
8 1 Introductory ideas and examples

A perfectly obvious property of this symbol, that we will use repeatedly, is

[xn]{xaf(x)} = [xn−a]f(x). (1.2.7)

Another property of this symbol is the convention that if β is any real
number, then

[βxn]f(x) = (1/β)[xn]f(x), (1.2.8)

so, for instance, [xn/n!]ex = 1 for all n ≥ 0.
Before we move on to the next example, here is a summary of the

method of generating functions as we have used it so far.

THE METHOD

Given: a recurrence formula that is to be solved by the method of
generating functions.

1. Make sure that the set of values of the free variable (say n) for
which the given recurrence relation is true, is clearly delineated.

2. Give a name to the generating function that you will look for, and
write out that function in terms of the unknown sequence (e.g.,
call it A(x), and define it to be

∑
n≥0 anx

n).
3. Multiply both sides of the recurrence by xn, and sum over all

values of n for which the recurrence holds.
4. Express both sides of the resulting equation explicitly in terms of

your generating function A(x).
5. Solve the resulting equation for the unknown generating function
A(x).

6. If you want an exact formula for the sequence that is defined by
the given recurrence relation, then attempt to get such a formula
by expanding A(x) into a power series by any method you can
think of. In particular, if A(x) is a rational function (quotient
of two polynomials), then success will result from expanding in
partial fractions and then handling each of the resulting terms
separately.

1.3 A three term recurrence

Now let’s do the Fibonacci recurrence

Fn+1 = Fn + Fn−1. (n ≥ 1;F0 = 0; F1 = 1). (1.3.1)

Following ‘The Method,’ we will solve for the generating function

F (x) =
∑

n≥0

Fnx
n.

1.3 A three term recurrence 9

To do that, multiply (1.3.1) by xn, and sum over n ≥ 1. We find on the
left side

F2x+ F3x
2 + F4x

3 + · · · =
F (x) − x

x
,

and on the right side we find

{F1x+F2x
2+F3x

3 + · · ·}+{F0x+F1x
2+F2x

3 + · · ·} = {F (x)}+{xF (x)}.

(Important: Try to do the above yourself, without peeking, and see if you
get the same answer.) It follows that (F − x)/x = F + xF , and therefore
that the unknown generating function is now known, and it is

F (x) =
x

1 − x− x2
.

Now we will find some formulas for the Fibonacci numbers by expand-
ing x/(1 − x− x2) in partial fractions. The success of the partial fraction
method is greatly enhanced by having only linear (first degree) factors in
the denominator, whereas what we now have is a quadratic factor. So let’s
factor it further. We find that

1 − x− x2 = (1 − xr+)(1 − xr−) (r± = (1 ±
√

5)/2)

and so
x

1 − x− x2
=

x

(1 − xr+)(1 − xr−)

=
1

(r+ − r−)

(
1

1 − xr+
− 1

1 − xr−

)

=
1√
5

{∑

j≥0

rj
+x

j −
∑

j≥0

rj
−x

j

}
,

thanks to the magic of the geometric series. It is easy to pick out the
coefficient of xn and find

Fn =
1√
5
(rn

+ − rn
−) (n = 0, 1, 2, . . .) (1.3.3)

as an explicit formula for the Fibonacci numbers Fn.
This example offers us a chance to edge a little further into what gen-

erating functions can tell us about sequences, in that we can get not only
the exact answer, but also an approximate answer, valid when n is large.
Indeed, when n is large, since r+ > 1 and |r−| < 1, the second term in
(1.3.3) will be minuscule compared to the first, so an extremely good ap-
proximation to Fn will be

Fn ∼ 1√
5

(
1 +

√
5

2

)n

. (1.3.4)

10 1 Introductory ideas and examples

But, you may ask, why would anyone want an approximate formula
when an exact one is available? One answer, of course, is that sometimes
exact answers are fearfully complicated, and approximate ones are more
revealing. Even in this case, where the exact answer isn’t very complex, we
can still learn something from the approximation. The reader should take
a few moments to verify that, by neglecting the second term in (1.3.3), we
neglect a quantity that is never as large as 0.5 in magnitude, and conse-
quently not only is Fn approximately given by (1.3.4), it is exactly equal
to the integer nearest to the right side of (1.3.4). Thus consideration of an
approximate formula has found us a simpler exact formula!

