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other sporadic simple groups). Its theta series is the unique modular form of
weight 12 on Γ1 with Fourier expansion starting 1+0q + · · · , so it must equal
E12(z) − 21736

691 ∆(z), i.e., the number rLeech(n) of vectors of length 2n in the
Leech lattice equals 21736

691

(
σ11(n) − τ(n)

)
for every positive integer n. This

gives another proof and an interpretation of Ramanujan’s congruence (28).
In rank 32, things become even more interesting: here the complete clas-

sification is not known, and we know that we cannot expect it very soon,
because there are more than 80 million isomorphism classes! This, too, is
a consequence of the theory of modular forms, but of a much more sophisti-
cated part than we are presenting here. Specifically, there is a fundamental
theorem of Siegel saying that the average value of the theta series associated
to the quadratic forms in a single genus (we omit the definition) is always an
Eisenstein series. Specialized to the particular case of even unimodular forms
of rank m = 2k ≡ 0 (mod 8), which form a single genus, this theorem says
that there are only finitely many such forms up to equivalence for each k and
that, if we number them Q1, . . . , QI , then we have the relation

I∑

i=1

1
wi

ΘQi(z) = mk Ek(z) , (39)

where wi is the number of automorphisms of the form Qi (i.e., the number of
matrices γ ∈ SL(m, Z) such that Qi(γx) = Qi(x) for all x ∈ Zm) and mk is
the positive rational number given by the formula

mk =
Bk

2k

B2

4
B4

8
· · · B2k−2

4k − 4
,

where Bi denotes the ith Bernoulli number. In particular, by comparing
the constant terms on the left- and right-hand sides of (39), we see that∑I

i=1 1/wi = mk, the Minkowski-Siegel mass formula. The numbers m4 ≈
1.44 × 10−9, m8 ≈ 2.49 × 10−18 and m12 ≈ 7, 94 × 10−15 are small, but
m16 ≈ 4, 03 × 107 (the next two values are m20 ≈ 4.39 × 1051 and m24 ≈
1.53 × 10121), and since wi ≥ 2 for every i (one has at the very least the
automorphisms ± Idm ), this shows that I > 80000000 for m = 32 as as-
serted.

A further consequence of the fact that ΘQ ∈ Mk(Γ1) for Q even and
unimodular of rank m = 2k is that the minimal value of Q(x) for non-zero
x ∈ Λ is bounded by r = dimMk(Γ1) = [k/12] + 1. The lattice L is called
extremal if this bound is attained. The three lattices of rank 8 and 16 are
extremal for trivial reasons. (Here r = 1.) For m = 24 we have r = 2 and the
only extremal lattice is the Leech lattice. Extremal unimodular lattices are
also known to exist for m = 32, 40, 48, 56, 64 and 80, while the case m = 72
is open. Surprisingly, however, there are no examples of large rank:

Theorem (Mallows–Odlyzko–Sloane). There are only finitely many non-
isomorphic extremal even unimodular lattices.
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We sketch the proof, which, not surprisingly, is completely modular. Since
there are only finitely many non-isomorphic even unimodular lattices of any
given rank, the theorem is equivalent to saying that there is an absolute bound
on the value of the rank m for extremal lattices. For simplicity, let us suppose
that m = 24n. (The cases m = 24n + 8 and m = 24n + 16 are similar.) The
theta series of any extremal unimodular lattice of this rank must be equal to
the unique modular form fn ∈ M12n(SL(2, Z)) whose q-development has the
form 1 + O(qn+1). By an elementary argument which we omit but which the
reader may want to look for, we find that this q-development has the form

