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Problem |1 so as to get the other values of z for which ¥ = ©(2), namely
tz 4+ mw,; + nw,.

13. Suppose that g, = 4n?, g, =0. Take ¢,, e,, e, so that e, > ¢; > ¢;. What are

2. 2. in this case? Show that . = i, 1.e.. the lattice L is the Gaussian integer
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lattice expanded by a factor of w,. Show that as z travels along the straight line
from w,/2 to w,/2 + w, the point (x, y) = (g(z), $’'(z)) moves around the real
points of the elliptic curve y* = 4(x> — n’x) between —n and 0 and as = travels
along the straight line from 0 to w, the point (x, y) = ($(z), g'(z)) travels through
all the real points of this elliptic curve which are to the right of (n, 0). Think of
the “open”” appearance of the latter path to be an optical illuston : the two ends are
really “tied together™ at the point at infinity (0, 1, 0).

1 n
14. (a) Show that f _%:zz’t“{'% g (n~—\forn-—0 1,2,
JoNth—=1n nt 222 \

(b) Under the conditions of Problem 12, withe, > ¢, > ¢,,set =*

’e(O, 1.
€y, — &4
Derive the formula:

. =] ! dt
P e —e ) JIT =00 =)
(c) Derive the formula w, = n(e, — ¢,) Y2F(4), where
= fr3s o, NP2
V=222 ") ne

The function F(4) is called a “hypergeometric series’".
(d) Show that the hypergeometric series in part (¢) satisfies the differential equa-
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A= AHF' A+ = 20)F ) — LF(0)=0.

fand
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§7. The addition law

In the last section we showed how the Weierstrass g-function gives a
correspondence between the points of C/L and the points on the elliptic

curve y2 _—.f(x) = 4x3 z(l\r — g5 (I)m Dz We have an obvious addition
law for noints in C/L.. obtained from nrrhnanr additinon af com nlp numharc
AL TYY AN yvll‘lh’ AR ‘JI ‘-./, ASRIVAALLIANVAGL RA UL Ulull‘ul) CAVINEIVIV LY V1l WUV Pl AMUBlItUV VA D
by dividing by the additive subgroup L, 1e., ordinary addition “‘modulo L™
Thic 10 tha fe;n A ........... | PP g PR AT DI 5F SPRIUEEVGRRE T [T L S T
11118 1S i€ (WO~ llllCIIDlUlldl aualug O1 AUUILIVULIE 11O UIV Ul ll} L1ic g,l i)
m 47

/4.

We can use the correspondence between C/L and the elliptic curve to
carry over the addition law to the points on the elliptic curve. That is, to
add two points P,(x,, y,) and P, = (x,, y,), by definition what we do is
go back to the z-plane, find z, and z, such that P, = (p(z)). ¢'(z,)) and
P, = (9(z,), 9'(z,)),and thenset P, + P, = (p)(=, + z,), ¢2'(z, + 2,)). This
is just a case of the general principle: whenever we have a one-to-one corre-
spondence between elements of a commutative group and elements of some
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Figure 1.12

other set, we can use this correspondence to define a commutative group
law on that other set.

RNt the rnmorl}o“\]n no ahant t
UL LIV ivillAIl NG UL ll 16 QAU L

the elhptlc curve, and (2) the coordinates of P1 + P, can be xpressed
uucpuy in terms of Xis X25 V19 )2 uy rather auupxc rational fun
purpose of this section is to show how this 1s done.

We first prove a general lemma about elliptic functions.

Lemma. Let f(z)e&,. Let 1 = {aw, + bw,|0 < a, b < 1} be a fundamental
parallelogram for the lattice L, and choose o so that f(z) has no zeros or poles
on the boundary of o + T1. Let {a;} be the zeros of f(z) in a + I1, each repeated
as many times as its multiplicity, and let {b;} be the poles, each occurring as
many times as its multiplicity. Then La; — L b;e L.