1.4 A three term boundary value problem

This example will differ from the previous ones in that the recurrence
relation involved does not permit the direct calculation of the members
of the sequence, although it does determine the sequence uniquely. The
situation is similar to the following: suppose we imagine the Fibonacci re-
currence, together with the additional data F0 = 1 and F735 = 1. Well then,
the sequence {Fn} would be uniquely determined, but you wouldn’t be able
to compute it directly by recurrence because you would not be in possession
of the two consecutive values that are needed to get the recurrence started.

We will consider a slightly more general situation. It consists of the
recurrence

aun+1 + bun + cun−1 = dn (n = 1, 2, . . . , N − 1;u0 = uN = 0) (1.4.1)

where the positive integerN , the constants a, b, c and the sequence {dn}N−1
n=1

are given in advance. The equations (1.4.1) determine the sequence {ui}N
0

uniquely, as we will see, and the method of generating functions gives us a
powerful way to attack such boundary value problems as this, which arise
in numerous applications, such as the theory of interpolation by spline func-
tions.

To begin with, we will define two generating functions. One of them is
our unknown U(x) =

∑N
j=0 ujx

j , and the second one isD(x) =
∑N−1

j=1 djx
j ,

and it is regarded as a known function (did we omit any given values of the
dj ’s, like d0? or dN? Why?).

Next, following the usual recipe, we multiply the recurrence (1.4.1) by
xn and sum over the values of n for which the recurrence is true, which in
this case means that we sum from n = 1 to N − 1. This yields

a
N−1∑

n=1

un+1x
n + b

N−1∑

n=1

unx
n + c

N−1∑

n=1

un−1x
n =

N−1∑

n=1

dnx
n.

If we now express this equation in terms of our previously defined generating
functions, it takes the form

a

x
{U(x) − u1x} + bU(x) + cx{U(x) − uN−1x

N−1} = D(x). (1.4.2)

1.4 A three term boundary value problem 11

Next, with only a nagging doubt because u1 and uN−1 are unknown, we
press on with the recipe, whose next step asks us to solve (1.4.2) for the
unknown generating function U(x). Now that isn’t too hard, and we find
at once that

{a+ bx+ cx2}U(x) = x{D(x) + au1 + cuN−1x
N}. (1.4.3)

The unknown generating function U(x) is now known except for the
two still-unknown constants u1 and uN−1, but (1.4.3) suggests a way to find
them, too. There are two values of x, call them r+ and r−, at which the
quadratic polynomial on the left side of (1.4.3) vanishes. Let us suppose
that rN

+ 6= rN
− , for the moment. If we let x = r+ in (1.4.3), we obtain

one equation in the two unknowns u1, uN−1, and if we let x = r−, we get
another. The two equations are

au1 + (crN
+)uN−1 = −D(r+)

au1 + (crN
−)uN−1 = −D(r−).

(1.4.4)

Once these have been solved for u1 and uN−1, equation (1.4.3) then gives
U(x) quite explicitly and completely. We leave the exceptional case where
rN
+ = rN

− to the reader.
Here is an application∗ of these results to the theory of spline interpo-

lation.
Suppose we are given a table of values y0, y1, . . . , yn of some function

y(x), at a set of equally spaced points ti = t0 + ih (0 ≤ i ≤ n). We want to
construct a smooth function S(x) that fits the data, subject to the following
conditions:

(i) Within each interval (ti, ti+1) (i = 0, . . . , n− 1) our function S(x) is
to be a cubic polynomial (a different one in each interval!);

(ii) The functions S(x), S′(x) and S′′(x) are to be continuous on the
whole interval [t0, tn];

(iii) S(ti) = yi for i = 0, . . . , n.
A function S(x) that satisfies these conditions is called a cubic spline.

Suppose our unknown spline S(x) is given by S0(x), if x ∈ [t0, t1], S1(x), if
x ∈ [t1, t2],. . ., Sn−1(x), if x ∈ [tn−1, tn], and we want now to determine all
of the cubic polynomials S0, . . . , Sn−1. To do this we have 2n interpolatory
conditions

Si−1(ti) = yi = Si(ti) (i = 1, . . . , n− 1); S0(t0) = y0; Sn−1(tn) = yn

(1.4.5)
along with 2n− 2 continuity conditions

S′
i−1(ti) = S′

i(ti); S
′′
i−1(ti) = S′′

i (ti) (i = 1, . . . , n− 1). (1.4.6)

∗ This application is somewhat specialized, and may be omitted at a first
reading.

12 1 Introductory ideas and examples

There are altogether 4n− 2 conditions to satisfy. We have n cubic polyno-
mials to be determined, each of which has 4 coefficients, for a total of 4n
unknown parameters. Since the conditions are linear, such a spline S(x)
surely exists and we can expect it to have two free parameters. It is con-
ventional to choose these so that S(x) has a point of inflection at t0 and at
tn.

