CHAPTER 1

The Elementary Theory of Partitions

1.1 Introduction

In this book we shall study in depth the fundamental additive decomposition
process: the representation of positive integers by sums of other positive
integers.

DEFINITION 1.1. A partition of a positive integer n is a finite nonincreasing
sequence of positive integers 4, 4,,. .., 4, such that ., A, = n. The 4, are
called the parts of the partition.

Many times the partition (4,, 4,,. .., 4,) will be denoted by 4, and we shall
write 1 F n to denote “A is a partition of n.” Sometimes it is useful to use a
notation that makes explicit the number of times that a particular integer
occurs as a part. Thus if A = (4, 45,. .., 4,) - n, we sometimes write

1= (1!:2!13!:. -4)

where exactly f; of the 1, are equal to i. Note now that ) ;;, f,i = n.

Numerous types of partition problems will concern us in this book;
however, among the most important and fundamental is the question of
enumerating various sets of partitions.

DerFINITION 1.2. The partition function p(n) is the number of partitions
of n.

Remark. Obviously p(n) = 0 when n is negative. We shall set p(0) = 1 with
the observation that the empty sequence forms the only partition of zero. The
following list presents the next six values of p(n) and tabulates the actual
partitions.

p)=1: 1=();

p)=2: 2=(), 1+1=(%;

pP3) =3 3=@3), 24+1=(2), 14+1+1=(%;

=5 4=, 3+1=(13), 2+2=(2),
241 41=(%2), 1+14141=01%;
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2 The Elementary Theory of Partitions Chap. 1.1

p5)=7: 5=(5, 4+1=(149, 3+2=(23),
341 4+1=(13%3), 24241=(12Y,
24141 41=(3%2), 1+1+14+14+1=(1%;
p6) =11: 6=(6), 5+ 1=(15, 4+ 2= (29,
4+ 1+1=(%), 3+43=03%H), 3+2+41=(23,
341 4+141=(1%3), 242+2=2Y,
24241 41=(122%, 24+14+14+1+1=(1%),
l+14+1+14+14+1=(15.

The partition function increases quite rapidly with n. For example, p(10) =
42, p(20) = 627, p(50) = 204226, p(100) = 190569292, and p(200) =
3972999029388.

Many times we are interested in problems in which our concern does not
extend to all partitions of n but only to a particular subset of the partitions
of n.

DEFINITION 1.3, Let % denote the set of all partitions.
DEFINITION 1.4. Let p(S, n) denote the number of partitions of n that belong
to a subset S of the set & of all partitions.

For example, we might consider @ the set of all partitions with odd parts
and 2 the set of all partjtions with distinct parts. Below we tabulate partitions
related to @ and to 2.

po, =1 1=(@),

p(0,2)=1: 141=((1%,

p(0,3)=2: 3=03), 14+1+1=0Y,

pO,4H=2: 341=(3), 14+14+14+1=(1%,

p0,5 =3 5=(5), 34+1+1=(123),
1+14+14141=(5,

p0,6)=4: 5+ 1=(5), 3+3=(3Y,
3+ 1+141=(1%),
1+1+1414+1+1=(15,

po,N=5 T=[M, S5+14+1=(13%), 3+3+1=(3%,
I+ 1+1+14+1=(1*),
1+1+14+1414+141=(").

2, 1) =1 1=(©),

p2,2)=1: 2=(2),

p(2,3)=2: 3=(3), 2+1=(12),

pP2,4)=2: 4=(4), 3+1=(13),

p2,5)=3: 5=(5, 4+1=(14), 3+2=(23),

p(2,6)=4: 6=(6), 5+1=(5), 4+2=(4),
3+241=(123),

K2, =5 7=, 6+1=(16), 5+ 2 =29,
4+3=(34, 4+2+1=(129).
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We point out the rather curious fact that p(0, n) = p(D, n) for n < 7,
although there is little apparent relationship between the various partitions
listed (see Corollary 1.2).

In this chapter, we shall present two of the most elemental tools for treating
partitions: (1) infinite product generating functions; (2) graphical representa-
tion of partitions.

