip, and have on it the same values
of the second derivatives r, s, t (obtained from the values ri). Hence, by the
Cauchy-Kovaleskaya theorem, they coincide.

In the case where the integral obtained via regularization does not degener-
ate, the method developed above yields a regular parametric representation of
the integral, which justifies the name “regularization”.

Under a contact transformation ξ → x, an integral ζ = ζ(ξ, η) that is singular
on the strip λ goes into an integral z = z(x, y) that is regular on the image of λ.
The transformation ξ → x renders ξ, η, ζ as regular functions of x, y, z, p, q.
If in these expressions for ξ, η, ζ we put z = z(x, y), p = ∂z(x, y)/∂x, q =
∂z(x, y)/∂y, we get ξ = φ(x, y), η = ψ(x, y), ζ = θ(x, y). These functions are
regular and provide a parametric representation of the surface, ζ = ζ(ξ, η).

9. We now turn to applications of the preceding results to problems in the
theory of surfaces.

A surface can be intrinsically regular, i.e, have a regular unboundedly con-
tinuable linear element, and at the same time have a singularity when regarded
as an object (figure) in space. Examples are provided by the developable sur-
faces with their turning edges, or the known surfaces of revolution of constant
curvature with their vertices and edges. It is probably useful to point out here
that, as is known, the sphere, the plane and the cylinder are the only surfaces
of constant curvature with no singularities.21

One of the fundamental problems in the theory of bending of surfaces is
that of constructing in the (ξ, η, ζ)-space a surface with a prescribed metric.
The precise formulation of this problem is as follows. Suppose that in the
domain D where the parameters u, v range there are given an element ds2 =
Edu2 + 2Fdu dv + Gdv2 and a curve λ. Suppose also that in the space one is
given a curve L. Construct a surface Φ that passes through L and has the given
ds so that, in the sense of the metric on Φ, the curve L coincides with λ. (On
λ and L one specifies beforehand points and directions, which must coincide,
after which the curve λ must superpose the curve L.)

If we already have a surface Φ that solves the problem formulated above,
then the curvature of L is not smaller than the geodesic curvature of λ in the
corresponding points (as is known, the geodesic curvature can be defined solely
in terms of ds2, and is therefore given beforehand); this is because the geodesic
curvature of a curve on the surface is equal to its ordinary curvature multiplied
by the cosine of the angle made by the tangent plane to the surface and the

21According to the definition given in Section 1, “Singularities of convex surfaces”, the
presence of boundary points is also a kind of singular behavior.
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osculating plane to the curve:

1
ρg

=
cos θ
ρ

. (17)

Based on this, it is easy to list the various possible cases for the solution of
the posed problem:

1) If 1/ρg > 1/ρ, i.e., the geodesic curvature of λ is larger than the curvature
of L, the problem is not solvable.

2) If 1/ρg < 1/ρ, then, as is know, there are two surfaces that provide a
solution of the problem.

3) 1/ρg = 1/ρ; in this case in formula (17) one has θ = 0, i.e., the osculating
plane to L must coincide with the tangent plane to Φ. This means that the
curve L must be asymptotic on the surface Φ. And if the surface is regular,
then on the asymptotic line L Enneper’s relation between the torsion 1/T of L
and the Gaussian curvature K of the surface holds:

K +
1
T 2

= 0.

If this relation is satisfied, then the posed problem is solvable, and in fact there
exists an entire one-parameter family of surfaces that solve the problem, and of
each of them the line L is asymptotic. (By a theorem of Gauss, K is expressed
in terms of ds2 and 1/T is given, since the curve L is given).

4) 1/ρg = 1/ρ, but Enneper’s relation is not satisfied. In this case, even
if a surface that solves the posed problem exists, the curve L on it must be a
singular line (otherwise, since L is asymptotic, Enneper’s relation would hold).

10. To deal with this last, fourth case, which earlier geometers were not
able to handle, Cohn-Vossen did apply his method. This is possible because,
according to Darboux, the problem one is trying to solve reduces to the Cauchy
problem for an equation of Monge–Ampère type. This reduction is achieved as
follows. If ξ(u, v), η(u, v), ζ(u, v) are the coordinates of a point on the sought-for
surface, then

dξ2 + dη2 + dζ2 = Edu2 + 2Fdu dv +Gdv2,

or
dξ2 + dη2 =

(
E − ζ2

u

)
du2 + 2 (F − ζuζv) du dv +

(
G− ζ2

v

)
dv2.

