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of the group of all points. More generally, show that thxs is true for the elliptic
curve y* = f(x) if f(x)e K[x].

7. Consider the subgroup of all points on y* = x> — n?x with real coordinates. How
many noints in this suberoun are of order 2?2 3?7 42 Describe geometrically where
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these points are located.
8. Same as Problem 7 for the elliptic curve y* = x> — @, aeR.

9. If y* = f(x) is an elliptic curve in which f(x) has real coefficients, show that the
group of points with real coordinates is isomorphic to (a) R/Z if f(x) has only
one real root; (b) R/Z x Z/2Z if f(x) has three real roots.

10. Letting a approach zero in Problem 8, show that for the curve y* = x* the same
geometric procedure for finding P, + P, as for elliptic curves makes the smooth
points of the curve (ie., P # (0, ), but including the point at infinity) into an
abelian group. Show that the map which takes P = (x, y) to x/y (and takes the

point at infinity to zero) gives an isomorphism with the additive group of complex

imbhare Thie te aallad ““additive dssenararu” Af an ellintic Asnirve Oine wav to
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think of this is to imagine both @, and w, approaching infinity (in different direc-
tions). Then g, and g, both approach zero, so the equation of the corresponding
elliptic curve approaches y? = 4x>. Meanwhile, the nddit_ive group C/L, where

group C, i.e., the fundamental par-

\

L= {mm +nmJ approaches the additive

allelogram becomes all of C.

11. Let a— 0 in the elliptic curve y* = (x* —~ a)(x + 1). Show that for the curve y* =
x%(x + 1) the same geometric procedure for finding P, + P, as for elliptic curves
makes the smooth pomts of the curve into an abelian group. Show that the map

O SN MRS SRR » T PO S | ‘-A“A.—g tbhim anmtand b o Lram ..4... e~ 1IN
which takes P = (x, y) to (y~——A;/U/ ‘1“.&) {ana takes tnc point at munity o 1j
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bers. This is called “multlphcatwe degeneracy” of an elliptic curve. Draw the
graph of the real points of y? = x*(x + 1), and show wh re the various sections
go under the isomorphism with C*, One way to think of multiplicative degeneracy
is to make the linear change of variables y+ 3y, x+> —x — }, so that the equation
becomes y? = 4x3 — %x — &% (compare with Problem § of §I.6). So we are dealing

with the limit as ¢ approaches infinity of the group C/{mit + nz}, i.e., with the
vertical strip C/{nn} (rather, a cylinder, since opposite sides are glued together),
and this is isomorphic to C* under the map z+ ¢**,

the group of points in [P’Con the elliptic curve y2 = f(x), we 1mmed1ately see
t 0 13 N

£3__ta b od

a point F, = (x, y) has finite order if and only if Nze L for some N,
Le., if and only if z is a rational linear combination of w; and @,. In that
case, the least such N (whlch is the least common denominator of the

coefficients of w; and w,) is the exact order of P,. Under the isomorphism
Ve
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from R/Z x R/Z to the elliptic curve given by (4, b)— F,,, +baoy» it is the
image of Q/Z x Q/Z which is the torsion subgroup of the elliptic curve.
This situation is the two-dimensional analog of the circle group, whose
torsion subgroup is precisely the group of all roots of unity, i.e., all ¢*™~
for ze (3/Z. Just as the cyclotomic fields—the field extensions of Q generated

by the roots of unity-—are central to algebraic number theory, we would
expect that the fields obtained by adjoining the coordinates of points
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= (x, y) of order N on an elhptlc curve should have interesting ;specxal
properties We shall soon see that these coordinates are algebraic (if the

.
coefficients of f(x) are). This analogy between cyclotomic fields and fields

formed from pomts of finite order on elliptic curves is actually much deeper
than one might have guessed. In fact, a major area of research in algebraic
number meory today consists in uuumg and prcvmg anamgs for such fields
of the rich results one has for cyclotomic fields.

Let N be a fixed positive integer. Let f(x) =ax> +bx*+cx+d=
a{x — e,){(x — ¢,)(x — e;) be a cubic polynomial with coefficients in a field
K of characteristic #2 and with distinct roots (perhaps in some extension
of K). We are interested in describing the coordinates of the points of order
N (i.e., exact order a divisor of N) on the elliptic curve y? = f(x), where
these coordinates may lie in an extension of K. If N = 2, the points of order
N are the point at infinity 0 and (e;, 0), i = 1, 2, 3. Now suppose that N > 2.
If N is odd, by a “‘nontrivial” point of order N we mean a point P s 0 such
that NP = 0. If N is even, by a “nontrivial” point of order N we mean a
point P such that NP = 0 but 2P # 0.

