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Bessel functions of k¢ and kz% (cont’d)
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Theorem 2.10. If f #£ 0 is a meromorphic modular form of weight k € Z, we

2mi

have with p :=e™s

m“ﬁ“ﬂ+;MMﬁw+;MMﬁm+ ) mdﬁ@:f;
zeT\H

zZi,p (mod I')
where ord(f;00) = ng if f(7) = X;2,,, a(n)q" with a(ng) # 0.

One can conclude from Theorem 2.10 the following dimension formulas, the
proof is omitted here.

Corollary 2.11. For k € Ny, we have

k if k d
dimles{EJle L et

|£] ifk=1 (mod 6),

|£] ifk#£1 (mod 6),
dim Sy = { |5 —1 ifk=1 (mod6),k>T1,

0 if k=1.
This easily gives the basis property of the Poincaré series.
Corollary 2.12. (Completeness theorem) Let k > 4 even and dj, := dim(Sk).
Then a basis of Sy is given by
{Penmin=1,...,ds}.
In particular, My has a basis consisting of Fisenstein series and Poincaré

series.

Proof. Set S := span{Py1,...,Pra,} C Sk and f € S such that f1S with
respect to the Petersson inner product. Then f has a Fourier expansion of the
shape f(7) = Cpmsdos1 a(m)e*™™7. From Corollary 2.11 we know the precise
shape of dj, yielding a contradiction to Theorem 2.10. To be more precise, we

have for k # 2 (mod 12)

k k
dk+1:{J+1>=ord(f;oo)+ > ord(f;z) > di + 1.
12 12 seT\H

For k =2 (mod 12), we get

k 1
— =d 14+ —.
12 Et +6
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Thus ord(f;00) = dj, + 1 and
1
> ord(f;z) ==
zel'\H 6
which is impossible. O
We next compute the Fourier coefficients a,,(m) of the Poincaré series Pj .
For this, we require some special functions. Define the Kloosterman sums

S(m,n;c):= > e%iamjan,
a (mod c)*

where the sum runs over all a (mod ¢) that are coprime to ¢ and @ denotes
the multiplicative inverse of a (mod ¢). Moreover, we let J,. be the J-Bessel
function of order r, defined by

B (—1) N\ T2
Tr(x) = Z:O 00 (0+1+7) (2) ’

where ['(z) denotes the usual gamma-function.

Theorem 2.13. We have forn € N

=y Am/mn
(2.5)  ap(m) = (m) (5m,n + 21 F S 7S (n,mye) Ty ( T mn> :
n =1 c
where
P 1 ifm=n,
T 0 otherwise.

Proof. We again use that a set of representatives of I'o,\SL2(Z) is given by

{(: 2) € SLy(2); (¢, d) = 1}.

The contribution for ¢ = 0 is easily seen to give the first summand in (2.5).
For ¢ # 0 we use the identity

atr+b _a 1
cr+d ¢ 02<7'—|—%)
and change d — d + me, where d runs (mod ¢)* and m € Z. This gives

. Tina d
Pep(r) =¥ 425 ch Y e F <7’ + C) :

c>1 d (mod c¢)*
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where a is defined by ad =1 (mod ¢) and

F(r):= > e_cﬂinm) (1 + m)_k.

meZ

Now the classical Poisson summation formula yields that

JT"(T) — Z a<m)e27rim7'

meZ

27rzn
—2
/ TimT d T
m

(1)
with C > 0 arbitrary. For < O we can deform the path of integration
up to infinity yielding that a(m) = 0 in this case. For m > 0 we make the
substitution 7 = ic~*(n/m)2w to get

with

a(m) = i1k (mf_% [ wrkeEv e gy
n

C—ico

The claim follows using that for p, £ > 0 the functions

tes (/R)'T 1 (2vEt),  (t>0)
and
wr w e v, (Re(w) > 0)

are inverses of each other with respect to the usual Laplace transform (8.412.2
of [23]). 0

3. WEAKLY HOLOMORPHIC MODULAR FORMS

We next turn to weakly holomorphic modular forms which are still holomor-
phic on H but allow poles at the “cusps” The Fourier coefficients of such forms
are growing much faster than those of holomorphic forms. Let us in particular
describe this in the situation of the partition function.

Recall that a partition of a positive integer n is a nondecreasing sequence of
positive integers (the parts of the partition) whose sum is n. Let p(n) denote
the number of partitions of n. For example, the partitions of 4 are

4 3+1 2+2 24+1+1 I+1+1+1