In this last equation, in the right-hand side we have the length element of a
plane, and hence in the left-hand side we must have also such an element. It
follows that the Gaussian curvature of our element must be equal to zero. Using
the expression of the Gaussian curvature in terms of the coefficients of the linear
element and setting it equal to zero we obtain an equation for ζ(u, v) which turns
out to be an equation of Monge–Ampère type. We need, however, to make the
surface pass through the given curve L so that the curve λ will coincide with
L. As L and λ are given, 1/ρ1 and 1/ρg are also given, and then from equation
(17) one determines cos θ and correspondingly two values for the angle θ, θ1 and

23



θ2, i.e., one has two possible positions of the tangent plane to the surface Φ.22

If cos θ1 = cos θ2, then θ1 = −θ2. Therefore, if cos θ is nowhere equal to 1 or 0,
then the choice of one of the angles θ1 or θ2 in one point of the curve uniquely
determines, by continuity, the choice of angle in all its other points. To these
two possible choices of the angle, θ1 or θ2, correspond two surfaces that solve
our problem in the case when cos θ 6= 1, cos θ 6= 0.23

If now cos θ = 1, i.e., 1/ρg = 1/ρ, then θ1 = θ2 = 0, and there is only one
possible position for the tangent plane.

Thus, we have a curve L and tangent planes to Φ in the points of this curve.
The curve L must be superposed by the curve λ. Hence, on λ there are given
the coordinates ξ, η, ζ of the points of L. Next, since the linear element and the
directions of the tangent planes are specified, the partial derivatives ξu, . . . , ζv on
the curve λ are also determined.24 It follows that on λ there are given ζ, ζu, ζv.
Moreover, ζ(u, v) must satisfy an equation of Monge-Ampère type. Thus, the
posed problem of constructing a surface with a given metric through a given
curve reduces to a Cauchy problem. Once we have a solution of this Cauchy
problem, the two remaining coordinates of the points of the surface, ξ(u, v) and
η(u, v), can be obtained by solving ordinary differential equations (of Riccati
type).

For the Cauchy problem at hand, the four possible cases indicated above that
can arise when one solves our geometric problem have the following meaning

1) The Cauchy problem does not admit a formulation in real form (cos θ > 1).
2) The usual case of the Cauchy problem.
3) λ is a characteristic curve, and consequently the Cauchy problem has a

continuum of solutions.
4) The Cauchy problem has no solutions in the ordinary sense.
This last case can be treated by the regularization method introduced by

Cohn-Vossen. Hence, in the fourth case, too, there exists a surface (and in fact
a unique one) that solves the Cauchy problem, but the curve L is singular on

22Clearly, we may consider that the angle θ between the tangent plane to Φ and the oscu-
lating plane to L ranges between −π/2 and π/2.

23If cos θ takes the value 0 or 1 in isolated points on L, then the selected value of the angle
θ can be uniquely continued to the whole L if one requires that when those points are crossed
the derivatives of θ with respect to arclenght be continuous as well. If cos θ = 0 on the entire
curve L, then 1/ρg = 0 and consequently λ = L is a geodesic line. When cos θ = 0, the
osculating plane to the curve L is perpendicular to the tangent plane to the surface, so that
only one position is possible for it. However, in this case, too, there are two surfaces solving
the posed problem. The reason is that, on the strip formed by the tangent planes to the
sought-for surface along L one can distinguish two sides, so to say, right and left to L. The
same distinction can be also made in the domain D in a neighborhood of λ. To one side
of λ we can associate any of the two sides of L (λ = L is a geodesic, and so both sides are
equivalent), which leads to two surfaces. In special cases the two surfaces may coincide, if the
metric ds is symmetric with respect to the curve λ.

24For instance, the vector of components ξu, ηu, ζu has length
√
E, lies in the tangent

plane, and makes a specified angle with the curve L, since this is the angle between the line
v = const and the curve λ, defined with respect to the given metric. The choice of the resulting
two possible directions of the vector (ξu, ηu, ζu) is carried out based on its orientation with
respect to the curvature vector of the curve λ, which must coincide with the projection of the
curvature vector of the curve L onto the tangent plane.
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it.
An exception is the case when the solution obtained via regularization de-

generates. Cohn-Vossen has shown that this is possible only when λ is a geodesic
line. Then 1/ρg = 0, and since 1/ρg = 1/ρ, we have 1/ρ = 0, too. Consequently,
the curve L is a line. Thus, the problem of realizing a geodesic as a line (along
which Enneper’s relation has no meaning, since the torsion of a line is not de-
fined) plays a special role among the bending problems: it cannot be solved via
regularization.

