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other sporadic simple groups). Its theta series is the unique modular form of
weight 12 on I} with Fourier expansion starting 1+ 0g+ - - -, so it must equal
Ei9(z) — %L?’GA(Z), i.e., the number 71 eccn(n) of vectors of length 2n in the
Leech lattice equals 2736 (o11(n) — 7(n)) for every positive integer n. This
gives another proof and an interpretation of Ramanujan’s congruence (28).
In rank 32, things become even more interesting: here the complete clas-
sification is not known, and we know that we cannot expect it very soon,
because there are more than 80 million isomorphism classes! This, too, is
a consequence of the theory of modular forms, but of a much more sophisti-
cated part than we are presenting here. Specifically, there is a fundamental
theorem of Siegel saying that the average value of the theta series associated
to the quadratic forms in a single genus (we omit the definition) is always an
Eisenstein series. Specialized to the particular case of even unimodular forms
of rank m = 2k = 0 (mod 8), which form a single genus, this theorem says
that there are only finitely many such forms up to equivalence for each k and

that, if we number them @1, ..., Q;, then we have the relation
1
ZEQQi (2) = my Eg(2), (39)
i=1 "

where w; is the number of automorphisms of the form @; (i.e., the number of
matrices v € SL(m,Z) such that Q;(yz) = Q;(x) for all x € Z™) and my, is
the positive rational number given by the formula

_ By By By Bag_2
2k 4 8 4k — 4’

where B; denotes the ith Bernoulli number. In particular, by comparing
the constant terms on the left- and right-hand sides of (39), we see that
Zle 1/w; = myg, the Minkowski-Siegel mass formula. The numbers my ~
1.44 x 1079, mg ~ 2.49 x 107'® and myy ~ 7,94 x 10~' are small, but
mig ~ 4,03 x 107 (the next two values are mog =~ 4.39 x 105" and my, ~
1.53 x 10'21), and since w; > 2 for every i (one has at the very least the
automorphisms =+ 1Id,, ), this shows that I > 80000000 for m = 32 as as-
serted.

A further consequence of the fact that ©g € My(I1) for @ even and
unimodular of rank m = 2k is that the minimal value of Q(z) for non-zero
x € A is bounded by r = dim My (I1) = [k/12] + 1. The lattice L is called
extremal if this bound is attained. The three lattices of rank 8 and 16 are
extremal for trivial reasons. (Here r = 1.) For m = 24 we have r = 2 and the
only extremal lattice is the Leech lattice. Extremal unimodular lattices are
also known to exist for m = 32, 40, 48, 56, 64 and 80, while the case m = 72
is open. Surprisingly, however, there are no examples of large rank:

Theorem (Mallows—Odlyzko—Sloane). There are only finitely many non-
isomorphic extremal even unimodular lattices.
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We sketch the proof, which, not surprisingly, is completely modular. Since
there are only finitely many non-isomorphic even unimodular lattices of any
given rank, the theorem is equivalent to saying that there is an absolute bound
on the value of the rank m for extremal lattices. For simplicity, let us suppose
that m = 24n. (The cases m = 24n + 8 and m = 24n + 16 are similar.) The
theta series of any extremal unimodular lattice of this rank must be equal to
the unique modular form f,, € Mi2,(SL(2,Z)) whose g-development has the
form 1+ O(¢g™*!). By an elementary argument which we omit but which the
reader may want to look for, we find that this ¢g-development has the form

bn
fn(z) =1 + na,¢"™ + (nT — 24”(n+31)an) oo

where a,, and b,, are the coefficients of A(z)™ in the modular functions j(z)
and j(z)?2, respectively, when these are expressed (locally, for small ¢) as Lau-
rent series in the modular form A(z) = ¢ — 24¢® + 252¢% — ---. It is not
hard to show that a, has the asymptotic behavior a, ~ An~3/2C™ for some
constants A = 225153.793389--- and C' = 1/A(z9) = 69.1164201716- - -,
where zy = 0.52352170017992 - - -¢ is the unique zero on the imaginary axis
of the function E5(z) defined in (17) (this is because E3(z) is the logarithmic
derivative of A(z)), while b,, has a similar expansion but with A replaced by
20A with A = j(z9) — 720 = 163067.793145 - - -. Tt follows that the coefficient
%nbn —24n(n+31)a, of ¢"*% in f, is negative for n larger than roughly 6800,
corresponding to m ~ 163000, and that therefore extremal lattices of rank
larger than this cannot exist. ©