PrOOF. Recall that the function f7(z)/f(z) has poles at the zeros and poles
of f(2), and its expansion near a zero a of order m is m/(z —a) + - - - (and
near a pole b of order —m the expansion is —m/(z — b) + - - -). Then the
function zf’(z)/f(z) has the same poles, but, writing z = a +(z — a), we see
that the expansion starts out am/(z — a). We conclude that X g, — X b; is
the sum of the residues of zf"(z)/f(z) inside « + II. Let C be the boundary
of a + I1. By the residue theorem,

i fad z]r/(z)
ya-—ijw——f | Ty,
4] J z
. S
We first take the integral over the pair of opposite sides from « to o + ©,
and fromao + @, toa + @, + @, {(see Fig. I.12). This nart is eagual to
<aas AANSRAL N [] Wl L R~ ] Wl 1 WZ \\J\/\i A l&o Jcl‘v}- A LrIO l.lul.l. v \J\luul (A w4
+ +w+
1 /%2 f’(z)d. ferentes f’(z)d \
— Z5——=dz — | Z5—=qz ,
271l { | (7)) {2\
\Ja SN Ja-f-w, SN /

D U4 eI c W L NN ¢ W
\l =" ) /

NV a & ¥ ’ 4

___l___ [‘a+m2j (Z)
"2mi | j(z)
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Now make the change of variables v = f(z), so that f"(z)dz/f(z) = du/u. Let

C, be the closed path from f(a) to f(a + @,) = f(2) traced by u = f(z) as z

goes from o to o + w,. Then '

RN e (O W B O
‘ Ja dz . J -

and this is some integer n, namely the number of times the closed

winds around the origin (counterclockwise). Thus, we obtain —w, 7 for this
part of our original mtegral In the same way, we find that the integral over

nnnnnnnn

the lculduuug two sides of C is equal to —w,m for some uu»sux in. Th‘dS,
Za; — b= —nw, — mw, €L, as desired. This proves the lemma. ]

We are now ready to derive the geometrical procedure for adding two
points on the elliptic curve y? = f(x) = x> — g,(L)x — g5(L). For z in C/L,
let P, be the corresponding point P, = (p(2), £'(2), 1), P, = (0, 1, 0) on the
elliptic curve. Suppose we want to add P, = (x;, y;) to P = (x;,y;) to
obtain the sum P, ., = (x3,y;). We would like to know how to go from
the two points to their sum directly, without tracing the points back to the
z-plane.

We first treat some special cases. The additive identity is, of course, the
image of z = 0. Let 0 denote the point at infinity (0, 1, 0), i.e., the additive
identity of our group of points. The addition is trivial if one of the points
is 0, ie., if z; or z, is zero. Next, suppose that P, and P, have the same
“x-coordinate but are not the same point. This means that x, = x,,y, = —y,.
In this case z, = —z,, because only “symmetric”’ values of z (values wh'ch
are the negatives of each other modulo the lattice L) can have the same
g-value. In this case, P, + P, = P, =0, i.e., the two points are additive
inverse to one another. Speaking geometrically, we say that two points of
the curve which are on the same vertical line have sum 0. We further note

that in the special situation of a point P, = P, on the x-axis, we have
1
= —y,; = 0, and it is easy to check that we still have P,  F R = =2P. =0.
~1

~2

Drnnnc:(‘;nn 11 T pel I‘lf’ 17190 :Mﬂnvnn nffvm \y\ o /v P n\
A IUFUDIEIUII RABLe L7IT LULUULLIUCT LTIUVTT OC UJ \A, _y} (2] \J\-, _}/}.
f“‘:-.-AL_.A..A__ﬁ — £~ FORER NS R 3 DR
Giventwo points 7 = r = \xl, yyand 1'2 = r = (X3, Jp)ontheelliptic
vk sox e 52 3
curve y- =4x° —g,x — g3 (neither the point at mnmty 0), there is a line

I = P, P, joining them. If P, = P,, we take / to be the tangent line to the
elliptic curve at P,. If / is a vertical line, then we saw that P, + P, = 0.
Suppose that / is not a vertical line, and we want to find P, + P, = P, =
(x3, ¥3). Our basic claim is that —P; = (x5, —y;) is the third point of
intersection of the elliptic curve with /.

