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Chapter 2
Series

This chapter is devoted to a study of the different kinds of series that
are widely used as generating functions.

2.1 Formal power series

To discuss the formal theory of power series, as opposed to their an-
alytic theory, is to discuss these series as purely algebraic objects, in their
roles as clotheslines, without using any of the function-theoretic properties
of the function that may be represented by the series or, indeed, without
knowing whether such a function exists.

We study formal series because it often happens in the theory of gen-
erating functions that we are trying to solve a recurrence relation, so we
introduce a generating function, and then we go through the various ma-
nipulations that follow, but with a guilty conscience because we aren’t sure
whether the various series that we’re working with will converge. Also, we
might find ourselves working with the derivatives of a generating function,
still without having any idea if the series converges to a function at all.

The point of this section is that there’s no need for the guilt, because
the various manipulations can be carried out in the ring of formal power
series, where questions of convergence are nonexistent. We may execute
the whole method and end up with the generating series, and only then
discover whether it converges and thereby represents a real honest function
or not. If not, we may still get lots of information from the formal series,
but maybe we won’t be able to get analytic information, such as asymptotic
formulas for the sizes of the coefficients. Exact formulas for the sequences
in question, however, might very well still result, even though the method
rests, in those cases, on a purely algebraic, formal foundation.

The series

f = 1 + x+ 2x2 + 6x3 + 24x4 + 120x5 + · · ·+ n!xn + · · · , (2.1.1)

for instance, has a perfectly fine existence as a formal power series, despite
the fact that it converges for no value of x other than x = 0, and therefore
offers no possibilities for investigation by analytic methods. Not only that,
but this series plays an important role in some natural counting problems.

A formal power series is an expression of the form

a0 + a1x+ a2x
2 + · · ·

where the sequence {an}∞0 is called the sequence of coefficients. To say that
two series are equal is to say that their coefficient sequences are the same.
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We can do certain kinds of operations with formal power series. We
can add or subtract them, for example. This is done according to the rules

∑

n

anx
n ±

∑

n

bnx
n =

∑

n

(an ± bn)xn.

Power series can be multiplied by the usual Cauchy product rule,

∑

n

anx
n
∑

n

bnx
n =

∑

n

cnx
n (cn =

∑

k

akbn−k). (2.1.2)

It is certainly this product rule that accounts for the wide applicability of
series methods in combinatorial problems. This is because frequently we
can construct all an of the objects of type n in some family by choosing an
object of type k and an object of type n − k and stitching them together
to make the object of type n. The number of ways of doing that will be
akan−k, and if we sum on k we find that the Cauchy product of two formal
series is directly relevant to the problem that we are studying.

If we follow the multiplication rule we obtain, for instance,

(1 − x)(1 + x+ x2 + x3 + · · ·) = 1.

Thus we can say that the series (1−x) has a reciprocal, and that reciprocal
is 1 + x+ x2 + · · · (and the other way around, too).

Proposition. A formal power series f =
∑

n≥0 anx
n has a reciprocal if

and only if a0 6= 0. In that case the reciprocal is unique.

Proof. Let f have a reciprocal, namely 1/f =
∑

n≥0 bnx
n. Then f ·(1/f) =

1 and according to (2.1.2), c0 = 1 = a0b0, so a0 6= 0. Further, in this case
(2.1.2) tells us that for n ≥ 1, cn = 0 =

∑
k akbn−k, from which we find

bn = (−1/a0)
∑

k≥1

akbn−k (n ≥ 1). (2.1.3)

This determines b1, b2, . . . uniquely, as claimed.
Conversely, suppose a0 6= 0. Then we can determine b0, b1, . . . from

(2.1.3), and the resulting series
∑

n bnx
n is the reciprocal of f .

The collection of formal power series under the rules of arithmetic that
we have just described forms a ring, in which the invertible elements are
the series with nonvanishing constant term.