& Drums Whose Shape One Cannot Hear

Marc Kac asked a famous question, “Can one hear the shape of a drum?” Ex-
pressed more mathematically, this means: can there be two riemannian mani-
folds (in the case of real “drums” these would presumably be two-dimensional
manifolds with boundary) which are not isometric but have the same spectra
of eigenvalues of their Laplace operators? The first example of such a pair
of manifolds to be found was given by Milnor, and involved 16-dimensional
closed “drums.” More drum-like examples consisting of domains in R? with
polygonal boundary are now also known, but they are difficult to construct,
whereas Milnor’s example is very easy. It goes as follows. As we already men-
tioned, there are two non-isomorphic even unimodular lattices A1 = I's & I3
and Ay = I'1g in dimension 16. The fact that they are non-isomorphic means
that the two Riemannian manifolds M; = R'6/A; and My = R1®/A,, which
are topologically both just tori (S1)16, are not isometric to each other. But
the spectrum of the Laplace operator on any torus R™/A is just the set of
norms |[A[|?2 (A € A), counted with multiplicities, and these spectra agree for
]Q\Q/[l and My because the theta series ), 4 g™ and Y oaeds ¢’ coincide.
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@(oll(m) —7(m)) firalle m>1.

Loy, 2 =
1( Lo, 2m) 691

Aus Korollar A, Korollar 6A, Satz I11.4.3 und 1(4) folgert man direkt das

Korollar B. Fiir positives k = 0(mod 4) ist jedes f € My eine Linearkombi-
nation von Theta—Reihen zu geraden, unimodularen, positiv definiten 2k x 2k
Matrizen.

Bemerkung. Das zur Matrix Loy gehorige Gitter wurde von J. LEECH im Jah-
re 1967 (Canadian J. Math. 19, 251-265) im Zusammenhang mit der dichtesten
Kugelpackung im R?* konstruiert. Aus der in Bemerkung 5b) erwithnten Klassi-
fikation von H. NIEMEIER ergibt sich, dass es nur eine Klasse (.S) von geraden,
unimodularen Matrizen in Pos (24;Z) mit p(S) > 2 gibt. Also ist die Klas-
se (Lgg) durch die Bedingung (3) eindeutig bestimmt. Zur Konstruktion und
Klassifikation von Gittern vergleiche man J.H. CONWAY und N.J.A. SLOANE
[1999]. Insbesondere findet man dort eine Konstruktion des LEECH Gitteriss.
Vs mit Hilfe von Codes und mit der KNESERschen Nachbarschaftsmethode

8*. Extremale Gitter. Das Minimum p(S) (vgl. 1.5(1)) einer unimodularen
Matrix S € Pos(n;Z) kann nicht beliebig grof werden. Aus der Ungleichung
von HERMITE in Korollar 1.5A folgt

n—1)/2
u(s) < (H" R
Ist S gerade, so kann man diese Abschidtzung wesentlich verbessern.
Satz. Sei S € Pos (n;Z) gerade und unimodular. Dann gilt
wu(S) <2 [2”—4] + 2.

Beweis. Wir fiihren den Beweis indirekt und nehmen an, dass ;(S) > 2 [2] 42
gilt. Man betrachte die Theta Reihe

O(;5) e My, k=n/2,
nach Satz 6. Die FOURIER-Koeflizienten erfiillen dann
8(5,0)=1, #(5,2m) =0, 1 <m < [£] + 1.

