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to equal x(d")f,, i.e., f,€ M (N, x). Finally, we sum the f, over all characters
y modulo N, reverse the order of summation over d and x, and obtain:

Lh= Y 2@ fllvde
de(@N 2 ¢(N )5
which is equal to f, because the inner sum is 1 if d =1 and 0 otherwise.
Thiie feran he writfan ac 2 enim af fiinectinne 1in A (N ) aec claime ™
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Notice that M, (N, y) = 0if x has a different parity from &, i.e., if y(— 1) #
(— D)*. This follows by tak_1__ = — I in the definition (3.29) and recalling

that £|[ ~ 1 = (— Y. |
For example, as an immediate corollary of Proposition 28 and the pre-

ceding remark, we have

WA xb ALA%8 ¥V W

Proposition 29.

in
Ty
Pyl
L)
~y
~
ey
-
oy

where |

A

onnte
enole

«
§ A
«

AN A
frev iy T,

Notice that the relationship in (3.29) is multiplicative in 7y; that is, if it
holds for y, and y,, then it holds for their product. Thus, as in the case of
modular forms without character, to show that f{z) is in M, (N, x) it suffices
to check the transformation rule on a set of elements that generate I'y (V).

As another example, we look at ®2(z2)=(Z,.,¢" )2 whose #-th g-

Yy 3 It neca 2

expansion coefficient is the number of ways n can be written as a sum of two
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/0 - 1\ i -1 _ 1
Ny o )0 Sothat ay = ——ay,

) ’ (3.30)

e }“”_\—Nb a )

We wrlte ST*S = —a,Tay' = g0, Ta,, and use the relationship ©2|[a,], =
—i®? (see (3.5)) to obtain

O*|[ST*S]; = ©%|[0, Ty, = —i©%|[ T, ], = —i@7|[a,], = — O

(Recall that the scalar matrix 3/ acts trivially on all functions, i.e., [1/4], =
identity.)
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To finish the proof of the proposition, we must show the cusp condition,
i.e., that ®%|[y,], is finite at infinity for all y, € T. But the square of (92J[y0]l
is @4’ [7]. and it will be shown in Problem 11 below that ®*e M,(I'(4)); in
particular, this means that ®*|[y,],, and hence also ©2|[¥0],, is finite at

infinity. This completes the proof. ]

The spaces M, (N, x) include many of the most important examples of
modular forms, and will be our basic object of study in several of the sections
that follow. We also introduce the notation S, (N, y) to denote the subspace
of cusp forms: S,(N, y) = M (N, p) n S,(I', (N)).

The Mellin transform of a modular form. Suppose that f(z) = £ a,qy (where
gy = ¢*™“N) is 2 modular form of weight k for a congruence subgroup I'”
of level N. Further suppose that |a,,| = O(rn°) for some constant ceR, i.e.,
that a,/n is bounded as n — co. It is not hard to see that the gy-expansion
coefficients for the Eisenstein series G, ¥ have thls property with ¢ =
k — 1 + ¢ for any ¢ > 0. For example, in the case I = I', the coefficients
are a constant multiple of ¢,_,(n), and it is not hard to show that g,_,(n)/
n*=1*¢ - 0 as n -» ou. We shall later show that, if f is a cusp form, we can
take ¢ = k/2 + ¢. It has been shown (as a consequence of Deligne’s proof
of the Weil conjectures) that one can actually do better, and take ¢ =
k—1/2+s.

In Chapter II we saw that the Mellin transform of 6(¢) = e ™" and
certain generalizations are useful in investigating some important Dirichlet
series, such as the Riemann zeta-function, Dirichlet L-functions, and the
Hasse—Weil L-function of the elliptic curves E,: y*> = x*> — n’x. We now
look at the Mellin transform for modular forms.

Because we use a variable z in the upper half-
t = —2iz), we define the Mellin tman'm'm by inte
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imaginary axis rather than the positive real axis.
The most imn
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1 ecall
I, (N ), an expansion in powers of g = e*™ rather than gy.) We set

We now show that if f(z) = Z2, a,g" with |a,| = O(r°), then the integral
g(s) defined in (3.31) converges for Re s > ¢+ 1:.

i R o0 ftico -
l f(Z)Zs“le — Z a, I ZseZninz_‘_{ﬁ
Jo n=1 Jo z
_{‘—‘10/_~ 1\‘('°°ts=‘dt hore ; 5
=L a5 | T (wherer= ~2min
n=i \ —-vus/ JO [
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(where the use of ' in the gamma-function I'(s) has no relation to its use
in the notation for congruence subgroups; but in practice the use of the same
letter I should not cause any confusion). Since |a,n™%| = O(n°~*¢*), this
last sum is absolutely convergent (and the interchanging of the order of
integration and summation was justified).
If f(z) = £y a,9"e M, (T',(N)) has a, # 0, we replace f(z) by f(z) — a,
in(3.31).Ine hvr case, we then obtain g(s) = (—2mni)” sl"(v\[“(ﬂ where

Lis)= Y an™ for Res>c+1, if flz)= ) a,q"
n=1 n=0

o~
w
W
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with |a,| = O(n).

