3
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Proposition 7. The theta-function satisfies the functional equation

0(1) = —=6(1/1). (4.10)

Ji

PROOF. We apply Poisson summation to g(x) = e™™* for fixed ¢ > 0. We
write g(x) = f(\/fx) with f(x) = e”™". By Proposition 5 and property (3)
of the Fourier transform (with & = (/1) we have §(y) = t""%¢ ™" Then
the left side of (4.8) is 0(¢), and the right side is #7/26(1/1). This proves the
proposition. uid

We sometimes want to consider 6(¢) for complex ¢, where we assume that
Re ¢ > 0 in the definition (4.9). The functional equation (4.10) still holds
for complex ¢, by the principle of analytic continuation of identities. That is,
both sides of (4.10) are analytic functions of ¢ on the right half-plane. Since
they agree on the positive real axis, they must be equal everywhere for
Ret > 0.

.
Proposition 8. As 1 approaches zero from above, we have

| -1/2 —Cjt

|0(t) — 7| <™ (4.11)
fnv CNMIps nnciting rnmotrsant £
JUI QUIIIC PUQ&&tUC CUrioLuerit .,

/7 - -1/t 37/t 1

PROOF. By (4.10) and (4.9), the left side is equal to 272 T2 e ™" Suppose
h t /i >4e " and also ¢ < 3. Then
+

t is small enough so tha

6 — 12| < Jei(eT 4 e 4 )< Je I 4 bk d gt )

Thus, wecantake C=n — 1 O
We now relate 0(¢) to the Riemann zeta-function. Roughly speaking, {(s)
is the Mellin transform of 6(¢). The functional equation for 6(f) then leads
us to the functional equation for {(s), and at the same time gives analytic
continuation of {(s). We now show how this works.
Theorem. The Riemann zeta-function [(5) defined by (3.1) for Re s > 1 extends
analytically onto the whole complex s-plane, except for a simple poie at s = 1
with residue 1. Let
\ e T S2T {i\ F{N (A 1O
‘A‘(S}d—e—fﬁ i \2}\,\01 (314
Then A(s) is invariant under replacing s by 1 — s

AGs) = Al — s).

That is, {(s) satisfies the functional equation
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Proor. Basically, what we want to do is consider the Mellin transform
{3 6(nr(%). However, for large ¢ the theta-function is asymptotic to 1
(since all except the n = 0 term in (4.9) decrease rapidly); and for ¢ near 0
it looks like ¢~%%, by Proposition 8. Hence, we must introduce correction
terms if we want convergence at both ends. In addition, we replace s by 3
(otherwise, we would end up with {(2s)). So we define

0607 | o0 -ng+ | [ (e(z)»—ﬁ)-‘{i (4.14)
1 0

[ o] Nl o oemsmsm A~

+1. £3 1

In the first
zero rapidly at infinity. So the integral converges, and can be evaluated
term by term, for any s. Similarly, Proposition 8 implies that the second
integral converges for any s. In any case, since 6(¢) is bounded by a constant
times t~'2 in the interval (0, 1], if we take s with Re s > 1 we can evaluate
the second integral as

Tt acaen thn Avemsncai~es 104} l .09 PP L
uxu:g,lcu LtUC CAPICB ion U — — (-‘-I"—-l [ 4 appluabllcb

{'1 5‘29( )d [‘l t(s—i)/2d_l — [‘1 13/29(1)-@ .
Jo f .Jo ! Jo ! s—1
Thus, for s in the half-plane Re s > 1, we obtain:

w o 1 o) 1

(,25(5) =2 Z e—nnzztslzit_ + (f tslzéjt--F 2 Z r e-smzttsfz : 2 1\‘
n=1J4 o \Jo t n=1 Jo (s 1
A 2 L,dt 2 2

