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y? = x?, and so we might be tempted to take 1 for the Euler factor at 2 as well.
However, this is wrong. When one defines L(E, s5), if there exists a Q-linear
change of variables that takes our equation E: y*> = x* + 16 in P to a curve C
whose reduction mod p is smooth, then we are obliged to say that E has good
reduction at p and to form the corresponding Euler factor from the zeta-func-
tion of C over F,. In Problem 22 of §11.2, we saw that p* = x* + 16 is equivalent
over Q@ to y? + y = x>, asmooth curve over F, whose zeta-function we computed.
Show that the Euler factor at p = 2 is given by the same formula as in part (a).

(¢) For er[w] prime to 3, let x(x) = (— )’ be the unique sixth root of 1 such that

~ xx(x) = 1 (mod 3). Let x(x) = 0 for x in the ideal (/= 3). Show that

L(E, s)= Z ?I(N?; .

xe Z{w]
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e p(2mif3) Tt(x/u/ 3)
Y(x)=e

where Tr x = x + ¥ =2 Re x. Verify that ¥(x) is an additive character of
Z[w]/3 satisfying the condition in Problem 9 of §I1.2 (i.e., that it is nontrivial on
any larger ideal than (3)). Find the value of g(x, ) = Z, . g0y X (X)¥ (x), where
x is as in part (b).

8. (a) Let w = (1, ), ue R* — 72, and 1 > 0 be fixed. What is the Fourier transform
of g(x) (x + Ll) we-—ml(x+u) u|Z
(b) Let 6,(¢) = Z,,.z2g(m), where g(x) is as in part (a). Find the Mellin transform
¢(s) of
Y xla+ bw)b, ().
)

(c) Prove that L(E, 5) is an entire function, where E: y* = x> + 6 is the elliptic
curve in Problem 7.
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§6. The critical value
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The value at s = 1 of the Hasse~-Weil L-function L(E, s) of

FE is called the “‘critical value”. When we have a functional
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Lun_leuure (B. J. Birch and H. P. F. Swinnerton-Dyer). L(E, 1) = 0 if and
only if E has infinitely many rational points.

In this conjecture E is any elliptic curve defined over Q. In the general
case it has not even been proved that it makes sense to speak of L(E, 1),
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because no one has been dble to prove analytic continuation of L(£, s) to
the left of the line Re s = 3. However, analytic continuation and a functional
equation have been proved for any elliptic curve with complex multiplication
(see Problem 8 of §1.8), of which our E, are special cases, and for a broader
class of elliptic curves with a so-called “Weil parametrization” by modular

curves. (It has been conjectured by Weil and Taniyama that the latter class
actuallv consists of all ellintic curves defined over Q. \

BRIy FUAOLOWS Vi Qdd VIl ue vl Vo b

We shall call the above conjecture the “weak Blrch_Swinnerton-Dycr
conjecture” because Birch and Swinnerton-1)yer made a much more detailed

b e
youb\,Luu, about the behavior of (E, S

that the order of zero is equal to the rank r of the group of rational points
on £ (see the beginning of §1.9). Moreovey they gave a conjectural descrip-
tion of the coefficient of the first nonvanisiing term in the Taylor expansion
at s =1 in terms of various subtle arithmetic properties of £. For a more
detailed discussion of the conjecture of Birch and Swinnerton-Dyer, see
[Birch 1963], [Birch and Swinnerton-Dycr 1963, 1965], [Cassels 1966],
[ Swinnerton-Dyer 1967], [Tate 1974].

