EINFÜHRUNG IN DIE THEORIE DER JACOBI-FORMEN ([1], S. 8-11)

Seien k und m ganze Zahlen. Wir betrachten holomorphe Funktionen in den Veränderlichen $\tau \in \mathbb{H} = \{\tau \in \mathbb{C} | \operatorname{Im}(\tau) > 0\}$ und $z \in \mathbb{C}$, die für $\lambda, \mu \in \mathbb{Z}$ und

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}$$

folgendermaßen transformieren:

$$\phi\left(\frac{a\tau+b}{c\tau+d}, \frac{z}{c\tau+d}\right) = (c\tau+d)^k e^{2\pi i m \left(\frac{cz^2}{c\tau+d}\right)} \phi\left(\tau, z\right),$$

$$\phi\left(\tau, z + \lambda \tau + \mu\right) = e^{-2\pi i m \left(\lambda^2 \tau + 2\lambda z\right)} \phi\left(\tau, z\right).$$
(1)

Eine solche Funktion ϕ hat eine Fourierentwicklung

$$\phi(\tau, z) = \sum_{n,r \in \mathbb{Z}} c(n, r) e^{2\pi i n \tau} e^{2\pi i r z}.$$

Falls die Koeffizienten mit $\operatorname{sgn}(m)$ $(4mn-r^2)<0$ verschwinden, wird ϕ eine $\operatorname{Jacobi-Form}$ vom $\operatorname{Gewicht}\ k$ und $\operatorname{Index}\ m$ genannt. Hierin ist $\operatorname{sgn}(m)=1$ für $m\geq 0$ und $\operatorname{sgn}(m)=-1$ für m<0. Es bezeichne $J_{k,m}$ den Raum aller Jacobi-Formen vom Gewicht k und Index m. Verschwinden darüber hinaus die Koeffizienten mit $4mn-r^2=0$, so spricht man von $\operatorname{Jacobi-Spitzenformen}$, den zugehörigen Raum bezeichnen wir mit $J_{k,m}^{\operatorname{cusp}}$.

Die Einschränkung $\tau \mapsto \phi(\tau,0)$ einer Jacobi-Form $\phi \in J_{k,m}$ auf z=0 ist eine sogenannte Modulform zu $\mathrm{SL}_2(\mathbb{Z})$. Eine Modulform vom Gewicht k zu Γ , einer Untergruppe von endlichem Index in $\mathrm{SL}_2(\mathbb{Z})$, ist eine holomorphe Funktion auf \mathbb{H} , welche für $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ die Transformationseigenschaft

$$f(\gamma \tau) = f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^k f(\tau)$$

besitzt und "holomorph an den Spitzen" ist. Der Begriff "holomorph an den Spitzen" ist in dem Vortrag einzuführen. Es bezeichne $M_k(\Gamma)$ den Raum aller Modulformen vom Gewicht k zu Γ . Folgendes grundlegende Resultat werden wir ohne Beweis verwenden:

Satz 1. Der Raum $M_k(\Gamma)$ ist endlich-dimensional.

In dem Vortrag sollen Sie die Begriffe "Jacobi-Form" und "Jacobi-Spitzenform" einführen und folgenden Satz beweisen:

Satz 2. Der Raum $J_{k,m}$ ist endlich-dimensional.

Hierfür können Sie folgenden Satz benutzen, den wir im zweiten Vortrag beweisen werden:

Satz 3. Seien $\lambda, \mu \in \mathbb{Q}$ und $\phi \in J_{k,m}$. Dann ist die Funktion

$$f(\tau) = f_{\lambda,\mu}(\tau) = e^{2\pi i m \lambda^2 \tau} \phi(\tau, \lambda \tau + \mu)$$

eine Modulform vom Gewicht k zu einer Untergruppe $\Gamma = \Gamma_{\lambda,\mu} \subseteq \operatorname{SL}_2(\mathbb{Z})$ von endlichem Index, wobei $\Gamma_{\lambda,\mu}$ nur von λ und μ abhängt.

Es kann nun wie folgt argumentiert werden: Zu $(\lambda_1, \mu_1), \ldots, (\lambda_r, \mu_r) \in \mathbb{Q}^2/\mathbb{Z}^2$ liefert Satz 3 die Abbildung

(2)
$$J_{k,m} \to \bigoplus_{i=1}^{r} M_k \left(\Gamma_{\lambda_i, \mu_i} \right) : \phi \mapsto \left(f_{\lambda_i, \mu_i} \right)_{i=1}^{r}.$$

Nach Satz 1 ist der Raum $\bigoplus_{i=1}^r M_k(\Gamma_{\lambda_i,\mu_i})$ endlich-dimensional. Wir wählen nun r>2m und verschiedene Paare (λ_i,μ_i) . Zeigen Sie, dass dann die Abbildung in (2) injektiv ist. Hierzu untersuchen wir die Nullstellen der Funktion $z\mapsto\phi(\tau,z)$ für festes $\tau\in\mathbb{H}$. Die Transformationseigenschaft (1) zeigt, dass für $(\lambda,\mu)\in\mathbb{Z}^2$ gilt:

$$\phi(\tau, z) = 0 \Leftrightarrow \phi(\tau, z + \lambda \tau + \mu) = 0$$

Nun kann man die Anzahl der Nullstellen von ϕ in $\mathscr{F} = \{r\tau + s \mid r, s \in [0, 1)\} \subset \mathbb{C}$ bestimmen:

Satz 4. Falls die Funktion $z \mapsto \phi(\tau, z)$ nicht auf ganz \mathbb{C} verschwindet, so hat sie unter Berücksichtigung von Vielfachheiten genau 2m Nullstellen in \mathscr{F} .

Folgern Sie aus diesem Satz, dass $(f_{\lambda_i,\mu_i})_{i=1}^r = 0$ bereits $\phi \equiv 0$ impliziert. Zeigen Sie auch, dass es keine Jacobi-Formen von negativem Index m gibt.

References

[1] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics 55, Birkhäuser Boston, Inc., Boston, MA, 1985, 1–148.