


ASYMPTOTIC FORMULAS FOR MODULAR FORMS AND RELATED FUNCTIONS 9

Theorem 2.10. If f ”© 0 is a meromorphic modular form of weight k œ Z, we
have with fl := e

2fii

3

ord(f ; Œ) + 1
2ord(f ; i) + 1

3ord(f ; fl) +
ÿ

zœ�\H
z ”©i,fl (mod �)

ord(f ; z) = k

12 ,

where ord(f ; Œ) = n0 if f(·) = qŒ
n=n

0

a(n)qn with a (n0) ”= 0.
One can conclude from Theorem 2.10 the following dimension formulas, the

proof is omitted here.
Corollary 2.11. For k œ N0, we have

dim M2k

=

Y
_]

_[

Í
k

6

Î
+ 1 if k ”© 1 (mod 6),

Í
k

6

Î
if k © 1 (mod 6),

dim S
k

=

Y
____]

____[

Í
k

6

Î
if k ”© 1 (mod 6),

Í
k

6

Î
≠ 1 if k © 1 (mod 6), k Ø 7,

0 if k = 1.

This easily gives the basis property of the Poincaré series.
Corollary 2.12. (Completeness theorem) Let k Ø 4 even and d

k

:= dim(S
k

).
Then a basis of S

k

is given by
{P

k,n

; n = 1, . . . , d
k

} .

In particular, M
k

has a basis consisting of Eisenstein series and Poincaré
series.
Proof. Set S := span {P

k,1, . . . , P
k,d

k

} µ S
k

and f œ S
k

such that f‹S with
respect to the Petersson inner product. Then f has a Fourier expansion of the
shape f(·) = q

mØd

k

+1 a(m)e2fiim· . From Corollary 2.11 we know the precise
shape of d

k

, yielding a contradiction to Theorem 2.10. To be more precise, we
have for k ”© 2 (mod 12)

d
k

+ 1 =
E

k

12

F

+ 1 >
k

12 = ord(f ; Œ) +
ÿ

zœ�\H
ord(f ; z) Ø d

k

+ 1.

For k © 2 (mod 12), we get
k

12 = d
k

+ 1 + 1
6 .
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Thus ord(f ; Œ) = d
k

+ 1 and
ÿ

zœ�\H
ord(f ; z) = 1

6

which is impossible. ⇤
We next compute the Fourier coe�cients a

n

(m) of the Poincaré series P
k,n

.
For this, we require some special functions. Define the Kloosterman sums

S (m, n; c) :=
ÿ

a (mod c)ı

e2fii

am+an

c ,

where the sum runs over all a (mod c) that are coprime to c and a denotes
the multiplicative inverse of a (mod c). Moreover, we let J

r

be the J-Bessel
function of order r, defined by

J
r

(x) :=
ÿ

¸Ø0

(≠1)¸

¸!� (¸ + 1 + r)

3x

2

4
r+2¸

,

where �(x) denotes the usual gamma-function.
Theorem 2.13. We have for n œ N

(2.5) a
n

(m) =
3m

n

4 k≠1

2

Q

a”
m,n

+ 2fii≠k

ÿ

cØ1
c≠1S (n, m; c) J

k≠1

A4fi
Ô

mn

c

BR

b ,

where
”

m,n

:=
I

1 if m = n,
0 otherwise.

Proof. We again use that a set of representatives of �Œ\SL2(Z) is given by
IA

ı ı
c d

B

œ SL2(Z); (c, d) = 1
J

.

The contribution for c = 0 is easily seen to give the first summand in (2.5).
For c ”= 0 we use the identity

a· + b

c· + d
= a

c
≠ 1

c2
1
· + d

c

2

and change d ‘æ d + mc, where d runs (mod c)ı and m œ Z. This gives

P
k,n

(·) = e2fiin· + 2
ÿ

cØ1
c≠k

ÿ

d (mod c)ı

e
2fiina

c F
A

· + d

c

B

,
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where a is defined by ad © 1 (mod c) and

F(·) :=
ÿ

mœZ
e

≠ 2fiin

c

2

(·+m) (· + m)≠k .

Now the classical Poisson summation formula yields that

F(·) =
ÿ

mœZ
a(m)e2fiim·

with
a(m) =

⁄

Im(·)=C
·≠ke≠ 2fiin

c

2

·

≠2fiim· d·

with C > 0 arbitrary. For m Æ 0 we can deform the path of integration
up to infinity yielding that a(m) = 0 in this case. For m > 0 we make the
substitution · = ic≠1(n/m) 1

2 w to get

a(m) = i≠k≠1ck≠1
3m

n

4 k

2

≠ 1

2

⁄ C+iŒ

C≠iŒ
w≠ke

2fi

c

Ô
mn(w≠w

≠1)dw.

The claim follows using that for µ, Ÿ > 0 the functions

t ‘æ (t/Ÿ)
µ≠1

2 J
µ≠1

1
2
Ô

Ÿt
2

, (t > 0)

and
w ‘æ w≠µe≠ Ÿ

w , (Re(w) > 0)
are inverses of each other with respect to the usual Laplace transform (8.412.2
of [23]). ⇤

3. Weakly holomorphic modular forms

We next turn to weakly holomorphic modular forms which are still holomor-
phic on H but allow poles at the “cusps”. The Fourier coe�cients of such forms
are growing much faster than those of holomorphic forms. Let us in particular
describe this in the situation of the partition function.

Recall that a partition of a positive integer n is a nondecreasing sequence of
positive integers (the parts of the partition) whose sum is n. Let p(n) denote
the number of partitions of n. For example, the partitions of 4 are

4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1


