CHAPTER 11

The Hasse—Weil L-Function of an
Elliptic Curve

At the end of the last chapter, we used reduction modulo p to find some
useful information about the elliptic curves E,: y* = x> — n?x and the con-
gruent number problem. We considered E, as a curve over the prime field
F, where pf2n; used the easily proved equality #E,(F,)=p+ 1 when
p =3 (mod 4); and, by making use of infinitely many such p, were able
to conclude that the only rational points of finite order on E, are the four
obvious points of order two. This then reduced the congruent number
problem to the determination of whether r, the rank of £,(Q), is zero or
greater than zero. ' >
Determining r is much more difficult than finding the torsion group. Some
progress can be made using the number of F -points. But the progress does
not come cheaply. First of all, we will derive a formula for # E, (F,) for any

prime power g =p Next we will combine these numbers N, =N, =
#E,,(IFPJ into a function wh.:ch is analogous to the Riemann zeta. fu -ctz n
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Given any sequence N,, r = 1,2, 3, ..., we define the corresponding ‘“‘zeta-
function” by the formal power series ’

{oo T [} uk

Z(T) = exp Y N— where exp(u) = Y —. (1.1)
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At first glance, it might seem simpler to define Z(T) as 2 N,T"; however,
the above definition has crucial properties which make it the most useful
one (see the problems below).

Let K be a field. Let A} denote the sct of m-tuples of elements of K.
By an ‘“‘affine algebraic variety in m-dimensional space over K we mean
a system of polynomial equations of the form f(x,

2 ?
fieKlxy, ..., x,]. Forexample, a conic section is a system of two eqLatlons
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of the variety are the m-tuples (x,, ..., x,,) € AT for which all of the poly-
nomials f; vanish. /

By a “‘projective variety in m-dimensional space over K’ we mean a system
of homogeneous polynomial equations f;(x,, x;, ..., X,) inm + 1 variables.
If L is a field extension of K, the “L-points” of the projective variety are the
points in P} (i.e., equivalence classes of m + i-tuples (x,, ..., x,,), where
(Xgs « o0 X)) ~ (Axg, ..., AX,), A€L¥) at which all of the f; vamish. For
example, in the last chapter we studied the [ -points of the elliptic curve
defined in H‘Dg: by the single equation f(x, y, z) = y“z — x° + n*xz* = 0.
(Note: Here xo =z, X, = X, X, = y are variables for a projective variety
in PZ, while in the last paragraph x, = x, x, = y, x; = z were variables for
an affine variety in A3.)

If we have a projective variety, by setting x, = 1 in the f; we obtain an
affine variety whose L-points correspond to the m + 1-tuples with nonzero
first coordinate. The remaining L-points of the projective variety will be
the projective variety in P! obtained by setting x, = 0 in all of the equa-
tions and considering the equivalence classes of m-tuples (x,, ..., x,,) which
satisfy the resulting equations. For example, the elliptic curve with equation
y*z — x> + n*xz? consists of the affine points—the solutions of y? = x3 —
n*x—and the points (x, y) of P§ for which —x3 =0, i.e., the single point
(0, 1) on the line at infinity = = 0.

Let V be an affine or projective variety defined over F,. Fo r any field
K o F,, we let V(K) denote the set of K-points of V. B t he ““‘congruence
zeta- functlon of ¥ over " we mean the zeta-function ¢ I‘l'eSpnndino to the

sequence N, = # V(F,). That is, we define
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We shall be especially interested in the situation when V is an elliptic
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curve defined over Fy- This is a bpcudl case of a smooth projective piane

P

curve. A projective plane curve defined over a field K is a projective variety
given in P,,_ by one homogen€ous equatlon f(x,y,z)=0. Such a curve is

ronle 0t

said to be * smootn " if there is no K*&%-point at which all partial derivatives
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vanish. This agrees with the usual definition when K = C (“has a tangent
line at every point™).

It turns out that the congruence zeta-function of any elliptic curve E
defined over [, has the form '

_ 1 =2a,T +qT?