1.2 Infinite Product Generating Functions of One Variable

DEFINITION 1.5. The generating function f(q) for the sequence ay, a,,a,, a;,. . .
is the power series f(q) = Y0 3.4

Remark. For many of the problems we shall encounter, it suffices to
consider f(g) as a *“formal power series” in g. With such an approach many
of the manipulations of series and products in what follows may be justified
almost trivially. On the other hand, much asymptotic work (see Chapter 6)
requires that the generating functions be analytic functions of the complex
variable q. In actual fact, both approaches have their special merits (recently,
E. Bender (1974) has discussed the circumstances in which we may pass from
one to the other). Generally we shall state our theorems on generating
functions with explicit convergence conditions. For the most part we shall
be dealing with absolutely convergent infinite series and infinite products;
consequently, various rearrangements of series and interchanges of summation
will be justified analytically from this simple fact.

DEFINITION 1.6. Let H be a set of positive integers. We let ““H’’ denote the
set of all partitions whose parts lie in H. Consequently, p(*H”, n) is the
number of partitions of n that have all their parts in H.

Thus if Hy is the set of all odd positive integers, then “Hy,” = 0.
p(“HO", n) = P(O, n)'

DEFINITION 1.7. Let H be a set of positive integers. We let “H"(< d) denote
the set of all partitions in which no part appears more than d times and each
part is in H.

Thus if N is the set of all positive integers, then p(“N”(< 1), n) = (2, n).

THEOREM 1.1. Let H be a set of positive integers, and let

f(@ =Y p(“H”, n)q", (1.2.1)
az0
Jd@) =Y, p("H"(< d), m)q". (1.2.2)

az0
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Then for |q] < 1

f@=T1a-¢7"" (1.2.3)
neH
fda) = H;(l +q" 4+ + g™
= l—[(l — q(d+l)n)(1 _ qn)—l. (124)
neH

Remark. The equivalence of the two forms for f,(q) follows from the simple
formula for the sum of a finite geometric series:

1_ r+i
L4 x+x?4 dx= o
1 —x

Proof. We shall proceed in a formal manner to prove (1.2.3) and (1.2.4);
at the conclusion of our proof we shall sketch how to justify our steps analyt-
ically. Let us index the elements of H, so that H = {h,, h,, hs, hy,...}. Then

[[a-g'=TI0+q" + ™ +q" +)
neH neH

(1 +qh1+q2h1+q3hl +.)
X(l +q"1+q2"1+q3"1 +)

X(l +q".’!+q2".’!+q3":! +.)

= Z Z Z Cogumtehatashyt

and we observe that the exponent of g is just the partition (h;"*h,*2h,% - ).
Hence ¢" will occur in the foregoing summation once for each partition of n
into parts taken from H. Therefore

[ma=gnt =Y p(“H”, n)q".

neH nz0
The proof of (1.2.4) is identical with that of (1.2.3) except that the infinite
geometric series is replaced by the finite geometric series:

H(l +4q" + qz" RS qdn)
neH
= Z Z Z . .q"l"l+ﬂz'|1+a3'|3+...

424,20 424220 d2a320

=Y p(“H"(< d), n)q".

nz20
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If we are to view the foregoing procedures as operations with convergent
infinite products, then the multiplication of infinitely many series together
requires some justification. The simplest procedure is to truncate the infinite
product to []}., (1 — ¢")~"'. This truncated product will generate those
partitions whose parts are among h,, h,,. .., h,. The multiplication is now
perfectly valid since only a finite number of absolutely convergent series are
involved. Now assume q is real and 0 < ¢ < 1; thenif M = h,,

M n 0
Y pCH” g <TTU - ¢ <0 - ¢"7" < 0.
j=0 i=1

i=

Thus the sequence of partial sums Z’,‘Qo p(“H"”, j)q’ is a bounded increasing
sequence and must therefore converge. On the other hand

™M

pCH", D > TTA — ") =[]0 - ¢! as n— o
i=1 =1

Jj=0 i

Therefore

o0

pCH™ g’ =TI - g7  =TT0 - g7

i=i neH

]
ir1s

J

Similar justification can be given for the proof of (1.2.4). [ |
CoROLLARY 1.2 (Euler). p(0, n) = p(2, n) for all n.

