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Moreover, if one passes to other groups, then there are σ Eisenstein series of
each type, where σ is the number of cusps, and, although they span the same
vector space, they are not individually proportional. In fact, we will actually
want to introduce a third normalization

Gk(z) =
(k − 1)!
(2πi)k

Gk(z) (12)

because, as we will see below, it has Fourier coefficients which are rational
numbers (and even, with one exception, integers) and because it is a normal-
ized eigenfunction for the Hecke operators discussed in §4.

As a first application, we can now determine the ring structure of M∗(Γ1)

Proposition 4. The ring M∗(Γ1) is freely generated by the modular forms E4

and E6.

Corollary. The inequality (7) for the dimension of Mk(Γ1) is an equality for
all even k ≥ 0.

Proof. The essential point is to show that the modular forms E4(z) and
E6(z) are algebraically independent. To see this, we first note that the forms
E4(z)3 and E6(z)2 of weight 12 cannot be proportional. Indeed, if we had
E6(z)2 = λE4(z)3 for some (necessarily non-zero) constant λ, then the
meromorphic modular form f(z) = E6(z)/E4(z) of weight 2 would satisfy
f2 = λE4 (and also f3 = λ−1E6) and would hence be holomorphic (a function
whose square is holomorphic cannot have poles), contradicting the inequal-
ity dim M2(Γ1) ≤ 0 of Corollary 1 of Proposition 2. But any two modular
forms f1 and f2 of the same weight which are not proportional are necessarily
algebraically independent. Indeed, if P (X, Y ) is any polynomial in C[X, Y ]
such that P (f1(z), f2(z)) ≡ 0, then by considering the weights we see that
Pd(f1, f2) has to vanish identically for each homogeneous component Pd of P .
But Pd(f1, f2)/fd

2 = p(f1/f2) for some polynomial p(t) in one variable, and
since p has only finitely many roots we can only have Pd(f1, f2) ≡ 0 if f1/f2

is a constant. It follows that E3
4 and E2

6 , and hence also E4 and E6, are alge-
braically independent. But then an easy calculation shows that the dimension
of the weight k part of the subring of M∗(Γ1) which they generate equals the
right-hand side of the inequality (7), so that the proposition and corollary
follow from this inequality.

2.2 Fourier Expansions of Eisenstein Series

Recall from (3) that any modular form on Γ1 has a Fourier expansion of the
form

∑∞
n=0 anqn, where q = e2πiz. The coefficients an often contain interesting

arithmetic information, and it is this that makes modular forms important
for classical number theory. For the Eisenstein series, normalized by (12), the
coefficients are given by:
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Proposition 5. The Fourier expansion of the Eisenstein series Gk(z) (k even,
k > 2) is

Gk(z) = − Bk

2k
+

∞∑

n=1

σk−1(n) qn , (13)

where Bk is the kth Bernoulli number and where σk−1(n) for n ∈ N denotes
the sum of the (k − 1)st powers of the positive divisors of n.

We recall that the Bernoulli numbers are defined by the generating function∑∞
k=0 Bkxk/k! = x/(ex − 1) and that the first values of Bk (k > 0 even) are

given by B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , B10 = 5
66 , B12 = − 691

2730 ,
and B14 = 7

6 .

Proof. A well known and easily proved identity of Euler states that
∑

n∈Z

1
z + n

=
π

tanπz

(
z ∈ C \ Z

)
, (14)

where the sum on the left, which is not absolutely convergent, is to be inter-
preted as a Cauchy principal value (= lim

∑N
−M where M, N tend to infinity

with M −N bounded). The function on the right is periodic of period 1 and
its Fourier expansion for z ∈ H is given by

π

tanπz
= π

cosπz

sinπz
= πi

eπiz + e−πiz

eπiz − e−πiz
= −πi

1 + q

1− q
= −2πi

(
1
2

+
∞∑

r=1

qr

)
,

where q = e2πiz. Substitute this into (14), differentiate k− 1 times and divide
by (−1)k−1(k − 1)! to get

∑

n∈Z

1
(z + n)k

=
(−1)k−1

(k − 1)!
dk−1

dzk−1

(
π

tanπz

)
=

(−2πi)k

(k − 1)!