The above idea of a reciprocal of a formal power series is not to be
confused with the subtler notion of the inverse of such a series. The inverse
of a series f , if it exists, is a series g such that f(g(x)) = g(f(x)) = x.
When can such an inverse exist? First we need to be able to define the
symbol f(g(x)), then we can worry about whether or not it is equal to x.
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If f =
∑

n anx
n, then f(g(x)) means

f(g(x)) =
∑

n

ang(x)n. (2.1.4)

If the series g(x) has a nonzero constant term, g0, then every term of the
series (2.1.4) may contribute to the coefficient of each power of x. On the
other hand, if g0 = 0, then we will be able to compute the coefficient of,
say, x57 in (2.1.4) from just the first 58 terms of the series shown. Indeed,
notice that every single term

ang(x)n = an(g1x+ g2x
2 + . . .)n

= anx
n(g1 + g2x+ . . .)n

with n > 57 will contain only powers of x higher than the 57th, and there-
fore we won’t need to look at those terms to find the coefficient of x57.

Thus if g0 = 0 then the computation of each one of the coefficients of
the series f(g(x)) is a finite process, and therefore all of those coefficients
are well defined, and so is the series. If g0 6= 0, though, the computation
of each coefficient of f(g(x)) is an infinite process unless f is a polynomial,
and therefore it will make sense only if the series ‘converge.’ In a formal,
algebraic theory, however, ideas of convergence have no place. Thus the
composition f(g(x)) of two formal power series is defined if and only if
g0 = 0 or f is a polynomial.

For instance, the series eex−1 is a well defined formal series, whereas the
series eex

is not defined, at least from the general definition of composition
of functions.

To return to the question of finding a series inverse of a given series f ,
we see that if such an inverse series g exists, then

f(g(x)) = g(f(x)) = x (2.1.5)

must both make sense and be true. We claim that if f(0) = 0 the inverse
series exists if and only if the coefficient of x is nonzero in the series f .

Proposition. Let the formal power series f , g satisfy (2.1.5) and f(0) = 0.
Then f = f1x+ f2x

2 + · · · (f1 6= 0), and g = g1x+ g2x
2 + · · · (g1 6= 0).

Proof. Suppose that f = frx
r + · · · and g = gsx

s + · · ·, where r, s ≥ 0 and
frgs 6= 0. Then f(g(x)) = x = frg

r
sx

rs + · · ·, whence rs = 1, and r = s = 1,
as claimed.

In the ring of formal power series there are other operations defined,
which mirror the corresponding operations of function calculus, but which
make no use of limiting operations.

The derivative of the formal power series f =
∑

n anx
n is the series

f ′ =
∑

n nanx
n−1. Differentiation follows the usual rules of calculus, such

as the sum, product, and quotient rules. Many of these properties are even
easier to prove for formal series than they are for the functions of calculus.

For example:
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Proposition. If f ′ = 0 then f = a0 is constant.

Proof. Take another look at the ‘=’ sign in the hypothesis f ′ = 0. It means
that the formal power series f ′ is identical to the formal power series 0, and
that means that each and every coefficient of the formal series f ′ is 0. But
the coefficients of f ′ are a1, 2a2, 3a3, . . ., so each of these is 0, and therefore
aj = 0 for all j ≥ 1, which is to say that f is constant.

Next, try this one:

Proposition. If f ′ = f then f = cex.

Proof. Since f ′ = f , the coefficient of xn must be the same in f as
in f ′, for all n ≥ 0. Hence (n + 1)an+1 = an for all n ≥ 0, whence
an+1 = an/(n+ 1) (n ≥ 0). By induction on n, an = a0/n! for all n ≥ 0,
and so f = a0e

x.

2.2 The calculus of formal ordinary power series generating func-
tions

Operations on formal series involve corresponding operations on their
coefficients. If the series actually converge and represent functions, then
operations on those functions correspond to certain operations on the power
series coefficients of the expansions of those functions. In this section we
will explore some of these relationships. They are of great importance in
helping to spot which kind of generating function is appropriate for which
kind of recurrence relation or other combinatorial situation.

