Let L be a lattice in the complex plane, by which we mean the set of all
integral linear combinations of two given complex numbers w, and w,,
where m, and w, do not lie on the same line through the origin. For example,
if w; =1iand w,=1, we get the lattice of Gaussian integers {mi + n|m,
neZ}. It will turn out that the example of the lattice of Gaussian integers
is intimately related to the elliptic curves y? = x* — n?x that come from the
congruent number problem.

The fundamental parallelogram for w,, w, is defined as

I={aw, +bw,|0<a<1,0<b< 1},
Since w,, w, form a basis for C over R, any num C can be written in

a
the form x = aw, + bw, for some a, beR. The
sum of an element in the lattice L = {mw, + nw,} and an element in I1, and
in only one way uniess ¢ or b happens to be an integer, i.e., the element of
I'T happens to lie on the boundary J11.

We shall always take w,, @, in clockwise order; that is, we shall assume
that w,/w, has positive imaginary part.

Notice that the choice of w,, w, giving the lattice L is not unique. For
example, w; = w,; + w, and w, give the same lattice. More generally, we
can obtain new bases wj, w) for the lattice L by applying a matrix with
integer entries and determinant 1 (see Problem 1 below).

For a given lattice L, a meromorphic function on C is said to be an elliptic
Junction relative to L if f(z + [) = f(z) for all /e L. Notice that it suffices to
check this property for / = w, and / = w,. In other words, an elliptic func-
tion is periodic with two periods w; and w,. Such a function is determined
by its values on the fundamental parallelogram IT; and its values on opposite
points of the boundary of II are the same, ie., flaw, + w,) = flaw,),
Sflw, + bw,) = f(bw,). Thus, we can think of an elliptic function f(z) as a
function on the set IT with opposite sides glued together. This set (more
precisely, “‘complex manifold”) is known as a “‘torus”. It looks like a donut
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satisfies f(x + nw) = f(x) is determined by its valu on the interval [0, w].

Its values at 0 and o are the same, so it can be thought of as a function on
the interval [0, w] with the endpoints glued together. The “real manifold”
obtained by gluing the endpoints is simply a circle (see Fig. 1.7).

Returning now to elliptic functions for a lattice L, we let &, denote the
set of such functions. We immodiiolv see that & is a subfield of the field

of all meromorphlc functions. . . ... sum, difference, product or quotient

~L e ~ e o

Of twWOo culpu&. functions is uupUL in d(_lulLlUn the subfield @L is closed under
differentiation. We now prove a sequence of propositions giving some very
special properties which any elliptic function must have. The condition that

a meromorphic function be doubly periodic turns out to be much more
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Figure 1.7

restrictive than the analogous condition in the real case. The set of real-
analytic periodic functions with given period is much “larger” than the set
&, of elliptic functions for a given period lattice L.

Proposition 3. 4 function f(z)e &, L = {mw, + nw,}, which has no pole in
the fundamental parallelogram 11 must be a constant.

Proor. Since IT is compact, any such function must be bounded on [1, say
by a constant M. But then | f(z)| < M for all z, since the values of f(z) are
determined by the values on I1. By Liouville’s theorem, a meromorphic
function which is bounded on all of C must be a constant. o

Proposition 4. With the same notation as above, let o + 11 denote the translate
of T1 by the complex number a, i.e., {0 + z|z€I1}. Suppose that f(z)€ &, has
no poles on the boundary C of o + I1. Then the sum of the residues of f(z) in
o + I is zero.

PrOOF. By the residue theorem, this sum is equal to

But the integral over opposite sides cancel, since the values of f(z) at corre-
sponding points are the same, while dz has opposite signs, because the path
of integration is in opposite directions on opposite sides (see Fig. 1.8). Thus,
the integral is zero, and so the sum of residues is zero. O

Notice that, since a meromorphic function can only have finitely many
poles in a bounded region, it is always possible to choose an « such that the
boundary of a + IT misses the poles of f(z). Also note that Proposition 4
immediately implies that a nonconstant f(z)e &, must have at least two
poles (or a multiple pole), since if it had a single simple pole, then the sum
of residues would not be zero.
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Proposition 5. Under the conditions of Proposition 4, suppose that f(z) has no
zeros or poles on the boundary of « + I1. Let {m;} be the orders of the various
zeros in o + I, and let {n;} be the orders of the various poles. Then T m; = Zin;.