∞∑

r=1

rk−1 qr

(k ≥ 2, z ∈ H) ,

an identity known as Lipschitz’s formula. Now the Fourier expansion of Gk

(k > 2 even) is obtained immediately by splitting up the sum in (10) into the
terms with m = 0 and those with m &= 0:

Gk(z) =
1
2

∑

n∈Z
n%=0

1
nk

+
1
2

∑

m, n∈Z
m %=0

1
(mz + n)k

=
∞∑

n=1

1
nk

+
∞∑

m=1

∞∑

n=−∞

1
(mz + n)k

= ζ(k) +
(2πi)k

(k − 1)!

∞∑

m=1

∞∑

r=1

rk−1 qmr

=
(2πi)k

(k − 1)!

(
− Bk

2k
+

∞∑

n=1

σk−1(n) qn

)
,

where in the last line we have used Euler’s evaluation of ζ(k) (k > 0 even) in
terms of Bernoulli numbers. The result follows.
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to be immeasurably deeper than the assertion about multiplicativity and was
only proved in 1974 by Deligne as a consequence of his proof of the famous Weil
conjectures (and of his previous, also very deep, proof that these conjectures
implied Ramanujan’s). However, the weaker inequality |τ(p)| ≤ Cp6 with some
effective constant C > 0 is much easier and was proved in the 1930’s by Hecke.
We reproduce Hecke’s proof, since it is simple. In fact, the proof applies to
a much more general class of modular forms. Let us call a modular form on Γ1

a cusp form if the constant term a0 in the Fourier expansion (3) is zero. Since
the constant term of the Eisenstein series Gk(z) is non-zero, any modular form
can be written uniquely as a linear combination of an Eisenstein series and
a cusp form of the same weight. For the former the Fourier coefficients are
given by (13) and grow like nk−1 (since nk−1 ≤ σk−1(n) < ζ(k−1)nk−1 ). For
the latter, we have:

Proposition 8. Let f(z) be a cusp form of weight k on Γ1 with Fourier expan-
sion

∑∞
n=1 anqn. Then |an| ≤ Cnk/2 for all n, for some constant C depending

only on f .

Proof. From equations (1) and (2) we see that the function z '→ yk/2|f(z)|
on H is Γ1-invariant. This function tends rapidly to 0 as y = I(z) → ∞
(because f(z) = O(q) by assumption and |q| = e−2πy), so from the form of
the fundamental domain of Γ1 as given in Proposition 1 it is clearly bounded.
Thus we have the estimate

|f(z)| ≤ c y−k/2 (z = x + iy ∈ H) (25)

for some c > 0 depending only on f . Now the integral representation

an = e2πny

∫ 1

0
f(x + iy) e−2πinx dx

for an, valid for any y > 0, show that |an| ≤ cy−k/2e2πny. Taking y = 1/n (or,
optimally, y = k/4πn) gives the estimate of the proposition with C = c e2π

(or, optimally, C = c (4πe/k)k/2 ).

Remark. The definition of cusp forms given above is actually valid only for
the full modular group Γ1 or for other groups having only one cusp. In general
one must require the vanishing of the constant term of the Fourier expansion
of f , suitably defined, at every cusp of the group Γ , in which case it again
follows that f can be estimated as in (25). Actually, it is easier to simply define
cusp forms of weight k as modular forms for which yk/2f(x + iy) is bounded,
a definition which is equivalent but does not require the explicit knowledge of
the Fourier expansion of the form at every cusp.