Proposition 13. Ler K’ be any field extension of K (not necessarily algebraic).
and let 6: K’ — oK’ be any field isomorphism which leaves fixed all elements
of K. Let PeP}. be a point of exact order N on the elliptic curve y* = f(x),
where f(x)e K[ x]. Then ¢P has exact order N (where for P = (x,v.z)ePg.
we denote oP = (0x, gy, 6z)€ P2).

PROOF. It follows from the addition formulas that 6P, + 6P, =o(P, + P,).
and hence N(oP) = a(NP) = 60 = 0 (since (0, 1, 0) = (0, 1, 0)). Hencc aP
has order N. It must have exact order N, since if N'gP = 0, we would have
o(N'P)=0=(0, 1, 0), and hence N'P = 0. This proves the proposition. 0

Proposition 14. /n the situation of Proposition 13, with K a subfield of C, ler
Ky < C denote the field obtained by adjoining to K the x- and y-coordinates
of all points of order N. Let Ky denote the field obtained by adjoining just
their x-coordinates. Then both Ky and Ky, are finite galois extensions of K.

Proor. In each case Ky and Ky, we are adjoining a finite set of complex
numbers which are permutea by any automorphism of Q, which fixes K.
This lmmecuately implies the proposmon 0O

As an example if N=2then K, = Kz is the splitting field of f(x) over K. |



(]
oo

Recall that the group of points of order N on an elliptic curve in PZ is
isomorphic to (Z/NZ) x (Z/NZ). Because any ¢ € Gal(K,/K) respects addi-
tion of points, 1.e., 6(P, + P,) =P, + 0P, 1t follows that each o gives an
invertible linear map of (Z/NZ)? to itself.

If R is any commutative ring, we let GL,(R) denote the group (under

matrix multiplication) of all n x n invertible matrices with entries in R. Here
nvertibility of a matrix A4 i1s equivalent to det Ae R* where R* is the
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multiplicative group of invertible elements of the ring. For example:

(1) GL(R) = R*; .
(2) GL,(ZINZ) = {( )|a, b, ¢, de Z/NZ, ad — bce(ZINZ)*}.

It is easy to construct a natural one-to-one correspondence between invertible
linear maps R" — R" and elements of GL,(R). There is no difference with
the more familiar case when R 1s a field.

In our situation of points of order N on an elliptic curve, we have seen
that Gal(K,/K) is isomorphic to a subgroup of the group of all invertible
linear maps (Z/NZ)* — (Z/NZ)*. Thus, any o€ Gal(Ky/K) corresponds to
a matrix (¢ e GL,(Z/NZ). The matrix entries can be found by writing

D — D - D — D
OL 4 IN ™ Law,[N+cw,y/Ns 0Ly, IN— N +dw, /N
Notice that this is a direct generalization of the situation with the
N-th cyclotomic field @y ;;—rﬁ({’ﬁ) Recall that Gal{(Qy/Q) = (Z/NZ)* =
GL,(Z/NZ), with the element @ which corresponds to ¢ determined by
d 2WIINY __ ,2miafN
U\L } -

But one difference in our two-dimensional case of division points on elliptic
curves is that, in general, Gal(Ky/K) —» GL,(Z/NZ) is only an injection, not
an isomorphism.

In the case K < C, say K = Q(g,, g5), where y
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is in Weierstrass form, we shall now use t he_:

polynomial whose roots are the x-coordinates
is. K¥ will be the spl ng Feld of <;n(~h nnlynnmial_
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(1) N 1s odd. Then the points v and —u are always distinct modulo L. In
other words, u cannot be w, /2, w,/2 or (w, + w,)/2if u has odd order N.
We define

@ =N](p@) - pw), @.1)



of finite order 39

where the product is taken over nonzero ue C/L such that Nue L, with
one u taken from each pair u, —u. Then fy(z) = Fy($(z)), where Fy(x) €
C[x] is a polynomial of degree (N? — 1)/2. The even elliptic function
Jn(2) has N? — 1 simple zeros and a single polc at 0 of order N* — 1.
Its leading term at z = 0 is N/zV*71.