— —~qan tgsf2 H° =
2,,; ¢ ! ! + s + l -5

JO

Using (4.6) with ¢ replaced by nn* and s replaced by —";—, we have:
1

1 © 2\—s/2 (s 1
| Egb(s): Y. (nn?) F[§)+E+1

n=1

Ve
N
|
[

(4.15)

where always here Re s >
Now ¢(s) is an entire fi

sowell fnr an y s.aswe saw. Th

vy QS

function of s on the whole complex plane namely

which is equal to {(s) for Re s > 1. Moreover, since %2, 1/T'($), and ¢(s)
are all entire functions, it follows that the only possible poles are at s = 0
and at s = 1. But near s = 0 we can replace sI'($) in the dcnominator by
2()1T°(3) = 2I'(3 + 1), which remains nonzero as s — 0. H- the only pole
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§4. The prototype: the Riemann zeta-function

is at s = 1, where we compute the residue

s/2 1 7'(1/2 _
e g /2)( 0=+ 25) ==

It remains to prove the functional equation. Since, by (4.15), A(s) =
Ld(s) — + — 7=, and since + + (, 5 Is invariant under replacing s by 1 — s,
it suffices to prove that ¢(s) = ¢(1 — s). This is where we use the xuncuonax
equation (4.10) for the theta-function. Using (4.10) and replacing 7 by ¢ in
(4.14), we obtain (note that d(1)/(}) = —4, and [T becomes |} = — | under

the substitution):
1 00
s=[ (oD = 1)L+ [T (off) - vi )&
Jo N\ \*/ J ¢ J1 N \*Y/ /t

(replacing ! by %)

.

= r*f’z(\ﬁe(t)—l)fi—“r J wt“’z(\ﬁﬂ(t)——\ﬁ)% (by (4.10))
1

L

— ! t(l s)/2 1) dt t(l*s)/.!(@(t)___~ 1)_“_:
vo \/_) ! J
= (1 — 3).
This completes the proof of the theorem. 0

In a similar way one can prove analytic continuation and a functional
equation for the more general series obtained by inserting a Dirichlet
character y(n) before n™° in (3.1), or, equivalently, inserting y(p) before p™*
in the Euler product (see Problem 1 below). That is, for any character
y:(Z|/NZ)* — C*, one defines:

0 ’n‘ i N
L= E _[]——  (whereRes>1). (4.16)
n=t M p 1= x(p)p
TLhao Aoétnile A€ ¢hia smemanl Af nemaliitin Amemtitmizatinm and tha Grmatinmn P antrintinn
1 110 UCLalid vl LIC piovl Ul ¢ll l_y LILC LU uAalivili alia i 1uul..«uuuax C\.iudllUll
will be outhned m the form o problems below
The Hasse—Weil L-function for our cmpuu curve £,, to be defined in the
I B WA L

next section, will also turn out to be a series similar to (4.16), except that
the summation will be over Gaussian integers x, the denominator will be
the norm of x to the s-th power, and the numerator will be ¥,(x), where j,
was defined in (3.3) in the last section. The techniques used in this section
to treat the Riemann zeta-function can be modified to give analogous
facts—analytic continuation and a functional equation—for the Hasse-Weil
L-function for E,. In the final section we shall use this information to
investigate the ‘“‘critical value” of the Hasse—Weil L-function, which is
related to the congruent niimber problem.
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(d) Let s = k be a positive even integer. Show that for aeC, Ima > 0:

2 1 Qmu)

— ¢ k-1 2uina‘
e e YR

(e) Give asecond derivation of the formula in part (d) by successively differentiating
the formula

§3. The Hasse—Weil L-function and its functional
equation

Earlier in this chapter we studxed the congruence zeta-function Z(£/F,; T)
for our elhptlc curves E,: y? = x> — n’x. That function was defined by a

gonarating nr-'gn mmada 11 Fram tha ﬂ!lml\ar N N nf I'I:.' _r\f\tﬂf An tha
5Cucxauus OVLAILO 1lauL- up iV LIV dulliuvl Iy, - 1¥, P O1 7 PUiaiLS vil uie

elliptic curve reduced mod p. We now combine these functlons forall p to
obtain a function which incorporates the numbers N, , for all possible prime
pOWCl'S p lIlC HUHIDCI'S Ol pl)lrllb on E over dli lIHllC llel(.lb

Let s be a compiex variable. We make the substitution 7= p~° in

Z(E,[F,; T), and define the Hasse~Weil L-function L(E,, s} as follows:

(b s) — ERST A
ns ) g ~5
“H, Z(E,[F,; p™°)
=11 l G.D
~s 1-2s '
pi2n 1 2aE",pp + P
I
= 1l degPyRi pY—S (52)
pian I — @ (NL)