Write the equation of / = P, P, in the form y = mx + b. A point (x,y)on
1 is on the elliptic curve if and only if (mx + b)* = f(x) = 4x> —.g,x — g,
. that is, if and only if x is a ro~ i the cubic f(x) — (mx + b)z. This cubic
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has three roots, each of which gives a point of intersection. If x is a double
root or triple root, then / intersects the curve with multiplicity two or three
at the point (x, y) (see Problem 6 of §1.3). In any case, the total number of
points of intersection (counting multiplicity) is three.

Notice that vertical lines also intersect the curve in three points, including
the point at infinity 0; and the line at infinity has a triple intersection at 0
(see Problem 7 of §1.3). Thus, any line in PZ intersects the curve in three

a AR waza 2 13L8D Gciiy 1383 212 111

points. This is a specxal case of

'

Theorem. Let F(x. v, 2) aqd Gix. v 7\ he hnmnnpnonuc polynomials

, ¥, z) be homogeneous
of degree m and n, respectively, over lgebrazcall 'y closed fi e!d K. Suppose
that F and G have no common polynomzal factor. Then the curves in PE defined
have mn points of intersection, counting mul

For a more detailed discussion of m ItlphClty
of Bezout’s theorem, see, for example, Walker’s
[Walker 1978].

In our case F(x,y,z)=y%z—4x>+g,xz* +g;z° and G(x,y,2)=
y—mx — bz.

Proposition 12. If P, + P, = P, then — Py is the third point of intersection
of | = P P, with the elliptic curve. If P, = P,, then by P, P, we mean the
tangent line at P, .

PrOOF. We have already treated the case when P, or P, is the point at infinity
0, and when P, = — P,. So suppose that / = P, P, has the form y = mx + b.
Let P, = P, , P, = P, . To say that a point P, = (g¢(z), #’(z)) is on / means
that p'(z) = mgo(z) + b. The elliptic function g’'(z) — mg(z) — b has three
poles and hence three zeros in C/L. Both z, and z, are zeros. According to
the lemma proved above, the sum of the three zeros and three poles is equal
to zero modulo the lattice L. But the three poles are all at zero (where p’(2)
has a triple pole); thus, the third zero is —(z; + z,) modulo the lattice.

Hence, the third point of intersection of / with the curve is P_, .., = — P, ,
as claimed.

The argument in the last paragraph is rlgorous only if the three points
of intersection of / with the elliptic curve are distinct, in which case a zero
of g (z) —mgpz)—b corresnnnds exactlv tn a poim f !ntersertlon P,

a!ways corresponds to a double or le 1 n, pect‘ Vi !y, of
with the curve. That is, we must show that the two meanings of the term
b
“multiplicity” agree: multiplicity of zero of the elliptic function of the
nnvcnt\lc\ - sl Ay \'1- Py e n'd—q ~f 2 b aemansantasnen 1ee 4lan acas amlnesan
vaiiaviuv <, aliiu uunul.)u\,uy O1 InECrsecuio 1 111 t1IT A -ylauc.
T At ~ -~ L~ ¢lon ¢ AL ) » \ L s Ao wam ez
D ‘-1, 42, —43 oc tne t Ol 0(Z) ) — 0, listed as many

z
ree points is the negative
ine. Since —z,, —z,, z; are the three
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Figure 1.13.

zeros of @'(2) + mp(z) + b, it follows that +z,, +z,, *+z, are the six
‘zeros of p'(2)* — (mp(2) + b)* = f(p(2)) — (mp(2) + b)* = 4(p(2) - x,)
(9(2) — x,)((z) — x3), where x,, x,, x; are the roots of f(x) — (mx + b)°.
If, say, @(z,) = x,, then the multiplicity of x; depends upon the number
of +z,, +z5 which equal +z,. But this is precisely the number of z,, —z,
which equal z,. Hence “multiplicity’” has the same meaning in both cases.
This concludes the proof of Proposition 12. o

Proposition 12 gives us Fig. 1.13, which illustrates the group of real points
on the elliptic curve y* = x* — x. To add two points P, and P,, we draw the
line joining them, find the third point of intersection of that line with the
curve, and then take the symmetric point on the other side of the x-axis.