♠ Congruences for τ(n)

As a mini-application of the calculations of this and the preceding sections
we prove two simple congruences for the Ramanujan tau-function defined by
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♠ The Kac–Wakimoto Conjecture

For any two natural numbers m and n, denote by ∆m(n) the number of
representations of n as a sum of m triangular numbers (numbers of the form
a(a− 1)/2 with a integral). Since 8a(a− 1)/2+1 = (2a− 1)2, this can also be
written as the number rodd

m (8n+m) of representations of 8n+m as a sum of m
odd squares. As part of an investigation in the theory of affine superalgebras,
Kac and Wakimoto were led to conjecture the formula

∆4s2(n) =
∑

r1, a1, ..., rs, as ∈Nodd
r1a1+···+rsas = 2n+s2

Ps(a1, . . . , as) (35)

for m of the form 4s2 (and a similar formula for m of the form 4s(s + 1) ),
where Nodd = {1, 3, 5, . . .} and Ps is the polynomial

Ps(a1, . . . , as) =
∏

i ai ·
∏

i<j

(
a2

i − a2
j

)2

4s(s−1) s!
∏2s−1

j=1 j!
.

Two proofs of this were subsequently given, one by S. Milne using elliptic func-
tions and one by myself using modular forms. Milne’s proof is very ingenious,
with a number of other interesting identities appearing along the way, but is
quite involved. The modular proof is much simpler. One first notes that, Ps

being a homogeneous polynomial of degree 2s2−s and odd in each argument,
the right-hand side of (35) is the coefficient of q2n+s2

in a function F (z) which
is a linear combination of products gh1(z) · · · ghs(z) with h1 + · · · + hs = s2,
where gh(z) =

∑
r, a∈Nodd

a2h−1qra (h ≥ 1). Since gh is a modular form (Eisen-
stein series) of weight 2h on Γ0(4), this function F is a modular form of weight
2s2 on the same group. Moreover, its Fourier expansion belongs to qs2Q[[q2]]
(because Ps(a1, . . . , as) vanishes if any two ai are equal, and the smallest
value of r1a1 + · · · + rsas with all ri and ai in Nodd and all ai distinct is
1 + 3 + · · ·+ 2s− 1 = s2), and from the formula given in §1 for the number of
zeros of a modular form we find that this property characterizes F (z) uniquely
in M2s2(Γ0(4)) up to a scalar factor. But θF (z)4s2

has the same property, so
the two functions must be proportional. This proves (35) up to a scalar factor,
easily determined by setting n = 0. ♥

3.2 Theta Series in Many Variables

We now consider quadratic forms in an arbitrary number m of variables. Let
Q : Zm → Z be a positive definite quadratic form which takes integral values
on Zm. We associate to Q the theta series

ΘQ(z) =
∑

x1,...,xm∈Z
qQ(x1,...,xm) =

∞∑

n=0

RQ(n) qn , (36)
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where of course q = e2πiz as usual and RQ(n) ∈ Z≥0 denotes the number of
representations of n by Q, i.e., the number of vectors x ∈ Zm with Q(x) = n.
The basic statement is that ΘQ is always a modular form of weight m/2.
In the case of even m we can be more precise about the modular transfor-
mation behavior, since then we are in the realm of modular forms of in-
tegral weight where we have given complete definitions of what modularity
means. The quadratic form Q(x) is a linear combination of products xixj with
1 ≤ i, j ≤ m. Since xixj = xjxi, we can write Q(x) uniquely as

Q(x) =
1
2

xtAx =
1
2

m∑

i,j=1

aijxixj , (37)

where A = (aij)1≤i,j≤m is a symmetric m×m matrix and the factor 1/2 has
been inserted to avoid counting each term twice. The integrality of Q on Zm

is then equivalent to the statement that the symmetric matrix A has integral
elements and that its diagonal elements aii are even. Such an A is called an
even integral matrix. Since we want Q(x) > 0 for x &= 0, the matrix A must
be positive definite. This implies that detA > 0. Hence A is non-singular
and A−1 exists and belongs to Mm(Q). The level of Q is then defined as the
smallest positive integer N = NQ such that NA−1 is again an even integral
matrix. We also have the discriminant ∆ = ∆Q of A, defined as (−1)m detA.
It is always congruent to 0 or 1 modulo 4, so there is an associated character
(Kronecker symbol) χ∆, which is the unique Dirichlet character modulo N

satisyfing χ∆(p) =
(

∆
p

)
(Legendre symbol) for any odd prime p ! N . (The

character χ∆ in the special cases ∆ = −4, 12 and 8 already occurred in §2.2
(eq. (15)) and §3.1.) The precise description of the modular behavior of ΘQ

for m ∈ 2Z is then:

Theorem (Hecke, Schoenberg). Let Q : Z2k → Z be a positive definite
integer-valued form in 2k variables of level N and discriminant ∆. Then ΘQ

is a modular form on Γ0(N) of weight k and character χ∆, i.e., we have
ΘQ

(
az+b
cz+d

)
= χ∆(a) (cz + d)k ΘQ(z) for all z ∈ H and

(
a b
c d

)
∈ Γ0(N).

The proof, as in the unary case, relies essentially on the Poisson sum-
mation formula, which gives the identity ΘQ(−1/Nz) = Nk/2(z/i)k ΘQ∗(z),
where Q∗(x) is the quadratic form associated to NA−1, but finding the pre-
cise modular behavior requires quite a lot of work. One can also in principle
reduce the higher rank case to the one-variable case by using the fact that
every quadratic form is diagonalizable over Q, so that the sum in (36) can
be broken up into finitely many sub-sums over sublattices or translated sub-
lattices of Zm on which Q(x1, . . . , xm) can be written as a linear combination
of m squares.

There is another language for quadratic forms which is often more conve-
nient, the language of lattices. From this point of view, a quadratic form is no
longer a homogeneous quadratic polynomial in m variables, but a function Q
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from a free Z-module Λ of rank m to Z such that the associated scalar prod-
uct (x, y) = Q(x + y) −Q(x) −Q(y) (x, y ∈ Λ) is bilinear. Of course we can
always choose a Z-basis of Λ, in which case Λ is identified with Zm and Q
is described in terms of a symmetric matrix A as in (37), the scalar product
being given by (x, y) = xtAy, but often the basis-free language is more conve-
nient. In terms of the scalar product, we have a length function ‖x‖2 = (x, x)
(actually this is the square of the length, but one often says simply “length”
for convenience) and Q(x) = 1

2‖x‖
2, so that the integer-valued case we are

considering corresponds to lattices in which all vectors have even length. One
often chooses the lattice Λ inside the euclidean space Rm with its standard
length function (x, x) = ‖x‖2 = x2

1 + · · · + x2
m; in this case the square root

of detA is equal to the volume of the quotient Rm/Λ, i.e., to the volume of
a fundamental domain for the action by translation of the lattice Λ on Rm. In
the case when this volume is 1, i.e., when Λ ∈ Rm has the same covolume as
Zm, the lattice is called unimodular. Let us look at this case in more detail.

♠ Invariants of Even Unimodular Lattices

If the matrix A in (37) is even and unimodular, then the above theorem tells
us that the theta series ΘQ associated to Q is a modular form on the full
modular group. This has many consequences.

Proposition 12. Let Q : Zm → Z be a positive definite even unimodular
quadratic form in m variables. Then

(i) the rank m is divisible by 8, and
(ii)the number of representations of n ∈ N by Q is given for large n by the

formula

RQ(n) = − 2k

Bk
σk−1(n) + O

(
nk/2

)
(n→∞) , (38)

where m = 2k and Bk denotes the kth Bernoulli number.