We must first explain the meaning of these products, why they are equiv-
alent, and what restriction on se C will ensure co..vergence In (5.1) we are
using the form of the congruence zeta-function in the theorem in §11.2 (see the

irst eaualitv in (2 7YY where the natation 7. :nrﬁrw)n:-c that the cnaffiriant
RIBLUL WA UARILY LU (& 7))y VVAIVWI LV LMV AV GWAV "’p FAIVAIWALW O LAl b1V VUNILLIVIVIRL
a AP?‘\D!’\AQ an K OnA Ql(‘r\ Aan tha neima n Wa vt tha tarm (oo — 1Y aen

HVPVLIMO Vil 44 AlIU QISV VUl WV Pl l./ \A AV PUL Lilv Vi1l ‘:\0)5\0 ll k11

hedeﬁnltlon SO that the uninteresting part of the co ngruen zeta-function—

der it ' replacing {(s) and
{(s — 1) by their Euler prouuub (see (3.1)). Note that when p|{2n, the deno-
minator term is all there is (see Problem 10 of §I1.1), so we only have a
contribution of 1 to the product in that case; so those primes do not appear
in the product in (5.1).

In (5.2) the product is over all prime ideals P of Z[i] which divide primes
p of good reduction. Recall that those primes are of two types: P = (p),
p=3 (mod4), degP =2, NP=p*; and P=(a+bi), a* +b*=p=1
(mod 4), deg P =1, NP = p. The meaning of «, and the equivalence of
(5.1) and (5.2) are contained in Proposition 1 {see (3.2)).
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As in the case of the Riemann zeta-function, we can expand the Euler
product, writing each term as a geometric series and multiplying all of the
geometric series corresponding to each prime. The result is a Dirichlet
series, i.e., a series of the form

L(E, )= Y b,.m™. (5.3)
m=1

Before discussing the “additive” form of L(E,, s) in detail, let us work out
the values of the first few b,,, n for the example of the elliptic curve E,: y? =

x* — x. We first compute the first few values of ag ,in(5.1). If p = 3 (mod 4),
thenag ,=0.1fp =1 (mod 4), there are two easy ways to computea = ag_,:

(1) as the solution to a® + b? = for which a + bi =1 (mod 2 + 2i); (2)
after counting the number N, of F,-points on E;, we have 2a =p + 1 — N,
(see (1.5)). Here is the result:

1 1 1 1
1+3-9° 1+25°+525° 1+7-49° 1+ 11-121°
. 1 . l .
1—6-13°+13-169° 1—2-17"°+ 17-289*
=1-2-5=3-9746-13°4+2-17°4 ¥ b,,m™ (54)

m>25

= &2

L(E,,s) =

We have not yet discussed convergence of the series or product for L(E,,, ).
Using (5.2) and the standard criterion for an infinite product to converge
to a nonzero value, we are led to consider Zp|ap|*8#(NP)~* for s real. By
Proposition 1, we have |ap|*#” = NP2, In addition, NPY27s < p'275 for
s = 1 (where P = (p) or else PP = (p)). Since there are at most two P’s for
each p, it follows that the sum is bounded by 2%, pY27s which converges if
Res > 3. To summarize, the right half-plane of guaranteed convergence 1s
1/2 to the right of the right half-plane of convergence for the Riemann
zeta-function, because we have a term of absolute value \/p in the Euler
product which was absent in the case of {(s).

We now discuss the additive form of L(E,, s) in more detail. Using
Proposition 2, we can rewrite (5.2) in terms of the map ¥, defined in (3.3)—
(3.4):

¥ D)\—I
L(Em S) H ( 1 - /n:ll P\S l ? (5'5)
Pi2n \ \NL)

where we have used },(P) to denote its value at any generator of the ideal P

Notice that, since 7, is a mnltiphcatlve map taking the value 1 at all four

units +1, +i, we may regard it equally well as a map on elements x of
711 ar an ideale 7
lL-LbJ R JAL NAWGLALD £,

Wn o NN nvnonr] fl—\n ﬂ!‘l\A“lﬁf {( :\ 1 fl‘\c: COYVIA IITOAY! AMNA A(\AG pr\v fl-\n

