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transformation theory of the functions, on the lines of the transformation theory of
the functions of the third order, and, in view of the complexity of all the series which
are involved, I am becoming somewhat skeptical concerning the existence of an
exact transformation theory for functions of the fifth order.”

The object of this paper is to provide the counterparts of (1.2) for the fifth and
seventh order mock theta functions. This is, I believe, the necessary first step in
finding the transformation theory whose existence is doubted by Watson. As an
example, let us consider

o0 n2

(1.3) fle)=1+ % 9

st L+ @)1 +g%)---(1+4g")°
one of the fifth order mock theta functions [20, p. 277]. We shall show in §5 that

(1.4)  fo(q) U(l ~-q") = Z Y (-1)/gnen b1 — gt

Jj=-0 nz|j|

Note the resemblance of the expression on the right-hand side of (1.4) to certain
identities for modular forms due to Hecke [12] and Rogers [15] (see §4). Presumably
this resemblance can be exploited to obtain the transformation theory alluded to by
Watson.

The next three sections describe the necessary background for our work. §5 is a
slight digression since we are able to prove certain Hecke type identities directly
from our work as well as a formula related to sums of three squares. Also we obtain
the new identity

2n2+2n—(f§'1)(1 + q2n+1)
_ q2n+1)

(15) (§q<"f‘>)3= 554

n=0 ;=0 (1

i % qn+j(4n+l*j)/2(1 + q2n+1)
n=0 j=0 (1 -4
from which follows immediately Gauss’s classic result that every natural number is
the sum of three triangular numbers. §§6 and 7 contain our main results on the
mock theta functions.

It

2n+1) ?

2. Bailey chains. In [8], we presented a comprehensive treatment of Rogers-
Ramanujan type identities based on a little known result of W. N. Bailey [9, §4]. For
the statement of Bailey’s Lemma we need the following standard notation:

(2.1) (a; ) = (a), = H (1 - ag"),
(22)  (a;59),=(a),=(a;9)x/(a9"; 9)s
(=(1-a)(1 —aq)--- (1 —aq" ') for n a nonnegative integer).

BAILEY’S LEMMA. If for n > O the sequences{ a, } and { B,} are related by

n

(2.3) B,=Y a

r=0 (q)n-r(aq)n+r ’
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then forn > 0

n al

(24) D N P Py

where
1 . (Pl)j(Pz)j(a‘I/P1P2)n_j(aq/plpz)j,Bj
2.5 ! =
( ) Bn (GQ/Pl)n(‘I‘I/Pz)n j=0 (q)n—j
and
(2.6) ’ (p1),(p,),(aq/pp;) a,

(aq/p,),(aq/p,),

The above formulation is not at all the way Bailey stated this result [9, §4].
However, formulated as above it turns out to be incredibly powerful in obtaining
and understanding Rogers-Ramanujan type identities. Pairs «,, B8, can be sub-
stituted into identities like (3.1) to yield directly Rogers-Ramanujan type identities.
The point is that once you find a pair of sequences «,,, 8, that satisfies (2.3) you can
produce a new pair a,,, B, that satisfies the same identity. Thus an infinite family

(a,, B8,) = (. B7) > (e, B7) > -
of such “Bailey pairs” can be obtained merely by iterating Bailey’s Lemma.
Furthermore, if only the a, sequence is given, then the B, sequence is completely

determined by (2.3). If only the B, sequence is given, then (2.3) may be inverted to
yield [S, Lemma 3]

Zn: (04)n+j—1(—1)n_j‘1("2_j)/3‘
j=0 (9) ~j ’
Thus if only the B, sequence is given, then the a, sequence is completely determined
by (2.7).
Furthermore, the sequence may be extended to the left as well:
N (aﬁ,‘Z),B,,(_z)) - (affl)’ﬁn(_l)) - (a,,B,) = (an, ﬁ,ﬁ) .
Obviously from (2.6)

(2.7) a, = (1 - aq®")

n

1 (a‘I/Pl)r(GQ/Pz)r(sz/a‘I)rar
@8 “ (o). (+2), '

To back up in the chain of 8’s is a little trickier. The relation is

(2.9) BV = 1 n (GQ/Pl)j(a(I/Pz)j(Pqu/aq)n_j(plpz/aj)zn-jﬁj
. n (pl)n(p2)n j=0 (q)n—j .

