Chapter 8

Cusp Forms
Associated with
Elliptic Curves

8.1. The Hasse~-Weil L-function

An elliptic curve E is an algebraic curve (a projective algebraic variety of
dimension 1) of genus 1 over a field K. If char(K) # 2,3, then E is given
by the Weierstrass equation

(8.1) y¥’=23+ Az + B

with A,B € K. The discriminant of F is the discriminant of the cubic
polynoinial

(8.2) 9(z) = z° + Az + B,
and it is equal to
(8.3) = —16(4A3 4 27B?).

It turns out that (see Figure 9)

E is non-singular < A # 0,
E hasnode & A=0,A#0,
EFEhascusp & A=0,A=0.
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V=z3+z yv=z*-2z
A=—64 A =64
smooth smooth
y2=z3 =23 4+ 22
A= 0 A 0
cus node

Figure 9. Elliptic curves

If char(K) = 2 or 3, the Weierstrass equation and the description of
singularities are slightly different.

Suppose E is given by the Weierstrass equation (8.1) with A, B € Z and
A # 0. For each prime p consider the reduced curve E/F, over the field
F, of p elements. Let v(p) denote the number of points on E/F,, i.e. the
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number of solutions to the congruence

y* =g(z) (mod p).

We do not count the point at infinity. It turns out that v(p) is well approx-
imated by p; more precisely, the difference

(8.4) A(p) = p - v(p)
satisfies
(8.5) 1A ()| < 24/p.

This estimate is due to H. Hasse and is essentially best possible. In order
to understand how the A(p) vary with p, Hasse began and Weil continued
to investigate the L-function for E defined by the following Euler product:

86)  Le(s) =[] - ™) [ - Ap)p~* + ' %)
piA

pla

Remarks. Although we assumed that E/Q is smooth (since A # 0), the
reduced curve E/Fp is singular if p|A, and E is said to have bad reduction
at such primes. One can show that for primes of bad reduction

Mp) =0,1,-1

according to a type of singularity which occurs, namely a cusp, a node with
rational slopes for the tangents, or a node with quadratic irrational slopes
for the tangents. If p{ A then the reduced curve E/F, remains smooth, so
E is said to have good reduction at p. In this case the local factor

1-Mp)p™® +p'7%
appears naturally in the so-called congruence zeta-function of E defined by
(s ]
Cesr, (s) = exp()_ m~u(p™)p™™)

m=1

where v(g) denotes the number of points on E over the finite field Fy (it is
not the same as the number of points modulo ¢q). We have

Cesr,(s) = (1 —p'*) 11— Ap)p™* +p'%).

The estimate of Hasse (8.5) can be interpreted as the Riemann hypothesis
for {g/¥, (s), which asserts that the roots are on the line Re s = 1/2.

Write Lg(s) as the Dirichlet series
(8.7) Lg(s) = Ek(n)n".
1

Note that the Euler product (8.6) and the Dirichlet series (8.7) converge
absolutely for Re s > 3/2.
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Conjecture (Hasse). Lg(s) has analytic continuation to an entire func-
tion, and it satisfies the functional equation

(8.8) (%’f) D(s)Le(s) =7 (g-f)g Iz s)Le(2 - 3)

where ¢ is a positive integer composed of prime factors of A, the so-called
conductor of E, and = %1 is called the root number.

Conjecture (Shimura-Taniyama). The Fourier series
(8.9) f(2) = Z A(n)e(nz)
1

is a cusp form of weight 2 for Lo(g) and the principal charucter; it is a
newform with

(8.10) Tuf = Mn)f
(8.11) Wf =nf.

Recently these conjectures were proved by A. Wiles (at least if g is
squarefree). We shall give a simple proof for special curves, the so-called
congruent number curves.