Definition. The symbol f ops
←→ {an}∞0 means that the series f is the ordi-

nary power series (‘ops’) generating function for the sequence {an}∞0 . That
is, it means that f =

∑
n anx

n.

Suppose f ops
←→ {an}∞0 . Then what generates {an+1}∞0 ? To answer

that we do a little calculation:

∑

n≥0

an+1x
n =

1
x

∑

m≥1

amx
m =

(f(x) − f(0))
x

.

Therefore
f ops
←→ {an}∞0 ⇒ ((f − a0)/x) ops

←→ {an+1}∞0 . (2.2.1)

Thus a shift of the subscript by 1 unit changes the series represented
to the difference quotient (f − a0)/x. If we shift by 2 units, of course, we
just iterate the difference quotient operation, and find that

{an+2}∞0 ops
←→

((f − a0)/x) − a1

x

=
f − a0 − a1x

x2
.
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Note how this point of view allows us to see ‘at a glance’ that the
Fibonacci recurrence relation Fn+2 = Fn+1 + Fn (n ≥ 0;F0 = 0;F1 =
1) translates directly into the ordinary power series generating function
relation

f − x

x2
=
f

x
+ f.

Indeed, the purpose of this section is to develop this facility for passing
from sequence relations to series relations quickly and conveniently.

Rule 1. If f ops
←→ {an}∞0 , then, for integer h > 0,

{an+h}∞0 ops
←→

f − a0 − · · · − ah−1x
h−1

xh
.

Next let’s look into the effect of multiplying the sequence by powers of
n. Again, suppose that f ops

←→ {an}∞0 . Then what generates the sequence
{nan}∞0 ? The question means this: can we express the series

∑
n nanx

n

in some simple way in terms of the series f =
∑

n anx
n? The answer is

easy, because the former series is exactly xf ′. Therefore, to multiply the
nth member of a sequence by n causes its ops generating function to be
‘multiplied’ by x(d/dx), which we will write as xD. In symbols:

f ops
←→ {an}∞0 ⇒ (xDf) ops

←→ {nan}∞0 . (2.2.2)

As an example, consider the recurrence

(n+ 1)an+1 = 3an + 1 (n ≥ 0; a0 = 1).

If f is the opsgf of the sequence {an}∞0 , then from Rule 1 and (2.2.2),

f ′ = 3f +
1

1 − x
,

which is a first order differential equation in the unknown generating func-
tion, and it can be solved by standard methods.

Next suppose f ops
←→ {an}∞0 . Then what generates the sequence

{n2an}∞0 ?

Obviously we re-apply the multiply-by-n operator xD, so the answer is
(xD)2f . In general,

(xD)kf ops
←→ {nkan}n≥0.

OK, what generates {(3 − 7n2)an}n≥0? Again obviously, we do the
same thing to xD that is done to n, i.e., (3− 7(xD)2)f is the answer. The
general prescription is:
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Rule 2. If f ops
←→ {an}∞0 , and P is a polynomial, then

P (xD)f ops
←→ {P (n)an}n≥0.

Example 1.

Find a closed formula for the sum of the series
∑

n≥0(n
2 +4n+5)/n!.

According to the rule, the answer is the value at x = 1 of the series

{(xD)2 + 4(xD) + 5}ex = {x2 + x}ex + 4xex + 5ex

= (x2 + 5x+ 5)ex.

Therefore the answer to the question is 11e.
But we cheated. Did you catch the illegal move? We took our gen-

erating function and evaluated it at x = 1, didn’t we? Such an operation
doesn’t exist in the ring of formal series. There, series don’t have ‘values’
at particular values of x. The letter x is purely a formal symbol whose
powers mark the clothespins on the line.

What can be evaluated at a particular numerical value of x is a power
series that converges at that x, which is an analytic idea rather than a formal
one. The way we make peace with our consciences in such situations, which
occur frequently, is this: if, after writing out the recurrence relation and
solving it by means of a formal power series generating function, we find
that the series so obtained converges to an analytic function inside a certain
disk in the complex plane, then the whole derivation that we did formally
is actually valid analytically for all complex x in that disk. Therefore we
can shift gears and regard the series as a convergent analytic creature if it
pleases us to do so.