Wegen dimMj = [£] + 1 nach IIL.4.1 fiir & = 0(mod 4) erhalten wir einen
Widerspruch zu Korollar I11.6.5. O

Eine gerade, unimodulare Matrix S € Pos (n;Z) mit u(S) = 2 [2] + 2 nen-
nen wir extremal. Ist G ein gerades, selbstduales Gitter in einem euklidischen
Vektorraum (V, o), so heifst G extremal, wenn die zugehorige GRAM Matrix ex-
tremal ist, d. h.

o(g,9) >2[&] +2firallege G, g#0.
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Es ist nun wesentlich zu zeigen, dass (5 (0) # 0 gilt.
Satz. Fir gerades k > 4 gilt
(=1)"25,(0) < 0.
Beweis. (i) Sei k=2 (mod 4). Dann gilt
Gl pin = Gi¥ . v € {0,1,2},
wenn man 4.2(2) und 2.1(10) beachtet. Aus (3) und (5) folgt dann
Br(m) >0 fiiralle m > —t.
(i) Sei £ =0 (mod 4) , k =4r (mod 12) mit v € {0,1,2}. Dann gilt
Gri_190412 = G

Verwendet man (4) und 2.4(1), so liefert eine einfache Rechnung

) B B d] 3 o djlfu/S
oI - — _(* V'A*l t, Y A*l t—v/3 |
g ¢ dr v-—3 dr
3 dGFY-ATY Btdv—3 ., dAT?
= + G4( ° .
v—3 dr 3-w)t dr

Der letzten Darstellung entnimmt man, dass 35(0) auch der konstante Koeffizi-
ent in der FOURIER Entwicklung von

1 3t+y—3 G*Bfu'iA*ft

o (3—wv)t Y dr

ist. Alle FOURIER-Koeffizienten ao(m), m > 0, von G*™” sind positiv. Aus (5)

schliekt man, dass fiir die FOURIER-Koeffizienten ~(m) von 5= - dAd:t ilt

v(m) <0 fir —t<m<0 und ~(0)=0.
Daraus folgt
O (0) < 0. O
Wir beschreiben nun die jextremale“ Modulform.

Korollar. Sei k > 4 gerade. Es gibt genau eine ganze Modulform f € My mit
der Eigenschaft

9) aj(0)=1 wund oy(m)=0 fir 0<m<t.
Dann gilt
(=1)2a(t) > 0.

Beweis. Der Fall t = 1 ist klar. Im Fall ¢ > 1 folgt aus der Betrachtung der
FOURIER Reihen, dass man v, € Q finden kann, so dass
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Let W(z) = 1 + Age?™idz A,  e278d+107 L ... be a modular form of
weight # for the full modular group. Then for every constant b there exists an
1y = ng(b) such that if d > n/6 — b and n > n,, then one of A;, Asi1 yr0
has a negative real part. This implies that there is no even unimodular lattice
in En, for n > n,, having minimum nonzero squared length > n/12 — b. A
similar argument shows that there is no binary self-dual code of length n > 7,
having all weights divisible by 4 and minimum nonzero weight > n/6 — b.
A corresponding result holds for ternary codes.

1. MopurLAaR Forwms

Let Eyz) = 1 + 240 3,7, 03() ', Ea(s) = 1 — 504 3, o5(r) ¢, 4(z) =
gTIy (1 — ¢")%, where ¢ =%, o,(r) =3 4,d" Then E,, E;, 4 are
modular forms (for the full modular group) of weights 2, 3, 6, respectively.
Furthermore any modular form of weight z can be written as

W(z) = Z cE°Eyf, (1)
2s13t=n
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where there are p -+ 1 complex constants ¢, in the sum, and p = [#/6] — 1

i =1 (mod 6), p = [1/6] if n == 1 (mod 6) [8, 131.