In addition to their invariance under [y], for yeTI';(N), many modular
forms also transform nicely under [oy],, where ay = (§ ') as in (3.30).
It will be shown in the exercises that, for example, any function in M, (N, y)
for x a real character (i.e., its values are +1) can be written as a sum of

two functions satisfying
f“:aN]k = Ci™", C=1lor -1, (3.34)

where one o
: the relation (3.5) is a spemcu case of (3.34) withk = 1 C =1, ]‘v’ = 4
We now show that if (3.34) holds, then we have a IunCIionai equation
for the corresponding Mellin transform g(s) which relates g(s) to gtk — s).
For simplicity, we shall again suppose that f(z) = Xa,q" with a, = 0. We
can write (3.34) explicitly asfollows, by the definition of [ay]:
f'(-—-l/_Nz\: CN"‘lz(--iNz\"f(zL (1_? )]

~J

C=
2.
Lo/

In (3.31), we break up the integral into the part from 0 to i/\/N and the
part from i/,/N to ico. We choose i/,/N because it is the fixed point in H
of ay:z+> —1/Nz. We have

i dz i d(—1/Nz
09 = 1@z [T f—yN (NN
JiWR 2 Jiw — Az
(* a0 dZ
= (f(2)z° + f(—1/Nz)(—1/Nz)")—
= (f(2)z* + i*CNf(2)(— 1/Nz)*~
v inN
because of (3.35).
In the ﬁrst place, this integral converges to an entire function of s, because
L\ Aonrancac avinnnantially ag » .y s 'T‘Ln# 2o lhiamnmsecn #hia Voo 12"
J 4y ullivasls CAPULIKCTIUIdIYY a5 2 — 100, 1i1al 1§, CLaUDC LuC lUWCI llIIlll. Ul
integration has been moved away from zero, we no longer have to worry

about the behavior of the mtegrand near 0. (Compare with the proof of

) b PP S ) T

Proposition 13 in Chapter 11, where we used a similar tecnmque to find a



Y
S
Pt

rapidly convergent series for the critical value of the Hasse—Weil L-function;
see-the remark following equation (6.7) in §I1.6.)

Moreover, if we replace s by & — s in the last integral and factor out
i*CN~¥2(—~N)*, we obtain:

gk — $) = FON (=N [ (FHCN¥2 (= NY 512y 25 + f(z)zs)%{
) J iR

= PON=NY [ FONA) (— 1Ny + f(z)zS)iZz-
il JN

&

= "CN™#2(= N)g(s),

AAAAAAA thhsn lact tcmbnmenl 1o thin cncam ne mire manelins cemtamenl £ae ~7fa\ This
UdeUbC LLC Iast 1HCELIal 15 T ddlllb ad> VUl CalliCl 1Ikglal 101 glo). 111>
equality can be written in the fo

(—i\./N')Sg<s> = C(——f\ﬂV)"- g(k — s).
Thus, by (3.32)-(3.33), if we define A(s) forRes>c+ 1by
AG) = (—iy/NYg(s) = (VN2 T ()L 1(5), (3.36)

we have shown that A(s) extends to an entire function of s, and satisfies
the functional equation

(N — CA(L — o\ (2 37)
ll\d} Nl l\l\/ L’]o \J.JI}

As an example of this result, we can take f(z) = A(z)€ S,,(I'), which
satisfies (3.35) with N = 1, k =12, C = 1. Then A(z) = 2., t(n)q", L\(s) =
X tmn™, and A(s) = 2n) T (s)L(s) satisfies the relation: A(s) =
A(12 — 5).

The derivation of (3.37) from (3.34) indicates a close connection between
Dirichlet series with a functional equation and modular forms. We came
across Dirichlet series with a functional equation in a very different context
in Chapter II. Namelv the Hasse—Weil I, function of the elhptlc curve

2,3
6 zforneverl C = (52) or.ncd.dand
1

Prohlem (A7) of 81T §)
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‘obtamed by takmg the Mellin transform of a suitabl
weight 27 That 1s, if we write L(E,, 5) in the form 2., b,m ™ (see (5.3) in
Ch. II), is £2_, b,,¢™ the g-expansion of a weight two modular form?