YY O VALL LIVYY UAPCLIIU Ltilv PlUuu\-«l \J-J} .l.ll LiiIv oQaiiiv way UVliVv UULD 1V L1V

Riemann zeta-function and for Dirichlet L-series (see Problem 1(a) in the

last section). We use the two facts: (1) every ideal / has a unique factorization
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as a product of prime power ideals; and (2) both 7, and N are multiplicative:
ih L) = 71,(1)i.(15), N(;I,) = NI, -N7,. Then, by multiplying out the
geometric series, we obtain: ‘

* »~ ~ \/l\l

7 ﬁ s 4 Y\‘-S
L(E,, s) = Y #.(D(ND)*,
I

7~
wn
(@)
-

where the sum is over all nonzero ideals of Z[i].

A series of the form (5.6) is called a “Hecke L-series”, and the map j,, is
an example of a “Hecke character”. In a Hecke L-series, the sum on the
right of (5.6) is taken over all nonzero ideals in some number ring. A multi-
plicative map x on the ideals in that ring is said to be a Hecke character if
the following condition holds. There is some fixed ideal { and a fixed set of
integers n,, one for each imbedding o of the number field into Q*'¢¢!, such
that if I is a principal ideal generated by an element x which is congruent to

1 modulo the ideal {, then y(J) = II,6(x)". In our example, the number
ring is 7!’11 there are two imbeddings ¢, = identity, o, = complex conju-

gatxon in Gal(@[z]/@) we take n, 1 n, =0; and we take | = (n)
mW=QQ+2)nifnisodd, 2nifnis even) Then the condltlon simply states
(

that 7,((x)) = x if x = 1 (mod #’).

It is very useful when the Hasse—~Weil L-series of an elliptic curve turns
out to be a Hecke L-series. In that case one can work with it much as with
n...:,!l-.bu T ones o e avasnmimla Az rteney amnlitin Anetrrnernfime nmrl ~ p’llﬂf\
A1 ICILICY L~ DCIICD 1Vl CAa llPlC, PIUVIIIB ail ly IV Vuliuiiudalivll alilu a 1ulie-
tional equation. It can be shown that the Hasse-Weil L-series of an elliptic
curve with complex multiplication (see Problem 8§ of §1.8) is always a Hecke

L-series.

The relation between the additive form (5.6) and the additive form (5.3)
is quite simple. We obtain (5.3) by collecting all terms corresponding to
ideals 7 with the same norm, i.e.,

bpn= 2 TulD).

IwithNI=m
Notice that, since 7,{({) = 7, {{) ' ({F) by (3.3), we have
A w/l'.l‘\ < z\:/rx_/_iz__\l.
T = \m ), & MTT Gy ) O
N\ /1 WIln N2 =i N 7/

where we have denoted b, = b,, ;. Thus, if for fixed » we let y, denote the
multiplicative map on Z given by m— (%) (for m prime to 2n), we have

LE,$) =Y 1(mbum=
m=1
=1-— -5 __ s -5 -5
v Z)s \3/ 975+ 6 13 137 +2 17 1775 4o

5.7
{note: P2 is i if J,{'n and 0 if 3|n); one says that L(E,, 5) is a “twisting”
.of L(E,, 5) = X b,,m™° by the character y,. One can verify that for n square-
‘free, the conductor of y, is » when n = 1 (mod 4) and is 4n when n = 2 or 3.
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mod 4 (this follows from quadratic reciprocity). In other words, y, is a
primitive Dirichlet character modulo » or 4n.

To keep the notation clear in our minds, let us review the meaning of y,,,
%, and ,. First, y, is a map from Z to {41, 0} which is defined by the

Legendre symbol on integers prime to 2n. Second, X, i1s @ map from Z[z]

to {£1, +i, 0} which takes elements x prime to 2n to the unique power of i
such thaf Xn(X)x = x,(Nx) modulo 2 + 2/ (see (3.3)-(3.4)). Thirdly, ¥, is a

map from Z[z] to Z[z] whlch takes an element x to x;(,,(x), also, 7, can be
regarded as a map from ideals of Z[i ] to elements of Z[i] which takes an

1Anq] ,r\r|mn ta 2m tn the nrnnnn generator n{" f\n‘fnrvh ¢ conornient tn
INAN G 4 1,] ANy LU e & LU Liaiw Liizi \1“\& 5 LANVA QLA L VilAwal 1O VUa 161 LANAAL L/

modulo 2 + 2i.

