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(The fact that L(0,χ−4) = 2c1(χ−4) =
1
2

is equivalent via the functional

equation of L(s,χ−4) to Leibnitz’s famous formula L(1,χ−4) = 1 − 1
3

+
1
5
−

· · · =
π

4
.) We will see this function again in §3.1.

♠ Identities Involving Sums of Powers of Divisors

We now have our first explicit examples of modular forms and their Fourier
expansions and can immediately deduce non-trivial number-theoretic identi-
ties. For instance, each of the spaces M4(Γ1), M6(Γ1), M8(Γ1), M10(Γ1) and
M14(Γ1) has dimension exactly 1 by the corollary to Proposition 2, and is
therefore spanned by the Eisenstein series Ek(z) with leading coefficient 1, so
we immediately get the identities

E4(z)2 = E8(z) , E4(z)E6(z) = E10(z) ,

E6(z)E8(z) = E4(z)E10(z) = E14(z) .

Each of these can be combined with the Fourier expansion given in Proposit-
ion 5 to give an identity involving the sums-of-powers-of-divisors functions
σk−1(n), the first and the last of these being

n−1∑

m=1

σ3(m)σ3(n−m) =
σ7(n)− σ3(n)

120
,

n−1∑

m=1

σ3(m)σ9(n−m) =
σ13(n)− 11σ9(n) + 10σ3(n)

2640
.

Of course similar identities can be obtained from modular forms in higher
weights, even though the dimension of Mk(Γ1) is no longer equal to 1. For
instance, the fact that M12(Γ1) is 2-dimensional and contains the three modu-
lar forms E4E8, E2

6 and E12 implies that the three functions are linearly
dependent, and by looking at the first two terms of the Fourier expansions we
find that the relation between them is given by 441E4E8 + 250E2

6 = 691E12,
a formula which the reader can write out explicitly as an identity among sums-
of-powers-of-divisors functions if he or she is so inclined. It is not easy to obtain
any of these identities by direct number-theoretical reasoning (although in fact
it can be done). ♥

2.3 The Eisenstein Series of Weight 2

In §2.1 and §2.2 we restricted ourselves to the case when k > 2, since then
the series (9) and (10) are absolutely convergent and therefore define modular
forms of weight k. But the final formula (13) for the Fourier expansion of Gk(z)
converges rapidly and defines a holomorphic function of z also for k = 2, so
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in this weight we can simply define the Eisenstein series G2, G2 and E2 by
equations (13), (12), and (11), respectively, i.e.,

G2(z) = − 1
24

+
∞∑

n=1

σ1(n) qn = − 1
24

+ q + 3q2 + 4q3 + 7q4 + 6q5 + · · · ,

G2(z) = −4π2 G2(z) , E2(z) =
6
π2

G2(z) = 1 − 24q − 72q2 − · · · .

(17)

Moreover, the same proof as for Proposition 5 still shows that G2(z) is given
by the expression (10), if we agree to carry out the summation over n first
and then over m :

G2(z) =
1
2

∑

n#=0

1
n2

+
1
2

∑

m #=0

∑

n∈Z

1
(mz + n)2

. (18)

The only difference is that, because of the non-absolute convergence of the
double series, we can no longer interchange the order of summation to get
the modular transformation equation G2(−1/z) = z2G2(z). (The equation
G2(z + 1) = G2(z), of course, still holds just as for higher weights.) Never-
theless, the function G2(z) and its multiples E2(z) and G2(z) do have some
modular properties and, as we will see later, these are important for many
applications.
Proposition 6. For z ∈ H and

(
a b
c d

)
∈ SL(2, Z) we have

G2

(
az + b

cz + d

)
= (cz + d)2 G2(z) − πic(cz + d) . (19)

Proof. There are many ways to prove this. We sketch one, due to Hecke, since
the method is useful in many other situations. The series (10) for k = 2
does not converge absolutely, but it is just at the edge of convergence, since∑

m,n |mz + n|−λ converges for any real number λ > 2. We therefore modify
the sum slightly by introducing

G2,ε(z) =
1
2

∑

m, n

′ 1
(mz + n)2 |mz + n|2ε (z ∈ H, ε > 0) . (20)

(Here
∑′ means that the value (m, n) = (0, 0) is to be omitted from

the summation.) The new series converges absolutely and transforms by
G2,ε

(
az+b
cz+d

)
= (cz + d)2|cz + d|2εG2,ε(z). We claim that lim

ε→0
G2,ε(z) exists

and equals G2(z) − π/2y, where y = I(z). It follows that each of the three
non-holomorphic functions

G∗
2(z) = G2(z) − π

2y
, E∗

2 (z) = E2(z) − 3
πy

, G∗
2(z) = G2(z) +

1
8πy
(21)

transforms like a modular form of weight 2, and from this one easily deduces
the transformation equation (19) and its analogues for E2 and G2. To prove
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the claim, we define a function Iε by

Iε(z) =
∫ ∞

−∞

dt

(z + t)2 |z + t|2ε
(
z ∈ H, ε > − 1

2

)
.