Z(E[F,; T) = e s

(1.3)

where only the integer 2a; depends on E. We shall soon prove this in the

case of the elliptic curve E,: y* = x> — n®x. Let « be a reciprocal root of
the numerator; then 1 — 2a,.T + nT2 = (1 —al)(1 —~ 2T). If one takes the
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logarithmic derivative of both sxdes of (1.3) and uses the definition (1.1),
one easily finds (see problems below) that the equality (1.3) is equivalent

-~ 1l L‘AHA srienr Knsemanrla FAar A — 4 E(C ).
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It will also turn out that « is a quadratic imaginary algebraic integer whose
complex absolute value is \/Z]". In the case y? = x* — r?x, it will turn out
that o is a square root of —q if ¢ = 3 (mod 4), and is of the form a + bi,
a,beZ,a®> +b*=gq,ifg=1 (mod 4).

This situation is a special case of a much more general fact concerning
smooth projective algebraic varieties over finite fields. The general result
was conjectured by Andre Weil in [Weil 1949], and the last and most
difficult part was proved by Pierre Deligne in 1973. (For a survey of Deligne’s
proof, see [ Katz 1976a].) We shall not discuss it, except to state what it says
in the case of a smooth projective curve (one-dimensional variety):

(i) Z(V/F,; T) is a rational function of T (this is true for any variety
without the smoothness assumption) which for a smooth curve has the
form P(T)/(1 — T)(i — gT). Here P(T) has coefficients in Z and con-
stant term 1 (equivalently, its reciprocal roots are algebraic integers).

(ii) If ¥ was obtained by reducing modulo p a variety V defined over Q,
then deg P = 2g is twice the genus (“‘Betti number”) of the complex
analytic manifold V. Intuitively, g 1s the “number of handles™ in the
corresponding Riemann surface. An elliptic curve has g = 1, and the
Riemann surface in Fig. I1.1 has g = 3.
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(ii1) If « is a reciprocal root of the numerator, then so is g/a.

(iv) Allreciprocal roots of the numerator have complex absolute value /3.

One reason for the elegance of the Weil conjectures is the intriguing

indirect connection between the “physical” properties of a curve (e.g., its
number of handles as a Riemann surface when considered over C) and the

number theoretic properties (its number of points when considered over
F,r). Roughly speaking, it says that the more complicated the curve is (the

higher its genus), the more N,’s you need to know before the remaining
ones can be determined. In the simplest interesting case, that of elliptic
curves, where g = 1, all of the N’s are determined once you know N;.

PROBLEMS

** and Z(T), Z*(T), Z**(T) are the correspondmg

7 k(T ’7>k I'de a LY 3
VAIVE N *(T);and if N, = N* — N** then Z(T) =

IIZ

Show that if there exists a fixed set «,, ..., a, B, ..., B, such that for all r we have
N=p{+ -+ —af— - - —af, then

— Ol
(I__RT\/I_R .- (1 - 8T
Praa = P24 )7 U T op4

r)

. Prove that if N, < CA" for some constants C and A, then the power series Z(T)

converges in the open disc of radius 1/4 in the complex plane.

reven;

. Show that if N, = i " then Z(T) is not a rational function; but if N, =

odd,

{2, reven;

{L 0 dd then Z(T) is rational. In the latter case, interpret N, as the number
r odd,

of F,rsolutions of some equation.

. The Bernoulli polynomials B,(x)e Q[ x] have the properties: (i) deg B, = r; (ii) for

all M, B(M)—B,0)=r(1"" + 271 4 ... 4 (M — 1)™!). Now for fixed M let
N,_, = #(B,(M) — B,(0)). Find the corresponding Z(T). (Cultural note: B, (x) =
x =3, By(x) = x> — x + 1§, etc.; they are uniquely determined by properties (i)
and (ii) along with the normalization requirement that {§ B,(x)dx = 0 for r > 1.
One way to define them is by equating terms in the relation: fe™*/(e' — 1) =
Z20 Bx)r'[r!) :
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(the residue fields of P and /', respectively) which takes «; to «;. Thus, the
maximal ideal m(P) corresponds to d different K*'*“-points P on ¥V, where
d = [R(V)/m{(P): K] is the residue degree of any of the points P.