The character y,, is intimately connected with the quadratic field @(\/_ n).
N amely, ifm = pP# 2isa prime number, then the value of )(,,u}) \—) shows
whether p splits into a product of two prime ideals (p) = P, P, in Q(/n)
(this happens if (5) = 1), remains prime (if (5) = —1), or ramifies (p) =
(if () = 0, i.e., p|n). (See [ Borevich and Shafarevich 1966].) We say that y,
is the quadratic character associated to the field Q(/n).

It is not surprising that the character corresponding to the field Q(\/n)
appears in the formula (5.7) which links L(E,, s) with L(E,, s). In fact,
if we allow ourselves to make a linear change of variables with coefficients in
Q(/n), then we can transform E,: y? = x> —n*x to E;: y’? = x> — x’ by
setting y = n\/;z-y’, x = nx’. One says that £, and E, are isomorphic “over
the field Q(\/n).”

Returning now to the expression (5.6) for L(E,, s), we see that it can also
be written as a sum over elements of Z[i ] rather than ideals. We simply note
that every nonzero ideal has four generators, and so appears four times if
we list elements instead of ideals. Thus,

]

bun=7 X Tula+bi),
a+biwithaZ+b2=m
and
aLiul
| VS ~EES 1 X & s N/ NS
LALy, 3) =75 2, Kn\X)ANX)
4xGZ{£}
(5.8)
N .
_1 ¢ (atb)yla+ bi)
V49, 2 2 ’
4 a+viczii) (@® + 6%y
where y, was defined in (3.3)—(3.4). (The sums are over nonzero x, a + bi.)
Natice tha amalAage; laatooame 3 AP sum /8 QN n..,a h ‘..‘L|A¢ ______
INOUCC {61€ dnd10gy oCtwedn tne sum 1(V.0) allU L/TICHICT L-series. The Umy
Al nvmnrmnne ama tlant slan cavssmalea ln o 20 02V sl 4}
UL CIEncees arc nat ne numocr Ting is £ ¢ ratafr than Z, and our Hecke
character )Z,,( ) includes an ordinary character x,’,( ) (with values in the roots

of unity) multiplied by x.
We now proceea to show that L(£,, s) can be analytically continued to the
left of Re s = 3, in fact, to an entire function on the whole complex plane;

and that it satisfies a functional equation relating L(E,, s) to L(E,, 2 — 5).



Since L(E,, 5) is a “two-dimensional” sum over Z{i] ~ Z?, i.e., over pairs
of 'integers rather than integers, it follows that we shall need to look at
Fourier transforms, the Poisson summation formula, and theta-functions
in two variables. We shall give the necessary ingredients as a sequence of
propositions whose proofs are no harder than the analogous results we

proved in the last section for the case of one variable.
Since the definitions and properties we need in two dimensions are just

AFLAAVY lai MevaldaailaWaad Rials i pIrawe AiWwwSa Aa2 NeslllVriRiace 2N g

as easy to state and prove inx dlmensmns, we-shall consider functions on R".
For now, » will denote the number of variables (not to be confused with

our use of n when writing £,: y? = x> — n’x, 7,, etc.). We will use x =
(x4, ..., x,)and y = (). ..., ¥, to denote vectors in R". As usual, we let
X' y=XxY;+ X9, |x1 = ﬁ/x-x We shail also use the dot-product
notation ‘Whe'ﬂt 1e vectors arc in C”; for example, if n = 2we have x - (1, i) =
Xy + X5l

Let & be the vector space of functions f: R" — C which are bounded,
smooth (i.e., all partial derivatives exist and are continuous), and rapidly
decreasing (i.e., |x|"f(x) approaches zero whenever |x| approaches infinity
for any N). For fe & we define the Fourier transform /: R" — C as follows
(where dx denotes dx,dx, - - - dx,):

f0) = | e (5.9)
Jw
This integral converges for all yeR”, and fe ¥.
Pronacition @ Jor - L5 C g R" o C he functione in &
~ lvl’vqlllv a e MUPJ e« U U, g « B s UUJMI‘U.IV"U s o/ .