- Hecke [1936] and Weil [1967] showed that the answer to these questions
is basically yes, but with some qualifications. We shall not give the details,
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which are available in [Ogg 1969], but shall only outline the situation and
state Weil’s fundamental theorem on the subject.

Suppose that L(s) =X a,n"* satisfies (3.36)-(3.37) (and a suitable hy-
pothesis about convergence). Using the “inverse Meliin transform”, one
can reverse the steps that led to (3.36)—(3.37), and find that f(z) = X a,q"
satisfies (3.34). For now, let us suppose that N = 1% is a perfect square,
and that C = i* (k even). Then, if f(z) satisfies (3.35), it follows that f;(z) &=
f(z|}) = L a,q" satisfies: f;(—1/z) = z*f,(2). Thus, f, is invariant under [S ],
and [T*],, and hence is invariant under the group generated by S and T*.
Hecke denoted that group ®(2). We have encountered the group ®(2) before.

In this way one can show, for example, that L(E;, , s) corresponds to a
modular form (actually, a cusp form) of weight 2 for (ﬁ(ﬂnn\

A2AVRSI0R AL\ RR2s) .-. bl S T ] vipesr &= A2

Unfortunately, however, Hecke’s groups ®(4) turn out not to be large

enough to work with satisfactorily. In general, they are not congruence
crtharanmne (B — T 1c an evecention )

ouusluuyo. \W\d’-} — R \‘1) 10 i1 \fl\\r\-'l_ltl\lll.,

But one can do much better. Weil showed, roughly speaking, that if one
has functional equations analogous to (3.36)-(3.37) for enough “twists”

Y a8 AL sl ThIe: L

v --I.n e ~ -~ 2 ~ PaVaS ol FoVe P Wa N2 L aWa 4 e
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A (T AT\ 117, o~ tmrm o amm o sam imaemrns s cod s b amn o an ~ % e &N
expansion is in M, (I'y(N)). We now give a more precise statement of Weil’s

theorem.

Let x, be-a fixed Dirichlet character modulo N (y, is allowed to be the
trivial character). Let y be a variable Dirichlet character of conductor m,
where m is either an odd prime not dividing N, or else 4 (we allow m =4
only if N is odd). By a ““large” set of values of m we shall mean that the set
contains at least one m in any given arithmetic progression {u + IV}jezs
where # and v are relatively prime. According to Dirichlet’s theorem, any
such arithmetic progression contains a prime; thus, a “large” set of primes
is one which satisfies (this weak form of') Dirichlet’s theorem. By a “large”
set of characters y we shall mean the set of all nontrivial y modulo m for a
“large” set of m.

Let C= +1, and for any y of conductor m set

Ry

= Cyo(m)x(—N)g(0)/9(), (3.38)

where g(x) = Z}’;l.x( j)ez""f/” is the Gauss sum. Given a ¢- expansion f(z) =
22 0a,q", g = e*™, for which |a | = O(n®), we define L(s) by (3.33) and
3 h |

), and we further define

N’

Ly(y, 5) = szan L A =Ny T L(r ). (3.39

, q e?™2 has the property
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odular forms for congruence subgroups

to an entire function which is bounded in any vertical strip of the complex
plane, and satisfies the functional equation A(s) = CA(k — s). Further suppose
that for a “large” set of characters y of conductor m (in the sense explained
above), the function A(y, s) defined by (3.39) extends to an entire function
which is bounded in any vemca[ strip, and satisfies the functional equation
Ay, 8) = C, A, k — ), with C, defined in (3.38).

“Thon fe A/f (N v\ and cntlcf'oc {2 24\ If in fition. L (v} converges

F AR J \..,A".k\;v’ A«OI, Aot XLl § Ll i A v‘v“v

absolutely for Re s > k — ¢ for some & > 0, then fis a cusp form.

One can show that the Hasse—~Weii L-functions of the elliptic curves in
Chapter 11 satisfy the hypotheses of Weil’s theorem (with y, = 1). The same
techniques as in the proof Oi the theorem in §I1.5 can be used to show this.
However, one must consid@r the Hecke L-series obtained in (5.6) of Ch. II
by replacing ¥,(I) by the chavacter %,(I)x(NJ) with y any Dirichlet character
modulo m as in Weil’s the!)t?,m For example, if we do this for L(E,, s),
where E| is the elliptic curve \’ = x* — x, we can conclude by Weil’s theorem
that

ra

WO =g= 20— GO 2T T b (G0

(see (5.4) of Cu. IT) is a cusp form of weight two for I'4(32).