(if) N is even. Now let v range over ueC/L such that Nue L but u is not of
order 2. ie., u # 0, /2, ®,/2, (w, + ©,)/2. Define fy(z) by the product
in (8.1). Then (@) = Fy(p(2)), where Fy(x)eC[x] is a polynomial of
degree (N? 4)/2 The even elliptic function fu(z) has N2 — 4 51mpl

Zeros andd a Sln le nn I at n nF nrdpr Nz —_ 4 “Q IPﬂdth term at - = 0 1S
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If N is odd, the function /, (=) has the property that
ful@)? = N? [ (9(2) — pW)).

O0+#ue C/L . NueL
If N is even, ther; the function fy(z) dff%go’(z) /+(2) has the property that
@) =50’ (2)*fy(2)?
= N2(p(2) — €))(9(2) —e) (p(2) —e3) [ (9(2) — W)

ue C/L,NueL,2u¢ L
= N2 |} (¢
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We see that a point (x, y) = (g(2), £'(2)) has odd order N if and only if
Fy(x) = 0. It has even order N if and only if either y = 0 (i.e., it is a point of
order 2) or else Fy(x) =0

Because of Propositions 13 and 14, we know that any automorphism of
C fixing K = Q(g,, g;) permutes the roots of Fy. Hence, the coefficients of
F, are in K = Q(g,, 93).

If we started with an elliptic curve not in Weierstrass form, say y?
f(x) =ax® + bx? + cx + d, and if we wanted to avoid using the g- functlon
then we could repeatedly apply the addition formulas (7.1)-(7.4) to compute
the rational function of x and y whic is the x-coordinate of NP where

P = (x, y). We would simplify algebraically as we go, making use of the
relation y? = f(x), and would end up with an expression in the denominator
which vanishes if and only if NP is the point at infinity, i.e., if and only if
P has order N (recall: “order N’ means ‘“‘exact order N or a divisor of N')
What type of a xpressmn would we have to get in the denominator of
the x-coordinate of NP? oupposc for exam‘pie, that N is odd. Then this
T

1

denominator would be an expression in K{ x, y] (with y occurring at most to
the first power), where K = Q(a, b, ¢, d), which vanishes if and only if x is
one of the (N ? — 1)/2 values of x-coordinates of nontrivial points of order N.
Thus, the expression must be a polynomial in x alone with (N2 — 1)/2 roots.
Similarly, we find that when N is even, this.denominator has the form
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y - (polynomial in x alone), where the polynomial in'K[x] has (N? — 4)/2
roots.

It 1s important to note that the algebraic procedure described in the last
two paragraphs applies for any elliptic curve y? = f(x) over any field X of
characteristic # 2, not only over subfields of the complex numbers. Thus,
for any K we end up with an expression in the denominator of the x-
coordinate of NP that vanishes for at most N2 — [ values of (x, y).

For a general field K, however, we do not necessarily get exactly N2 — 1
nontrivial points of order N. Of course, if K is not algebraically closed, the
coordinates of points of order N may lie only in some extension of K.
Moreover, if K has characteristic p, then there might be fewer points of order
N for another reason: the leading coefficient of the expression in the denom-
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shall soon see examples where there are fewer than N? points of order N
even if we allow coordinates in K'e°!,

P PRSI FE S ERVESIE .

This discussion has led to the following proposition.

Proposition 15. Let y? = f(x) be an elliptic curve over any field K of characteris-
tic not equal to 2. Then there are at most N ? points of order N over any exten-
sion K’ of K.

Now let us turn our attention briefly to the case of K a finite field, in
order to illustrate one application of Proposition 15. We shall later return
to elliptic curves over finite fields in more detalil.

Since there are only finitely many points in [P" (namely, g* +4g+ 1),
there are certainly only finitely many F,-points on an elhptlc curve y* = f(x),
where f(x)e F,[x]. So the group of {Fq‘pomts ts a finite abelian group.

By the *“‘type” of a finite abelian group, we mean its expression as a
product of cyclic groups of prime power order. We list the orders of all
of the cyclic groups that appear in the form: 2%2, 2%2 272 . 3% 305 375

, 5%, 585, _... But Proposition 15 implies that only certain types can
occur in the case of the group of F -points on y* = f(x). Namely, for each
prime / there are at most two /-th power components /%, /%1, since otherwise
we would have more than /% points of order /. And of course /*t*# must equal
the power of / dividing the order of the group.