There is a simple heuristic argument—far from a proof—which shows -
why the weak Birch~Swinnerton-Dyer conjecture might be true. Let us
pretend that the Euler product for L(E, s) (see (5.1) for the case £ = E)
is a convergent infinite product when s = 1 (which it 1sn't). In that case we

would have:

it v o— 1 Namely thev coniectured
di S = oL iNaliiciy, wICy Lol iuita

where N, = N; , = p + 1 — 2a;, , is the number of F,-points on the elliptic
curve E considered modulo p. Now as p varies, the N, “straddle” p at a
distance bounded by 2./p. This is because 2ay , = «, -+ &,, and the reciprocal
roots a, have absolute value JP (see (2.7) for E = E,, and the discussion of
the Weil conjectures in §1 for the general case). Thus, roughly speaking,
N o e /_ If N, spent an equal time on both sides of p as p varies, one

il all byYa LITISG W13 LJW

could expect the mﬁnlte product of the p/N, to converge to a nonzero lumnit.
r

(See Problem | below.) If, on the othe hand, the N, had a tendency to be

on the large side: N;, xp + V/;_), then we would obtain L(E, 1)~ I1 p/
— -1/2y __

(P+VP)=T,L1/(1+p)=0

PPN R U T

/ rational points, one would expect that by reducing them
modulo p (as 1n the proof of Proposition 17 in §1.9) we would obtain a large
guaranteed conmbuuon to N, for all p, thereby ensuring this lopsided
behavior /V ~p -t \/p On tne other hand, if there are only finitely many
rational pomts then their contribution to N, would be neghglble for large p,
so that N, would have the “random” behavnorN ~p+ \/p Needless to say,
this heuristic argument is not of much help in trying to prove the weak
Birch—Swinnerton-Dyer conjecture.

But therc is considerable evidence. both computational and theoretica!
to support the conjecture of Birch ahd Swinnerton-Dyer. The most dramatic
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partial result so far was the proof in 1977 by John Coates and Andrew Wiles
that for a large class of elliptic curves, an infinite number of rational points
implies that L(E, 1) = 0. Other major advances have been obtained in
[ Greenberg 1983] and [ Gross and Zagier 1983].

Recall from Problem 8 of §1.8 that an elliptic curve is said to have complex
multiplication if its lattice is taken to itself under multiplication by some
complex numbers other than gers.

Theorem (J. Coates and A. Wiles). Let E be an elliptic curve defined over Q
and having complex ...u./zip.icatzon. If E has infinitely many Q-points, then
LE,1)=0

The procf of this theorem is rather difficult (see [ Coates and Wiles 1977]),
and it will not be given here. (The original proof further assumed that the

quadratic imagmary field of complex multiplication has class number 1, but
this turned out not to be necessary.)

Since our curves E, have complex multiplication, the Coates—Wiles
theorem applies, and, in view of Proposition 18 of Chapter I, tells us that
if L(E,, 1) # 0, then n is not a congruent number. Conversely, if we allow
ourselves the weak Birch—Swinnerton-Dyer conjecture, then it follows that
L(E,, 1) = 0 implies that # is a congruent number.

There is one situation in which it is easy to know that L(E,, 1) =0
Recall that the “root number”—the plus or minus sign in the functional
equation for L(E,, s)—is equal to (52) for n odd, and (3}) for # = 2n, even
(see the theorem in §5).

Proposition 12. If n =5, 6 or 7 (mod 8), and if the weak Birch—Swinnerton-
Dyer conjecture holds for E,, then n is a congruent number.

PROOF. According to the theorem in §5, if n = 5, 6, 7 (mod 8), then A(s) =
— A2 — 5), where A(s) is given by (5.11). Substituting s = 1, we conclude
that A(1) = —A(l), i.e., A(1) = 0. But by (5.11), A(1) differs from L(E,, 1)
by a nonzero factor (namely, \ﬂV/Zn). Thus, L(E,, 1) =0, and the weak
Birch—Swinnerton-Dyer conjecture then tells us that E, has infinitely many
Q-points, i.e., by Proposition 18 of Chapter 1, » is a congruent number. O

&

t is interesting to note
ensures us that n is a congruent number, the method does not give
effective algorithm for constructing a nontrivial rational point on
equivalently, finding a right triangle with rational sides and area n.