In all other cases regularization does achieve its goal. The problem turns
out to be solvable, but the curve L is singular, and in fact is of the same nature
as those discussed in Subsection 3.

11. Since regularization provides a regular parametric representation of the
integral, on the surface Φ near the curve L we can choose parameters in such a
way that ξ, η, ζ are represented by regular functions of the parameters, despite
of the fact that L is singular. Here singularity reduces to the fact that in these
new parameters EG−F 2 vanishes on L. Cohn-Vossen termed the corresponding
net of parametric lines regularizing. He proved the following theorem.

1) The curvature lines form a regularizing net on Φ.
2) The asymptotic lines form a regularizing net on Φ whenever the Gaussian

curvature K < 0 everywhere on Φ.
3) The curvature lines and the asymptotic lines have L as an envelope.
12. Further, Cohn-Vosses obtained another series of remarkable results on

the curve L = λ and the behavior of the surface Φ in its vicinity. Here we will
confine to listing these results.

We assume that the geodesic curvature o λ does not change sign, i.e., in
the domain D parametrized by u, v the curve λ is always concave in one side.
Accordingly, the terms inner and outer sides of λ are meaningful.

On Φ the curve L = λ is a turning edge; the two sheets of the surface that
abut to L realize the metric on only one side relative to λ in the domain D,
namely:

1) if K ≥ 0, then in the outer side of λ;
2) if K < 0, but (1/T 2) +K < 0, then also in the inner side of λ.
3) if K < 0 and (1/T 2) +K > 0, then in the outer side of λ.
Briefly speaking, if (1/T 2) +K > 0 (resp., (1/T 2) +K < 0), then the metric

is realized in the outer (resp., inner) side of λ. In the intermediate case if
(1/T 2) + K = 0, which is Enneper’s relation, about which we assumed that it
does not hold; hence, this case is excluded.

A well-known example is provided by the turning edge on a developable
surface, where, as it should be, the metric is realized only in the outer side with
respect to λ. In much the same way the theorem above is illustrated by the
surfaces of revolution of constant curvature. On such surfaces there are flat
turning edges, so that 1/T 2 = 0, and consequently according to the theorem for
K > 0 (resp. K < 0) the surface realizes the metric in the outer (resp., inner)
side of the curve λ, which corresponds to the edge.

This distinction between outer and inner sides with respect to λ leads to
an interesting phenomenon. Consider, for example, a plane curve λ with an
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inflection point. If we want to bend the plane so that λ goes over onto the edge
L of a developable surface, then this can be done only with the part of the plane
lying on the outer side of λ. However, in the inflection point the outer and inner
sides switch places, and so in that point there arises a discontinuity.

This is a particular case of the following general proposition: a curve with
a geodesic inflection point cannot be made into a singular line by means of a
continuous bending — the surface would acquire a discontinuity which passes
through this inflection point.

13. As one approaches a singular line, one of the principal radii of curvature
tends to zero. Cohn-Vossen did obtain for it a remarkable formula.

Let s denote the geodesic distance from a given point P to the singular line.
Let R1 and R2 denote the larger, respectively smaller radius of curvature in P .
Suppose P converges to a point P0 lying on the singular line L = λ. Further, let
K denote the Gaussian curvature in the point P0, and let 1/T and 1/ρg denote
the torsion and the geodesic curvature of the line L = λ. Then the following
two relations hold:

lim
P→P0

2s
R2

1

= ρg

(
1
T 2

+K

)
, lim

P→P0

1
2sR2

2

=
1
ρg
· K2

1
T 2

+K
.

Further, Cohn-Vossen obtained some results about conical singular points,
which also need to be treated as singular strips. However, he did not study such
singular strips as completely as he did with the turning edge.

Finally, Cohn-Vossen turned his attention to isolated singular points (which
are not strips). On a surface with everywhere regular metric one considers a
point which is singular in the sense that although the tangent to the surface
is continuous in that point, the radii of curvature acquire a singularity. Cohn-
Vossen did prove that surfaces of negative curvature may have such isolated
singular points, whereas surfaces of positive curvature may not.