Proof. For the first part it is enough to show that m cannot be an odd multiple
of 4, since if m is either odd or twice an odd number then 4m or 2m is an
odd multiple of 4 and we can apply this special case to the quadratic form
Q⊕Q⊕Q⊕Q or Q⊕Q, respectively. So we can assume that m = 2k with
k even and must show that k is divisible by 4 and that (38) holds. By the
theorem above, the theta series ΘQ is a modular form of weight k on the full
modular group Γ1 = SL(2, Z) (necessarily with trivial character, since there
are no non-trivial Dirichlet characters modulo 1). By the results of Section 2,
this modular form is a linear combination of Gk(z) and a cusp form of weight k,
and from the Fourier expansion (13) we see that the coefficient of Gk in this
decomposition equals −2k/Bk, since the constant term RQ(0) of ΘQ equals 1.
(The only vector of length 0 is the zero vector.) Now Proposition 8 implies the
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asymptotic formula (38), and the fact that k must be divisible by 4 also follows
because if k ≡ 2 (mod 4) then Bk is positive and therefore the right-hand side
of (38) tends to −∞ as k →∞, contradicting RQ(n) ≥ 0.

The first statement of Proposition 12 is purely algebraic, and purely alge-
braic proofs are known, but they are not as simple or as elegant as the modu-
lar proof just given. No non-modular proof of the asymptotic formula (38) is
known.

Before continuing with the theory, we look at some examples, starting in
rank 8. Define the lattice Λ8 ⊂ R8 to be the set of vectors belonging to either
Z8 or (Z+ 1

2 )8 for which the sum of the coordinates is even. This is unimodular
because the lattice Z8 ∪ (Z + 1

2 )8 contains both it and Z8 with the same
index 2, and is even because x2

i ≡ xi (mod 2) for xi ∈ Z and x2
i ≡ 1

4 (mod 2)
for xi ∈ Z + 1

2 . The lattice Λ8 is sometimes denoted E8 because, if we choose
the Z-basis ui = ei− ei+1 (1 ≤ i ≤ 6), u7 = e6 + e7, u8 = − 1

2 (e1 + · · ·+ e8) of
Λ8, then every ui has length 2 and (ui, uj) for i &= j equals −1 or 0 according
whether the ith and jth vertices (in a standard numbering) of the “E8” Dynkin
diagram in the theory of Lie algebras are adjacent or not. The theta series of
Λ8 is a modular form of weight 4 on SL(2, Z) whose Fourier expansion begins
with 1, so it is necessarily equal to E4(z), and we get “for free” the information
that for every integer n ≥ 1 there are exactly 240 σ3(n) vectors x in the E8

lattice with (x, x) = 2n.
From the uniqueness of the modular form E4 ∈M4(Γ1) we in fact get that

rQ(n) = 240σ3(n) for any even unimodular quadratic form or lattice of rank 8,
but here this is not so interesting because the known classification in this rank
says that Λ8 is, in fact, the only such lattice up to isomorphism. However, in
rank 16 one knows that there are two non-equivalent lattices: the direct sum
Λ8 ⊕ Λ8 and a second lattice Λ16 which is not decomposable. Since the theta
series of both lattices are modular forms of weight 8 on the full modular group
with Fourier expansions beginning with 1, they are both equal to the Eisen-
stein series E8(z), so we have rΛ8⊕Λ8(n) = rΛ16(n) = 480 σ7(n) for all n ≥ 1,
even though the two lattices in question are distinct. (Their distinctness, and
a great deal of further information about the relative positions of vectors of
various lengths in these or in any other lattices, can be obtained by using the
theory of Jacobi forms which was mentioned briefly in §3.1 rather than just
the theory of modular forms.)

In rank 24, things become more interesting, because now dimM12(Γ1) = 2
and we no longer have uniqueness. The even unimodular lattices of this rank
were classified completely by Niemeyer in 1973. There are exactly 24 of them
up to isomorphism. Some of them have the same theta series and hence the
same number of vectors of any given length (an obvious such pair of lattices
being Λ8⊕Λ8⊕Λ8 and Λ8⊕Λ16), but not all of them do. In particular, exactly
one of the 24 lattices has the property that it has no vectors of length 2.
This is the famous Leech lattice (famous among other reasons because it has
a huge group of automorphisms, closely related to the monster group and