e us
E,,
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Very recently, Gross and Zagier were able to improve greatly upon
Heegner’s method. As a special case of their results, they showed that for
n =35, 6, 7 (mod 8) the elliptic curve E, has infinitely many rational points
provided that L(E,, s) has only a simple zero at s=1, i.e.,, L'(E,, 1) # 0.
This result represents substantial progress in making Proposition 12 un-

conditional. Moreover, their method is constructive, i.e., it gives you a
rational nmnt on the curve (emn\mlenﬂv a rig h tri ng]e with area n) when

a{svaNrantsa Naadde RAA sai by Rat AL PL LR VY AANA4

L'(E,, 1) # 0. See [Gross and Zagler 1983].
In the cases when the root number is + 1, we cannot be sure in advance

. .
urhnfknr IT(F 1} 1 1S Zero Or nonzero CAh 1in thnge racec 1t ic ncnﬁ I o have an
YY AW LLiiwa ‘-J ”, ‘.’ AN UL MVLNMENSNE VU, IOV 1L LRIV OW ROV WT IR AT OV WL 11AAv¥YSy il

efficient algorithm for computing L(E,, 1), at least to enough accuracy to
know for certain that it is nonzero. (It is harder to be sure of ourselves in

naosc € A itz lszn copmno i rasn Y W n nasmtimt sron tha ane . as I8 2N

cases when the critical value seems to be zero. ) We cannot use the series (D.9)
or (5.8) to evaluate L(E,, 1), since they only converge when Re s > 3

So we now turn our attention to finding a rapidly convergent expression
for L(E,, 1).

Let us return to the functional equation for L(E,, s), and give a slightly
different, more efficient proof. Recall that

L(E,, s) =
4er[x} -
with ¥,(x) = xy,(x), where x, was defined in (3.3)-(3.4). Suppose we ask
the question, “What function F(E,, t) has n7°T'(s)L(E,, s) as its Mellin
transform?”’ By our usual method using (4.6), we see that the answer is

FE, Dz7 Y Ta(x)e™™ (6:1)
4er{x]
We now proceed to find a functional equation for F(E,, t), which will then

immediately give us once agaln our functlonal equatnon for the Mellin
s whether

AWy aat

S ££ 1TNANN _
(see (5.10)), we can rewrite F(E,, ¢) as follows:

’

FE,0=2- Y gla+bi) T (m+u)-(1, e im
¥ atbisZ{ilin’ mep? /

~

If we‘,replace t by 7, the summand in the inner sum becomes 6,(}) in the
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notation of (5.13). We then use the functional equation (5.16) for 0,(3).
As a result we obtain:

7.

FE, L) =% yita+ bis(—it) Y m-(1, ipersimse =it
\"N 4 &

a+bi

= w—tzn’Zm (1, He ™ ¥ ¥ (a + biye*™ ™.
a+bi
Now m - u= Re((my — myi)(u, + uyi)) = Re((m; — m,i)(a + bi)/n"). We
now use Problem 2 of §I1.2 to rewrite the last inner sum as

To(my —myi) Y yi(a + biye?m Reterbivm,
a+bi

But 7.(m, — m,i) = y,(m, + m,i), and the sum here is the Gauss sum a(xn)
evaluated in Proposmon 4 (see (3.9)). We finally obtain:

Eugiy)= =3 T Rom + mai)e

meZ?

where the ¢ is (52) for n odd, i(7}) for n = 2n, even. Replacing m; + m,i by
xeZ{i}, we see that the sum is precisely 4F(E,, 1). Thus, we have