If we form the g-expansion corresponding to the L-series of E,: y* =
x* — n’x, namely, fz (2) = Z x,(m)b,q", it turns out that f € M,(I' 0(32;22))
for n odd and f¢_ qu(I"n(l6n2)) for n even. Note that when 7 = 1 mod 4,
sothat y,isa character of conductor n, this is an immediate consequence of
the fact that fz € M,(I'4(32)), by Proposition 17(b).

More generallv it can be shown that the Hasse—Weil L-function for any

elliptic curve w1rh comnlex multmh(‘mmn satisfies the hypotheses of Weil’s

waaAl 2 e LIDLILD

so corresponds to a weight two modular form
- To(N). (N is the so-called ““conductor” of the

N4 T 40 By BV T VA AANAva WL A [ § L

Lo sy

weight two can be regarded as holomorphic differential forms on the
N\

ntial forms on the
Riemann surface I'g(N)\H (i.e., the fundamental domain with 'j{N)-
equivalent boundary sides 1dent1ﬁed ai. ' the cusps included). The Taniyama-—
Weil conjecture then can be shown (¢ take the form: every elliptic curve
~over Q can be obtamed as a quotient of the Jacobian of some such Riemann
~ surface.
~For more information about the correspon dence between modular forms
and Dirichlet series, see [Hecke 1981] [ Weil 1967], [Ogg 1969], and
{Shlmura 1971].

-,
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PROBLEMS

1.

:l:a

Let xe GL} (Q), and let g(z) = f(az). Let y = (¢ §eI". Notice that f(az)|[y]; was
defined to be (caz + d)“"f(yocz) which is not the same as g(z)|[7], = (cz + d)7*

j\@?é} Show that if a = \0 l)’ i.c. . if @z = nz, then y\Z)EE"y}k =Jf(0£Z)%[ayuu ]k =

f(nz)“:(c/n d)]k

. Let T be a congruence subgroup of I' of level N, and denote T, = {yeI”|ys = s}

forseQu {oo}. Let s =a o0, ael.

(a) Prove that ol ™! = (al "™ 1), .

(b) Show that there exists a unique positive integer / (called the “‘ramification
index” of I'” at 5) such that

(i) in the case —IeI”

Yo
wd

i ~1 § 7k .
=t {1z,

(i) in the case —I¢ I either
I = o7 {T"},z0; Or (I1a)

rs/ =a™! {(“Th)n}neza' (IIb)

(c) Show that the integer A nd the type (1, I1a, or IIb) of s does not depend on the
N .

class of s.

(d) Show that if ™! oo is of type I or Ila and fe M, (I""), then f|{a™!], has a Fourier
expansion in powers of g,. A cusp of I'" is called “regular” if it is of type I or
I1a; it is called “irregular” if it is of type IIb.

(¢) Show that if a™'co is an irregular cusp, and fe M, (I"), then f|[a™*]; has a
Fourier expansion in powers of ¢, in which only odd powers appear if &k is odd
and only even powers appear if & is even. If k is odd, note that this means that
to show that fe M, (I') is a cusp form one need only check the g-expansions at
the regular cusps.

. Let h be any positive integer, and suppose 2h|N, N > 4. Let " be the following

level N congruence subgroup: I = {(¢ §) = ("} 2%y mod N for some j}. Show
that oo is a cusp of type 1Ib.

oL Calooa TN O LATN Lo sl N
Snow tnat 1 1Y ) [IdS LIIC SAINC CUd

(a) C as ) V=3,
(b) Note that —1¢1';(N) for N > 2. Which of the cusps of T, (3) and I'; (4), if any,

n'—‘)
arc ir u.«suxcu ¢

. Find the ramification indices of I'” at all of its cusps when:

(@) T"=To(p) (p a prime);
(b) I'" = To(p%);
© I'=Tr(2).

. Prove that if I'" < T is a normal subgroup, then all cusps have the same ramifica-

tion index, namely [T,: +I.].

(a) Show that any weight zero modular function for I < I' satisfies a polynomial

~ caras [T, i BTSN o FANRPRY S, IO N I o NPT, PR .
of degree [I': I''} over the field C(j) of weight zero modular functions for I