15. In the situation of Problem 14, let K = F,. For a given K*®-point P, the residue
field 1s F 4 for some d. Then P contrrbutes I to each N, for which r is a multiple of
d. That 1s, thc contribution of P to the exponent in the definition of the zeta-
function is 2., T*/kd. Then Z(V/F,; T) is exp of the sum of all contributions
from the dlffcrcnt K*#<points P. Group together all points corresponding to a
given maximal ideal, and express Z(V/F,; T) as the product over all maximal
ideals m of (1 — 79%#=)"! Then show that the zeta-function belongs to 1 +
TZ[[T]] (Cultural note: If we make the change of variables 7 = ¢%, and define
Norm(m) to be the number of elements in the residue field, i.e., Norm(m) = g9<&™,
then we have Z(V/F,; ¢7°) = I1,(1 — Norm(m)~*)~!, which is closely analogous
to the Euler product for the Dedekind zeta-function of a number field: {y(s) =
I,.(1 — Norm(p)~*)"!, in which the product is over all nonzero prime ideals of
the ring of integers in the field K. In a number ring, a nonzero prime ideal is the
same as a maximal ideal.)

16. Prove that if Z(V/F, ; T)eQ(T), then the numerator and denominator are in
I + TZ[T ] (equivalently, the «’s and f’s in Problem 2 are algebraic integers).

§2. The zeta-function of E|,

We now return to our elliptic curve E,, which is the curve y* = x> — nx,
where n is a squarefree positive integer. More precisely, £, is the projective
completion of this curve, i.e., we also include the point at infinity. E, is
an elliptic curve over any field K whose characteristic does not divide 2n,
and, as we have seen, it is sometimes useful to take K = [, or more generally
K =F,. The purpose of this sectlon 1s to express the number of F,-points
‘on E, in terms of “‘Jacobi sums”’

To do this, we first transform the equation of E, to a “diagonal form”.
We say that a hypersurface f(x,, ..., x,) =0 in A} is ““diagonal” if each
monomial in finvolves at most one of the variables, and each variable occurs
in at most one monomial. For example, the “Fermat curve” x? + y¥ = 1 is
diagonal. It turns out that diagonal hypersurfaces lend themselves to easy
computation of the N, (much in the same way that multiple inte
much easler to evaluate when the variables separate). We sha!! no
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general case, but only the one we necd to evaluate N, = #E, (F ). (For a
general treatment of diagonal hypersurfaces, see [Weil 1949] or [Ireland
and Rosen 1982, Chapter II].)

We first show a relation between points on E,: y? = x> — n?x and points
onthecurve E;:u? = v* + 4n%. Asusual, we supposethat )7 ,{’2? Frrst suppose
that (¥, v) is on E,. Then it is easy to check that the point (x, y) = G(u + v?);
1 2
z0(u + v%)) 1s on E,. Conversely, if (x, y) is on E, and its x-coordinate is
nonzero, then we check that the point (v, v) = (2x — y%/x?, y/x) is on E,.
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Moreover, these two maps are inverse to one another. In other words, we
have a one-to-one correspondence between points on E; and points on
—{(0,0)}. Let N’ be the number of F_-solutions (u, v) to u? = v* + 4n’.
Then the points on our elliptic curve cons:st of (0, 0), the point at infimty,
and the N’ points corresponding to the pairs («, v). In other words, N, =
#E,(F,) 1s equal to N" + 2. So it remains to compute N’. The advamage

of the eauation u? = v* + 4n? is that it is diagonal

A vaale by Radad 2 A LI ¢4 </ H e VASLAS AV AC AR ARSRa.

The bas1c: ingredients in determining the number of points on a diagonal
hypersurface are the Gauss and Jacobi sums over finite fields. We shall now

dafine tha nd oive their amantary nranartioc
u\«llll\« I.ll\.«lll auu BIVD Lil\all \«l\.«lll\/lllal‘y }Jl Ul)bl LivO.

Let y: F, — C* be a nontrivial additive character, i.e., 2 nontrivial homo-
morphism from the additive group of the finite field to the multiplicative
group of compxex numbers. \omce U'q is finite, the uuage must consist of
roots of unity.) In what follows, we shall always define (x) = ™ *, where
¢ = e?™/P and Tr is the trace from F, to F,. Since the trace is a nontrivial
additive map, and its image is F, = ,Z/pz we obtain in this way a nontrivial
additive character.

Now let x: F; — C* be any multiplicative character, i.e., a group homo-
morphism from the multiplicative group of the finite field to the multi-
plicative group of nonzero complex numbers. In what follows, the additive
character ¥ will be fixed, as defined above, but ¥ can vary.