, N't*F(E,, 1), nodd
FlE,L)=1\"/ 63)
\ Ny } ( 1\ N't*F(E,, 1), n=2n,even
(AN

We can easily derive the functional equation for L(E,, s) from (6.3). We
shall write + to denote (32) for n odd, (%;) for n = 2n, even. We have

mon . ”~ oo V4 1
_ - 1 - 2 ait
2T L(E,,s) = | F(E,, {) - J +5=2F (E,, ,t) =
0 Q
by (6 3). Making the chanoe of variables 1 = . we obtain
VJ \v J}. i ‘“l\ll‘b ViAW \/Il“llcv Wi VAL AWV AT AW W N t, ~ A s
o
_—ST s NT ST N\ 1 AT/l ~—8 {‘ 2—srv/r __\du
T {s)L(E,, s) = =N | WTFE,u
J O
=+ N5 [ (2 — $)L(E,, 2 — )
Finallv renlacine N’175 hy (. /N/N2-25 and multinlvine bhoth sides hv
p s “‘ull] £ A \/ylu\/lllb 4 UJ \‘V 4 v I ~/ ARl ‘l‘“‘l‘y‘l l“b WS VAA SaNA WY ‘JJ
(/N/2)°, we obtain the functional equation of (5.11)—(5.12).
/A evexr 2 o farernbs e D{E ¢+ w tha rncaxirhan tha rAant nirmhi
vwe no Uon i, i€ CasC wiikhh uae roow numo R

ie., i

We use this functional equation to break up the Meliin transform of F(E,,, ¢)
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into two integrals from 77 ,_, to co. The point = —~- is the “center” of the func-
tional equation, i.e., the fixed point of the correspondence LR
We have:

_ (o d (® [V dt
7T ()L(E,, ) = J ¢FE, Y = J + J PRE, 5
0 g y/N  Jo
In the second integral we replace ¢ by 7+, and then use (6.4) to write F(E,, 5-)
in terms of F(E,, {). The result is
ST A NT I I N (‘00 IPY S o788 nd N 1 ANl =s2-srern \\gi
1(3)14(5",5)—J r{c,, 1) + 1y 1:,,,,:))’.
1//N™
Now set s = 1. Multiplying both sides by n, we immediately obtain:
o
L(E, 1)=2=n J F(E,, Hdt. (6.5)
1/VN”
Recall that the Hasse—Weil L-function can be written as a Dirichlet series
1 "
L(E,, s) Y b, m~5, where b,,=- Y 7,(x). (6.6)
er[l]

I‘U X=rri

Comparing with the definition (6.1) of F(E,, f), we see that
@
E,t)=Y b,.e ™ (6.7)
) m=1

We can now substitute the series (6.7) into (6.5) and integrate term by term.
(Notice that the procedure below will work only because we have a positive
lower limit of integration in (6.5); if we tried directly to use the Mellin
transform, in which the lower limit of integration is 0, we would not have
convergence.) Using the formula | e™“dr = te™™ with a = N2 ¢ = nm,
we immediately obtain the following rapidly convergent infinite series for
L(E_ 1).

A\ ™y T/

Proposition 13. The critical value of the Hasse—Weil L-function of the elliptic
curve E,: y* = x> — n*x for squarefree n = 1, 2, 3 (mod 8) is given by:
!

)w\/z nodd,

o~
(=)
0
N

y m e VN (2n, n even.

Here the coefficients b,, , are the Dirichlet series coefficients obtained by
expanding

LE, )= ] (0 —2ag ,p~*+p'™2)t =) b, m™"
pt2n - m=1

In addition, the absolute value of the coefficient b,, , is bounded by o, (m)\/;;,
where ao(m) denotes the number of divisors of m.
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the Euler factor in the form (1 —o,p ‘) A ~a,p™97, expand each factor
in a geometric series, and collect coefficients of p~* for each positive integer
e, we find that the coefficient of p™* is af + of 7 &, + o 287 + - - - + &L
This means that, if m has prime factorization m = p{: - - - p?r, then

r

= T (% 4+ % % + ... + 7%, \
O = | ] (0] 0. F o))

=1 J J J J

Since |a,| = |&,] = \/p for all p, we immediately obtain the bound

r

Ibm,n, < H (ej + l)pfj/z = Uo(m)\/ ni,
where we have used the easy fact from elementary number theory that 6,(m)
is the product of the (¢; + 1). This completes the proof. o