Now here is the solution. The functions Si(x) are given by

Si(x) =
1
6h
(
zi(ti+1 − x)3 + zi+1(x− ti)3 + (6yi+1 − h2zi+1)(x− ti)

+ (6yi − h2zi)(ti+1 − x)
)

(i = 0, 1, . . . , n− 1),
(1.4.7)

provided that the numbers z1, . . . , zn−1 satisfy the simultaneous equations

zi−1 + 4zi + zi+1 =
6
h2

(yi+1 − 2yi + yi−1) (i = 1, 2, . . . , n− 1) (1.4.8)

in which z0 = zn = 0. It is easy to check this, by substituting x = ti and
x = ti+1 into (1.4.7) to verify that (1.4.5) and (1.4.6) are satisfied. Hence
it remains only to solve the equations (1.4.8).

The system of equations (1.4.8) is of the form (1.4.1), hence we can
find the solutions from (1.4.3), (1.4.4). To do this, begin with the given set
of points {(ti, yi)}n

i=0, through which we wish to interpolate. Use them to
write down

D(x) =
6
h2

n−1∑

i=1

(yi+1 − 2yi + yi−1)xi. (1.4.9)

Since (a, b, c) = (1, 4, 1) in this example, we have r± = −2 ±
√

3. Now our
unknown generating function U(x) is given by (1.4.3), which reads as

U(x) =
x(D(x) + z1 + zn−1x

n)
(1 + 4x+ x2)

, (1.4.10)

in which the unknown numbers z1, zn−1 are determined by the requirement
that the right side of (1.4.10) be a polynomial, or equivalently by the two
equations (1.4.4), which become

z1 + (
√

3 − 2)nzn−1 = −D(
√

3 − 2)

z1 + (−
√

3 − 2)nzn−1 = −D(−
√

3 − 2).
(1.4.11)

When we know U(x), which is, after all,
∑n−1

i=1 zix
i, we can read off its

coefficients to find the z’s, and use them in (1.4.7) to find the interpolating
spline.

1.4 A three term boundary value problem 13

Example.
Now let’s try an example with real live numbers in it. Suppose we are

trying to fit the powers of 2 by a cubic spline on the interval [0, 5]. Our
input data are yi = 2i for i = 0, 1, . . . , 5, h = 1, and n = 5. From (1.4.9)
we find that D(x) = 6x(1+2x+4x2 +8x3). Then we solve (1.4.11) to find
that z1 = 204/209 and z4 = 2370/209. Next (1.4.10) tells us that

U(x) =
204x
209

+
438x2

209
+

552x3

209
+

2370x4

209
,

and now we know all of the zi’s. Finally, (1.4.7) tells us the exact cubic
polynomials that form the spline. For example, S0(x), which lives on the
subinterval [0, 1], is

S0(x) = 1 +
175
209

x+
34
209

x3.

Note that S0(0) = 1 and S0(1) = 2, so it correctly fits the data at the
endpoints of its subinterval, and that S′′

0 (0) = 0, so the fit will have an
inflection point at the origin. The reader is invited to find all of the Si(x)
(i = 0, 1, . . . , 5), in this example, and check that they smoothly fit into each
other at the points 1, 2, 3, 4, in the sense that the functions and their first
two derivatives are continuous.

One reason why you might like to fit some numerical data with a
spline is because you want to integrate the function that the data represent.
Integration of (1.4.7) from ti = ih to ti+1 = (i+ 1)h shows that

∫ ti+1

ti

Si(x)dx =
h

2
(yi + yi+1) −

h3

24
(zi + zi+1). (1.4.12)

Thus, fitting some data by a spline and integrating the spline amounts to
numerical integration by the trapezoidal rule with a third order correction
term. If we sum (1.4.12) over i = 0, . . . , n−1 we get for the overall integral,

∫ nh

0

S(x)dx = trap − h

12
(y0 − y1 − yn−1 + yn) − h3

72
(z1 + zn−1) (1.4.13)

in which ‘trap’ is the trapezoidal rule, and z1, zn−1 satisfy (1.4.11).
Interpolation by spline functions is an important subject. It occurs in

the storage of computer fonts, such as the one that you are now reading.
Did you ever wonder how the shapes of the letters in the fonts are actually
stored in a computer? One way is by storing the parameters of spline
functions that fit the contours of the letters in the font.