4. Nonrigid closed surfaces [4]

1. A surface is called rigid if, as a whole (i.e., globally) it admits no in-
finitesimal bendings except for motions; in the opposite case the surface is called
nonrigid .

Cohn-Vossen did first prove that there exist nonrigid closed surfaces (in
addition to the trivial ones — a surface with a flat piece is always nonrigid,
since this piece is rigid even for clamped boundaries),25 namely, surfaces of
revolution of genus 0 (of sphere type), as well as of genus 1 (of torus type). As
it turns out, every such surface of revolution becomes nonrigid if one presses
into it, so to say, an arbitrarily narrow and arbitrarily flat “ditch” that goes in
the meridian’s direction. However, the width and the depths of the ditch are
not arbitrary, but must be selected from a certain set of values, which inclued

25If we displace the points of a piece of a plane along the normal to the plane, then, as
it clearly follows from Pythagora’s theorem, the strains will be small of second order with
respect to the displacements.

26



arbitrarily small ones. Thus, every closed surface of revolution is the limit of a
sequence of nonrigid surfaces of revolution.

We will sketch here the main steps of the reasoning that led Cohn-Vossen
to this remarkable result. The surfaces under consideration are, needless to say,
assumed to be two-times continuously differentiable. We confine ourselves to
closed surfaces of revolution of genus 0, since essentially the same arguments
work for surfaces of genus 1.

2. Let x̄(u, v) be a vector that describes the given closed surface of revolution,
u be the height measured on the axis of the surface, v the longitude, and r = r(u)
the equation of the meridian of the surface.

Imagine that the surface deforms with time, so that we have a family x̄(u, v; t).
Let the velocity (rate of deformation) at the initial moment be

∂

∂t
x̄(u, v; 0) = z̄(u, v).

The deformation will yield an infinitesimal bending if at the initial moment the
lengths of curves on the surface are stationary, i.e.,(

∂

∂t
ds2
)∣∣∣∣

t=0

= 0.

Since ds2 = dx̄2, this gives

∂

∂t
dx̄2 = 2dx̄

∂

∂t
dx̄ = 2dx̄ dz̄ = 0,

i.e.,
dx̄ dz̄ = 0, (1)

or, in expanded form,

x̄uz̄u = x̄uz̄v = x̄uz̄v + x̄v z̄u = 0. (2)

This is the well-known textbook equation of infinitesimal bendings.
Let us choose the following coordinate vectors in each point of the surface: ē,

parallel to the axis of the surface, ā, in the meridional plane and perpendicular
to ē, and ā′ = dā/dv, which is directed along the tangent to the parallel.

Let us decompose, in each point of the surface, the vectors x̄ and z̄ with
respect to the chosen unit vectors:

x̄(u, v) = ēu+ (̄v)r(u),
z̄(u, v) = ēα(u, v) + ā(v)β(u, v) + ā′(v)γ(u, v).

Rewriting equation (2) in components we get

αu + r′βu = 0,
β + γv = 0,

αv + r′(βv − γ) + rγu = 0.

 (3)
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Since r′(u) becomes infinite in the poles, for the moment we exclude them
from the surface, considering only a zone between two parallels. We shall also
assume that r′(u) does not become infinite elsewhere, i.e., the tangent plane to
the surface is nowhere perpendicular to the axis.

3. Since α, β, γ must depend on v periodically with period 2π, we can
expand them in Fourier series

α(u, v) =
∞∑

k=−∞

eikvφk(u), β(u, v) =
∞∑

k=−∞

eikvψk(u), γ(u, v) =
∞∑

k=−∞

eikvχk(u),

Here φk, ψk, χk are complex-valued functions of the variable u that, in order
for α, β, γ to be real, must satisfy the conditions

φ−k(u) = φ∗k(u), ψ−k(u) = ψ∗k(u), χ−k(u) = χ∗k(u),

where the asterisk denotes complex conjugation.
Substituting these series expansions in equation (3) and setting the coeffi-

cients of eikv in the resulting expression equal to zero (since a Fourier series is
equal to zero only when all its coefficients are equal to zero), we obtain a system
that depends on u and the integer parameter k:

a) φ′k(u) + r′(u)ψ′k(u) = 0,
b) ikχk(u) + ψk(u) = 0,
c) ikφk(u) + r′(u) [ikψk(u)− χk(u)] + r(u)χk(u) = 0.