Example 2.

Find a closed formula for the sum of the squares of the first N positive
integers.

To do that, begin with the fact that

N∑

n=0

xn =
xN+1 − 1
x− 1

,

and notice that if we apply (xD)2 to both sides of this relation and then
set x = 1, the left side will be the sum of squares that we seek, and the
right side will be the answer! Hence

N∑

n=1

n2 = (xD)2
{
xN+1 − 1
x− 1

}∣∣∣∣
x=1

.
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After doing the two differentiations and lots of algebra, the answer emerges
as

N∑

n=1

n2 =
N(N + 1)(2N + 1)

6
(N = 1, 2, . . .),

which you no doubt knew already. Do notice, however, that the generating
function machine is capable of doing, quite mechanically, many formidable-
looking problems involving sums.

Our third rule will be a restatement of the way that two opsgf’s are
multiplied.

Rule 3. If f ops
←→ {an}∞0 and g ops

←→ {bn}∞0 , then

fg ops
←→

{ n∑

r=0

arbn−r

}∞

n=0

. (2.2.3)

Now consider the product of more than two series. For instance, in the
case of three series, if f, g, h are the series, and if they generate sequences
a, b and c, respectively, then a brief computation shows that fgh generates
the sequence { ∑

r+s+t=n

arbsct

}∞

n=0

. (2.2.4)

A comparison with Rule 3 above will suggest the general formulas that
apply to products of any number of power series. One case of this is worth
writing down, namely the expressions for the kth power of a series.

Rule 4. Let f ops
←→ {an}∞0 , and let k be a positive integer. Then

fk ops
←→

{ ∑

n1+n2+···+nk=n

an1an2 · · ·ank

}∞

n=0

. (2.2.5)

Example 3.

Let f(n, k) denote the number of ways that the nonnegative integer n
can be written as an ordered sum of k nonnegative integers. Find f(n, k).
For instance, f(4, 2) = 5 because 4=4+0=3+1=2+2=1+3=0+4.

To find f , consider the power series 1/(1−x)k. Since 1/(1−x) ops
←→ {1},

by (2.2.5) we have
1/(1 − x)k ops

←→ {f(n, k)}∞n=0.

By (1.5.5), f(n, k) =
(
n+k−1

n

)
, and we are finished.

Next consider the effect of multiplying a power series by 1/(1 − x).
Suppose f ops

←→ {an}∞0 . Then what sequence does f(x)/(1 − x) generate?
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To find out, we have

f(x)
(1 − x)

= (a0 + a1x+ a2x
2 + · · ·)(1 + x+ x2 + · · ·)

= a0 + (a0 + a1)x+ (a0 + a1 + a2)x2

+ (a0 + a1 + a2 + a3)x3 + · · ·

which clearly leads us to:

Rule 5. If f ops
←→ {an}∞0 then

f

(1 − x)
ops
←→

{ n∑

j=0

aj

}

n≥0

.

That is, the effect of dividing an opsgf by (1−x) is to replace the sequence
that is generated by the sequence of its partial sums.

Example 4.

Here is another derivation of the formula for the sum of the squares of
the first n whole numbers. Since 1/(1− x) ops

←→ {1}n≥0, we have by Rule 2,
(xD)2(1/(1 − x)) ops

←→ {n2}n≥0, and by Rule 5,

1
1 − x

(xD)2
1

1 − x
ops
←→

{ n∑

j=0

j2
}

n≥0

.

That is, the sum of the squares of the first n positive integers is the coeffi-
cient of xn in the series

1
1 − x

(xD)2
1

1 − x
=
x(1 + x)
(1 − x)4

.

However, by (1.5.5) with k = 3,

[xn]
(

1
(1 − x)4

)
=
(
n+ 3

3

)
.