fn(z) = 1 + n an qn+1 +
(

nbn

2
− 24 n (n + 31) an

)
qn+2 + · · ·

where an and bn are the coefficients of ∆(z)n in the modular functions j(z)
and j(z)2, respectively, when these are expressed (locally, for small q) as Lau-
rent series in the modular form ∆(z) = q − 24q2 + 252q3 − · · · . It is not
hard to show that an has the asymptotic behavior an ∼ An−3/2Cn for some
constants A = 225153.793389 · · · and C = 1/∆(z0) = 69.1164201716 · · · ,
where z0 = 0.52352170017992 · · ·i is the unique zero on the imaginary axis
of the function E2(z) defined in (17) (this is because E2(z) is the logarithmic
derivative of ∆(z)), while bn has a similar expansion but with A replaced by
2λA with λ = j(z0)− 720 = 163067.793145 · · · . It follows that the coefficient
1
2nbn−24n(n+31)an of qn+2 in fn is negative for n larger than roughly 6800,
corresponding to m ≈ 163000, and that therefore extremal lattices of rank
larger than this cannot exist. ♥

♠ Drums Whose Shape One Cannot Hear

Marc Kac asked a famous question, “Can one hear the shape of a drum?” Ex-
pressed more mathematically, this means: can there be two riemannian mani-
folds (in the case of real “drums” these would presumably be two-dimensional
manifolds with boundary) which are not isometric but have the same spectra
of eigenvalues of their Laplace operators? The first example of such a pair
of manifolds to be found was given by Milnor, and involved 16-dimensional
closed “drums.” More drum-like examples consisting of domains in R2 with
polygonal boundary are now also known, but they are difficult to construct,
whereas Milnor’s example is very easy. It goes as follows. As we already men-
tioned, there are two non-isomorphic even unimodular lattices Λ1 = Γ8 ⊕ Γ8

and Λ2 = Γ16 in dimension 16. The fact that they are non-isomorphic means
that the two Riemannian manifolds M1 = R16/Λ1 and M2 = R16/Λ2, which
are topologically both just tori (S1)16, are not isometric to each other. But
the spectrum of the Laplace operator on any torus Rn/Λ is just the set of
norms ‖λ‖2 (λ ∈ Λ), counted with multiplicities, and these spectra agree for
M1 and M2 because the theta series

∑
λ∈Λ1

q‖λ‖
2

and
∑

λ∈Λ2
q‖λ‖

2
coincide.

♥



!(L24, 2m) =
65 520

691
(σ11(m) − τ(m)) m ≥ 1

k ≡ 0(mod 4) f ∈ Mk

2k × 2k

L24

R24

〈S〉
Pos (24; Z) µ(S) > 2

〈L24〉

µ(S)
S ∈ Pos (n; Z)

µ(S) ≤
(

4
3

)(n−1)/2
.

S

S ∈ Pos (n; Z)

µ(S) ≤ 2
[

n
24

]
+ 2.

µ(S) > 2
[

n
24

]
+2

Θ(·; S) ∈ Mk , k = n/2

!(S, 0) = 1 , !(S, 2m) = 0 , 1 ≤ m ≤
[

k
12

]
+ 1

dim Mk =
[

k
12

]
+ 1 k ≡ 0(mod 4)

!

S ∈ Pos (n; Z) µ(S) = 2
[

n
24

]
+ 2

G
(V, σ) G

σ(g, g) ≥ 2
[

n
24

]
+ 2 g ∈ G , g )= 0



βk(0) != 0

k ≥ 4

(−1)k/2βk(0) < 0

k ≡ 2 (mod 4)

G∗
12t−k+2 = G∗ν

4 , ν ∈ {0, 1, 2}

βk(m) > 0 m ≥ −t

k ≡ 0 (mod 4) , k ≡ 4ν (mod 12) ν ∈ {0, 1, 2}

G∗
k−12t+12 = G∗ν

4

2πi · gk = −G∗−ν
4 · ∆∗1−t · dj

dτ
=

3

ν − 3
∆∗1−t−ν/3 · dj1−ν/3

dτ

=
3

ν − 3

d(G∗3−ν
4 · ∆∗−t)

dτ
+

3t + ν − 3

(3 − ν)t
G∗3−ν

4 · d∆∗−t

dτ
.

βk(0)

1

2πi
· 3t + ν − 3

(3 − ν)t
· G∗3−ν

4 · d

dτ
∆∗−t

α(m), m ≥ 0 G∗3−ν
4

γ(m) 1
2πi ·

d∆∗−t

dτ

γ(m) < 0 − t ≤ m < 0 γ(0) = 0.

