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As remarked at the d of the last section, from the proof of Proposition 9
we can immediately conclude that the square of ¢’(z) is equal to a cubic

1at
polynomial in g ( ) M ore precisely, we know that g (.z')2 has a double zero
at w,/2, w,/2, and {w, + w,)/2 (see Problem 4 of §5). Hence, these three

numbers are the a,-’s, and we have
9'(2)? = Clp(2) — (/D) (P(2) — (W) D)P(2) — (0, + @3)/2))
= C(9(2) = e)(9(2) ~ e)(P (@) = e,

where C is some constant. It is easy to find C by comparing the coefficients
of the lowest power of z in the Laurent expansion at the origin. Recall that
$(z) — z~% is continuous at the origin, as is g’(z) + 2z~ >. Thus, the leading
term on the left is (—2z7 %)% = 427, while on the right it is C(z7?)3 = Cz™°,
We conclude that C = 4. That is, g (z) satisfies the differential equation

9 =f(p(2)), where f(x)=4(x—e,)(x — e)(x — es)ea:‘[)z]él)

Notice that the cubic polynomial f'has distinct roots (see Problem 4 of §5).

We now give another independent derivation of the differential equation
for () which uses only Proposition 3 from §4. Suppose that we can find a
cubic polynomial f(x) = ax® + bx? + ¢cx + d such that the Laurent expansion
at 0 of the elliptic function f((z)) agrees with the Laurent expansion of
#’(z)* through the negative powers of z. Then the difference p'(z)* — f(g(2))
would be an elliptic function with no pole at zero, or in fact anywhere else
(since §(z) and g’(z) have a pole only at zero). By Proposition 3, this differ-
ence 1s a constant; and if we suitably choose d, the constant term in f(x),
we can make this constant zero.

To carry out this plan, we must expand @(z) and '(z)? near the origin.
Since both are even functions, only even powers of z wn]l appear.

Let ¢ be the minimum absolute valuc of nonzero lattxce points /. We shall
t

take r < 1. and assume t
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If we now subtract 1 from both sides, divide both sides by /2, and then
substitute in (4. !\ we obtain
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We claim that this double series is absolutely convergent for |z| < rc,
in which case the following reversal of the order of summation will be
justified :

0(2) = Z—‘z +3G, 2% + 5Gz* + TGg2® + - -, (6.2)
where for & > 2 we denote
]
G=6(L)=¢G L) =Y [Tk= , 6.3
k k( ) (o 2)der l; m,;z (mwl T nwz)k (6.3)
1#0 not both 0

(notice that the G, are zero for odd k, since the term for / cancels the term
for —/; as we expect, only even powers of z occur in the expansion (6.2)).
To check the claim of absolute convergence of the double series, we write
the sum of the absolute values of the terms in the inner sum in the form

(recall: 1zl < rlID:
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and then use Lemma 2 from the proof of Proposition 6.
We now use (6.2) to compute the first few terms in the expansions of

9(2), p(2)*, p(2)°, p'(2), and P'(2)?, as follows:

(@) =2~ 24G,L — 80G, + (36G2 — 168G,)z> :
50(2)—2—6— a3 ¢ + (36GF — 168Gg)z2 + ---;  (6.5)
l
0 (2)? = iy 6G, + 10Ggz* + - - -; (6.6)
()3 = :;—6 +9G,— + 15G, + (21G, + 27G)z* + (6.7)
Recall that we are interested in finding coefficients a, b, ¢, d of a cubic
f(x) = ax® + bx* + ¢x + d such that

0@ =ap()’ + bp(2)> + cp(z) + d,
and we saw that it suffices to show that both sides agree in their expansion
through the constant term. If we multiply equation (6.7) by «, equation (6.6)
by b, equation (6.2) by ¢, and then add them all to the constant d, and finally
equate the coefficients of z7% 2%, z72 and the constant term to the corre-
sponding coefficients in (6.5), we obtain successively:

a=4; b=0; —24G, = 4(9G,) + c; - —80G, =4(15G,) + d.
Thus, c = —60G,, d = —140G. It is traditional to denote
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g, = gZ(L)é_';{6064 = 60 ,Z [
ieL
#0
. (6.8)
=gy(L) = 140G, = 140 Y I
.
1;0

We have thereby derived a second form for the differential equation (6.1):
9@ =f(p@), where f(x)=4x"—g,x—g;eClx]. (6.9)

Notice that if we were to contmue comparing coefficients of hlgher pOWers
l\r—v - "l “l\ 1\ A A 0\ I‘lﬁ “11‘\1 IA nt-\ :
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the various G, (see Problems 4-35 below).

The differential equation (6 9) has an elegant and basic geometric inter-
pl’eld[i()n auppose lﬂd[ we [dKC lﬂC IUH(.«UUH xrom lIlC torus ‘L//L U €., lhe

fundamental parallelogram IT with opposite sides glued) to PZ defined by

z(p(2), 0'(2), 1) for z#0;
(6.10)
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(&
has precisely two z’s such that @(z) = x (see rrooiem 4 of §5). The
y-coordmates y= go (z) coming from these two z’s are the two square roots
of f(x) = f(g(2)). If, however, x happens to be a root of f{x), then there is
only one z value such that g(z) = x, and the corresponding y~coordinate 1s
y = g'(z) = 0, so that again we are getting the solutions to y* = f(x) for our
given x.

Moreover, the map from C/L to our elliptic curve in P{ is analytic, meaning
that near any point of C/L it can be given by a triple of analytic functions.
Near non-lattice points of C the map is given by z+ (p(z2), g'(z), 1); and
near lattice points the map is given by zr (9 (2)/9'(2), 1, 1/$/(2)), which is
a triple of analytic functions near L.

We have proved the following proposition.

One m'ght be interested in how the inverse map from the eiliptic curve
to C/L can be constructed. This can be done by taking path integrals of
dx[y = (4x> — g,x — g3) *?dx from a fixed starting point to a variable

endpoint. The resulting integral depends on the path, but only changes by
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Figure [.10

a “‘period”, i.e., a lattice element, if we change the path. We hence obtain
a well-defined map to C/L. See the exercises below for more details.

We conclude this section with a few words about an algebraic picture
that is closely connected with the geometric setting of our elliptic curve.
Recall from Proposition 8 that any elliptic function (meromorphic function
on the torus C/L) is a rational expression in g(z) and g’(z). Under our
one-to-one correspondence in Proposition 10, such a function is carried over
to a rational expression in x and y on the elliptic curve in the xy-plane
(actually, in P2). Thus, the field C(x, y) of rational functions on the xy-plane,
when we restrict its elements to the elliptic curve y? = f(x), and then “pull
back” to the torus C/L by substituting x = p(z), y = $'(z), give us precisely
the elliptic functions &, . Since the restriction of y? is the same as the restric-
tion of f(x), the field of functions obtained by restricting the rational func-
tions in C(x, y) to the elliptic curve is the following quadratic extension of
C(x): iI“(x\I'ﬂ/( )). Algebraically speaking, we form

]

7

principal ideal corresponding to the

equation y? = f(x).

Geometrically, projection onto the x-coordinate gives us Fig. 1.10. Two
noints on the ellintic curve man to one noint on the nroiective line excent
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- ) P 9?

are the “rings of integers” in these fields. The maximal ideals in 4 are of
the form (x — a)A4; they are in one-to-one correspondence with aeC. 4
maximal ideal in B is of the form (x — a)B + (y — b)B (where b is a square
root of f(a)), and it corresponds to the point (a, ») on the elliptic curve.

K/DB ( )R+(1JMB\R /b:_—- lf(n\)
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(x—a)B+(y+b)B
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