Proor. Apply Proposition 4 to the elliptic function f'(z)/f(z). Recall that the
logarithmic derivative f'(z)/f(z) has a pole precisely where f(z) has a zero
or pole, such a pole is simple, and the residue there is equal to the order of
zero or pole of the original f(z) (negative if a pole). (Recall the argument: If
f@=c,(z—a)"+ -+, thenf'(z) = c,m(z—a)" ' + - - -, and so f'(2)/f(2)
=m(z—a)"' + .. ..) Thus, the sum of the residues of f'(2)/f(z) is Zm; —
2n;=0. )

We now define what will turn out to be a key example of an elliptic
function relative to the lattice L = {mw, + nw,}. This function is called the
Weierstrass g-function. It is denoted @(z; L) or p(z; w,, ®,), or simply
¢ (2) if the lattice is fixed throughout the discussion. We set
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Proposition 6. The sum in (4.1) converges absolutely and uniformly for z in
any compact subset of C — L.

ProOOF. The sum in question is taken over a two-dimensional lattice. The
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mand as x/(/(x — [)), and then use a comparison test, showing that the series
in question basically has the same behavior as /=2, More precisely, use the
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approaches a finite limit as / - + o0, umformly for x in some set, then the
sum Z f,(x) converges absolutely and uniformly for x in that set. The details



—
~J

§. Doubly periodic functions

are easy to fill in. (By the way, our particular example of f(x) can be shown
to be the function 7 cot nx; just take the logarithmic derivative of both
sides of the infinite product for the sine function: sin nx = nxII;%, (1 —
,,z/nzl )

The proof of Proposition 6 proceeds in the same way. First write the
summand over a common denominator:
1 1 2z-—2z%

<z-1)2"?5”(z—1)21
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ore precisely, Proposmon 6
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where the sum is taken over all nonzero /e L.
will follow from the following two lemmas.

ZS:

Lemma 1. If £ b, is a convergent sum of positive terms, where the sum is taken
over all nonzero elements in the lattice L, and if T f(z) has the property that
| H(@)/b)| approaches a finite limit as \l| - oo, uniformly for z in some subset
of C, then the sum X f(z) converges absolutely and uniformly for z in that set.

Lemma 2. T |/|™* converges if s > 2.

The proof of Lemma ! is routine, and will be omitted. We give a sketch
of the proof of Lemma 2. We split the sum into sums over / satisfying
2, ....Itis not hard to show that the number of /
r gf magnitude n. Thm the sum in the lemma is

times z:ofn n*=YXn'"% and the latter sum
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summmg over /€ L is the same as summing over —/€ L.
To prove double periodicity, we look at the ‘derivative. Differentiating
(4.1) term-by-term, we obtain:

N e 1
P2Z)=—2) —53-
t%'z. (z—1)?
Now g’(z) i1s obviously doubly periodic, since replacing z by z + /, for
some fixed / € L merely rearranges the terms in the sum. Thus, @'(z)eé,.
To prove that p(z)e &, it suffices to show that p(z + w;) — @(z) = 0 for
i =1, 2. We prove this for i = 1; the identical argument applies to i = 2.



oo
"
3
0O
3

-3

Since the derivative of the function p(z + w,) — 0(2) 1s P'(z + w,) —
#'(z) = 0, we must have p(z + w,) — @(z) = C for some constant C. But
substituting z = —Jw, and using the fact that g(2) is an even function, we
conclude that C = p(3w,) — ¢(—3w,) = 0. This concludes the proof. O

Notice that the double periodicity of g(z) was not immediately obvious
rom the definition (4.1).
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Since @(z) has exactly one double pole in a fundamental domain of the
form a + I, by Proposition 5 it has exactly two zeros there (or one double
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u is.a constant. It is not hard to show (see the problems below) that g (z)
takes every value ue C U {oo} exactly twice on the torus (i.e., a fundamental
para Heiogr m with Op‘pOSiLc sides gx‘dﬁu LOgEuu:L )s u)uuti‘ig, i‘ﬁ‘tiltip uy
(which means the order of zero of g(z) — u); and that the values as-
sugled with multiplicity two are 00, e, = ©(0,/2), €, 5 9(w,/2), and €3 7=
P ((w, + w,)/2). Namely, @(z) has a doubie poie at 0, while the other three
points are the zeros of p’(z).

§5. The field of elliptic functions
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case, we do not even nee mﬁmte series to express an arbitrary elliptic

Proposition 8. &, = C(gp, ©), i.e., any elliptic function for L is a rational
oxynroccinn 1 of7 IY and o/'(7- T\ nro nroricelvy aivon floNe £ thoro
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exist two rational functions g(X), H(X) such that f(z)= g(p(2))+
4
9’ (2)h(p(2))
PrOOF. If f(z) is an elliptic function for L, then so are the two even functions
f@+fi=2) . fi&)~f(=2)
2 20°(2)
Since f(z) is equal to the first of these functions plus g’(z) times the second,
o~ s Deamacitinnm & 134 crviffinng + A sme~va
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by p(2), ie, 6 = @( J)-

Proor. The idea of the proof is to cook up a function which has the same
zeros and poles as f(z) using only functions of the form p(z) - u withu a
constant.