To see this, let us define

(2.10) B, = (Z—‘l’)n(ﬂ) B,
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116 G. E. ANDREWS

(211) B = (0, ()| 2L ) B
(2.12) b(t) = i Bt"
and "
(2.13) b(t)= Y B,
n=0

Then by the g-binomial series [4, p. 17, (2.2.1)], we see that (2.5) is equivalent to
(aqt/mpz)oob(—l) (1)

(2.14) b(t) = 1)
Obviously (2.14) is equivalent to )

(1) o
2.15 b = —————b(1),
219 A= /oo, ")

and (2.15) yields (2.8) by invocation again of the g-binomial series.

We now have the four identities ((2.3), (2.7)—(2.9)) necessary so that we may start
with either sequence of a Bailey pair, obtain the other sequence and then move either
direction in the Bailey chain.

3. The role of SCRATCHPAD. How can one gain a foothold in studying the mock
theta functions? Our approach was to implement the study of Bailey chains on
SCRATCHPAD, IBM’s symbolic algebra package. To keep things as simple as
possible we considered the case where p, and p, = oo and a = 1. Thus from Bailey’s
Lemma, we see that

(3.1) Y "B, = (9w X q"a,,
n=0 n=0
where by (2.7)

" _1(=1)" g8,
(32) a, = (1 _ qzn) Z (‘I)n+j— ( 1) q Bj.

Jj=0 ( q ) n—j
Suppose we want the left side of (3.1) to coincide with (1.1). Then we must take

1
(3.3) B, = : . .
1+q)(M+4¢*>)--1+4qg"

We now define «, and B, explicitly in SCRATCHPAD and ask for the first four
values of a,. SCRATCHPAD responds with

1
._4q
qg+1
4q3
q2 +1
...4q6
q3 +1°
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The pattern suggested is quite clear; namely it is reasonable to conjecture that a,, 1is
(-1)"4g""* V72 /(1 + q") for n > 1, @, = 1. The insertion of this conjecture in (3.1)
coincides, not surprisingly, with the known fact (1.2).

Suppose now we redefine 8, by

1
L+q)1+g%) - (1+q")
This then makes the left-side of (3.1) identical with the series in (1.3) for the fifth

order mock theta function f,(g). The pattern for the related a, arising from (3.2) is
now somewhat complicated so we ask SCRATCHPAD for the first nine values:

(3.4) B, =

1

9° — 34

q7_2q6__45+2q4+2q3
q15_2q14_q12+4q11_2q8_2q6
q26_2q25+q22+2q21_2q18_2q17+2q13+2q10

q100_2q99+2q96_q92_2q88+2q84+2q83
_2q76_2q75+2q67+2q64_2q56__2q51+2q43+2q36'

A careful look at ag (and, in the actual discovery, a, and a,) suggests that a
reasonable conjecture for a,, is

n n—1
(3_5) qn(3n+1)/2 Z (_1)1q—j2 _ qn(3n—1)/2 E (—l)jq‘jz.

j=-n Jj=-n+1

If we insert this conjectured formula for a,, into (3.1) we obtain (1.4) almost directly.
Thus SCRATCHPAD provides a powerful tool for the empirical analysis of Bailey
chains. It should be emphasized that identity (1.4) appears nowhere in any of
Ramanujan’s known writings.

4. Extensions of Shanks’ formulas. Once the truncated theta series are observed
arising in (3.5), one immediately recalls the two elegant papers by D. Shanks on
truncated theta series [16, 17]. Presumably, if Shanks’ results can be embedded in the
hierarchy of g-hypergeometric function identities, then adequate generalizations of
his results should allow us to derive (3.5) and related formulae for the other fifth
order mock theta functions. It turns out that if we move to the left one place in the
Bailey chain for the fifth order mock theta functions, our work is greatly simplified.
The following two lemmas provide us adequate g-hypergeometric series machinery
for the appropriate new Bailey pairs given in Theorems 3 and 4.

LEMMA 1. The sequences A,,, B, form a Bailey pair where

— (—1)n(b)nq-n(n_l)/2a‘"
(9).(bq), ’

(4.1) B,
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118 G. E. ANDREWS

(1) (ag), (1 — a2 2 (b) 0" Ma
§ (bq)n j=0 (q)J .