Tororem 1. Let b be any constant. Then there exists a constant ny(b)
such that if

Wig) = 1+ Agg” + dgaq™™ +

is a modular form of weight n == nyb) with d > p + 1 — b, then one of the
coefficients Ay, Agiq ... has a negative real part.

Remark. An explicit bound for ny(h) could also be obtained by our
methods.

2. LATTICES

Let /4 be an even unimodular lattice in Euclidean space E*, where n is a
multiple of 8. Let 4, be the number of lattice points of squared length 2,
let 4 be the smallest nonzero squared length of any lattice point, and let

W(z) = ) Aq" =1+ Aupg®? + Agpp g™ 4 -

7=0

Then W(2) is a modular form of weight #/4 [8, 13]. Lattices with
d = 2[nj24] + 2 are known for small » [9, 10], and have connections with
simple groups [4, 5]. However, Theorem 1 implies:

CoroLrarY. If b is any constant, an even umimodular lattice with
d = 2[n[24] 4 2 — 2b does not exist for n > ny(b).

[The proof shows that for d == 2[n{24] -+ 2, the coefficient Ag,, first
goes negative when # is about 41,000. But other coefficients may go negative
before this.]

3. Coprs

Let n = 8f = 24p + 8», v =0, 1 or 2. Let € be a binary self-dual code
of length # (i.e., a self-dual subspace of GF(2)"} with the property that the
weight of every codeword is a multiple /gf 4. Let 4, be the number of code-

7

words of weight 4r, and let W(g) = 3,7, 4,4". Then W(g) can be written as

113

W(g) = Y e.fi @

8=0
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for suitable real constants ¢, , where f =1 - 14¢g + ¢% g = g(1 — ¢)* [6, 2,
11]. Codes with minimum nonzero weight 4[#/24] + 4 are known for small
n [12]. Besides having high error-correcting capability, such codes are of
combinatorial interest because they contain 5-designs [1]. However, we
show:

THEOREM 2. Let b be any constant. Suppose the ¢, in (2) are chosen so that
W(g) =1 - Agg®* + Agjpaq?*™ -+ -+, where d = 4[nj24] + 4 — 4b.
Then one of the coefficients Ay, Agpayq s 3 negative, for all sufficiently
large n.

CoroLLARY. If b is any constant, then a binary self-dual code of length n
with all weights divisible by 4 and with minimum nonzero weight
d = 4[n|24] + 4 — 4b does not exist, for all sufficiently large n.

This result was proved for & <0 in [12], and for & =0 by Goethals,
MacWilliams, and Mallows [7] using a different method.

When b =0, d = 4[n/24] + 4, the proof shows that A4, first goes
negative when # is about 3720. We have confirmed this by computer: for
n=13720, b =0, d =624, we find W(g) =1 -+ Aysq™® + Ay5rg* +
Ao Agryg™™ 4 g0, with Ay5e = 1.16... - 101, Ay = —5.84... - 101, 4; >0
for 158 < 7 <C 465, and Agyy_; = A, for all 4.

A similar argument establishes the corresponding result for self-dual
codes over GF(3):

TuroreM 3. If b is any constant, then a ternary self-dual code of length n
with minimum nonzero weight >3[n[12] -+ 3 — 3b does not exist, for all
sufficiently large n.

This result was proved for & < 0 in [12]. For b =0, the first negative
coefficient in W(g) occurs when n = 72, as found by J. N. Pierce (see [6]).