Then for ε > 0 we can write

G2,ε−
∞∑

m=1

Iε(mz) =
∞∑

n=1

1
n2+2ε

+
∞∑

m=1

∞∑

n=−∞

[
1

(mz + n)2 |mz + n|2ε −
∫ n+1

n

dt

(mz + t)2|mz + t|2ε

]
.

Both sums on the right converge absolutely and locally uniformly for ε > − 1
2

(the second one because the expression in square brackets is O
(
|mz+n|−3−2ε

)

by the mean-value theorem, which tells us that f(t) − f(n) for any differen-
tiable function f is bounded in n ≤ t ≤ n + 1 by maxn≤u≤n+1 |f ′(u)|), so
the limit of the expression on the right as ε → 0 exists and can be obtained
simply by putting ε = 0 in each term, where it reduces to G2(z) by (18). On
the other hand, for ε > − 1

2 we have

Iε(x + iy) =
∫ ∞

−∞

dt

(x + t + iy)2 ((x + t)2 + y2)ε

=
∫ ∞

−∞

dt

(t + iy)2 (t2 + y2)ε
=

I(ε)
y1+2ε

,

where I(ε) =
∫∞
−∞(t+i)−2(t2+1)−εdt , so

∑∞
m=1 Iε(mz) = I(ε)ζ(1+2ε)/y1+2ε

for ε > 0. Finally, we have I(0) = 0 (obvious),

I ′(0) = −
∫ ∞

−∞

log(t2 + 1)
(t + i)2

dt =
(

1 + log(t2 + 1)
t + i

− tan−1 t

)∣∣∣∣
∞

−∞
= − π ,

and ζ(1+2ε) =
1
2ε

+O(1), so the product I(ε)ζ(1+2ε)/y1+2ε tends to −π/2y

as ε→ 0. The claim follows.

Remark. The transformation equation (18) says that G2 is an example of what
is called a quasimodular form, while the functions G∗

2, E∗
2 and G∗

2 defined in
(21) are so-called almost holomorphic modular forms of weight 2. We will
return to this topic in Section 5.

2.4 The Discriminant Function and Cusp Forms

For z ∈ H we define the discriminant function ∆(z) by the formula

∆(z) = e2πiz
∞∏

n=1

(
1− e2πinz

)24
. (22)
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(The name comes from the connection with the discriminant of the elliptic
curve Ez = C/(Z.z +Z.1), but we will not discuss this here.) Since |e2πiz| < 1
for z ∈ H, the terms of the infinite product are all non-zero and tend exponen-
tially rapidly to 1, so the product converges everywhere and defines a holomor-
phic and everywhere non-zero function in the upper half-plane. This function
turns out to be a modular form and plays a special role in the entire theory.

Proposition 7. The function ∆(z) is a modular form of weight 12 on SL(2, Z).

Proof. Since ∆(z) &= 0, we can consider its logarithmic derivative. We find

1
2πi

d

dz
log ∆(z) = 1−24

∞∑

n=1

n e2πinz

1− e2πinz
= 1−24

∞∑

m=1

σ1(m) e2πimz = E2(z) ,

where the second equality follows by expanding
e2πinz

1− e2πinz
as a geometric

series
∑∞

r=1 e2πirnz and interchanging the order of summation, and the third
equality from the definition of E2(z) in (17). Now from the transformation
equation for E2 (obtained by comparing (19) and(11)) we find

1
2πi

d

dz
log
( ∆

(
az+b
cz+d

)

(cz + d)12∆(z)

)
=

1
(cz + d)2

E2

(
az + b

cz + d

)
− 12

2πi

c

cz + d
− E2(z)

= 0 .

In other words, (∆|12γ)(z) = C(γ)∆(z) for all z ∈ H and all γ ∈ Γ1, where
C(γ) is a non-zero complex number depending only on γ, and where ∆|12γ is
defined as in (8). It remains to show that C(γ) = 1 for all γ. But C : Γ1 → C∗

is a homomorphism because ∆ '→ ∆|12γ is a group action, so it suffices to
check this for the generators T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
of Γ1. The first is

obvious since ∆(z) is a power series in e2πiz and hence periodic of period 1,
while the second follows by substituting z = i into the equation ∆(−1/z) =
C(S) z12∆(z) and noting that ∆(i) &= 0.

Let us look at this function ∆(z) more carefully. We know from Corollary 1
to Proposition 2 that the space M12(Γ1) has dimension at most 2, so ∆(z)
must be a linear combination of the two functions E4(z)3 and E6(z)2. From
the Fourier expansions E3

4 = 1 + 720q + · · · , E6(z)2 = 1 − 1008q + · · · and
∆(z) = q + · · · we see that this relation is given by

∆(z) =
1

1728
(
E4(z)3 − E6(z)2

)
. (23)

This identity permits us to give another, more explicit, version of the fact that
every modular form on Γ1 is a polynomial in E4 and E6 (Proposition 4). In-
deed, let f(z) be a modular form of arbitrary even weight k ≥ 4, with Fourier
expansion as in (3). Choose integers a, b ≥ 0 with 4a + 6b = k (this is always


