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(¢c) Find two values xe(Q%)? such that x + 210e(Q")?. At the end of this chapter
we shall prove that if there is one such x, then there are infinitely many. Equiva-
lently (by Proposition 1), if there exists one right triangle with rational sides
and area n, then there exist infinitely many.

6. (a) Show that condition (B) in Tunnell’s theorem is equivalent to the condition that
the number of ways # can be written in the form 2x? + y* + 8z% with x, y, z
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with z even.
(b) Write a flowchart for an algorithm that tests condition (B) in Tunnell’s theorem

for a oiven n
or a given n.

7. (a) Prove that condition (B) in Tunnell’s theorem always holds if » is congruent
to 5 or 7 modulo 8.
(b) Check condition (B) for all squarefree n =1 or 3 (mod 8) until you find such
an n for which condition (B) holds.
(¢) By Tunnell’s theorem, the number you found in part (b) should be the smallest
wngruem numoer congruent tolor .) moamo 6 Use IHC dxgorunm 1n r’romem 2
to find a right triangle with rational sides and area equal to the number you

found in part (b).
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In this section we find yet another equivalent characterization of congruent
numbers.

In the proof of Proposition ! in the last section, we arrived at the equations
((X £ Y)/2)*> = (Z/2)* + n whenever X, Y, Z are the sides of a triangle with
area n. If we multiply together these two equations, we obtain ((X 2 — Y?2)/4)?
= (Z/2)* — n®. This shows that the equation u* — n? = v* has a rational
solution, namely. u=2Z/2and v = (X2 — Y?)/4. We next multiply through
by u? to obtain u® — n%u® = (uv)?. If we set x = u? = (Z/2)? (this is the same

x as in Proposition 1) and further set y = uv = (X Y2)Z/8 then we have

a pair of rational numbers (x, y) satisfying the cubic equation:
2 3 2
y*=x>—n°x.
TuL‘-S oivan a riaht trianals avith ratinnal cidac YV V 7 and aran » wa
y S1VVIL QA Aigiiv LILQLISIV WAL 1AQUIVIIAl OIUVY A, d 4 Lo Al alva i, WU
nhtain a9 naint (v V) in tha vy nlana having ratinnal anardinatss amd e
vuiaiil a pPuULllilt \A, )y il v AyTplaliv dlavillg 1dlluvilal LUULULTIaley allu Uyl
2 __ 3 2 .
on the curve y* = x° — n“x. Conversely, can we say that any pomt (x, y)
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such a point must have its denominator divisible by 2. To see this, notice that
the triangle X, Y, Z can be obtained starting with a primitive Pythagorean
triple X”, Y’, Z’ corresponding to a right triangle with integral sides X”, Y’, Z’
and area s’n, and then dividing the sides by s to get X, ¥, Z. But in a primitive



Pythagorean triple X" and Y’ have different parity, and Z’ is odd. We
conclude that (1) x = (Z/2)? = (Z’/2s)* has denominator divisible by 2 and
(2) the power of 2 dividing the denominator of Z is equal to the power of 2
dividing the denominator of one of the other two sides, while a strictly lower
power of 2 divides the denominator of the third side. (For example, in the
triangle in Fig. 1.2 with area 5, the hypotenuse and the shorter side have a 2 in
the denominator, while the other leg does not.) We conclude that a neces sary

condmon for the point (x, y) with rational coordinates on the curve y* =

— n’x to come from a right triangle is that x be a square and that its
Ar-mnmlnatnr be divisible by 2. For PYamnIP when n = 31, the nntnt (41 2/72
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29520/7%) on the curve y? = x> — 31%x does not come from a trlangle even
though its x-coordinate is a square. We next prove that these two conditions
ln
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Proposition 2. Let (x, y) be a point with rational coordinates on the curve
y* = x3 =~ n®x. Suppose that x satisfies the two conditions: (i) it is the square
of a rational number and (ii) its denominator is even. Then there exists a right
triangle with rational sides and area n which corresponds to x under the corre-
spondence in Proposition 1.