βk(0) < 0. !

k ≥ 4 f ∈ Mk

αf(0) = 1 αf (m) = 0 0 < m < t

(−1)k/2αf (t) > 0

t = 1 t > 1
γν ∈ Q
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Let W(z) = 1 + Ad ezmidr + AdCl ewrim+lM + . . . be a modular form of 
weight n for the full modular group. Then for every constant b there exists an 
n, = n,,(b) such that if d > n/6 - b and n > n, , then one of A@, A,, ,..., 
has a negative real part. This implies that there is no even unimodular lattice 
in E”, for n > n, , having minimum nonzero squared length > n/12 - b. A 
similar argument shows that there is no binary self-dual code of length n > n, 
having all weights divisible by 4 and minimum nonzero weight > n/6 - 6. 
A corresponding result holds for ternary codes. 

1. MODULAR FORMS 

Let E,(z) = 1 + 240 crzp=, us(r) q: I&(z) = 1 - 504 x:,“=, o&Y) qT, d(x) = 
q n,” (1 - qr)24, where q = e2aiz, on(r) = J+&. d”. Then ~73, , E3 , d are 
modular forms (for the full modular group) of weights 2, 3, 6, respectively. 
Furthermore any modular form of weight n can be written as 

W@) = c h-%SE3t, 
2s+3t=n 

(1) 
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where there are p + I complex constants c, in the sum, and p = [n/6] - I 
if n = 1 (mod 6), p = [n/6] if n f 1 (mod 6) [S, 131. 

THEOREM 1. Let b be any constant. Then there exists a contact n,(b) 
such that if 

W(q) = 1 + A,qd + A,,qd+l + . * * 

is a modular form of weight n > n,(b) with d 3 p + 1 - b, thm one oj the 
co@cients Ad , A,,, ,... has a negative real part. 

Remark. An explicit bound for n,(b) could also be obtained by our 
methods. 

2. LATTICES 

Let A be an even unimodular lattice in Euclidean space 
multiple of 8. Let A, be the number of lattice poinis of squared length 2r, 
let d be the smallest nonzem squared length of any lattice point, and let 

W(x) = 2 A,qr = 1 + A,,,qdi2 + Ad,z+lqd/2’1 + =.a s 
T=O 

Then W(z) is a modular form of weight n/4 [S, 131. Lattices with 
d = 2[%?/24] + 2 are known for small n [9, 101, and have connections with 
simple groups [4, 51. However, Theorem 1 implies: 

COROLLARY. If b is any constant, an even ~~irnod~l~~ lattice with 
> 2[n/24] + 2 - 2b does not exist for n >, n,(b). 

[The proof shows that for d = 2[n/24] + 2, the coefficient Adi2fL first 
goes negative when n is about 41,000. But other coeficients may go negative 
before this.] 

3. CODES 

Let E = Sj = 24~ + 8 v, v = 0, 1 or 2. Let % be a binary self-dual code 
of length n (i.e., a self-dual subspace of GF(2Jn) with the property that the 
-weight of every codeword is a multiple of 4. Let A, be the number of code- 
words of weight 4r, and let W(q) = cFfo A,qr. Then W(q) can be written as 
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for suitable real constants c, , where f = 1 + 14q + @, g = q(1 - q)4 [6, 2, 
II]. Codes with minimum nonzero weight 4[n/24] + 4 are known for small 
n [12]. Besides having high error-correcting capability, such codes are of 
combinatorial interest because they contain 5-designs [l]. However, we 
show: 

THEOREM 2. Let b be any constant. Suppose the c, in (2) are chosen so that 
w(9) = 1 + -4u,qd~4 + &z/4+19 a/4+1 + . . . , where d > 4[n/24] + 4 - 4b. 
Then one of the coe$cients Ad14, A,,,, ,... is negative, for all su.ciently 
large n. 