(4.2) A

ProoF. All that is necessary is to evaluate (2.7) with 8, replaced by B,:

" (ag)nej-1(-1)""q""B,
-0 (‘I)n—j

n

A, = (1 - aq*)
J

_(1)7"(a9) w11 = ag®)q® (& (ag”) (q) (D) ,a"'q" "

(9)n 2o (@),(q)a—;(bqg),
_ (1)"(ag),s(1 — ag*")q® 5 (g7"),(b) (ag") 4’ Pa™
| (q). 120 (q),(bq),;
_(-D)"(a9),1(1 = ag™)q® & (a7"),(b) ,(ag") (a/ar)’
(9). =0 /2o (q),(bg),;(t7");
_ (-1)"(a9),2(1 = ag*")q?®  (q), 5 (¢7"),(b),a g™
(q). (bg), =g (9);(q7"),

(by [22,p. 175, (10.2)] witha = ¢™",c = ag", e = bq,f=t",p = q)

_()"(ag), (1 — ag?)g® & (b),a~ig!t "
) = @,

as desired. O
LEMMA 2.
" (a);(1 - ag¥)(b),a’q”b?  (aq), & (b),(aqg"*'/b)’

(4-3) 1+ _,gl (a)j(l — a)(aq/b)j - (aq/b)n j=0 (CI)j

PrROOF. This result is merely a limiting case of Watson’s g-analog of Whipple’s
theorem [18, p. 100, (3.4.1.5)]. In fact, (4.3) follows immediately from the substitu-
tionsg=¢q ",e=b,c=aq""f—> 00,d > 0. O

We remark that if in (4.3) we take a = 1 and let b — oo, we obtain Shank’s finite
version of Euler’s pentagonal number theorem [16, p. 747, (2)]. Shank’s finite version
of Gauss’s theorem [17, p. 609, (3")] follows by replacing g by ¢ in (4.3) and then
settinga = 1, b = q.

THEOREM 3. The sequences A,, B, form a Bailey pair where

(C1)"(b) g
“4) S P W P S
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_(-1)"(aq),_1(b) ,a”"q" (1 — ag®")
" (b9).(q).
L (D)"q Db ag/b), (1 ~ ag™")
(bq)
"= (ag)-1(1 ~ ag®)(b) ,a~lg b~
=1 (q),(aq/b),;

PROOF. Since the B, sequence given by (4.4) is the same as the one in Lemma 1,
equation (4.1), we see that we only need to identify the expression in (4.2) with the
right-hand side of (4.5). In Lemma 2 replace a by a2, b by b}, g by ¢! and n by
n — 1; hence

(4.5) A

41+

"l (ag),-1(1 — ag*/)(b) a6~ 'q 7"
i1 (9),(aq/b),
_b"(ag) o, "~ (b))

(ag/b)nr 2o (9,
Now let us examine the sum in (4.2). We split off the term j = n which yields the
first summand on the right-hand side of (4.5); the remainder of the sum in (4.2) is
identical with the sum of the right-hand side of (4.6). Hence multiplying both sides

of (4.6) by b""Yaq/b),_,/(aq),_, and substituting the resulting left-hand side into
(4.2), we obtain the second term in (4.5). O

(4.6) 1+

THEOREM 4. The sequences A,,, B, form a Bailey pair where

S
(4.7) B = G
,  (-1)"(aq),-1(5),4" (1 — ag®")
(48) 4= (b9).(q).

, (D"a"g"" V2" Yag/b) 1 (1 — ag™")

(bq) ,

"} (aq),;-1(1 — ag?)(b),aig b

1E™ (@),(aa/5), '

PROOF. We apply Bailey’s Lemma (with p;, p, = o0) to the Bailey pair in
Theorem 3 and the resulting 4, = a"q”zAn which is precisely (4.8). Now by (2.5)

' anJ'Z (_1)J(b)jq—j(j—1)/2a_j
(4.9) 5= X oS o
= 1 3 (q_n)f(b)j n+1)/
(q)"Jgo (q);(bq), g
__1
(6g) ,

by [18, p. 97, (3.3.2.6)],

as desired. O
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120 G. E. ANDREWS

5. Hecke modular form identities. E. Hecke [12] made an extensive study of double
theta type series involving an indefinite quadratic form. For example, he showed
that

(5:1) (= L T ()7gtivmon-o,

m=-00 n>2|mj|

Actually as D. Bressoud points out [10], identity (5.1) was discovered originally by L.
J. Rogers [15]. Subsequent studies of these types of identities have been made by
Kac and Peterson [13], Bressoud [10], and the author [7].