PROOF. Let u = \/;ce Q™. We work backwards through the sequence of steps
at the bcgmmng of this sectlon That is, set v = y/u, so that v? = y?/x =
x? —n?ie.,v? + n? = x%. Now let  be the denominator of u, i.e., the smallest
posmve mteger such that rue Z. By assumption, ¢ is even. Notice that the
denominators of v? and x? are the same (because n is an integer, and
v? 4+ n? = x?), and this denominator is #*. Thus, {?v, t*n, t*x is a primitive
Pythagorean triple, with 1?n even. By Problem 1 of §1, there exist integers
a and b such that: 2n = 2ab, t*v = a* — b?, 1*x = a* + b*. Then the right
triangle with sides 2a/t, 2b/t, 2u has area 2ab/t* = n, as desired. The image
of this triangle X = 2aft, Y = 2b/t Z 2u under the correspondence in

Proposition 1 is x = (Z /2\2 = u?. This proves Proposition 2. O
We shall later prove another characterization of the points P = (x, y) on
the cn e vl — y3 _ 12y which carrecnnnd ta ratinnal richt trianclec f
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area n. Namely, they are the points P = (x, y) which are “twice” a rational
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PROBLEMS

1. Find a simple linear change of variables that gives a one-to-one correspondence
between poinis on ny’ = x3 + ax? + bx + ¢ and points on yz = x* + anx® +
bn*x + cn®. For examp‘ n alternate form of the equation y = x* — n’x is the

equation ny* = x3 — x.

2. Another correspondence between rational right triangles X, Y, Z witharea 1 XY = n
and rational solutions to y? = x> — n®x can be constructed as follows.
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X, Y<0,Z2>0
X,Y,Z2>0
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X.Y>0,Z2<0 \
X,Y,Z2<0
Figure 1.5
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9>. CuIpliC CUrves

The locus of points P = (x, y) satisfying y*> = x> — n’x is a special case of
what’s called an “elliptic curve”. More generally, let X be any field, and let
f(x)e K[ x] be a cubic polynomial with coefficients in K which has distinct
roots (perhaps in some extension of K). We shall suppose that K does not
have characteristic 2. Then the solutions to the equation

= f(x), (3.1)

where x and y are in some extension K’ of K, are called the K’-points of the
elliptic curve defined by (3. l) We have just been dealing thh the example
K=K =0, f(x)=x>-n’x. Note that this example y*= x> —n’x
satisfies the condition for an elliptic curve over any field X of characteristic
D, as long as p does not divide 2n, since the three roots 0, +# of f(x) = x> —
n?x are then distinct.

In general, if x;, oK’ a
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isno ﬁeld of characteristic
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nlyif yo=0and x;is a muxuple root
of f(x). Thus, the curve has a non-smooth point if and only if f{x) has a
multiple root. It is for this reason that we assumed distinct roots in the

definition of an elliptic curve: an elliptic curve is smooth at ali of its points.
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In addition to the points (x, y) on an elliptic curve (3.1), there is a very
important “point at infinity”’ that we would like to consider as being on
the curve, much as in complex variable theory in addition to the points on
the complex plane one throws in a point at infinity, thereby forming the
“Riemann sphere”. To do this precisely, we now introduce projective
coordinates.

By the ““total degree”

degree” of a polynomial F(x, y) we mean the maximum total degree of the
monomials that occur with nonzero coefficients. If F(x, y) has total degree

n. we define the correspondine hnmngpnpnuc pnlvnnmtﬂ/ F(r Y, 7\ of three

e VYV W Wwilddw 14 x—l ulllb

variables to be what you get by multiplying each monvormal X yJ in F(x, y)
by 2" to bring its total degree in the variables x, y, z up to n; in other

f a monomial x'y/ we mean i + j. By the “total

3

AN
—~ X y
F(x,y, z :z"F(—,—).
(x,, 2) '3
In our example F(x, y) = y? — (x> — n?x), we have F(x, y, z) = y*z — x* +
n*xz?. Notice that F(x, y) = F(x, y, 1).
Suppose that our polynomials have coefficients in a field K, and we are
interested in triples x, y, ze K such that F(x, y, z) = 0. Notice that:

(1) forany Ae K, F(Ax, Ay, Az) = I"F(x, y, z) (n = total degree of F);
(2) for any nonzero Ae K, F(Jx, Ay, iz) =0 if and only if F(x, y,z) =0. In
particular, for z # 0 we have F(x Y,z fand only if F(x/z, y/z) = 0.

Because of (2), it is natural to look at equivalence classes of triples x, y,
ze K, where we say that two triples (x, y, z) and (x’, y’, ') are equivalent if
there exists a nonzero A€ K such that (x, y’, z’) = A(x, y, z). We omit the
trivial triple (0, 0, 0), and then we define the “projective plane PZ” to be
the set of all equivalence classes of nontrivial triples.