COROLLARY. If b is any constant, then a binary self-dual code of length n 
with all weights divisible by 4 and with minimum nonxero weight 
d > 4[n/24] + 4 - 4b does not exist, fey all su&%iently large n. 

This result was proved for b < 0 in [12], and for b = 0 by Goethals, 
MacWilliams, and Mallows [7] using a different method. 

When b = 0, d = 4[n/24] + 4, the proof shows that A,,,, first goes 
negative when n is about 3720. We have confirmed this by computer: for 
n = 3720, b = 0, d = 624, we find W(q) = 1 + A1,,q156 + A,,,q15’ + a.* 
+ A,74q774 + qgso, with A,,, = 1.16... * 101’0, AI,, = -5.84... * 101’0, A, > 0 
for 158 < i < 465, and A,,o-i = A, for all i. 

A similar argument establishes the corresponding result for self-dual 
codes over GF(3): 

THEOREM 3. If b k any constant, then a ternary self-dual code of length n 
with minimum nonzero weight >3[n/12] $ 3 - 36 does not exist, for all 
s@%iently large n. 

This result was proved for b < 0 in [12]. For b = 0, the first negative 
coefficient in W(q) occurs when n = 72, as found by J. N. Pierce (see [6]). 

4. Two LEMMAS 

LEMMA 1. Suppose G(q), H(q) are analytic inside the circle 1 q ) = 1 and 
satisfr: (i) H(q) = Cy=, H,qS withHo>0,H,>0,andHS>Ofors>2; 
(ii) ifF(y) = e2nyH(e-2nv), then F’(y) = 0 has a solution y  = y. in the range 
y  > 0, with F( yO) = c1 > 0, F”( y,)/F(y,) = cz > 0, G(e-2*yo) # 0. Then ,& , 
the coejkient of qr in G(q) H(q)T, satisjies 

0, - & G(@“*“) c,‘, as y-+03. 
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Prooj~ From Cauchy’s formula 

where the integral is along the path 2: = x + iy, -+ < x < +, y tied > 
We estimate this integral by the saddle-point method. From (i), 
j e--2siaH(esflaa)] < es*yH(e--2ng), with equality for -3 < x < 4 only at 
x = 0. Tnus the saddle point is at E = 0 + iy, s and we choose y = yO in 
the integral. Let f(z) = e-a~izN(ea~iz). Since N is analytic, 

The result now follows by standard techniques [3, Section 4.41. (Note that 
in that reference a3 , a, ,... do not have to be real for the result to bold.) 

LEMMA 2. Let /3s,c (0 < t < s < n) be numbers such that l/c < j pst \ < c 
for some constant c > 0. Then there exists a constant d = d(c, n) > 0, such 
that 

Proof. By induction on n. The resuit is true for n = 0. Now suppose 
n > 0 and the result is true for n - 1. Let Q denote the expression on the 
left. By the induction hypothesis, there exists dI > 0 such that 

n-1 

==A c IXtI+l~oXo+-*-+%2L/ 
( 0 

where t = fint/dI D Note that l/cd, < 1 B, 1 < ~jd, D 

Cuse (i). Suppose ( X, j 2 2c2 C:-” j X, 1. Then 
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and so 

Case (ii). On the other hand, if [ X, [ < 2c2 C,“-’ 1 X, [, then 

R B-1 

c I xi I < (1 + 23) 1 I xt I 
0 0 

and so 

In either case, Q > d 2: ] X, 1, where d = min{d, , 1/2c, d,/(l + 23)). 

5. THE PROOFS OF THEOREMS 1, 2 AND 3 

Proof of Theorem 1 

Part (I), n even. Let n = 2j= 6,~ + 2v, v = 0, 1 or 2. Since 
A = (1/1728)(Es3 - Es2), we can express W(z) in terms of Es and A. We 
first treat the case 6 < 0, d > p + 1. Suppose 

(3) 

where the a, are chosen so that 

W(z) = 1 + 2 A,qr. 
r=u+1 

(4) 

Since both E, and A have real coefficients in their q-expansions, both the a, 
and the A, are real. We will show A,+1 > 0 for all n, and A,,, = 
-A,+1(24p + O(1)) < 0 as n + co. 