8.2. Elliptic curves E,

In this chapter we shall examine a family of elliptic curves E, given by the
equation

(8.12) v =z3-rlx

where r is a positive, squarefree integer. These curves were studied by
J. Tunnell in connection with the ancient problem of the so-called “congruent
numbers.” A positive rational number 7 is called a congruent number if it
is the area of some right triangle with rational sides. Equivalently, there
exists z such that all three number « — r, x, x + r are squares of rationals.
This also means there are infinitely many rational points on E,. Multiplying
by suitable squares, we may require r to be a positive, squarefree integer.
Tunnell used the curve E, to establish an effective method of checking if r
is a congruent number. The smallest congruent numbers are r = 5,6, 7.

Note that the discriminant of E, is A, = 64r%, and if p|A, then v.(p) =
P, 50 A (p) = 0. In this case the Hasse-Weil L-function reduces to

(813)  Le(s)=JJa-x@pc+p"2) = > M@
pl2r (n2r)=1
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In general if a curve E is given by
v? = g(z) with g € Zz],
then the number of points of E/IF, is equal to

- 5, (+(2)

z (mod p)
where (5) is the quadratic residue symbol (the Legendre symbol). Hence
8 M) = — 9(z)
(8.14) w--% (22).
x (mod p)
In particular, if pt 2r, then

w=-% (557)=-(5)_ T (57)-()e

z (mod p)

by changing £ — rz. Hence for all n
(815) Ar(n) = xr(n)Ai(n)

where x,(n) is the Jacobi symbol,

(8.16) xe(n) = (%)

n

This shows that the L-function for E, is obtained from that for E; by
twisting with the character x;,

(817)  Lg.(s) =[] - x@N@p~* + X2 )
P2

=Y xe(m)M(n)n~s.
2in

By virtue of the above connection it will be sufficient to prove the Hasse
and the Shimura-Taniyama conjectures for ). In this case we simplify
notation by omitting the subscript r = 1, so we write E = F), A = A and

(8.18)  Le(s) =[] - 2@p™ +9' %) =} Am)n~.
p#2 24n
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After establishing the conjectures for the curve E, one can extend the re-
sults for E, by an appeal to a general principle about twisting automorphic
forms with characters (see Section 7.3, Theorem 7.4 and the formulas (7.32),
(7.33)).

8.3. Computing A(p)
The curve E given by the equation

(8.19) V=23 -2z

has many automorphisms; for example, if (y, x) is on E then so are the points
(-y,z) and (iy, —z). We do not dwell on explaining what really happens
here, but only say that this observation is tacitly used in the course of
computing A(p).

The discriminant of E is A = 64. For p = 2 we have v(2) = 2, so
(8.20) A(2) =0.
For p = —1 (mod 4), since (‘?‘) = -1 and g(—z) = —g(z), we derive by
(8.14) that A(p) = —A(p), and so

(8.21) AMp)=0 ifp=-1 (mod 4).

In the remaining case p = 1 (mod 4) we shall carry out computations by
passing to another curve E’ given by the equation

(8.22) Y2=X%+4.

There is a map from E — (0,0) to E’ given by
(v,2) = (2z — %272, yz™').

This has the inverse from E' to E - (0,0) given by

(Y, X) — (%X(Y + X3, %(Y + xz)) .

Therefore the number of points on E/F, and E'[IF, are related by v(p) —

1 = V/(p). The key advantage of dealing with E' is that E’ has a diagonal
equation.

Let p=1 (mod 4). The multiplicative group F}, is cyclic of order p—1 =
0 (mod 4), and so is the character group F;. For any z € F;, we have

#zeFp:a'=2)= x(2).

xi=1
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Hence

Vi) =2+ ) Jx)
xi=1

where

T = Y, x(¥*-4).

Y (mod p)

There are four characters of exponent 4, all given by x = 1, 7, 7%, 7%, where
7 is & fixed character of order 4. For x = 1 we get

JA)=p-2.