No normal person likes to think in terms of “‘equivalence classes”, and
fortunately thcre are more visual ways to think of the projective plane.
Suppose that K is the field R of real numbers. Then the triples (x, y, z) in
an equivalence class all correspond to points in three-dimensional Euclidean
space lying on a line through the origin. Thus, PZ can be thought of geo-

metncally as the set of lines through the origin in three- dlmensmnal space.

Another way to visualize Dz is to nlace a nlane at a distance

And, IO pABRLY G s SAOVELEAV W &

The line at infinity, in turn, can be visualized as an ordinary line (say,



..
(2]
e
g
«<
4
wn
—
-

the linc y = 1 in the xy-plane) consisting of the equivalence classes with
nonzero y-coordinate and hence containing a unique triple of the form
(x, 1, 0), together with a single ““point at infinity” (1, 0, 0). That is, we define
the projective line P over a field K to be the set of equivalence classes of
pairs (x, y) with (x, y) ~ (4x, 2y). Then PZ-can be thought of as an ordinary
plane (x, y, 1) together with a projective line at infinity, which, in turn,
consists of an ordinary line (x, 1, 0) together with its point at infinity (1, 0, 0).

More generally, n-dimensional projective space Py is defined using

equivalence classes of (# + I)-tuples, and can be visualized as the usual

space of n-tuples (x,, ..., x,, ) together with a P§"! at infinity. But we

shall only have need of Px and PK

~

| L at th Tart + +
can look at the solution set CGﬂSmuﬂg Ol POillLS

{
{

equivalence classes of (x, y, z)) for which F(x, y, z) = 0. The points of this
solution set where z # 0 are the points (x, y, 1) for which F(x,y, 1) =
F(x, y) = 0. The remaining points are on the line at infinity. The solution
set of F(x,y,z)=0 is called the “projective completion” of the curve
F(x, y) = 0. From now on, when we speak of a *“‘line”, a *‘conic section”,
an ‘“‘elliptic curve”, etc., we shall usually be working in a projective plane
Pz, in which case these terms will always denote the projective completion
of the usual curve in the xy-plane. For example, the line y = mx + b will
really mean the solution set to y = mx + bz in Pg; and the elliptic curve
y* = x* — n?x will now mean the solution set to y%z = x* — n?xz? in PZ.

_ Letus look more closely at our favorite example: F(x, y) = y* — x7 + n’x,
F(x, y,2) = y?z — x* + n®xz*%. The points at infinity on this elliptic curve
are the equivalence classes (x, y, 0) such that 0 = F(x, y, 0) = —x>. ie.,
x = 0. There is only one such equivalence class (0, 1, 0). Intuitively, if we
take K= R, we can think of the curve y? = x* — n®*x heading off in an
increasingly vertical direction as it approaches-the line at infinity (see Fig.
1.6). The points on the line at infinity correspond to the lines through the
origin in the xy-plane, i.e., there is one for every possible slope y/x of such

a line. As we move far out along our clhptlc curve, we appI'OdCh slopc
y/x = o0, correspondi
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ru ¥, z) = 0. Such notions

f nflecnon, smooth and singular
nd only upon what is ha ‘ppening in a neighborhood of the
oint in question. And any point in Pz has a large neighborhood which
looks like an ordinary plane. More precisely, if we are interested in a point
with nonzero z-coordinate, we can work in the usual xy-plane, where the
curve has equation F(x, y) = l*(x ¥, 1) = 0. If we want to examine a point
on the line z = 0, however, we put the triple in either the form (x, 1, 0) or
(1, y,0). In the former case, we think of it as a point on the curve F(x, 1,z) = 0
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in the z-plane' and in the latter case as a point on the curve F(1, y, z) =

.

in the yz-plane.

For exarﬁpie near the point at infinity (0, 1, 0) on the ell pt curve
y*z — x> + n*xz?, all points have the form (x, 1, z)withz ~x3 +n?xz2=0.

The latter equation, in fact, gives us all points on the elliptic curve except
for the three points (0, 0, 1), (£n, 0, 1) having zero y-coordinate (these are
the three “‘points at infinity” if we think in terms of xz-coordinates).

PROBLEMS

1. Prove that if K is an infinite field and F (x, y, 2)e K[x, y, z] satisfies F(Ax, iy, 1z) =
APF(x, y, z) for ail 4, x, y, ze K, then F is homogeneous, 1.e., each monomial has
total degree n. Give a counterexample if X is finite.