The Bailey pair in Theorem 3 leads naturally to Theorem 5, an infinite product
expansion which implies several Hecke modular form type results.

THEOREM 5. Let A, be defined by (4.5); then

(0)e(b0/9)e (@) _ 5 (»)a(-a/y)"q"" 4,
(b9)w(4/Y)w(a9/y)0s .20 (aq/y). '

(5.2)

ProOOF. We take the Bailey pair from Theorem 3 and substitute into (2.4) with
p1 =Y, Py, = 00, n = oo. This yields

1 (¥)a(b), 1 & (), [ _a) on
(5.3) (aq/y) o 1= Z o (4).(bq), ( ) (aq). Eo (aq/y),( y) 9,

Now

Z (1)a(8)n(9/7)" _ (9)eo(b9/¥)er
o (@).(bg), (69)e(4/¥)
by [18, p. 97, (3.3.2.5)]. Substituting the right-hand side of (5.4) into (5.3) we obtain
(5.2). O

To apply (5.2) with ease to Hecke modular form identities, we prove three
lemmas.

(5.4)

LEMMA 6. Let A,(a, b, q) denote the A, in (4.5). Then

(-1)"(1 = ag®"*')gDb"(aq/b),
(1 - aq)(bq),
" (aq);-1(1 — ag®’)(b),a /g~ /b’
t X (@), (aa/b),

(55) An(aq’b,Q)=

ProoOF. By (4.2)

(-1)"(ag?),-,(1 — ag®*")g® & (b),q"a”’
(bg)., i~ (a);

_ (=D"(aq),(1 — ag***)q® b"(aq/b),
(1 - aq)(bq), (aq).,

(equation continues)

A,(aq,b,q) =
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.

" (aq),;-1(1 — ag*’)(b) ,a~'q" "™/
b j§1 (g),(aq/b), )
(by (4.6) with n replaced by n + 1)
_ ()" — ag?>*t) g Db"(aq/b),
(1 - aq)(bq),
.(1-+ & (o)l - aqu)(b)ja-aq-fb"),

(q),(aq/b),
as desired. O

LEMMA 7. Let A,(a, b, q) denote the A, in (4.5). Then

n n—1
(5.6) 4,(1,-1,9) = ¢ ¥ (-1)g7 - ¢® ¥ (-1)g7,
j=-n j=-n+1
1 — 2n+1 3) n ] 5
(5.7) 4,(q,-1,9) = 1= )a (1 +22 (-1)'q7/ )
(1-9q) ot

2n 2n—2
(5.8) A4,(1,97%¢%) = (-1)"(4”2”" Y g Vi —gr Y q“’“),
_ =

Jj=0
“1)"(1+ ¢ g" B a
(5.9) A,(q%.97) = T T Ja" 3 e,
q 2o
n n—1
(5.10) A,(1,0,q) = q"*" ¥ (=1)/q i®+D/2 _ gri=n T (1) g /GI+D/2
j=-n j=-n+1
n? 1 - 2n+1 n ) o
(5.11) A,(q,0,q9) = ¢"(1 = ¢™") Y (-1)/g /@02,

(1 - q) j=-n

ProOF. By (4.9),

n—1 . ,
AAL4J)=FUW¢w—q®0—qu+2Z(4V¢’)
J=1

n—1

=qg"i" Y (-1)g - qg® Y (-1)g 7,

Jj=-n j=-n+1

as asserted in (5.6).
By (5.5),

(1 _ q2n+1)q(g)
(1-4q)

A,(q,-1,q9) =

1+zz«nh#}
j=1

as asserted in (5.7).
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By (4.5),

2\ = (-1)"(1 + ¢*)g" (1 - ¢7Y) (-1)"gV(1 - ¢g*")
& (1-g¢*7") ' (1-4q)

1.y A+ -g)A - q)g/™
1+ j§1 (1 — q¥- 1)( 2_]+1)

_ ()" +4¢")g" (1 -g7")

4,(1,47!