We define the Gauss sum (depending on the variable y) by the formula
g0 = ), 2(x)¥(x)

xe F_
xef,
(where we agree to take x(0) =0 for a/i y, even the trivial multiplicative
character). We define the Jacobi sum (depending on two variable multi-
plicative characters) by the formuia

Tty 12) = Z X1 ()22 (1 — x).

xe IFq
The nroofs of the following elementarv nronerties of Ganes and Tacahi
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sums are straightforward, and will be left as exercises. (Here y,,;, denotes
the trivial o aracter. w 1inh talkog all nAanzara alamante ~FE ¢t~ 1. o A A
VAUV LLAVAQL vilQi Al VWERMLLL LAGRALO Gl (IULZCIU CIOICIIWL Ut 6 q O 1, £, [, i
v_ Aoennta nantrivial sharantares amd T Aamatone tlaa ,-.,AM.. P SRS DN
A2 UL nolluilviar ClialrdClels, ana y acnolcs e Compicx LUllj ugate (aiso
called “inverse™) character of y, whose value at x is the complex conjugate

of x(x).)

(1) g(Ztriv) = - 1; J(X(riv’ X(riv) =q— 2; J(Xtriv’ X) = ”}
JOL ) = —x(=1D; J(t1, 1) = J(X2, x1)5

) 9090 = 2(=Dg; g0 =Jq:

(3) J(tis x2) = g(x)9()a( x2)  if X2 # Xa-

xy 7

Wenow proceea to the compmauon of the number N” of u, ve [ satisfying
u? = v* + 4n’.-The key observation in computing N’ is that tor any a # 0
in F_ and any m dlvxdmg g — 1, the number of solutions x € F,_ to the equation
X" = a1s given by:
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#{x"=al= ) y), 2.1)
xm=1

where the sum is over all multiplicative characters whose m-th power is the

trivial character. Namely, both sides of (2.1) eaua! m if a is an m-th power

in F, and equal 0 otherwise; the detailed proof will be left as a problem

below.
ter. we know th tN‘zn—L]ifqﬁq
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ti ] b
(mod 4). In what follows, we shall suppose that ¢ = 1 (mod 4).
In counting the pairs (&, v), we count separately the pairs where either «
T

~ar s o e ee i xxre xpreito
Of ¥ 18 z€rO. 11us, We writc

N' = #{uel Ju’ = 4n*} + # {veF |0 = v* + 4n°} 2.2)

+ #{u, veF}lu? = v* + 4n?}.
The first term in (2.2) is obviously 2 (recall that we are assuming that p f 2n).
We use (2.1) to evaluate the second term. Let y, be one of the characters
of F¥ having exact order 4, i.e., x,(g9) = i for some generator g of the cyclic
group F¥. Then, by (2.1), the second term in (2.2) equals “

Y i (—A4n?) = —4p?
> xa(—4n%) =2 + 2y, (—4n%) (2.3)
=1
- -~ am o = ~ o LA -~ Pe X o .,.2 :n s O P 7Y -— :ﬁﬂ XYXrAA Arralrynfrns o
(where we use the fact that —4n° is a square in {Pf;) Finally, we evaluate the
PR T . L s PR N o~ hon P I i i PR HEPS
third term in (2.2). Let y, denote the nontrivial character of order 2 (i.e.,

Y #l{t=a)-#{p*=0b}= Y Y dA@ria— an®).
a,berr; ae!Fq a—-4n?#0 j=1,2,3,4
a=b+4n? k=1,2

Note that since x}(0) = 0, we can drop the conamon a — 4n* # 0 on the
right. We now make the cnange of variable x = a/4n” in the first summation
on the right. As a result, after we reverse the order of summation, the right
side becomes

) 1i(—4n?) Y @1 -xy =Y xd(=4H)JI03, xd)-

j=1,2,3,4 xe!F,, j=1,2,3,4
k=1,2 k=1,2

Finally, bringing together the three terms in (2.2) and using property (1) of

Jacobi sums when y% or yi is trivial or they are conjugate to one another,
we obtain:

N'=4+2,(-4n®) + Y ti(=4n") (0 1d) +9 -2+ 3:(=1)
j=1,3

+ 2%4(—4n%) - (—1) (2.4)

hAS 74

=g — 1 + (= 4n")(U(X2> 24) + J(2, Xa))-
In the problems we show that y,(—4) = 1. Hence, y,(—4n?) = x,(n). Thus,

if we set

=0, = = yr (2.5)
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we conclude that
Ny =#E(F)=qg+1—a—a (2.6)

Notice that « is an algebraic integer in Q (i), since the values of x, and x,
in the definition of J(y,, x,) are all +1, +i. We now pin down the Gaussian

integer o = a + bi, at least in the case when g = p is a prime congruent to |
mod 4 or qg= n is the sauare of a nrlmp congruent to 3 mod 4. By property

2228 LAV O RRRIV N AN NJia 2 . 22288

(3)\relatmg J aCObl to Gauss sums, we have

o= —yx(mg(x2)9(x2)/9(Xs)>

and hence, by property (2), we have |¢|> = a® + b% = q. In the two'cases
g = p = 1 (mod 4) and q= p , 7 = 3 (mod 4), there are very few possibilities
for such an a. Nai‘ﬂely, in the former case there are Eigiu choices of the form
+a + bi, +b + ai; and in the latter case there are the four possibilities +p,

+pi. The following lemma enables us to determine which it is.

Lemma 1. Let g = 1 (mod 4), and let y, and y, be characters of F% of exact
order 2 and 4, respectively. Then 1 + J(x,, x4) is divisible by 2 + 2i in the
ring Z[i].

PROOF. We first relate J(x,, x4) to J(x4, x4) by expressing both in terms of

Gauss sums. By property (3), we have: J(x2, x4) = J((a» £4)9(22)*/9(10)9(%s)
= x4(—1)J (x4, x4) by property (2). Next, we write

J(tar %a) = ¥ x4 7a(t — %) = 25 + 2 10 () 221 — %),

where X’ is a sum over (¢ — 3)/2 elements, one from each pair x, 1 —

with the pair 52, 23D omitted. Notice that x,(x) is a power of i, and so is
congruent to 1 modulo 1 + iin Z[i]; thus, 2y, (x)x,(1 — x) = 2(mod 2 + 2i).
As a result, working modulo 2 + 2i, we have J(x,, y4) = g — 3 + x3(5) =
2+ y4(4) (since g = 1 (mod 4)). Returning to J(x,, xs) we obtain:

P+ J(x2s Xa) =1+ xa(—=DIGlas xa) = 1+ 14(—4) + 2x4(—-1)
(mod 2 + 2i).

|21

Since x,(—4) = 1, as mentioned above (and proved in the problems below),
and since 2(1 + y,(—1)) = 0 or 4, it follows that 1 + J(x,, y4) is divisible by
2 + 2i, as claimed. ‘ O

We now have the basic ingredients to prove a formula for Z(E [F,: T)

Theorem. Lot E, be the elliptic curve y* = x> — n*x defined over F,, where

p42n. Tiren
| —2aT 4 pT? _ (1 — aT)(1 — &T)
1-DA-pT) (=T ~pT)’

where ( ca;o=i/pifp=3(mod4); andifp =1 (mod 4), then o is an
elem: '} of norm p which is congruent to (§) modulo 2 + 2i.

Z(EF,; T) = (2.7)
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Before proving the theorem, we note that in the case p = I (mod 4) it says
we choose o = a + bi with @ odd (and b even), where the sign of a is deter-
mined by the congruence condition modulo 2 + 2i. There are two possible
choices a + bi and a — bi; and of course the formula (2.7) does not change
if we replace a by its conjugate.

, we must let the power of p vary, and

I (mod 4) and N,, = #E,(F) forp=3
tN,=p"+ 1foroddrin that case). So we
1

fix g equal to p in the first case and equal to p? in the second case (in either
case ¢ = | (mod 4)), and we replace g b q' throughout the work we did
earlier to find a formula for # E (F)), ¢ = | (mod 4).