Proof. By Theorem 1.1,
PR =-fj.(l — g
and
Y 2@, wa" =[]0 + 4.

nz0 n=i

Now
(1.2.5)

Hence

Y. KO, nq" =Y KD, n)q",

nz0 nz0
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1
(The fact that L(0,x—4) = 2¢1(x—4) = > is equivalent via the functional
1 1
equation of L(s,x—4) to Leibnitz’s famous formula L(1,x_4) =1 — 3 + v~

=TI We will see this function again in §3.1.
1 g

& Identities Involving Sums of Powers of Divisors

We now have our first explicit examples of modular forms and their Fourier
expansions and can immediately deduce non-trivial number-theoretic identi-
ties. For instance, each of the spaces My(I), Mg(I'), Ms(I), Mio(I}) and
Mi4(I7) has dimension exactly 1 by the corollary to Proposition 2, and is
therefore spanned by the Eisenstein series Ey(z) with leading coefficient 1, so
we immediately get the identities

Eu(2)? = Es(z), E4(2)E¢(z) = Eio(2),
EG(Z)Eg(Z) = E4(Z)E10(Z) = E14(Z).

Each of these can be combined with the Fourier expansion given in Proposit-
ion 5 to give an identity involving the sums-of-powers-of-divisors functions
ok—1(n), the first and the last of these being

3" aslm)oa(n —m) = o8]

3

S

o3(m)og(n —m) = 013(n) — 1109(n) + 1003(n) '

2640

Il
-

m

Of course similar identities can be obtained from modular forms in higher
weights, even though the dimension of My (I) is no longer equal to 1. For
instance, the fact that M2([1) is 2-dimensional and contains the three modu-
lar forms F;FEg, E? and Ep2 implies that the three functions are linearly
dependent, and by looking at the first two terms of the Fourier expansions we
find that the relation between them is given by 441F,FEg + 25OE§ = 691 F12,
a formula which the reader can write out explicitly as an identity among sums-
of-powers-of-divisors functions if he or she is so inclined. It is not easy to obtain
any of these identities by direct number-theoretical reasoning (although in fact
it can be done). ©

2.3 The Eisenstein Series of Weight 2

In §2.1 and §2.2 we restricted ourselves to the case when k& > 2, since then
the series (9) and (10) are absolutely convergent and therefore define modular
forms of weight k. But the final formula (13) for the Fourier expansion of G (2)
converges rapidly and defines a holomorphic function of z also for k = 2, so
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in this weight we can simply define the Eisenstein series G2, G2 and Es by
equations (13), (12), and (11), respectively, i.e.,

GQ(Z)

1 > 1
o no_ _ = 32 43 74 65
24+n§:101(n)q 24+q+ q°+4q° + 79" + 6q° + ,

Go(2) = —41°Ga(z), Eao(z) = %GQ(Z) =1-24qg—72¢° — --- .
(17)

Moreover, the same proof as for Proposition 5 still shows that G2(z) is given
by the expression (10), if we agree to carry out the summation over n first
and then over m:

Gz(z):%Z%+%sz. (18)

n#0 m#0neZ

The only difference is that, because of the non-absolute convergence of the
double series, we can no longer interchange the order of summation to get
the modular transformation equation Go(—1/z) = 22G2(z). (The equation
G2(z 4+ 1) = Ga(z), of course, still holds just as for higher weights.) Never-
theless, the function G2(z) and its multiples F3(z) and Gz(z) do have some
modular properties and, as we will see later, these are important for many
applications.

Proposition 6. For z € ) and (¢ }) € SL(2,Z) we have

G <Zi§) — (cz+d)? Galz) — mic(cz +d). (19)
Proof. There are many ways to prove this. We sketch one, due to Hecke, since
the method is useful in many other situations. The series (10) for k = 2
does not converge absolutely, but it is just at the edge of convergence, since
> M2 + n|=* converges for any real number A > 2. We therefore modify
the sum slightly by introducing

Caals) = 53 e ! (€9, e>0). (20

2|lmz + n|%

m,n

(Here 3" means that the value (m,n) = (0,0) is to be omitted from
the summation.) The new series converges absolutely and transforms by

Gg,a(gzzis) = (cz + d)?|cz + d|**G2,..(2). We claim that 8112% Gs.c(z) exists

and equals Ga(z) — 7/2y, where y = J(z). It follows that each of the three
non-holomorphic functions

Gi(2) = Gals) — 30, Bi(:) = Balo) = . G36) = Galo) + g
1)

transforms like a modular form of weight 2, and from this one easily deduces
the transformation equation (19) and its analogues for E5 and Gz. To prove
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the claim, we define a function I, by

Y dt 1
IE(Z>_/OO(z+t)2|z+t|25 (€9, e>—-3).