As an example of how this works, let us consider the elliptic curve y? =
x* — n’x over K = F, (the finite field of ¢ = p’ elements), w w
assume that p does’ not divide 2a. In the case when g =3 (mod
particularly easy to count the number of F ~points.

Proposition 16. Let g = p/, p} 2n. Su ppose that q¢ = 3 (mod 4). Then there are
t ¢

g+ 1 F -points o P2 — 3 _ 52y
7 1 - Uqrv."’ e
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/ count all pairs (x, y) wh“re x #0,n, —n. We drrange
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these g — 3 x’s in pairs {x, —x}. Since f(x) = x> — n®x is an odd function,
and —1 is not a square in F, (here’s where we use the assumption that ¢ = 3
(mod 4)), it follows that exactly one of the two elements f(x) and f(—x) =
~f(x) is a square in F,. (Recall: In the multiplicative group of a finite field,
the squares are a subgroup of index 2, and so the product of two nonsquares
is a square, while the product of a square and a nonsquare is a nonsquare.)
Whichever of the pair x, —x gives a square, we obtain exactly two points

(x, ++/f(x)) or else (—x, £./f(—x)). Thus, the (g — 3)/2 pairs give us
— 3 pomts Along with the four points of order two, we have ¢ + | F,-

I, as claimed. 0

Notice that when ¢ = 3 (mod 4), the number of F -points on the elliptic
curve y* = x* — n?x does not depend on #. This is not true if g = 1 (mod 4).

‘As an example, Proposition 16 tells us that for g = 7° there are 344 =
23 .43 points. Since there are four points of order two, the type of the group
of F,5-points on y? = x* — n?x must be (2, 22, 43).

As a more interesting example, let ¢ = p = 107. Then there are 108 =
2233 points. The group is either of type (2, 2, 3*) or of type (2, 2, 3, 3°).
To resolve the question, we must determine whether there are 3.or 9 points
of order three. (There must be nontrivial points of order 3, since 3 divides
the order of the group.) Recall the equation for the x-coordinates of points
of order three (see Problem 4 of §7): —3x* +6n’x* +n* =0, ie., x=
+nv1 + 2\/3/3. Then the corresponding y-coordinates are found by taking
+./f(x). We want to know how many of these points have both coordinates
in F, o, rather than an extension of F,,,. We could compute explicitly, using
J3= +18inF,,,, so that x = +./13, +./—11, etc. But even before doing
those computations, we can see that not all 9 points have coordinates in
F,o-. This is because, if (x, ) is in F, 4, then (—x, \/— 1y) is another point
f der three, and its coordmates are not in [Flm Thus, there are only 3
oi e of the group is (2, 2, 33)
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PROBLEMS

1. For the elliptic curve y* =4x* — g,x — g,, express 9(Nz) as a rational function
of p(z) when N =2

2. Let fy(2) be the elliptic functions defined above. Express f3(z) as a polynomlal in



9. Each of the following points has finite order N on the given elliptic curve. In each
case, find its order.
(@ P=(0,4ony*=4x>+ 16
(b) P= (2,8 ony? =4x3 + 16x
() P=(2, j)ony”—-x + 1
" dP=3,80ny’=x —~43x+166
(e) P=(3, 12)0ny = x3 —l4x +81x
)y P=0,0ony’>+y=x*—x*
(g) P=(l, 0)ony +xy+y=x>~x*—3x+3.

§9. Points over finite fields, and the congruent
number problem

We have mainly been interested in elliptic curves £ over Q, particularly the
elliptic curve y* = x* — n*x, which we shall denote E,. But if K is any field
whose characteristic p does not divide 2n, the same equation (where we
consider » modulo p) is an elliptic curve over K. We shall let £,(K) denote
the set of points on the curve with coordinates in K. Thus, Proposition 16
in the last section can be stated: If ¢ = 3 (mod 4), then # E (F)=¢q + L.
The elliptic curve E, considered as being defined over [F,, is called the

p’
“reduction’ modulo p. and we sav that £ has gnnd reduction” lfn does

not divide 2n, i.e., if ):)2 =x3 - néx givesnan elliptic curve over [, . More
generally, if y? = f(x)is an elliptic curve E defined over an algebraic number
field, and if p is a prime ideal of the number field which does not divide the
denominators of the coefficients of f(x) or the discriminant of f{x), then by
reduction modulo p we obtain an elliptic curve defined over the (finite)
residue fieid of p