 (4)

Differentiating c), we eliminate φk and ψk from a) and b) and get

rχ′′ +
(
k2 − 1

)
r′′χk = 0. (5)

4. Each of the nonidentically vanishing integrals χk(u) of these equations for
k ≥ 0 yields, using equations b) and c) in (4) above, a real-valued, nonidentically
vanishing velocity vector of an infinitesimal bending

z̄k(u, v) = (ēφk + āψk + ā′χk) eikv + (ēφ−k + āψ−k + ā′χ−k) e−ikv

(φk, ψk, χk and φ−k, ψ−k, χ−k are complex conjugate). Since the problem is
linear, a linear combination of such vectors with constant coefficients gives again
a velocity vector of an infinitesimal bending. For k = 0 and k = 1 equations
(4) and (5) are readily solved. In the case k = 0 one obtains an arbitrary screw
motion around the axis of the surface, while for k = 1 one obtains an arbitrary
screw motion around any of the lines perpendicular to the axis. (Particular
cases of crew motions are one rotation or one translation.) Since any motion
can be obtained as a sum of two motions of the previously indicated kind,
the linear combinations a0z0(u, v)+a1z1(u, v) exhaust all infinitesimal motions.
Consequently, any nonidentically vanishing integral of equation (5) with k ≥ 2
yields a nontrivial infinitesimal motion of the considered zone of our surface.

In what follows we shall always assume that k ≥ 2.
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5. The poles of the surface are singular points for equation (5). Since at the
poles the bending vector cannot depend on v, it follows that there we must have
φk = ψk = χk = 0 for all k ≥ 0. To analyze equation (5) in the neighborhood
of a pole it is convenient to take r as the independent variable. At the pole,
i.e., for r = 0, we have du/dr = 0. For the sake of simplicity we may assume
that u′′(r)|r=0 6= 0, i.e., the pole is not a parabolic point. Then, employing the
usual method of Fuchsian theory,26 we obtain two fundamental integrals of the
equation for χk(r), of which one vanishes at the pole as rk+1, while the other
goes to infinity as r−k+1. To the first integral there correspond (via formulas
obtained from (4) when r is taken as independent variable) functions φk(r) and
ψk(r) that also vanish at the pole. Hence, this integral yields an infinitesimal
bending that is regular at the pole as well.

However, in order to obtain an infinitesimal bending of the entire surface we
need an integral that vanishes at both poles.

6. Let us assume, for the sake of definiteness, that the poles correspond to
the values u = ±1. Then we have the equation

r(u)χ′′k(u) + (k2 − 1)r′′(u)χk(u) = 0. (5)

For a given function r(u) and not necessarily integer values of k, the problem
of finding an integral of this equation that is regular in the interval (−1, 1) and
vanishes in its endpoints, and also finding the corresponding eigenvalue k2 − 1,
is a Sturm-Liouville problem. We in fact are dealing with the inverse problem
of determining r(u) so that, for integer k ≥ 2, equation (5) has an integral that
is regular in the interval (−1, 1) and vanishes in its endpoints. In other words,
we need to find a function r(u) such that the above Sturm-Liouville problem
has k2 − 1 with an integer k ≥ 2 as an eigenvalue.

Suppose r(u) is given and let χk(u) denote the fundamental integral of equa-
tion (5) that is regular at u = +1. Then, generally speaking, when u → −1,
χk(u)→∞, since the second fundamental integral becomes infinite at a pole.

Now we shall prove the following assertion: by means of an arbitrarily small
and continuous up to the second derivative variation of r(u) in an arbitrarily
small part of the interval (−1, 1) one can achieve that for the appropriately
chosen fixed k ≥ 2, χk(u) will pass into a function that is already regular for
u = −1 as well. Hence, through such a change, corresponding to the function
r(u), the surface becomes nonrigid. This modification procedure is the most
easily implemented for a convex surface, and we restrict our considerations to
this, simplest case.

7. By the assumption that the meridian is convex, r′′(u) < 0 for −1 < u <
+1. Hence, from equation (5) it follows that

χ′′k(u)
χk(u)

> 0 forχk(u)neq0 (−1 < u < +1). (6)

This shows that χk(u) has no positive maxima and no negative minima in
the interval (−1,+1). Consequently, χk(u) cannot vanish at u = −1 (since

26See, e.g., Goursat’s A course in mathematical analysis, Vol. II, Part II, Differential
equations Ginn and Company, Boston, New York, 1917, §§ 409–412.
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χk(1) = 0, so assuming that χk(−1) = 0 Rolle’s theorem would lead to a
contradiction). This completes the proof of the rigidity of convex surfaces of
revolution.