Let p = y(q) = A]Es3. We expand E;j in powers of v using Biirmann’s 
theorem [14, p. 1281: 

where 

(6) 
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where h(g) = r-r (1 - qV)-24. In particular, 

From (3), (4), (5) we see that a, = (11~ (0 < s < p) and that the as(s > p) 
and A, are related by 

Equating coeiiicients of qU+l, q”+a we find 

A ui-1 = -%-+l 9 6% 

A vf2 = --%+a + 01,,,(24p - 24th + 744). w 

That E&+~ < 0 and A,, > 0 follows immediately from (7) and (9) since 
Es and h have positive coefficients. We now show that j CQ+~/CX~+~ j is 
bounded, which implies using (10) that Atif2 = --A,,(24p. + 
asn-+ca. 

We apply Lemma 1 with G(q) = G,(q) = Es’(q) E:+(q) h(q), H(g) = h(q). 
NOW 

Thus for y > 0, F(y) > 0 and F”(y) > 0. Also F’(y)/F(y) is a monotonic 
increasing function of y, which is negative for small y and positive for large y, 
ThereforeF’(y) = 0 has a unique solution fory > 0 (sty = y0 = 
Thus hypothesis (ii) of the lemma is satisfied, Then from (3, 

%+1 
- -2~jc~1~2~-3’2Gl(,2~~~) cl@, as p--+00, 

where c, (= 69.1...), c2 are constants. Similarly from (&), with G&) = 
GYd -%“(!I) &l>> W2) = fw, 

%+z - _2rrjc~11~~-3/2Ga(~-2"1Jo) c-+1, as p-+00. 

Hence 1 ~u+a/~utl 1 is bounded. (In fact it approaches a limit of about 
1.64 X lo5 as p-f co.) 
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We now treat the case b > 0, d = TV + 1 - 6. Let W,,,(z) denote the 
extremal W(z) defined by (3), (4). W e complete part (I) of the proof by 
showing that no matter how the coefficients x0 ,..., x6-1 are chosen, 

= 1 + f A,‘q’ T=d (say) (11) 

always contains a coefficient A,’ with negative real part when n is sufficiently 
large. Since E, and A have real coefficients, we may assume that the xi are 
real (otherwise replace the xi by their real parts). In fact, we show that the 
assumptions 

A,’ Z 0, A;+,, 2 O,..., A:+2 2 0, u-3 

lead to a contradiction for large n. Upon expanding (1 I), the b + 2 inequali- 
ties (12) become, with m = 24~, 

go xt ( ;3-“);; + o(m-)) > 0, s = I,..., b - 1, 

4, + z xt ( I;:);;; + O(mb-6-l)) 3 0, 

Set 

Xt = 5 (0 < t < b - l), x, =A*, x,,, =o, 

and 

The inequalities now reduce to 

~o(P~,t+O(~))&W, s=O ,..., b+l. (13) 
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Let ys = (b + I)!/@ + 1 - s)!, and observe that 
t = o,..., b. We obtain the contradiction by evaluating in two ways the 
sum 

On the one hand it equals 

while on the other hand it is equal to (from (13)) 

and for m sufficiently large, 

It now foollows from Lemma 2, with ,Bs,$ in the lemma replaced by 
/Ss,$ + 0(1/m), that the sum is 

W-1 

G4~)~!Xt/. 
t=0 

This is a contradiction for large m, since X, is nonzero. 

Part (II), n odd. Let n = 2j + 3 = 6~ + 2~ + 3, v = 
of (3) we write 

W(x) = i u.&3”E3AS, 
S=O 

and expand E;jE;” in powers of ye The proof is now parallel to Part (I) 
and we omit the details. 

Proof of Theorem 2. This is also parallel to Part (I), with .I& , A and 
m = 24~ replaced by f, g, and m = 4~. Again the details are omitted. 

ProojF of Theorem 3. This is again parallel to Part (I), with 
m = 24~ replaced by 1 + Sq, q(1 - q)3, and m = 3~. 
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