At first glance, it may seem that the elliptic curves over finite fields—

which lead only to finite abelian groups-—are not a serious business, and
that reduction modulo p is a frivolous game mat wm not help us in our
original objective of studying Q-points on y — n*x. However, this is
far from the case. Often information from the various reductions modulo p
can be pieced together to yield information about the Q-points. This 1s
usually a subtle and difficult procedure, replete with conjectures and unsolved
problems. However, there is one result of this type which is simple enough
to give right now. Namely, we shall use reduction modulo p for various
primes p to determine the torsion subgroup of E,(Q), the group of Q-points
on y? = x* — n’x.

In any abelian group, the elements of finite order form a subgroup,
called the “torsion subgroup”. For example, the group E(C) of complex
points on an elliptic curve is isomorphic to C/L, which for any lattice L is
isomorphic to R/Z x R/Z (see Problem 2 of §I.5). Its torsion subgroup

corresponds to the subgroup Q/Z x Q/Z < K/Z x R/Z, i.e., in C/L it
al linear combinations of &, an

a
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A basic theorem of Morde'" ~tatay



elliptic curve E defined over Q is a finitely generated abelian group. This
means that (1) the torsion subgroup E(Q),,, is finite, and (2) E(Q) is iso-
morphic to the direct sum of E(Q),,, and a finite number of copies of
Z: E(Q) = E(Q),,,s ® Z". The nonnegative integer r is called the “rank” of
E(Q). It is greater than zero if and only if E has infinitely many Q-points.
Mordell’s theorem is also true, by the way, if @ is replaced by any algebraic
number field. This generalization, proved by Andre Weil, is known-as the
Mordell-Weil theorem. We shall not need this theorem for our purposes,
even in the form proved by Mordell. For a proof, the reader is referred to

We shall now prove that the only ratlonal pomts of ﬁmte order on E,, are
the four points of order 2: 0 (the point at infinity), (0, 0), (£n, 0).

Proposition 17. #E, (Q),,,, =4

Proor. The idea of the proof is to construct a group homomorphism from

E,(Q),os to E,(F,) which is injective for most p. That will imply that the
order of E(Q),,,, divides the order of £,(F,) for such p. But no number
greater than 4 could divide all such numbers # E,(F,), because we at least
know that # £,(F,) runs through all integers of the form p + 1 for p a prime
congruent to 3 modulo 4 (see Proposition 16).

We begin the proof of Proposition 17 by constructing the homomorphism
from the group of Q-points on E, to the group of [ -points. More generally,

we simply construct a map from P3 to P?p. In what follows, we shall always

choose a triple (x, y, z) for a point in P3 in such a way that x, y, and z are
integers with no common factor. Up to multiplication by +1, there is a
unique such triple in the equivalence class. For any fixed prime p, we define
the image P of P = (x, y, z)e P2 to be the point P = (X, y F/:’)e{P’f , where

Yy
intecer modula n Nate that P ;c n
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p does not divide all three integers x, y, z
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- Itis easy to see that if P=(x, y, z) ha ppensto be mE(@) ie., if y’z=
x* —n’xz*, then P is in ’",,\“Lr"p) Moreover, the H‘nagc of P, + r2 under this

map is P, + P,, because it makes no difference whether we use the addition

formulias (7.1)—(7.4) to find the sum and then reduce mod p, or whether we

first reduce mod p and then use the addition formulas. In other words, our

map is 2 homomorphism from E (Q) to E (F,), for any prime p not dividing
2n.

We now determine when this map is not injective, i.e., when two points

= (X, 1, 2y) and P, = (x,, y,, Z,) in Pg have the same image P, = P,

' FaY s ¢3 4215 Y E - l.f nmr’ I\Mll‘ i‘{ fln;; nl‘nﬂﬂ_ﬂvnr]ya D /I D {hrgeces ‘A en
ARG, 1 £ by Unu v Lf e Croon (AP 71218 J 4 ana i1 2 \Luna;uacu u
vectors in R) is divisible by p, i.e., if and only zfp divides y,z, — y,2;, X,2, —
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ProoF OF LEMMA. First suppose that p divides the cross-product. We consider
two cases:

-

(1) p divides x,. Then’ p divides x,z, and xzyl, and therefore divides X2,
DCLdUbC ll cannot ulvwc X1, V1 dl’l(l Zq. oupposc ‘for exampxe lﬂd[ [)4’}]
(an analogous argument will apply if pfz,). Then P, =(0,9,5,.7,5,) =
(0, 7, 7,, 7,2,) = (0, y;, Z,) = P, (where we have used the fact that p
divides y,z, — ¥,2,). B

(i) p does not divide x,. Then P, =(XX,, X\ J,, X,7,) = (X, %,, 5, F;,
70 =05,2) = A

Conversely, suppose that P, = P,. Without loss of generality, suppose
that pfx, (an analogous argument will apply if p}y, or pJz,). Then, since
P, = P, =(%,,7,, Z,), we also have p}fx,. Hence, (X,X,, X,7,, X,%,) =
P, = P, = (X,X%,, X,¥,, X,Z,). Since the first coordinates are the same, these
two points can be equal only if the second and third coordinates are equal,
i.e., if p divides x, y, — x,y, and x,z, — x,z,. Finally, we must show that p
divides y,z, — y,z,. If both y, and z, are divisible by p, then this is trivial.
Otherwise, the conclusion will follow by repeating the above argument with
X,, X, replaced by y,, y, or by z,, z,. This concludes the proof of the lemma.

We are now ready to prove Proposition 17. Suppose that the proposition
is false, i.e., that E, (Q) contains a point of finite order greater than 2. Then
either it contains an element of odd order, or else the group of points of.
order 4 (or a divisor of 4) contains either 8 or 16 elements. In either case we

“have a subgroup S = {P,, P,, ..., P,} < E,(Q),,.. where m = # S is either
8 or else an odd number.

Let us write all of the points P, i=1, ... m, in the form in the lemma:
P, = (x;, y;, z;). For each pair of points F;,, F,, consider the cross-product
vector (y;z; — ¥;zi, X;2; — X;Zj, X;V; — X; Vi) € R3. Since P, and P; are distinct
points, as vectors in R? they are not proportional, and so their cross-product
is not the zero vector. Let n;; be the greatest common divisor of the coor-
dinates of this cross-nroduct According to the lemma, the points P, and P,

have the same image P P in £,(F,) if and only if p dw:des n;;. Thus, xfp

is a prlme of good reduction which is greater than all of the P?), it follows
that all imaocegare dmhnr't ie the manreduction modulo n oivee an injertion
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finitely many primes congruent to 3 modulo 4, by Proposition 16 we must
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in an arithmetic pxugxcamuu Hauwly, if m = 8 this would mean that there

“are only ﬁmtely many prlmes of the form 8k + 3. If m is odd, it would
mean that there are only finitely many primes of the form 4mk + 3 (if 3* m),
and that there are only finitely many primes of the form 12k + 7 if 5|m. In
all cases, Dirichlet’s theorem tells us that there are infinitely many primes of

~ the given type. This concludés the proot of Proposition 17. O



Notice how the technique of reduction modulo p (more precisely, the use
of Proposition 16 for infinitely many primes p) led to a rather painless proof
of a strong fact: There are no “non-obvious” rational points of finite order
on E,.. As we shall soon see, this fact is useful for the congruent number
problem. But a far more interesting and difficult question is the existence
of points of infinite order, i.e., whether the rank r of E,(Q) is nonzero. As
we shall see in a moment, that question is actually equivalent to the question

of whether or not » is a congruent number.
Soit is natural to ask whether mod p information can somehow be put

r tn wvield infa atinn ahnnt the rank nf‘ an p"tnhr\ curve. Tl’n
I 1O )I\AU iniormation asout il ranxk Oi all Culpid a111s

subtle question will lead us in later chapters to consideration of the Birch—
Swinnerton-Dyer conjecture for lliptic curves.
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For further general motivatio
fields, see [Koblitz 1982].
We now prove the promised corollary of Proposition 17.