It would have been possible to define the group law in this geometrical
manner in the first place, and prove directly that the axioms of an abelian

associative law

t u
i o - -
wbio xlnu]d have nPPecmtatpd a dppnpr immvectio n of intercectinne af
LA ALANA R Y WS A ALRA ¥V W AANW W WIWAVRA LW vvl.lvl 148 V\/U\olb ax N ALANWA Dww iV ilo A\ 23
curves. In turns out that there is some flexibility in defining the group law
TAar avasmala any ~na ~fF tha atalht svmsmte A snfla~tinn hacidac tha it af
O CAaliipiC, ally OLiv U1 UIC Cignt PO O HNCCUON O05Iacs uiC Poliit dt
ieafimity ~nvild sAvially wuell Lo ve lianms AliAcam ac tha 1 dambisyy Eae Aotaile ~AF
HUIHLY COUUIU TYuaily woll 11dvVe UCUIT CLHIVOCIL ad e Juliiuity. 1ol utiaild Ul
. ! .
this alternate a proach see [Walker 1978]
Fay R TR et

One ulsauvamdge of our approacn using @ (z) is that a priori it only applies
to elliptic curves of the form y' = 4x> — g,(L)x — g,(L) or curves that can
be transformed to that form by a linear change of variables. (Note that the
geometrical deseription of the group law will still give an abelian group law
“after a linear change of variables.) In actual fact, as was mentioned earlier
and will be proved later, any elliptic curve over the complex numbers can
be transformed to the Weierstrass form for some lattice L. We already know
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that our favorite example y? = x> — n’x corresponds to a multiple of the
Gaussian integer lattice. In the exercises for this section and the next, we
shall allow ourselves to use the fact that the group law works for any elliptic
curve. ‘

It is not hard to translate this geometrical procedure into formulas

expressing the coordinates (x;, y;) of the sum of P1 (x;.yy) and P, =
(x, vJ interms of x.. x~. v;. v, and the (‘neff“c of the equation of the

\"V2y J2Z) Ara vwaiiao Wi «vl, w32 J‘ J 2 SR MAAV LAUR LA LS L aa

elliptic curve. Although strictly speakmg, our derlvatlon was for elliptic
curves in the form y? = f(x) = 4x> — g,(L)x — 93(L) for some lattice L, the

1111—; Fod e inY lﬂI‘Ir P ] \1I'xya 1!2 ——

ads alha
proceaure 5xvco an aocilan group iaw i1or any \Auyuu Cuive ¥y me(x)’ as

remarked above. So let us take f(x) = ax® + bx* + cx + de C[x] to be any
cublc wnth dlstmct roots ‘
infinity O, and that P1 7~ —-Pz. Then the line through P1 and Pz (the tangent
line at P, if P, = P,) can be written in the form y=mx+ f, where m =

......

(¥, — y)/(x; — x,) if Py # P, and m = dy[dx|, , if P, = P,. In the latter

case we can express m in terms of x, and y; by implicitly differentiating
= f(x); we find that m = f"(x,)/2y,. In both cases the y-intercept is
B=y —mxq.
Then x5, the x-coordinate of the sum, is the third root of the cubic
f(x) — (mx + B)?, two of whose roots are x,, x,. Since the sum of the three
roots is equal to minus the coefficient of x* divided by the leading coefficient,

we have: x; + x, + x3 = —(b — m?*)/a, and hence:
2
Xy3= —x —x—- I/V’*V'\ if P, #P,; (7.1)
3 1 2 akxz —x, 1 25 .
e b 1/ £(x)\? e o o
Xy = —2%, —— K ) if P,=P,. (7.2)
2y,
The y-coordinate y; is the negative of the value y = mx; + §, 1.e,,
Y3 = =y +m(x, — x3), (7.3)
where x; is given by (7.1) and (7.2), and
m={(y, —y)x;—xy) if P #P
o A (7.4)
m = f(x,)/2y, it F=r
If our elliptic curve is in Weierstrass form y? = 4x® — g,x — g5, then
we have a=4, b=0, and f'(x;) = 12x{ — g, in the addition formulas