For x = 12 (it is the Legendre symbol) we get

J(?) = Zx((Y —-2)(Y +2))
Y -4
= ZX((Y -4Y)=)Y x (_Y-)

Y#0

= Zx(l —4Y) = -1+ Zx(l’)

Y#0

whence

I (') = -

For x = 7° we get J(n®) = J(7) = J(n). From the above evaluations
we infer that

Vip)=p—-1+J(n)+ T ),

whence

v(p) =p+ T (n) + T(n),
and
(8.23) Ap) = =T (n) — T (n).

Now we proceed to compute 7(n) (the Jacobi sum). First we establish
that

(8-24) |7 ()] = p2.
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Indeed, by squaring, factoring Y2 — 4 = (Y — 2)(Y + 2) and changing the
variables several times we derive the following expressions:

2

2. - _ (z—-4)
T =[S ne = 42)] =30 (= =)
_ yz—4 - 4(z-1)
-;n(z),gf(v"*) ;n(Z)y§40(2+~———y_4 )

=p—2+3n(x) 3 nlz+(z-1)

2#1 v#0,—1

=p-2-) n(z)(n(z) +1)
z#1

=p—Y 7%(z) - Y _n(z) =p.

Next we determine the argument of J (7). There are not many possibilities
to choose from. Since n? = 1 the terms of J(n) take values 0,+1, +i;
therefore 7(n) is a Gaussian integer, . (n) € Z[i]. On the other hand, p = 1
(mod 4) factors in Z|i] into
p=T7r

where 7 is determined up to complex conjugation (7 is not distinguished
from #) and a unit € = £1, +i (by the unique factorization in the ring Z[g]).
Combining the above facts, we deduce that

(8.25) J(n)=mn

for some prime factor of p in Z|[i].

To determine which factor (out of eight possibilities) is correct, we test
the equation (8.25) modulo the ideal

a=((1+i)*) =2(1+i), Na=8.

Since the character n takes values 0, %1, -k, each of which except for 0 is
congruent to 1 (mod (1 + 1)), we infer that

IJm= > ar’-49=1+2 Y g¥?-4)

Y (mod p) 0<Yg L;_i
Y2
El+2(£-;~1-- ) =p-—2 (mod a).

Hence for p =1 (mod 4)
(8.26) J(m)=-1 (mod a).
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The above congruence together with (8.25) determines (1) up to complex
conjugation (surely one cannot be more exact as long as 7 is not distin-
guished from #).

We say that a Gaussian integer « is primary if & = 1 (mod a). Every
odd o (i.e. coprime with a) is conjugate to exactly one primary integer.
The only primary unit of Z[i] is 1. The product of primary numbers is
primary, and every primary number factors uniquely (up to permutation)
as a product of primary numbers which are Gaussian primes. By (8.25) and
(8.26) it follows that —7(n) is a primary prime.

Finally by (8.23), (8.25) and (8.26) we conclude that

(8.27) Mp)=n+7 ifp=1 (mod4)
where 7% = p and « is determined up to conjugalion by Lhe congruence
(8.28) m=1 (mod a),

i.e. m is a primary factor of p.

8.4. A Hecke Grossencharacter

Consider the multiplicative group (Z[i]/a)* of residue classes in Z[i] to mod-
ulus a and prime to a; it is a cyclic group of 4 elements represented by the
units. For a odd we define p(a) to be the unit which makes p(a)a primary,
ie. pla) = 1,1,1%,4% is such that

(8.29) pla)a=1 (moda) if (a,a)=1.

If (o, a) # 1 we set p(a) = 0. Thus p is a character on Zz] to modulus a.
Then we put

(8.30) x(a) = p(a)a.

The function Y is one of many kinds of Grossencharacters which have been
invented by E. Hecke. This can be regarded as a character on ideals t C Z[d].
Every ideal is a principal ideal, say t = (a), with generator determnined up
to a unit. If (vr,a) = 1 we can fix a by requiring a =1 (mod a), and we set

(8.31) x(¥) =a.

If (t,a) # 1 we put x(r) =0.

With the character x Hecke associated the L-function defined by the
Euler product (see Chapter 12)

(8.32) L(s,x) = [J(1 = x(p)(Np)™)".

P