Proposition 18. n is a congruent number if and only if E,(Q) has nonzero
rank r.

x-coordinates of the three nontrivial points of order 2 are 0, +n, this means
that there must be a rational point not of order 2. By Proposition 17, such a
nnint haoc 1mnfimita Asdaer 1 4 1
l} 1111 i1ad> 11t UIlei, 1.0., 7 <= 4

e o } 2

of §1.7, the x-coordmate of the pomt 2P is the square of a
having even denominator. Now by rroposmon 2 in §1.2, the point
corresponds to a right triangle with rational sides and area » (under the

correspondence in Proposition 1). This proves Proposition 18. o

Notice the role of Proposition 17 in the proof of Proposition 8. It tells
us that the only way to get nontrivial rational points of the form 2P is from
points of infinite order. Let 2E,(Q) denote the subgroup of E,(Q) consisting
of the doubles of rational points. Then Proposition 17 is equivalent to the
assertion that 2E,(Q) is a torsion-free abelian group, i.e., it is isomorphic
to a certain number of copies (namely, ) of Z. The set 2E,(Q) — 0 (0 denotes
the point at infinity) is empty if and only if r = 0

We saw that points in the set 2E,(Q) — 0 lead to right triangles with
rational sides and area n under the correspondence in Proposition 1. It is
natural to ask whether all points meeting the conditions in Proposition 2,
1.c., corresponding to triangles, are doubles of points. We now prove that
the answer is yes. At the same time, we give another verification of Proposi-
tion 18 (not relying on the homework problem 2(c) of §1.7).

Proposition 19. There is a onc-to-one correspondence between right friangies
with rational sides X <Y < Z and n, and pairs of points (x, ty)e
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2E (@) — 0. The correspondence is:

(x, £ Yx +n—Jx—n, Jx +n+ Jx—n 2/x;

X, Y, Z—(Z%4, +(Y*— X*Z/8).

In light of Proposition 1 of §I.1, Proposition 19 is an immediate conse-
quence of the following general characterization of the doubles of points on

elhptxc curves.

~ ourne ve —f{x — o0 Yy — \ 2 Yt
+ o ] L (X3

/

¢ ASae "1) v 2) Y37
€y, €,,e3600. Let P=(xy, y,)€E(Q) — 0. Then Pe2E(Q) — 0 lfand only if
Xg — €1. Xy — €3, Xo — €3 are all squares of rational numbers.

PrROOF. We [irst note that, without loss of generality, we may assume that

o = 0. To see this, make the change of variables x" = x — x,. By simply
translating the geometricai picture for adding points, we see that the point
P’ = (0, y,) on the curve E’ with equation y* = (x — ¢})(x ~ e5)(x — ¢3),
where ¢; = ¢; — x,, 1s in 2E°(Q) — 0 if and only if our original P were in
2E(Q) — 0. And trivially, the x, — ¢; are all squares if and only if the (0 — ¢;)
are. So it suffices to prove the proposition with x, = 0.

Next, note that if there exists Q € E(Q) such that 2Q = P, then there are
exactly four such points @, Q,, Q,, Q5 € E(Q) with 2Q; = P. To obtain Q,,
simply add to Q the point of order two (e;, 0) € E(Q) (see Problem 5 in §1.7).

Choose a point Q = (x, y) such that 2Q = P = (0, y,). We want to find
conditions for the coordinates of one such Q (and hence all four) to be
rational. Now a point Q on the elliptic curve satisfies 2Q = P if and only if
the tangent line to the curve at Q passes through — P = (0, —y,). That is,
the four possible points Q are obtained geometrically by drawing the four
distinct lines emanating from — P which are tangent to the curve.

We readily verify that the coordinates (x, y) are rational if and only if the

slope of the line from —P to QO is rational. The “only if 7 is immediate

AiiL 119a1! 2 QY . = di% 22y Al A AiiziRiwvaealiiwe

Conversely, if this slope m is ratlonal then the x-coordinate of Q, whic

2
the double root of the cubic {mx — y,)° = (x — ¢, )(x — &,)(x — ¢3), must
also be rational. (Explicitly; x = (e, + ¢, + 5 + m?)/2.) In this case the
y-coordinate of Q@ is also rational: y = mx — y,. Thus, we want to know
when one (and hence all four) slopes of lines from — P which are tangent to
p ara rnf;nr\n!
As QARG AQALIVIIAL.

and only if the following equauon has a d‘ ubie root:
(mx —yo)l=(x—e)(x—e))(x—e))=x>+ax? +bx+¢, (9.1)
with
a=—e, —e,—ey, b=ee,+ee5+e,e,, = —e,0,05=3E,
QN
/ 7.4
w’ * last equality ¢ = y§ comes from the fact that (0. j,) is on the curve



IS

[¢s]

“ri

=
)

3
@]
3
-t

3
Z
1
*
-1

y* = x3 + ax?® + bx + ¢. Now if we simplify (9.1) and factor out x, our
condition becomes: the following quadratic equation has a double root:

x2 4+ (@a—mH)x+ (b +2my)=0

This is equivalent to saying that its discriminant must vanish, i.e.,
(@ — m*)? — 4(b + 2my,) = 0. (9.3)

Thus, our task is to determine when one (and hence all four) roots of this
quartic polynomial in s are rational.