(1-g¢7")
L (D)"g" 1 - ¢*) "il (1-¢)1-¢q)g"" %
(1-gq) jmoar1 (1= g7 1)1 - ¢¥*Y)
_(D)'(+g)gm - g (D)"g"V (- g (1 - g7
(1-¢>1) q7'(1 - ¢*)
= g’ q
=277 —
j=§+1q 1 - q2j—1 1 — q2j+1
_ (D" +¢*)g (1 -g7Y)
(1-4¢*7")
L (D)1 -gt) W g +4)
(1+q) jmme1 (1= q¥*Y)

(where we have replaced j by —j in the first sum)

_ (DA + g (1= g7)  (2D)"g"T P (1 - gt

(1 _ qln—l) (1 _ q—2n+l)
n—1 i—22 ~j=1-2(j+1)?

N\, (=Y _ ,4n q’ "~ q”’
+(-1)"q (1-g¢ ),Eo 1-go* 1- gt

= ()" "1+ ¢)

. , n—1 __-2;2-3;-2 1 — g¥+2
—(-1)"g"=D (1 _ q4n) Z q ( q )

j=0 (1-4¢%*)

= (-1)"¢" (1 +¢")

n—1
_(_1)”qn2—2n(1 _ q4n) E (q—(zjfz) + q_(zjgl))
=0

2n—1
= (-1)"g (1 + g2n) ~(D"T(1 - g*) X g
j=0
2n-2
() S g (1) T g,

j=0
as asserted in (5.8).
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Next by (5.5)

D1 + g2"* ) g™ n - L
An(‘lzaq’qz) = ( ) ( 1 9 )q 1+ Z (1 + q21)q'21 -J
+q st

3 (__1)"(1 +q2n+1)qn2 2n o
B 1+g¢ X,

j=0
as asserted in (5.9).
By (4.5),
4,(1,0,9) = (-1)"¢7®(1 + ¢")
n—1
_an--n(l _ q2n) 1+ Z (1 + qj)(_l)lq—j(3j+1)/2
j=1
5 n—1 )
= (_1)"q—(3)(1 + q") -q" ""(1 _ an) Z (_l)Jq—j(3j+1)/2
Jj=-n+1
n . n—1 ‘
= g7t Y (<1) g2 _ grien N (1)) gmiGi+1/2
Jj=-n Jj=-n+1

as asserted in (5.10).
Finally by (5.5)

(1-gq)

n? 2n+1 n
_4 (1 — 49 ) y (_1)jq—j(3j+l)/2,
(l - q) Jj=-n

2
(] — 2n+1 n . P )
4,(4.0,9) =4 (Uil i) 1+ Y (1+¢/)g 7 i (-1)’
j=1

which is (5.11). O
LEMMA 8. Let A, = A,(a, b, q) be defined by (4.5). Then

ONC .

(5.12) (ba).. EO q"4,,
(9)%(=b9) ® gnn+D/2

5.13 (Dot _ A(Lb.a)

13 (-0)(b9) v ,El T+ g Al 6:d)

(5.14) 00 )a(b0: 00 R (1yrgris (1,5, 42),

(¢; ¢*).(bg% ¢*),, n=0

PrOOF. These identities are immediate from Theorem 5 under the substitutions
y = o0;a =1,y = -1; finally replace g by g2, thenseta =1,y = ¢. O
It is now possible to combine Lemmas 7 and 8 to obtain 18 different identities of
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is Theorem 4 and the observation that A4,(a, b, q) = a"q"zAn(a, b, g). Thus all our
formulae for the 4,(a, b, g) can be applied in evaluating 4,,(a, b, q).
We begin with (6.1), and let B, = B, (b, q).

fo(@) = T a"Bl(-1.q) (by (47)

-0
= (ql) ij:oq"zA;(l,—l,q) (by (3.1))
- §0q2"i4,,<1,—1,q) (by (2.6))
_ (ql) io q,,(5,,+1)/2—j2(_1)j _ io qn(5n—1)/2—j2(_1)j (by (56))
iz j<n

- (ql)w g qn(5n+1)/2~,( 1)’ ( 4n+2)

|/l<n
which is (6.1).
Next
Fo(q) = ¥ ¢*"Bi(q7,q%) (by(4.7))
n=0

—-——_——-1 - - 2 7’ -
= L q"4,(L,g" q%) (by(3.1))
(q ' q )oo n=0

-1y Z q*"4,(1,47',9%) (by(2.6))
(4% 4°) n-

_ N Smlian—(ih
TN ,,ZO,ZO( '

ST Y ()| (by (5.8))

n=0 j=0

)
Z Z( 1)" 5n? +2n—(/+1)(1 +q6n+3)

(2 )anO

as asserted in (6.2).