8. Now let a be some number in the interval (−1,+1). Let δ and ε be given,
arbitrarily small positive numbers; in particular, assume that δ is so small that

−1 < a− δ < a+ δ < 1.

Let us make an indentation in the meridian in the interval (a − δ, a + δ) (i.e.,
of width 2δ), of depth and torsion no larger than ε. Rigorously speaking, we
consider a function r0(u) with the following properties:

1) r0(u) is twice continuously differentiable in the interval (a− δ, a+ δ).
2) r0(u)− r(u) = 0 outside the interval (a− δ, a+ δ).
3) max|r0(u)− r(u)| ≤ ε and max|r′0(u)− r′(u)| ≤ ε.
4) r′′0 (a)

r0(a)
= 1.

Clearly, such a function can be constructed, and we use it to represent the
modified meridian. To r0(u) we associate a number η, 0 < η < δ, such that

r′′0 (a)
r0(a)

≥ 1
2

for a− η ≤ u ≤ a+ η.

9. Consider the equation

r0(u)χ′′k0(u) + (k2 − 1)r′′0 (u)χk0(u) = 0,

obtained from (5) upon replacing r(u) by r0(u). Let χk0 be the integral of this
equation that coincides with χk(u) for a + δ ≤ u ≤ 1. Then in the interval
(a− η, a+ η) one has

χ′′k0(u)
χk0(u)

≤ k2 − 1
2

for χk0(u) 6= 0 (6’)

The function y(u) = sin[(
√

(k2 − 1)/2)u] satisfies the equation

y′′

y
= −k

2 − 1
2

.

By a well-known theorem of Sturm, the inequality (6’) implies that the distance
between successive zeros of the function χk0(u) in the interval (a − η, a + η) is
not larger than the number of zeros of the function y(u) = sin[(

√
(k2− 1)/2)u].

Therefore, if k is chosen so large that (
√

(k2 − 1)/2)η > π, then χk0(u) has at
least one zero in the interval (a− η, a+ η). Let us choose k in this manner and
keep it fixed in what follows.

10. Next, consider the function

r(u, t) = r0(u) + t[r(u)− r0(u)] (0 ≤ t ≤ 1)
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(in this way we gradually reduce the variation of r(u)). Let χk(u; t) be the
integral of the equation

r(u; t)χ′′(u; t) + (k2 − 1)r′′(u; t)χ(u; t) = 0 (7)

that coincides with χk(u) for a+ δ ≤ u ≤ 1.27 We have χk(u; 1) = χk(u), since
r(u; 1) = r(u).

Thus, we obtained a family of equations (7) and a corresponding family of
integrals, which as t grows continuously from 0 to 1 passes continuously from
χk0(u) to k(u).

By the choice of k, the function χk0(u) has zeros in the interval (−1,+1);
on the other hand, we have shown that the function χk(u) has no zeros in this
interval. It follows that the integrals χ(u; t) vary in such a way that their zeros
disappear from the interval (−1,+1).

In view of the continuity of χ(u; t) with respect to t, its zeros can disappear
in only two ways: 1) the zeros shift to the left, reach −1, and disappear from
the interval (motion to the right is not allowed, since for u ≥ a + δ we have
χ(u; t) = χk(u); or 2) the zeros approach one another and merge into a multiple
zero, which afterwards disappears.

However, case 2) is not possible. Indeed, if χ(u; t) would have a multiple zero
in the point u0 (with 1 < u0 < +1)), then we would have χ(u0; t) = χ′(u0; t) = 0,
and since χ(u; t) satisfies a second-order equation, it would follow that χ(u; t)
vanishes on the whole interval (contradicting the fact that χ(u; t) = χk(u) for
u ≥ a+ δ).

Thus, only case 1) remains. This means that there is a t0 such that, for
t = t0, the function χ(u; t) vanishes also for u = −1 (and then the zero in the
interval (−1,+1) moves to −1). Consequently, the function χ(u; t0) is a regular,
in the whole closed interval (−1,+1), integral of equation (7), and so

rt0(u) = r0(u) + t0 [r(u)− r0(u)]

represents the equation of the meridian of a nonrigid surface.
Here in the last part of the argument we reproduced only the idea of the

proof, which still requires a rigorous setting. This setting, however, does no
bring anything essentially new.