We want to find a condition in terms of the ¢;’s (namely, our claim is that
an equivalent condition is: —e;€Q?). In (9.3), the a and b are symmetric
polynomials in the ¢;, but the y, is not. However, y, is a symmetric polyno-
mial in the \/ZJT. That is, we introduce f; satisfying f;> = —e;. There are two
possible choices for f;, unless ¢; = 0. Choose the f; in any of the possible
ways, subject to the condition that y, = f, £, f5. If all of the e, are nonzero,
this means that the sign of f; and £, are arbitrary, and then the sign of £; is
chosen so that y, and f, f5 f; are the same square root of —e,e,e;. If, say,
ey = 0, then either choice can be made for the sign of £, /3, and of course
/3 = 0. In all cases there are four possible choices of the f;’s consistent with
the requirement that y, = f; /5 /3. Once we fix one such choice f,, f,, f5, we
can list the four choices as follows (here we’re supposing that ¢, and ¢, are
nonzero):

fl’fz’f:%; flv -f).v _f3; _flafz’ f3’ —f1>/_—f2’.f3' (94)

cwra ot

Ji J2Z U3 1 2
b=f2f5 + ffd + 1T =83 — 25,55,
o=

Thus, equation (9.3) becomes
= (m? — s} + 25,)% — 4(s2 — 25,5, + 2ms;)
= (m? — s3)? + ds,(m? — 52) — 8s3(m — 5,).

We see at a glance that the noivnomlal in (9.5) is dwmb]e bym —s,, ie.

S SR E IS 13 =¥+

53— £ I r roo
iy = t T J2 /3 my= —Jy —JytJ3.
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We want to know whether the four values in (9.6) are rational. Clearly,
if all of the f; are rational, then so are the m;. Conversely, suppose the m;
are rational. Then f; = (m, + m,)/2, f, = (m, + m3)/2,and f; = (m, + my)/2
are rational. The conclusion of this string of equivalent conditions is: the
coordinates (x, y) of a point Q for which 2Q = P are rational if and only
if the f, = \/ —e; are rational. This proves Proposition 20. O

Finally, we note that Proposition 20 holds with @ replaced by any field
K not of characteristic 2. Essentially the same proof applies. (We need only

LdKC care to use dlgCUldlL ldlllCl llld.[l gCUlliClllL algumclub lUI Cz\dlllplt

when reducing to the case P = (0, y,).)

PROBLEMS

1. Prove that for f odd, any [F,,ppoint of order 3 on the elliptic curve £,: y? = x* — n’x
is actuauy an [ -pOii‘u; prove that there are at most three such porﬁlb if P = 3
(mod 4); and find a fairly good sufficient condition on p and f which ensures nine

F,s-points of order 3.

2. For each of the following values of ¢, find the order and type of the group of
F,-points on the elliptic curve E; : y* = x* — x. In all cases, find the type directly,
if necessary checking how many points have order 3 or 4. Don't “peek™ at the
later problems.

(a) All odd primes from 3 to 23.

3. Find the type of the group of F,-points on the elliptic curve E: ¥ = x* — 25x
for all odd primes p of good reduction up to 23.

5. Prove that there are exactly 3 F -points of order 3 on the elliptic curve in Problem 4
if g = 2 (mod 3).

6. For all odd primes p from 5 to 23, find the order and type of the group of F,-points

on the elliptic curve y* = x> — 1.

7. Prove that the torsion subgroup of the group of @-pomts on the elliptic curve
{

52 3 L-- Ao alia la 3
Yy =X 1aS UIUCT at most 0 angag inat its oraer lb Cqul t0:
faN L6 ~ L()t AAAAAA L o~ A
(@) Vilad= —p 10T SOMIC DEW,
. 3 -
(b) 2if a=c> for some ce Q with ¢ not of the form —5?;
() Rif aithor 7 — — A2 far cama Je D with dnat of the fares B3 Ae 16~ _ AIL6
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or some he (-
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8. Show that the correspondence constructed in Problem 2 of §1.2 gives a one-to-one
correspondence between right triangles as in Proposition 19 and pairs + P of