Hence, by (1.2.7),

[xn]
x(1 + x)
(1 − x)4

=
(
n+ 2

3

)
+
(
n+ 1

3

)

=
n(n+ 1)(2n+ 1)

6
,

so this must be the sum of the squares of the first n positive integers.
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Fig. 2.1: A (28, 12) fountain

Example 5.

The harmonic numbers {Hn}∞1 are defined by

Hn = 1 +
1
2

+
1
3

+ · · ·+ 1
n

(n ≥ 1).

How can we find their ops generating function? By Rule 5, that function
is 1/(1 − x) times the opsgf of the sequence {1/n}∞1 of reciprocals of the
positive integers. So what is f =

∑
n≥1 x

n/n? Well, its derivative is 1/(1−
x), so it must be − log (1 − x). That means that the opsgf of the harmonic
numbers is

∞∑

n=1

Hnx
n =

1
1 − x

log
(

1
1 − x

)
.

Example 6.

Prove that the Fibonacci numbers satisfy

F0 + F1 + F2 + · · · + Fn = Fn+2 − 1 (n ≥ 0).

By Rule 5, the opsgf of the sequence on the left side is F/(1− x), where F
is the opsgf of the Fibonacci numbers, which we found in section 1.3 to be
x/(1−x−x2). By Rule 1, the opsgf of the sequence on the right hand side
is

F − x

x2
− 1

1 − x
,

and it is the work of just a moment to check that these are equal.

Example 7.

By a fountain of coins we mean an arrangement of n coins in rows such
that the coins in the first row form a single contiguous block, and that in
all higher rows each coin touches exactly two coins from the row beneath
it. If the first row contains k coins, we will speak of an (n, k)-fountain. In
Fig. 2.1 we show a (28, 12) fountain.

Among all possible fountains we distinguish a special type: those in
which every row consists of just a single contiguous block of coins. Let’s
call these block fountains.
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The question here is this: how many block fountains have a first row
that consists of exactly k coins?

Let f(k) be that number, for k = 0, 1, 2, . . . If we strip off the first row
from such a block fountain, then we are looking at another block fountain
that has k fewer coins in it. Conversely, if we wish to form all possible block
fountains whose first row has k coins, then begin by laying down that row.
Then choose a number j, 0 ≤ j ≤ k − 1. Above the row of k coins we will
place a block fountain whose first row has j coins. If j = 0 there is just
one way to do that. Otherwise there are k− j ways to do it, depending on
how far in we indent the row of j over the row of k coins. It follows that
f(0) = 1 and

f(k) =
k∑

j=1

(k − j)f(j) + 1 (k = 1, 2, . . .). (2.2.6)

Define the opsgf F (x) =
∑

j≥0 f(j)xj. The appearance, under the
summation sign in (2.2.6), of a function of k−j times a function of j should
trigger a reflex reaction that Rule 3, above, applies, and that the product
of two ordinary power series generating functions is involved. The two
series in question are the opsgf’s of the integers {j}∞1 and of the unknowns
{f(j)}∞1 , respectively.

However the former opsgf is x/(1 − x)2, and the latter is F (x) − 1.
Hence, after multiplying equation (2.2.6) by xk and summing over k ≥ 1
we obtain

F (x) − 1 =
x

(1 − x)2
(F (x) − 1) +

x

1 − x
,

and therefore

F (x) =
1 − 2x

1 − 3x+ x2
. (2.2.7)

The sequence {f(k)}∞0 begins with 1, 1, 2, 5, 13, 34, 89, . . . If these num-
bers look suspiciously like Fibonacci numbers, then see exercise 19.

2.3 The calculus of formal exponential generating functions

In this section we will investigate the analogues of the rules in the
preceding section, which applied to ordinary power series, in the case of
exponential generating functions.

Definition. The symbol f egf
←→ {an}∞0 means that the series f is the ex-

ponential generating function of the sequence {an}∞0 , i.e., that

f =
∑

n≥0

an

n!
xn.