AAAAAAA . «zrn moaad matatian indicata whisrh o

Because the r lb Valylug, w¢ ficed a notation to inaicate waich A2 uud L4
we are talking about, i.e., to indicate for which finite field they are multi-
plicative characters. Let x, ; = xz denote the unique nontrivial character of
ﬂ"“ of order 2, and let Xa,1 = Xa denote a fixed character of U“q of exact order 4
(there are two, the other one being ¥,). Then by composing y, or y, with
the norm from F,r to [F,, we obtain a character of F} of exact order 2 or 4,
respectively. We denote these characters x, , and yx, ,. For example, if g is
a generator of F* such that x4(g) ={, and if g, is a generator of F} whose
norm is g, i.c., (g_,)”‘” "t =g, then we have y, ,(g,) = i. If N, denotes
the norm from F, to F,, we can write our definitions:

x4,r = X4O Nr’ Xz,r = Xzo Nr' (28)

With these definitions, using (2.5) and (2.6), we can write:

o~
N
O
Sear”’

We now use a basic relationship, called the Hasse—Davenport relation, for
Gauss sums over extensions of finite fields. The Hasse—Davenport formula
is: )

~g(xoN,) = (—g(0). (2.10)

The proof of this fact will be given in a series of exercises below. Applying
(2.10) to the three Gauss sums in (2.9), and observing that y, ,(n) = x,(n") =
x2(n)", we conclude the following basic relationship:

G gr = Oy g (2.11)

The theorem now follows quickly. First suppose p = 1 (mod 4), in which
case ¢ = p. Then x,(n) is the Legendre symbol (5). Using (2.5) and Lemma 1,
we find that « = a, , is a Gaussian integer of norm p which is congruent to
(§) modulo 2 + 2i; and, by (2.9) and (2.11),
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N=p+1—o —a.

This proves the theorem when p = | (mod 4) (seec Problem 2 of §I1.1).

Now suppose that p = 3 (mod 4), g = p>. Then y,(n) = 1, since all elements
of F, are squares in F,.. Then Lemma.1 tells us that o, , is a Gaussian integer
of norm g which is congruent to 1 mod 2 + 2i. Of the four Gaussian integers
i'p, j=0, 1, 2, 3, having norm ¢, only «, , = —p satisfies the congruence
condition. lhen, by (2.6) and (2.11), we conclude that for r even we have

N=#Ep2)=p"+ 1~ (=p)"? = (=p)"
Since N, = p" + 1 for odd r, we have for any r:
N, =p"+ 1~ (py —(=i/p).
This completes the proof of the theorem. o

We conclude this section by calling attention to the role Lemma 1 has
played in pinning down the reciprocal roots « and & in (2.7). The congruence
condition in Lemma 1 will again be needed when we start working with the
Hasse~Weil L-function of the elliptic curve E,, which combines the «’s for
different primes p. In that context, Lemma 1 is a special case of a general
fact about how Jacobi sums vary as we vary the prime p. The general case
is treated in [ Weil 1952].

PROBLEMS

t D FLlmrvecn PN arnhi crveeo t b
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rave nronerties A1 P S oy
TOVE properties { {Jauss ana sacooi sums tnat were given in tne text.

2. Let G be a finite group, and let G denote the group of characters y (i.c., of homo-
“morphisms x: G — C*). Recall that for any nontrivial ye G, £, ; z(g) = 0. Notice
that any fixed ge G gives a character g: y+— x(g) on the group G, and also on any
subgroup S = G. Apply these gencral considerations to the case when G = Fr
and § is the subgroup of characters y such that ™ = 1. In that way prove the
relation (2.1) in the text.

3. Let g = I (mod 4), and let x, have exact order 4. Show that y,(4) and y,(~1) are
both equal to | if ¢ = I (mod 8) and equal to — 1 if ¢ = 5 (mod 8). Conclude that
x4(—4) = 1 in all cases.

4. Show that g(x,)* = (—1)""¥?¢. It is somewhat harder to determine which square
take to get g{x,) (sec [Borevich and Shafarevich 1966, pp. 349-353]).

i
£ s o \cssbmn Y &
Compute g(x,) when g = 3, 5, 7/,

Ne)

5. For g = 1 (mod 4), again let x, be the nontrivial quadratic character, and lct 7,
and ¥, be the two characters of exact order 4. Compute J(x,, x,) and J(y,. 7.)
directly from the definition when g = 5, 9, 13, 17.