(1) IfaeR" and g(x) = f(x + a), then G(y) = e>™**f(y).
(2) If aeR" and g(x) = e*™**f(x), then §(y¥) = f(y — a).
(3) IfbeR, b >0, and g(x) = f(bx), then §(y) = b™"f(y/b).
4) If f(x) = e ™, then f = {.

Pr0posmon 10 (Poisson Summation Formula). If ge &, then

> g =Y, §(m).
me2h meZ"

The proofs of Propositions 9 and 10 are completely similar to those of pro-
perties (1)—(3) of the Fourier transform in one variable and Propositions 5
and 6 of the last section. One simply has to proceed one variable at a time.

IfweC"and fe &, we let w- Ly XS Y

Ox J def xut 4L UX o ' IIU.\’n

Proposition 11. If fe & and g = w -, then () = 2niw -y f(3).

PROOF. Since both sides of the equality are linear in w, it suffices to prove
the proposition when w is the j-th standard basis vector, i.e., to prove that
the Fourier transform of ; f(x) is 2miy; f(»). This is easily done by sub-
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to the j-tﬁj\}ariable (see Problem 5(a) in the last section).

For the rest of this section, we take n = 2 in Propositions 9-11, and we

stituting 32 f(x) in place of f(x) in (5.9) and integrating by parts with respect

return to our earlier use of the letter nin E,, x,, etc.

x3 — n*x, which for Re s > 3 is defined by (5.1), extends analytically

to an entire function on the whole complex s-plane. In addition, let

yi=

(5.10)
(5.11)

nodd;
n even.

—5),

16n2,

3212,
Y r(s)L(E,, 5).

EA

Als) =

A

NzﬂWPz{

Then L(E,, s) satisfies the functional equation

Let

1, 2, 3 (mod 8) and is equal

-

qual to 1 if n

P +lise

where the “‘root number

¢}

A\ Epns O)>

T(E
written in the form (5.8), in terms of the Mellin transform of a two-dimen-

avnragge
VAPIVOO

Proor. The proof is closely parallel to the proof of analytic continuation

(5.13)
(5.14)
(5.15)

to obtai

.
b

o

me 22
g(x) = (x + u)-we ™u

me 22
eu(t) — Z m- weZnim-ue—ntlmP.

0,)= Y (m+u) we ™im+ul*;
Poisson summation formula (Proposition 10)

1), g2(x)

X)

1(=

g
n

i

avie .,

1
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f(») = e by Proposition 9, part (4);
§,(p) = 1" e~ by Proposition 9, part (3);
G,(») = 2mit ™ w - y e =M by Proposition 11;
G(p) = —it 2w - y e2riure= @I by Proposition 9, part (1).

If we now evaluate §(m) for me Z?, and sum over all m, we obtain the func-

tional equation

We now consider the Mellin transform of 8,(): {3 1°6,(1)%, and show that
the integral converges to an entire function of s. First,-for large 7 it is easy
to bound the integrand by something of the form e™¢, using the fact that
|m + u}? is bounded away from zero, since u is not in Z*. Next, for ¢ near
zero one uses the functional equation (5.16) and a bound for 8%(3) of the
form e~ =0
vanishes because of the factor m - w. These bounds make it a routine matter
to show that the integral converges for all s, and that the Mellin transform
is analytic in s.

If we now take Re s > 3, we can evaluate the Mellin transform integral
term by term, obtaining a sum that begins to look like our L-function:

Jf 0,0L = % mtuyew | rsemimrar d!

0 me 72 - 0 !

(see (4.6)).