4, Two Lrmmas

Levma 1. Suppose G(q), H(g) are analytic inside the circle | q| =1 and
satisfy: (i) H(q) = Yoo Hq® with Hy >0, H; >0, and H, =0 for s > 2;
(ii) if F(y) = " H(e 2Y), then F'(y) = 0 has a solution y = vy, n the range
y > 0, with F(yy) = ¢; > 0, F(9)[F(¥o) = ¢ > 0, G(e7"%0) £ 0. Then B, ,
the coefficient of g, in G{(g) H(q)", satisfies

By~ —(-176-251/—2 G e, as r—> 0.
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Proof. From Cauchy’s formula
B, — f e-2mian G g2y H (gnin) dx

where the integral is along the path 2 = x + ¢y, —% <<% << §, y fixed >0.
We estimate this integral by the saddle-point method. From (i},
| etz (gnin)] < @V H (e, with equality for —4 <<« <% only at
% == 0. Thus the saddle point is at £ = 0 - iy,, and we choose y =, in
the integral. Let f(z) = e~2"*2H{(e*%). Since H is analytic,

(5o
52 & Py,
é%glnf(z) ng = —pElnfE)| = Fg; e,

"The result now follows by standard techniques {3, Section 4.4]. (Note that
in that reference a;,, ay,... do not have to be real for the result to hold.)

Levva 2, Let 8, (0 <<t <s < n) be numbers such that 1c < | By < ¢
for some constant ¢ > 0. Then there exists a consiant d = d{c, ) > 0, such
that

/dZ‘Xt]“

=0

)

$=0

Z BstXt

$=(y

Progf. By induction on #n. The result is true for n = 0. Now suppose
7 > 0 and the result is true for » — 1. Let O denote the expression on the
left. By the induction hypothesis, there exists d; > 0 such that

-1

~ & (3 101+ 1B+ + B,

where B, = §,,/d; . Note that 1/ed, < | B, | < ¢/d; .
Case (i). Suppose | X, | > 225 " | X, |. Then

¥'n——1 n—1 1 1

| B < DK S g | Xl <51 B,

1 n -1 1

DB 1B |~ | T B 251 B | 55| X
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and so
. 1
0 > dymin |1, fZIXzI

Case (ii). On the other hand, if | X,, | < 22 3%7"1 X, |, then

n~1

ZIXH<(1+2€2)Z | X |

and so

n—1

dlZ[Xf 1+222[

In either case, O > d 3 | X; |, where d = min{d, , 1/2¢, d;/(1 -+ 2¢%)}.

5. Tue Proors oF THEOREMS 1, 2 AND 3

Proof of Theorem 1

Part (1), n even. Let #=2=06p+2», v=0, 1 or 2. Since
4 = (1/1728)(E,® — E,?), we can express W(z2) in terms of E, and 4. We
first treat the case & <0, d = p 4 1. Suppose

W(z) = Y aE534, 3)

s=0

where the a, are chosen so that

W) =1+ Y A 4)
r=p+1
Since both E, and 4 have real coefficients in their g-expansions, both the a;
and the A4, are real. We will show A4,,, >0 for all » and 4,.,=
—A,,.1(24p 1 O(1)) < 0 as n— c0.
Let ¢ = ¢(q) = A/E,®. We expand E;’ in powers of ¢ using Biirmann’s
theorem [14, p. 128]:

<]

Ez—j == Z OCS‘PS, (5)
§=0
where
1 & dE5? [ q\*
ST dqs'l g dgq (_r;) }q=o
—j d

= S BB (6)



MODULAR FORMS, LATTICES AND CODES 73

where A(g) = [T, (1 — ¢")2. In particular,

o = G e B g
- d el 7 ~V7 ]
T BB, ®)

Fptp = (# +2)| dq“+

From (3), (4), (5) we see that a, = &, (0 < s < p) and that the afs > u)
and A, are related by

Z Aq = — z CKSE;.*?'SAS.

Tkl s=u-+1
Equating coeflicients of g#*1, g#*+Z we find

Appg = —ou, )
Ao = —a, s + 0,4(24p — 2400 -+ 744). (10)

That o,y <0 and 4,,, > 0 follows immediately from (7) and (9) since
E, and £ have positive coefficients. We now show that |, o 0, ] is
bounded, which implies using (10) that A4,,, = —4,.,(24p 4 O(1) < O
as 7.~ 0.