In principie, we could have simply defined the group law by means of
these formulas, and then verified algebraically that the axioms of a commu-
tative group are satisfied. The hardest axiom to verify would be associativity.
Tedious as this procedure would be, it would h 1e key advantage over
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either the complex-analytic procedure (using g(z)) or the geometrical pro-
cedure. Namely, we would never have to use the fact that our field K over
which the elliptic curve is defined is the complex numbers, or even that it has
characteristic zero. That is, we would find that our formulas, which make
sense over any field K of characteristic not equal to 2, give an abelian group
law. That is, if y* = f(x) = ax® + bx* + cx + de K[x] is the equation of

an ellintic curve over K. and if we define f(v\ = 3ax? + 2bx 4 ¢, then any

il Miniplabh VRel Ay Kai%S At diaw e Rad T S a2

two points having coordinates in some extension of K can be added using
the formulas (7.1)~(7.4). We shall make use of this fact in what follows,

thA ctrintly craalring wo ha ve nNot eon athrangh tha tadiniic mnraly
\./V\.zll LllUu&ll, Wl.l l\'l.l)’ Dybal\lllé’ VWO 1ida v 11V E. l L1 V) éll LHIL LUV o pul i
algebraic verification of the group law

PROBLEMS

1. Let L < R be the additive subgroup {mw} of multiples of a fixed nonzero real
number w. Then the function zr»(cos(2Znz/w), sin(2nzjw)) gives a one-to-onc
analytic map of R/L onto the curve x? + y* = | in the real xy-plane. Show that
ordinary addmon in R/L carries over to a ratlonal (actually polynomldl) law for

/ ) i hat is, the coordinates
tuc “sum’ are poly'io nia hus, the rati ua} addition law on
an

hought of as a generalization of the formulas for the sine

2. (a) Slmphfy the expressxon for the x-coordinate of 2P in the case of the elliptic
curve y? = x> — nx.
(b) Let X, Y, Zbea ranonal nght tnangle with area n. Let P be the corresponding
point on the curve y? = x* — n?x constructed in the text in §1.2. Let Q be the
point constructed in Problem 2 of §1.2. Show that P = 20.
(C) Prove Lnd[ if Pisa pOlﬂl not of order 2 with rational coordinates on the curve

y* = x3 — n*x, then the x-coordinate of 2P is the square of a rational numbe
having even denominator. For example, the point Q = ((41/7)%, 720- 41/7°

FaYs] fhn SAITUAS Y 1 nnt ool tA tureo a4 aint i ratiATa
on il CUIVE y" = X 517X 18 BnoL Cjudl 1O (Wil a POt 4~ naving raliona
coordinatec {(In thic nraohlem recall: 1 ic aluwave cantarafres
WAV ANBIRAG VWD \-‘ll CRAAIWD Plvvl\&l‘l, ANWANRALR o TS A CALYY u]a 0\1\4“. wl‘v\/-}

3. Describe geometrically: (a) the four points of order two on an elliptic curve; (b)
the nine points of order three; (c) how to find the twelve points of order four which
are not of order two; (d) what the associative law of addition says about a certain
configuration of lines joining points on the elliptic curve (draw a picture).

4. (a) How many points of inflection are there on an elliptic curve besides the point
at infinity? Notice that they occur in svmmetnc pairs. Find an equation for
their x-coordinates.

(b) In the case of the elliptic curve y* = x* — n’x find an explicit formula for
these x-coordinates. Show that they are never rational (for any »).

3

5. Given a point @ on an eiliptic curve, how many p01ms P are there such that 2P = Q7
VMoo rilan oameeembad aa¥le: Looci, 2 £ oL _
vescrioe geometricaily how to {ind them

6. Show that if K is any subfield of C containing g, and g5, then the points on the
elliptic curve y* = 4x* — g, x — g, whose coordinates-are in K form a subgroup