2. By a “line” in P2 we mean either the projective completion of a line in the xy-plane
or the line at infinity. Show that a line in PZ has equation of the form ax + by + ¢z =
0, with a, b, c € K not all zero; and that two such equations determine the same line
if and only if the two triples (a, b, ¢) differ by a multiple. Construct a 1-to-1 cor-
respondence between lines in a copy of P{ with coordinates (x, y, z) and points in
another copy of PZ with coordinates (a, b, ¢) and between points in the xyz-projec-
tive plane and lines in the abc-projective plane, such that a bunch of points are on
the same line in the first projective plane if and only if the lines that correspond to
them in the second projective plane all meet in the same point. The xyz-projective
plane and the abc-projective plane are calied the ““duals” of each other.
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11.5 The classification of Pythagorean triples
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solutlon to th roblem was given in the 3rd century AD by Diophantos of
Alexandria, in Book II of his Arithmetica, and a more geometric version can
also be found in Book X of Euclid’s Elements.

Theorem 11.3

If u and v are coprime positive integers of opposite parity, with « > v, then
the numbers

a=u?—-v?, b=2uw, c=u?+? (11.3)
form a primitive Pythagorean triple. Conversely, every primitive Pythagorean
triple (a, b, c) is given by (11.3) (possibly with a and b transposed) for such a

(This may be the way the Babylonians created their list of triples; for ex-
ample. if ¥ = 81 and v = 40 we get the trinle (g f-\ A1 BARN R161) )
asipravy a2 w VA (Aaavna v 3% v BvY Vaiv vidpav \w u \1\1 iy UIVU, ULUL’-’

Proof

The numbers a, b and c in (11.3) are positive integers, and one can easily verify
that
(v® — v*)? + (2uw)? = (u® + v?)?

for all u and v, so (a,b,c) is a Pythagorean triple. Suppose that (a, b, ¢) is not
primitive, so a,b and ¢ are all divisible by some prime p. If p = 2 then a is
even; since a = u% — v? it follows that « and v have the same parity, which is
false. If p is odd then p divides (a+c)/2 = u?, and hence divides v; it therefore
divides u? — a = v? and hence divides v, contradicting the fact that « and v are
coprime In either case we have a contradiction, SO (a b c) must be primitive

Since a? + b2 c2 we have a? + b2 = ¢ mod (4) Now z2 = 0 or 1 mod (4)
as z is even or odd, and the only solutions of the equation [z] + [y] = [z] with
(2] [y}, 2] = [0] or [1] in Zq are [0] + [0] = [0], 0] +[1] = [1] and [1] + [0] = [1].
Since a and b are not both even, it follows that one is odd and the other is
sven ansnosinge g and b if necessary, we can assume t!‘la ais o rH nd b is
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2d for some integer d. Then
4d2 =02 =c?—a?=(c+a)(c—a),

so at least one of the factors ¢ £ a is even, and since they differ by 2a they are

both even. Thus cdan re—ay
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with both factors (¢ + a)/2 integers. These factors are coprime, since any com-
mon factor would also divide their sum (which is ¢) and their difference (which
is a), and would therefore divide ged(a, ¢), which is 1. Since their product is a

perfect square, both of these factors must be perfect squares by Lemma 2.4,
say
c+a 2 c—a 2
=u” and =v
2 2

for some positive integers u and v. Adding and subtracting these two equations,
we then have ¢ = 4% + v? and a = 4% — v?, while the equations b = 2d and
d? = v?v? imply that b = 2uv. Thus equations (11.3) are satisfied, and these
show that v and v must be coprime, since any common factor would divide
a,b and c. Since a is odd and positive, © and v must have opposite parity with
u>v. O

This gives us a complete description of the primitive Pythagorean triples,
and by taking integer multiples of these we immediately get a description of all
the Pythagorean triples:

Corollary 11.4
The general form for a Pythagorean triple (a, b, ) is given by

a=m@u?—-v?), b=2mw, c=mu?+v?)

(or possibly with a and b transposed), where v and v are coprime positive
integers of opposite parity with u > v, and m is a positive integer.

There is an alternative approach, which classifies all rational solutions
(a,b,c) of equation (11.2), including, of course, the Pythagorean triples. To

auntd #rivial enliitiang 1otk 1@ faaQitme l\n‘- L L N Thia 4L . 4. ~ L N SO
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dividing (11.2) by ¢? we get

“+y =1, (11.4)
where
N T
..b—c alllUl y—c

are both rational numbers. Now (11.4) is the equation of a circle C of radius 1
in the zy-plane, centred at the origin O = (0,0). If P = (z, y) is any point on
C, other than the point Q = (—1,0), then the line PQ has gradient

y

t =
14z