Now for Re 5 > 2, we can rewrite L(E,, 5) as a linear combination of these
sums with various u. ’

We now suppose that n is odd. The case n = 2n, even is completely similar,
and will be left as an exercise below. We take w = (1, i). If we use (5.8) and
recall that y,(x) depends only on x modulo #" = (2 + 2i)n, and hence, a
fortiori, only on x modulo 4n, we obtain:

L(Ems)_—_l Y b)ya+bl+4nmw

:(" ' “Ey 3

O<a‘-l;<4n mezz I(a, b) + 4nm|23

1 - m :
— __:(4’1)1 2s Z ¥.(a + bi) v (m + (4m an) W
a4 0=a,b<4n melzl m + (4,,, 4,,)143
Thus
- 1 1-2 , . [ dt
n T ()L(E,, 5) = z(‘l”) DI ACE ) ‘ *0uian,pian(D—. (5.17)

0<a,b<4n J !

(a,b)#(0,0)
Since the integral inside the finite sum is an entire function of s, as are the



oo
an

functions (4n)' ~%° and =*/I'(s), we conclude that L(E,, s) has an analytic
continuation to an entire function of s.

Moreover, we can transform this integral using the functional equation
(S 16) and replacing 1 by +

" di e dt (% dt
J ts a/4n.b/4"(t)T = —7] [ ol 29a/4n b/4n(r> t —7 [ [2 s@a/4n,b/4n(t)_}_
s 0

0 0

In the entire function (5.17) we now suppose that Re 2 — s > 3 (i.e., Re s < })
so that we can evaluate this last integral as an infinite sum. Using (4.6) again

inserting the definition (5.14), and interchanging summation and integration,
we obtain
[ 2spambian n AL _ so2tin o T (2rifdmym-(a,5)] . |~ 2(2s)
2SR T = T2 = 5) Y mw e FRRHm @) | =22 )
[ 2
0 melZ

Thus, for Re 2 — s > 3, the right side of (5.17) is equal to

mY s (5.18)

e e !
“‘1(4’1)1 ZTC 2F(2~S)Z Z —I-n—'zl_ia"_si m

me 22

where for me 72

_ ’ 2\ o (2rifdam)ym-(a,b)
Suiz 2 @+ bi)e . (5.19)
0<a,b<4n
Lemma. If m, + m,i is not in the ideal (1 + i), then S, =0, whereas if
my +myi = (1 + Dx with xe Z[i ], then S,, = 2y,(x)g{x.), where g(y.) is the
Gauss sum defined in Proposition 4 of §11.3 (see (3.9)).

Before proving the lemma, we show how the functional equauon in the
theorem follows immediately from it. Namely, if we make the substitution
m-w=m, + m,yi = (1 + i)x in the sum in (5.18), the lemma gives us

PO ~NsY 1 N\
m-w 2(1 +i)x , ,
Y TS = s 1)a ()
meZ? ’m er[z]’(l + 1 ) I

(1 + )2 1( —2 ](2 +2in Y F.(x)(Nx)~?~9
xeZ[i]

by Proposition 4. But this last sum is 4L(E,, 2 — s5), by (5.8). Bringing this

all together, we conclude that for Re 2 — s > 3 the right side of (5.17) is

equal to

I

[NV

—itdny 0@ — (1 + 2 [ Z2) @ + 20)m (E,, 2 — s

\7/
[=2\ ., . i
=|—=)n° 202 — 5)(8n) " °L(E,, 2 — s).
N/
On the other hand, if we bring the term (\/N/2)‘ over to the right in the
functional equation (5.11)~(5.12) in the theorem, we find that what we want

(5.20)



to prove is:

2T (s)L(E,, 5) = (:.;12) (JN/2)™Qr)~ A JN) T2 — L(E,. 2 — )

_ (:””2“) (NJ4)' =202 = 9 L(E,. 2 = 9).

And this 1s precisely (5.20).
Thus, to finish the proof of the theorem for odd n, it remains to prove
the lemma.

PROOF OF LEMMA. First suppose that m, + m,iis not divisible by 1 + i. This
1s equivalent to saying that m, and m2 have opposite parity, 1.e., their sum
is odd. Now as a, b range from 0 to 4n, the Gaussian integer ¢ + bi runs
through each residue class modulo (2 + 2i)n exactly twice. Each time gives
the same value of y,(a + bi), since y,(a + bi) depends only on what a + b/
is modulo n" = (2 + 2i)n. But meanwhile, the exponential terms in the two
summands have opposite sign, causing the two summands to cancel. To see
this, we observe that if @, + b,i and a, + b,i are the two Gaussian integers
in different residue classes modulo 4n but the same residue class modulo
(2 + 2i)n, thew, a; + b,i — (a, + b,i) = (2 + 2i)n (mod 4n), and so

(,;,(Zui/4n)m-((al,bl)—(az,bl)) — e(2ni/4n)m-(2n,2n) — ’,;,m’(m1+m;) = —1

This proves the first part of the lemma.