The bound for b,, , is useful in estimating the remainder after we compute
the series in (6.8) out to the M-th place. In particular, if we find that the
remainder is less than the value of that partial sum, we may conclude that
L(E,, 1) #0. :

As an example, we treat the case n = 1. The first few Dirichlet series
coefficients b,, for L(E,, s) are given in (5.4). By (6.8), we have

— 2(e—n/zﬁ . %e—ﬁnﬂﬁ -9n/2J“ + 8 5 -13xn/2J7 + ‘%’eqm/zﬁ + _,,)
= 0.6555143... + R,5,
where we have denoted R,, = 2275.,% e~ TMI2JZ
A very crude estimate for 6,(m) is 2y m (see th_ oblems). Thus,
IR, | <4 § 2?4 MJ2E
" e

This computation, together with the Coates-Wiles theorem, then tells us
that 1 is not a congruent number. In fact, this argument undoubtedly qualifies
as the world’s most roundabout proof of that fact, which was proved by
Fermat more than three hu“ld years ago. (See [ Weil 1973, p. 270 of Vol.
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1
heta-series which have certain types of functional equations under ¢+
and similar changes of variable. Such functions are cali.d “modular forms”.
Actually, modular forms are functions of the form ).,b,,,e"”‘ rather than

A
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% b,e”™, but the simple substitution ¢ = —2iz will transform our theta-series
from this chapter into what turns out to be modular forms.

- Instudying modular forms, we will at the same time be approaching elliptic
curves from another perspective. But these two aspects of elliptic curves—the
congruence zeta-function and Hasse-Weil L-series, and the theory of
modular forms—have combined in recent years to form a richly interlocking

PROBLEMS

1. In the heuristic argument for the weak Birch—Swinnerton-Dyer conjecture, make the
following ridiculous assumptions: (i) |2ag , — 1| = /p;and (i) 2ag , — 1)//p = £1

ic ¢ nnnnln dictrihntad and hannanc tacoinecide with the valiie at n af a fived nnqﬂro_
ay w VWil “aoLL ’.U“‘w A 11%E ‘-luyt’vl‘g LW VWVIARWILIW VP LILA} Vil VAL W “‘V Wi QR AEANVT LSS TR S T~

tic Dmchlet character x(p) = (§) for some fixed N. (One of the reasons why these
assumptions are ridiculous is that 2a, , is an integer.) Show that then L(E, 1) is
equal to the value L(y, ‘\ of the Dirichlet L-function at the center of symmetry of its

Llal Ll UL LA Lile 201 0 A1iL L Uil al L1106 LLilll pIirieil

functlonal equation.

2. Prove that if the root number in the functional equation for L(E,, s) is 1, then
L(E,, s) has either a nonzero value or else an even-order zero at s = 1; and if the
root number is — I, then L(E,,, s) has an odd-order zero at s = |.

......

that:

(@) b,=2a,if pf2n; b, =0if p|2n;

(®) bm,m, = b bn, if m; and m, are relatively prime;

(©) bye+r = 2a,b,e — pb,e-1 for e = 0 (here take b, = 0 when e = 0). .

4. Prove that oy,(m) < 2\/}7 for all m, and that m™*gy,(m) — 0 as m — co for any positive

&.

5. Compute L(E,, 1) and L(E;, 1) to about three decimal places of accuracy, verifying
" that they are nonzero.

=)

rove that L(E,,, ) # 0.

U100

7. Suppose you knew a lower bound ¢ for the absolute value of all nonzero L(E,, 1),
n=1 23, ... squarefree. (No such ¢ is known.) For n very large, what is the order
of magnitude of M such that you could determine from the first M terms in (6.8)
whether or not L(E,, 1) =0? -

8. (a) Write a flow chart for a computer program that evaluates L(E,,, 1) through the
! M-th term of (6.8) and estimates the remainder.
(b) If you have a computer handy, use part (a) to find L(E,,, 1) to three decimal
places.