We apply Lemma 1 with G(g) = Gy(q) = Ey'(g) E57(q) hg), H(g) = A(g).
Now

f‘4(—‘}}222.77 48772 P

F(y) e i’
F(5) _(FO)Y , goed rem
oy = (7o) + o6 zwm R

Thus for y >0, F(y) > 0 and F'(y) > 0. Also F'(9)/F() is a monotonic
increasing function of y, which is negative for small y and positive for large 3.
Therefore F'(y) = 0 has a unique solution for y > 0 (aty = y, = 0.52352...).
Thus hypothesis (ii) of the lemma is satisfied. Then, from (7),

: —1/2, ~8/20 [~
G ~ —2mjcy T G () as  p— o0,

where ¢; (= 69.1...), ¢, are constants. Similarly from (8), with G,{g) =
B (q) B3 (q) Mq), H(g) = h(g),

s ~1/2 ~3/2 —2rugy L
Qg o~ —2mfey T PG (e o, as  p—> 00,

Hence { o, 5fc, .4 | is bounded. (In fact it approaches a limit of about
1.64 X 10° as p— o0.)
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We now treat the case b >0, d =p -+ 1 — b. Let Woy(2) denote the
extremal W(z) defined by (3), (4). We complete part (I) of the proof by
showing that no matter how the coeflicients «, ,..., #;_; are chosen,

b1
W(2) = Wexi(2) + Z PO ) Las
s=0
=1+ 4/¢ (say) (11)

r=q

always contains a coefficient A,” with negative real part when # is sufficiently
large. Since E, and 4 have real coefficients, we may assume that the x; are
real (otherwise replace the x; by their real parts). In fact, we show that the
assumptions

Al > 0,40 >0,., 4, >0, (12)

lead to a contradiction for large #. Upon expanding (11), the b 4- 2 inequali-
ties (12) become, with m = 24y,

x()>0,

ZS Z ( t), +O0m =) >0, s=1l..,b—1,

Apia + Z ¥y (( m)t)‘ + O(m*- t~1)) >0,

(—mypi-t

—mA,, (1 L0 ( )) + Z % (m + 0(m=) > 0.

Set
X, =2 0<gt<b—1), X B O
t_‘mt ~ S > b mb ’ b+1 >
and
_(__—-_l)s——t
Bs’t_(s———t)! for 0<<e<s<<b+1

The inequalities now reduce to

—t

)) X, >0, s=0,.,b+L (13)

Y (Boi 40 (o

=0
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Let y,=(b 4+ Db+ 1—s)!, and observe that Tr;B,sps=0 for
£ =0,..,b. We obtain the contradiction by evaluating in two ways the
sum

b+ b+l 1
X st Ol—ilvs-
LY (f+ 0 (5))
On the one hand it equals
b+1 b+1 b b+1
ZXtZO( )7s < c"‘”ZiXu,

g=%

while on the other hand it is equal to (from (13))

b+1 s b+1

Sk (b0 ()K= o L (o0 () x|

and for m sufficiently large,

8o+ 0 ()] = ety > 0.

It now follows from Lemma 2, with B,, in the lemma replaced by
Bs.: + O(1/m), that the sum is

b1

= c5(b) 2 [ Xl

This is a contradiction for large m, since X, is nonzero.

Part(I11), nodd. Letn =2+ 3 =6p -+ 2v+ 3, v =0, 1 or 2. Instead
of (3) we write

W(z) = Y a,Er E4°

=0

and expand E;’E;" in powers of ¢. The proof is now parallel to Part (I)
and we omit the details.

Proof of Theorem 2. 'This is also parallel to Part (I), with E,, 4 and
m == 24u replaced by f, g, and m = 4p. Again the details are omitted.

Proof of Theorem 3. 'This is again parallel to Part (1), with E,, 4 and
m == 24p replaced by 1 + 8¢, ¢(1 — ¢)%, and m = 3p.
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