11. The fact that a surface is nonrigid does not yet imply that it is bend-
able (i.e., that it admits a finite continuous deformation that preserves length).
However, the existence of a nonrigid surface does imply the existence of a pair
of noncongruent isometric surfaces.

Let (̄u, v) be a nonrigid surface and z̄(u, v) be an infinitesimal deformation
vector of this surface. By equation (1),

dx̄ dz̄ = 0.

Let us show that the surfaces x̄(u, v)+tz̄(u, v) and x̄(u, v)−tz̄(u, v) are isometric
for any t. To this end we need to show that their linear elements are equal to

27In this interval r(u; t) = r(u) and so equation (7) coincides there with (5).
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one another. But

d(x̄+ tz̄)2 = dx̄2 + 2tdx̄ dz̄ + t2dz̄2 = dx̄2 + t2dz̄2

because dx̄ dz̄ = 0 by equation (1). The same conclusion holds true for d(x̄−tz̄)2,
and so

d(x+ tz̄)2 = d(x̄− tz̄)2,

as we needed to prove.
If we now have a closed regular nonrigid surface x̄(u, v) and a bending vector

z̄(u, v) of it, then, as one can readily see, for t sufficiently small the surfaces
x̄(u, v) + tz̄(u, v) and x̄(u, v)− tz̄(u, v) will be closed, regular 28 and — in view
of what we just proved — isometric.

Thus, from the existence, established by Cohn-Vossen, of nonrigid closed
surfaces of revolution follows the existence of pairs of closed isometric (but not
congruent) surfaces.29

12. Cohn-Vossen’s work on nonrigid closed surfaces was continued and used
in later studies of several authors. Thus, Rembs30 and Lyukshin31 applied
Cohn-Vossen’s method to study the rigidity of surfaces of revolution of negative
curvature. They considered one-parameter families of such surfaces (of a special
type) and, applying Cohn-Vossen’s method described above, have shown that
for a countable number of values of the parameter those surfaces are nonrigid,
while for the remaining values they are rigid.

Deepening to some extent Cohn-Vossen’s simple proof, discussed above, of
the rigidity of convex surfaces of revolution, the author of the present paper
found a necessary and sufficient condition for the rigidity of a convex surface of
revolution that involves no regularity requirements.32

However, in our opinion, a substantial further development of Cohn-Vossen’s
work would be to provide answers to the following two questions:

1) Do there exist closed surfaces that admit a continuous finite bending?
2) Is every closed surface a limit of nontrivially-rigid closed surfaces? Can

one estimate the density of nonrigid surfaces among all closed surfaces, i.e.,
determine which is the rule, and which is the exception: rigidity or nonrigidity?

The first problem formulated above was studied also by Cohn-Vossen in
his work considered here. He proved that the surfaces he found admit also
infinitesimal bendings of second order. This problem, it seems, is the most

28For sufficiently small t the surfaces obtained in this manner may, regardless of the twice
differentiability of the vector z̄(u, v), have self-intersections, singular points, edges, etc.

29Of course, if in a sphere we make a small indentation with flat boundary, and then reflect
it in the plane of the boundary, we obtain two isometric nonequal surfaces. This case, however,
is trivial.

30E. Rembs, Über die Verbiegung parabolisch berandeter Flächen negativer Krümmung,
Math. Zeit. Vol. 35 (1932) pp. 529–535

31V. S. Lyukshin (Lukchin), Zur Theorie der Verbiegung der Rotationsflächen negativer
Krümmung, Rec. Math. [Mat. Sbornik] N.S., 2(44):3 (1937), 557–565; (Ljukschin, W.)
Über die Verbiegung von Rotationsflächen negativer Krümmung mit einem singulären Punkte,
Dokl. Acad. Sci. URSS, N. Ser. 17 (1937), 339–341.

32A. D. Alexandrov, On infinitesimal bendings of irregular surfaces, Mat. Sbornik 1(43)
(1936), 305–322.
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important among the problems waiting to be solved in the global theory of
bending of surfaces.
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(Auszug aus einem Brief an Prof. T. Levi-Civita), Compositio Math. 8 (1936),
52–54.

[12] Die Kollineationen des n-dimensionalen Raumes, Math. Ann. 115 (1937),
80–86.

33