Then for ¢ > 0 we can write

oo

- 1

n=1

S e A =
(mz 4+ n)2|mz + n|? n (mz+1t)2mz 4 t]%

m=1n=—o0

Both sums on the right converge absolutely and locally uniformly for ¢ > —%
(the second one because the expression in square brackets is O (|mz+n|*3’25)
by the mean-value theorem, which tells us that f(¢) — f(n) for any differen-
tiable function f is bounded in n < ¢ < n + 1 by max,<u<n+1|f (u)]), so
the limit of the expression on the right as e — 0 exists and can be obtained
simply by putting € = 0 in each term, where it reduces to Gz(z) by (18). On
the other hand, for ¢ > f% we have

) > dt
L@ +iy) = /,oo (@ +t+iy)? ([ +1)2 +y?)

B /°° dt _I(e)
s ()2 (2 yR)e gl

where I(e) = [7°_(t+i)72(t2+1)~°dt ,s0 Yoo _; I.(mz) = I(e)¢(1+2¢) [y +3
for € > 0. Finally, we have I(0) = 0 (obvious),

< log(t? +1) 1+log(t? +1) AT
/ = - _— = -_— Y — - -
I'o = /_OO 107 dt P tan™ ¢ T

— 00

1
and ¢(14+2¢) = % +0(1), so the product I(g)¢(1+2¢)/y' T2 tends to —7/2y
as € — 0. The claim follows.

Remark. The transformation equation (18) says that G is an example of what
is called a quasimodular form, while the functions G5, F5 and G5 defined in
(21) are so-called almost holomorphic modular forms of weight 2. We will
return to this topic in Section 5.

2.4 The Discriminant Function and Cusp Forms

For z € ) we define the discriminant function A(z) by the formula

oo

A(z) = e?* H (1- 62”"2)24 : (22)

n=1
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(The name comes from the connection with the discriminant of the elliptic
curve E, = C/(Z.z+ 7Z.1), but we will not discuss this here.) Since [e?™*| < 1
for z € §, the terms of the infinite product are all non-zero and tend exponen-
tially rapidly to 1, so the product converges everywhere and defines a holomor-
phic and everywhere non-zero function in the upper half-plane. This function
turns out to be a modular form and plays a special role in the entire theory.

Proposition 7. The function A(z) is a modular form of weight 12 on SL(2,Z).

Proof. Since A(z) # 0, we can consider its logarithmic derivative. We find

L 4 jogA(z) = 1— 24§ nem g E e2TME = By ()
— — 1o = o = z
271 dz ) eQTrznz 1 2 ’

e27rinz
where the second equality follows by expanding T ozminz as a geometric
—e minz

series > 2 | €*™% and interchanging the order of summation, and the third
equality from the definition of Es(z) in (17). Now from the transformation
equation for Ey (obtained by comparing (19) and(11)) we find

1 d NGr 1 b\ 12
— —log (E5) = E, @z —=_° — Ey(z)
2mi dz (cz4+d)12A(2) ) (cz +d)? cz+d 27t cz+d

=0.

In other words, (A|127)(2) = C(v) A(z) for all z € § and all v € I'1, where
C(7) is a non-zero complex number depending only on ~, and where A2y is
defined as in (8). It remains to show that C(y) =1 for all 4. But C' : I} — C*
is a homomorphism because A +— A|12'y is a group action, so it suffices to
check this for the generators 1" = ( ) and S = (O _1) of I'l. The first is
obvious since A(z) is a power series in €*™** and hence periodic of period 1,
while the second follows by substituting z = ¢ into the equation A(—1/z) =
C(S) 2'2A(z) and noting that A(i) # 0.

Let us look at this function A(z) more carefully. We know from Corollary 1
to Proposition 2 that the space Mi2(I) has dimension at most 2, so A(z)
must be a linear combination of the two functions E4(z)? and Fg(2)?. From
the Fourier expansions Ej = 1+ 720q + -+, Eg(2)?2 = 1 — 1008q + - -- and
A(z) = g+ --- we see that this relation is given by

Az) = %28 (Ea(2)? — Eo(2)?). (23)

This identity permits us to give another, more explicit, version of the fact that
every modular form on I is a polynomial in E, and Eg (Proposition 4). In-
deed, let f(z) be a modular form of arbitrary even weight k > 4, with Fourier
expansion as in (3). Choose integers a, b > 0 with 4a 4 6b = k (this is always