1+ 2¢y,(q) = Y (-1; 9),.q" B.(0, q)

n=0
_ (9 & 5 (-1; ), V4,(1,0, q)
(q)oo n=0 ( —-q; 4)

(by (2.4),n > o0,p, > 0,p,=-1,a=1)

(equation continues)
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1.3 Lerch sums 7

tends to 0 as Im(z) — oo, so f = 0 by Liouville’s theorem.
(4) Replace z by —z in the integral.
(5) Let g(z) = ——. We first compute the Fourier transform Fg of g: Using Cauchy’s

coshma®
formula we get

827”'21 e?ﬂ'izm
— dx = 27i Res =2e7 "%,
R Jrii/ coshmz x=i/2 cosh 7z

e2mizx J eQTrz'z(x-H) J Cons e2miza J
T = —_—adr = —¢€ XL
R4 coshmz r coshm(z + 1) r coshmz

eQTr'Lzac e~ T2

but

so we find

=9(2).

F) = [

dx =
R Ccoshmz 1+ e272

We see that g is its own Fourier transform! (Note the unusual plus sign in the definition
of the Fourier transform).
Let f,(z) = e™™ 7 € H. The Fourier transform of f, is given by

‘We now see

em’mcz-i-QWiZﬂC
/R G =9(fg)(2) = (Ff) * (Fg)(2)

cosh mx

wi%l(z—:v)Z

1 1 e
= = d .
—irf7% *9(2) V—=ir /R coshmz

This identity holds for z € R. Since both sides are analytic functions of z, the identity
holds for all z € C. If we replace z by iz we get the desired result.

We may also prove the identity of part (5) by using (1) and (2) to show that

2 ﬁe“”zﬁh(f; —1) also satisfies the two equations (1) and (2). By uniqueness

we get the equation.
(6) Using (1) and (2) we can show that the right hand side, considered as a function
of z, also satisfies (1) and (2). The equation now follows from (3). ]

1.3 Lerch sums

In this section we will study the function

(_1)ne7ri(n2+n)~r+27rinv
D e (reH,veCucC\ (Zr+12)).
nezZ




8 Chapter 1. Lerch Sums

This function was also studied by Lerch. The original paper [15] is in Czech and is
not very easy to obtain. See [14] for an abstract in German. We will prove elliptic
and modular transformation properties of this function in Proposition 1.4 and 1.5
respectively. These results are equivalent to the results found by Lerch.

It is more convenient to normalize the above sum by dividing by the classical Jacobi
theta function 9. (Lerch did this too.) We will first give, without proof, some standard
properties of ¥. For the theory of ¥-functions see [19].

Proposition 1.3 For z € C and 7 € H define

9(z) = 9(z;7) = Z i T 2miv (s })
veEI+Z
Then ¥ satisfies:
(1) Iz +1) = —(2).
(2) Iz +71) = —e TG (2).

(3) Up to a multiplicative constant, z — ¥(z) is the unique holomorphic function
satisfying (1) and (2).

(4) 9(—z) = —0(2).
(5) The zeros of ¥ are the points z = nT +m, with n,m € Z. These are simple zeros.
(6) U(z7+1) =eTI(z;7).
(7) 9(2;—1) = —iy/—ire™= /79 (z; 7).
(8) W(z;7) = —igi¢ > ﬁ(l —q") (1 =¢q" (1= (1), with g = 2™, ( = €7,
This is the Jacobin;;ple product identity.
(9) 9(0;7+1) =T (0;7) and ¥ (0; -1 = (—i7)3/2 9 (0; 7).
(10) 9'(0;7) = —27n(7)3, with n as in the introduction.
We now turn to the normalized version of Lerch’s function:
Proposition 1.4 For u,v € C\ (Z1 + Z) and 7 € H, define
Tiu (_1)n67ri(n2+n)'r+27rinv

&
M(U;U) = u(u,v;T) = 19(,0; 7_) 26; 1 — e2minT+2wiu
n

Then p satisfies:

(1) plu+1,v) = —p(u,v),