6 Shoaw that if v_ ic the nantrivial Anadratic charactar AfF TF¥ anAd o arey e be 1
Ve WREVYY LIIGL I3 L2 10 MUV UMVIILIAIVIAL Yuauliativ vilaial el Uz Uq alivd £ 13 aily uuvuigviail
character. then J{v. v) = v(DJ(v ¥
1974 t-01 Wiy vaRir e L2y L) rAWILAVEW §L

7. Let x3 and ¥, be the two characters of F¥ of order 3, where g = 1 (mod 3). Compute
J(%3, x3) and J(¥3, ¥3) directly from the definition when g = 7, 13.
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Therefore

H(p —1;) H 8 = (p_;_l)' (mod p)

(_1)17, Hri H 8; = (P—-;—l-)| (IIlOd p)

n m 21 B
¥ o, 1
[Ir:]si=][ka=a"" [[k=a"= E==) (modp)
i=l  j=1 k=1 k=1
Therefore
o B Jes ] fi==1
(-1 B2y = (B (mod p)

which implies that
a"T =(-1)" (mod p)

The conclusion now follows from Euler’s Criterion (Theorem 7.2) and Lemma
71. =

For example, let us use Gauss’ Lemma to evaluate (3). Since
(11 — 1) = 5, we look at the first 5 multiples of 3, namely, 3, 6, 9
12, 15. The least positive residues (mod 11) are 3, 6, 9, 1, 4. Exactly
2 of these least positive residues exceed —121, namely, 6 and 9. Therefore
3 2
g=(-1)"=1 ,

Next, let us evaluate (;%) via Gauss’ Lemma. Since (13 - 1) =6
we look at the first 6 multiples of 7, namely, 7, 14, 21, 28, 39 42.
The least positive residues (mod 13) are, 7, 1, 8, 2, 9, 3. exactly3
of these least positive residues exceed —123, namely, 7, 8, and 9. Therefor
() = (-1 = —1. )

If we apply Gauss’ Lemma to the case a = 2, we obtain an explicit

formula for (f—,), which is given by Theorem 7.5.

Theorem 7.5 If p is an odd prime, then

(g)g 1 if p=+41 (mod 8)
p -1 if p=43 (mod 8)
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Theorem 7.5A

Theorem 7.6

)
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Proof: Applying Gauss’ Lemma, we look at the first %1 multiples of 2,
namely, at {2, 4, 6, ..., p— 1}. These positive integers are all less than p,
so they are their own least positive residues (mod p). Let S, denote the
set of least positive residues (mod p) that exceed L. If p =8k +1, so that
g iil};t%;’ tinhe;l Sp={4k+2,4k +4,...,8k}. Ifp = 8k — 1, s0 that
s = 5 then S, = {4k, 4k + 2, ..., 8k — 2}. In either case, these
residues are 2k in number, so (%) = (-1)%¢ =1.

If p = 8k+3, so that 2 = 4k+3, then S, = {4k+2, 4k+4, ..., 8k+2}.
Finally, if p = 8k + 5, so that § =4k + 2, then

Sp={4k+4, 4k +6, ..., 8k +4}.
In either case, these residues are 2k+1 in number, so (%) = (-—1)2’“"'l = —l.
o

For example, since 13 = —3 (mod 8), it follows that (%) = —1. Also,
since 17 =1 (mod 8), it follows that () = 1.

A more compact formulation of Theorem 7.5 is the following:

If p is an odd prime, then

Recall that a Mersenne prime is a prime of the form 2P —1, where p itself
is prime. By virtue of Theorem 7.5, we can prove that 2P — 1 is composite
for certain primes, p.

If the prime p > 3, p =3 (mod 4), and ¢ = 2p + 1 is prime, then 2P — 1 is
composite.

Proof: Since p = 3 (mod 4) and ¢ = 2p + 1 by hypothesis, it follows
that ¢ = 7 (mod 8). Therefore Theorem 7.5 implies (2) = 1. Now Euler’s

Criterion implies 297 =1 (mod q), that is, ql(2? —1). If n > 3, one can

prove by induction that 2" —1 > 2n + 1. Since p > 3 by hypothesis, we
have 27 — 1 > g. Therefore 2P — 1 is composite, having ¢ as a factor. m

Remarks

If 2p + 1 is prime, then 3 f (2p+1),s0p =2 (mod 3). If ale)p = 3 (mod 4),
then p = 11 (mod 12). The five smallest primes for which Theorem 7.6

holds are 11, 23, 83, 131, 179.
o
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