Now suppose that m,; + m,i = (1 + i)x. Note thatm - (a, b) = m,a + m,b
= Re((m; — m,i)(a + bi)) = Re((1 — i)x(a + bi)). Hence, the exponential
term in the summand in S,, is ¥(x(a + bi)), where

V'/( 7.rri Re(x/n’)
(with »" = (2 4 2i)n). Since y, 1s a prxmitive character modulo (2 + 2i)n
(see Proposition 3), we can apply Problem 9(a)—(b) of §11.2. Since the sum-
mation in (5.19) goes thmugh each residue class modulo (2 + 2i)n twice,

we have

wll

S, =2 Y 1(a + by (x(a + bi))

at+bieZ{i]/(2+2i)n

= 27%,(X)g(xn) = 2x,(X)g (1)

,,,,,,

This proves the lemma, and hence the theorem (except for some slight
modifications in the case of even n, which will be left as an exercise). O

In the problems we shall outline a proof of the analogous theorem in
the case of an elliptic curve, namely y? = x* + 16, which has complex multi-
phcatlon by another quadratic imaginary integer ring, namely Z{w], where
w = —% + %i/3. There is one additional feature which is needed because
we ‘end up summing not over Z[i], which can be thought of as Z?, but
rather over a lattice which is the image of Z2 under a certain 2 x 2-matrix.
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So we have to apply Poisson summation to a function much like the function
in this section, but involving this matrix.

We conclude this section by mentioning two references for a more general
treatment of the theory of which we have only treated a few special cases.
First, in C. L. Siegel’s Tata notes [Siegel 1961] (see especially pp. 60-72)
one finds L-functions whose summand has the form

2xim-u P(m + U)

e

stgf2?
@[m + o]
werde neenn zan = TN s a4y n s M 1
where meZ”, u, ve R", Q is the matrix of a positive definite quadratic form,

sit u
and P is a ‘““spherical polynomial with respect to Q of degree g”’. The case
we needed for L(E,, sywas:n=2, 0= 9, P(xy, X)) =x; + ix;,g= 1.
In Problem 8 below we have the case Q = (1}, 1), P(xy, X3) = (@ + 1/2)x,
+ (@2 + Dx, (where = —1/2 + i /3/2), g = 1.

In [Lang 1970, Chapters XIII and XIV] two approaches are given to this
topic. In Ch. XIII, the approach we have used (originally due to Hecke)
is applied to obtain the functional equation for the Dedekind zeta-function
of an arbitrary number field. This is a generalization of Problems 2 and 6
below. However, the case of more general Hecke L-series is not included in
that chapter. A quite different approach due to J. Tate—using' Fourier

analysis on p-adic fields—is given in Ch. XIV of Lang’s book.

e theorem for n even.

2. (a) Find a functional equation for 6(?) = e >0,
The Dedekind zeta-function of a numoer field K is defined as follows:

k() = X (ND,

where the sum is over all nonzero ideals 7 of the ring of integers of K. This sum
converges for Res > 1 (SEé {_DOTC‘V‘iCn and Shafarevich 1966, Ch. 5, §1]) Let
K = Q). Prove that {(s) is an entire function except for a simple pole at s = 1
with residue /4, and find a functional equation relating {x(s) to {x{1 — 3).

2rim-v _ ~nt)m+ul?
3 emimgmmimiul >0,

Find a functional equation relating 62(r) to 6“,(%).

4. (a) Inthe situatfon of Proposition 11, express the Fourier transform of (w '3%)"f(x)
in terms of f(y) for any nonnegative integer k.
(b) Suppose that & is a nonnegative integer, ue R? is fixed with u¢ Z?, t > 0 is fixed,
and w = (1, i{)e C*. What is the Fourier transform of

g(x) = ((x + u) - wke ™+’ 9

(c) With &, u, 1, w as in part (b), define:



