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Z Z mn mn = Z Z(Amn - an)a

m>1n>1 n>1m>1

und (*) ergibt
() F(r) =Y Bun—=>_> Bun.
m>1n>1 n>1m>1

Da sich die Terme abwechselnd wegheben, hat man sofort
Zan =0
n>1

Andererseits erhilt man

1 1 1 L
T'ZB'”"—Z(m+(n—1)/7_m+n/7+m_n/T_m_(n_1)/T)

m2>1 m>1

_ 2(n—1)/r 2/t — ol — 1) — oln
Z( n—l /T]Q_mQ [n/T]Q—m2> o( 1) —p(n),

m>1

wobei aufgrund der Partialbruchentwicklung des Cotangens (vgl. R. REMMERT,
G. SCHUMACHER [2002], Satz 11.2.1)

mweot(m€/T) — fiir £€#0,
p(€) = &/7
0 fir £=0
gilt. Nach (#x) folgt daher
ToF(r) =73 ) Bun=—) (p(n—1)—¢(n) = —p(0) + lim p(n).
n>1m>1 n>1
Fiir z = z + iy gilt

eixfy + efiery

cotz=1-———  also lim cotz =1.
erT—y — e—zz+y y——00
Wegen Im (1/7) < 0 folgt 7 - F(7) = i, also die Behauptung. O

Bemerkung. Die Idee dieses Beweises findet man bereits bei G. EISENSTEIN
(Math. Werke I, 357 478); eine priizise Durchfithrung der Beweisidee gibt wohl
erstmals A. HURWITZ in seiner Dissertation (Math. Werke I, 23 26). Man ver-
gleiche R. FUETER [1924], 21 23, J. P. SERRE [1973], 95 96, und N. KOBLITZ
[1993], Proposition I11.2.7.

2. Das Transformationsverhalten von 7. Nach R. DEDEKIND (Ges. math.

Werke I, 159-173) definiert man eine holomorphe Funktion 7 : HH — C durch

oo

(1) 77(7_) = em"r/lQ . H (1 _ e?m‘mr)'

m=1
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Diese DEDEKINDsche n—Funktion darf nicht mit der in 1.6.1(4) eingefiihrten
n—Funktion verwechselt werden! Offenbar gilt

(2) n(r+1) = em/12. (7).
Da das Produkt absolut konvergiert, hat man aufserdem
(3) (1) #0 fir alle 7 € H.
Satz A. Es gilt
(=1/7) = /7/i-n(r) fir alle T € H.

Dabei ist der Zweig der Wurzel zu wéhlen, der fiir positive Argumente selbst
positiv wird.

Beweis. Fiir 7 € H betrachte man die Funktion f(7) := %/(7)/n(7). Aus (1)
folgert man direkt

m>1 m>1 r>1
T i
— 1—-24- 271'm‘r - .G
12 ( ;‘71 ) w &

wenn man Proposition 1 verwendet. Satz 1 iibersetzt sich damit in

() f(—%)-%— -+~
Fiir

erhalt man dann

g’(y):f@).;_i.f@y)_;y:o

nach (x). Es gibt also eine Konstante v mit 7(i/y) = v - /y - n(iy). Fir y =1
folgt v = 1, also die Behauptung mit dem Identitdtssatz. O

Satz B. Es gilt n** = A*,

Beweis. Mit 7 ist auch f := n?* auf H holomorph. Wegen (1) gilt

(oo}

(*) f(T) — e2mT | H (1 _ e?m’m'r)24 — 2miT 4 ... 7

m=1

so dass f in eine FOURIER-Reihe entwickelbar ist mit oy (0) = 0 und a (1) = 1.
Gleichung (2) und Satz A zeigen, dass
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PROPOSITION 2.8. Suppose that f(z) = Ym0 a(n)q™ € My(To(N), X). If i
a Dirichlet character with modulus m, then

fu(2) € My(To(Nm?), xy?).
Moreover, if f(z) is a cusp form, then so is fu(2).

EXAMPLE 2.9. Suppose that f(z) = X2 a(n)g” € S2(I'9(36)) and g(z)
>ome 1 b(n)g™ € S2(I'p(144)) are the eta-quotients defined by

f(2) == n(62)* = q—4¢" + 2¢"3 + 80" —5¢%8 — ...,

. n(12z)12
9(e) = )

If x4 is the nontrivial Dirichlet character with modulus 4, then

g(z) = fX—4( )

=q+4q7+2q13_8q19_5q25+

2.3. The Theta operator

Here we recall and examine the action of Ramanujan’s differential operator.
Ramanujan’s Theta-operator is defined by

(2.1) C) (Z a(n)q") = Z na(n)q™.
n=h

n=h
REMARK 2.10. It is easy to see that

d 1 d

o= T mi &

We refer to this operator, which plays many roles, as “Ramanujan’s operator”
since he first observed that

(22) @(E4) = (E4E2 = Eﬁ)/?) and @(Es) = (EGEQ _— Eg)/2
We have the following fundamental fact.

PROPOSITION 2.11. If f(2) = Yo aln)g™isa weight k meromorphic modular
form on a congruence subgroup T' of SLy(Z), then

(2.3) O(f) = (f + kfEy)/12,
where f is a meromorphic modular form of weight k +2 on T.

It is natural to seek an explicit description of the f appearing in Proposition 2.11.
Here we obtain such a description for meromorphic modular forms on SLy(Z).

We require a specific sequence of modular functions j,,(z). To define this
sequence, let

(2.4) Jo(z) =1 and J1{2) = 4(z) — 744.
If m > 2, then define j,,(z) by
(2.5) Im(2) := ji(2) | To(m),
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where Tp(m) :=mTmo is the normalized mth weight zero Hecke operator. Observe
that this operator may be described as follows.

d-1
(26) o) 1 Toim) = X Yo (E50).

dlm b=0
ad=m

REMARK 2.12. Although we defined the Hecke operators for modular forms,
they are also well defined for meromorphic modular forms. One simply extends
their definition in the obvious way to take into account a possible pole at infinity.

PROPOSITION 2.13. If m is a nonnegative integer, then jm(2) 18 @ monic poly-
nomial in j(z) of degree m with coefficients in Z.

PROOF. Since j(z) is holomorphic on H, (2.6) implies that jm(2) is also holo-
morphic on H. Since each modular function is a rational function in j (), a function
which is a bijection between § = SLy (Z)\H and C, it follows that j(z) must be a
polynomial in j(z). Otherwise, jm(z) would have a pole. Since the g-expansion of
jm(2) has the form

im(@) =™+ Y em(n)g™ € ¢ " Zllall,
n=1

it must be that jn(z) is a monic polynomial in j(z) of degree m. That this poly-
nomial has integer coefficients follows from the fact that jm,(z) has integer coeffi-
cients. O

Here we list the first few jm(2):
Jo(2) =1,

ji(z) = j(z) — T44 =g ' +196884g + -+,

jo(2) = j(2)? —1488j(2) + 159768 = ¢~ 2 + 42987520 + - - - »

ja(2) = 5(2)* — 2232;(z)? + 10699565 () — 36866976 = g% + 2592899910g + - - - -
Asai, Kaneko and Ninomiya [AKN] proved the following beautiful theorem

regarding the polynomials jm(2). To state their result, for each 7 € H define H.(z)
by

(2.7) H:(2):= Zjn(r)q".
n=0
THEOREM 2.14. If 7 € H, then
& Ea2)’Ee(2) 1
He(2) = 2 )" = —28G) @ — 50

n=0

Notice that if 7 € H, then H(2) is a weight 2 meromorphic modular form. To
illustrate the utility of Theorem 2.14, we mention that it can be used to prove that

j(r) - i) =p e (—Zjn(z) - %) ,

n=1
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where p = e*™7. This identity is equivalent to the famous denominator formula for
the Monster Lie algebra

(2.8) imM=ix=p7" [ @-prgmetm,
m>0 and n€Z
where the exponents ¢(n) are defined as the coefficients of

=}

q1(2) = j(2) = T44 = Y~ c(n)q".

n=-—1

EXAMPLE 2.15. For 7 =i and w, we have the following beautiful formulas:

_Eg(2) . n
Hw(z) - E4(Z) - ;]n(w)q )

~ _Eg(z)_ S s n
Hy(z) = el —nzzojn@)q :

In [BKO], Bruinier, Kohnen and the author used these forms to obtain an
explicit description of the action of the ©-operator on meromorphic modular forms

on SLy(Z). To state this result, first define a rational number er, for each 7 € §,
by

1/2 if 7 =4,
(2.9) er:=4¢1/3 if 1 =w,

1 otherwise.

Recall that § does not contain the cusp infinity.

THEOREM 2.16. If f(z) = > .°, a(n)q" is a nonzero weight k meromorphic
modular form on SLa(Z) for which a(h) = 1, then

o(f) _ kEs
= =22,
f 12
where fg is defined by
fo =" e;ord-(f)H.(2).
TEF
REMARK 2.17. This theorem has been generalized to certain genus zero congru-

ence subgroups by Ahlgren [A4], and to the so-called Hecke subgroups of SLy(R)
by Choie and Kohnen [CK].

Before proceeding to the proof, we first recall the following straightforward
fact which explains the connection between Theorem 2.16 and the combinatorial
properties of the “logarithmic derivative” of the infinite product expansion of a
modular form (see Proposition 2.1 of [BKO]). This proposition plays an important
role in the proof of Theorem 2.16.

PROPOSITION 2.18. Let f(z) = > 7, a(n)q™ be a meromorphic function in
a neighborhood of ¢ = 0, and suppose that a(h) = 1. Then there are uniquely
determined complex numbers c(n) for which

fz2)=¢" [T (1 = g™,
n=1
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where the product cCOMVETGES in a small neighborhood of ¢ = 0. Moreover, the
following identity is true

OU) _p— i S e(d)dg™
f n=1 d|n

SKETCH OF THE PROOF OF THEOREM 2.16. We cut off § by a horizontal line

1 1
=<0 — ) e S =
L {zC t 2_t_2},

where C > 0 is chosen s0 large that all poles and zeros of f(z), apart from those at
the cusp at infinity, are contained in

{zeH : Im(z) < C}NS.

For simplicity, suppose that f(z) has no zeros Or poles on the boundary 0F
w, and let v be the closed path with positive orientation
where 7 is the part of 8F below L modified in the usual
the standard proof of Theorem

except possibly at i or
consisting of £ and 71,
way (i.e. using arcs of radius r around i and w as in

1.29, the “k/12-valence formula”).
We integrate
1 f'(2)

e mjn (%)
along . By the Residue Theorem, taking into account that jn(2) is holomorphic
on ‘H, this integral is equal to
S orde(f)jn(r)-
reF—{w,i}

On the other hand, the integral can be evaluated separately along the different
pieces of . If we let r tend to zero, then we find that

(2.10)
Z ord,(f)jn(7) =
reF—{w.i}
U SRR Sy () k[ )
~ Lord, (i) = 5o in®) + 5 [ @i |5

Here F(q) = f(z) and Jn(q) = jn(2): Furthermore, p is 2 small circle around
q = 0 with negative orientation and not containing any pole or zero of F(q) except
possibly 0, and o is the part of the unit circle in the upper half-plane that connects
w and 7, with positive orientation.

By Proposition 2.18, we have that

gF'(q) _ QLffl _ =33 cld)dg™,

F(q) —
where h is the order of F at ¢ = 0. Therefore we find that
1 [ F(a)
2.11 — / Y\ g (q)dg=) cld)d
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Since (2.10) holds for

fe)=AE) =q [ -g*,
n=1

and since A(z) has no zeros in H, (2.10) implies that
1 [ ja(2)
2 T S PR
(2.12) B /t7 . dz = 201(n).
To prove that

O(f) _ kEs
5 T fe

where fo has the claimed form, one now simply argues coefficient by coefficient
using (2.10), (2.11), (2.12), and the fact that

By(2) =1-24) o1(n)g"
n=1

2.4. Further operators

Here we briefly recall further important operators on spaces of integer weight
modular forms. Let k be a positive integer. Recall from Section 1.2 that the group

GL3 ( )={7:<‘CI 3) :a.b,c,deRandad—bc>O}

acts on functions f : H — C by the operator

(2.13) (f1k7) (2) = (dety)*/2(cz + d) % f(v2),
a b

where v = <c d) € GLI (R).

DEFINITION 2.19. For a prime divisor p of N with ordp(N) = ¢, let Q, := p*.
Define the Atkin-Lehner operator |y W(Q,) on M; (T'o(N)) by any matrix

W(Qy) = (%’j 3 5) € My(Z)

with determinant Q,, where a,3,7.6 € Z. Furthermore, define the Fricke involu-
tion |, W(N) on My(To(N)) by the matrix

W(N) := (1(\), _01> .

REMARK 2.20. It is straightforward to verify that these operators are well
defined on M (Io(V)); this follows from the fact that W(Q,) is unique up to left
multiplication by elements of T'y(V).

It is straightforward to verify the following fact.

PROPOSITION 2.21. The operators |y W(Q,), for primes p | N, and | W (N)
are involutions on My(To(N)). Furthermore, these operators commute with all of
the Hecke operators T, ;. for which ged(n, N) = 1.
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(i.e., as a Lerch-like sum or as a mock Eisenstein series), the first two values being

F o= q+2¢ +¢ +2¢" — ¢ +3¢° — -+,
Fy, = 7q + 26¢* + 7¢* + 26¢* — 91¢° + --- .

Then the function

fry = Tale) = 125:(7)

= ¢ '/** (1 - 35¢ — 130¢* — 273¢> — 595¢* — -+ ),
n(7)

where Eo(7) = 1 —24% > 01(n)¢" is the usual quasimodular Eisenstein series of
weight 2, is a mock modular form of weight % on the full modular group with shadow
n(t), and for each integer n > 0 the sum of 12F5,,5(7) and 24" (2»)~" [f, 7], (where
[f, g]n denotes the n-th Rankin-Cohen bracket, here in weight (2,3)), is a modular
form of weight 2n + 2 on SL(2,Z). In a different direction, the Eichler integral f =
S0 nFa(n) ¢" of a classical cusp form f =Y a(n) ¢" of weight & is a mock modular
form of weight 2 — k, but of a somewhat generalized kind in which the “shadow” is
allowed to be a weakly holomorphic modular form. (This latter fact was observed
independently by K.-H. Fricke in Bonn.) Yet another example—actually the oldest—is
the generating function of class numbers of imaginary quadratic fields (more precisely,
of Hurwitz—Kronecker class numbers), which was shown in [23] to be a mock modular
form of weight % and level 4 with shadow »_ ¢", although the notion had not yet been
formulated at that time.

7. APPLICATIONS

Since the appearance of Zwegers’s thesis, Kathrin Bringmann and Ken Ono and
their collaborators have developed the theory further and given a number of beautiful
applications, a sampling of which we describe in this final section.

Define the rank of a partition to be its largest part minus the number of its parts,
and for n,t € N and r € Z/tZ let N(r,t;n) denote the number of partitions of n
with rank congruent to r modulo ¢. The rank was introduced by Dyson to explain in a
natural way the first two of Ramanujan’s famous congruences

p(50+4)=0 (modb), p(7l+5=0 (mod7), p(lll+6)=0 (mod 11)

for the partition function p(n): he conjectured (and Atkin and Swinnerton-Dyer later
proved) that the ranks of the partitions of an integer congruent to 4 (mod 5) or to
5 (mod 7) are equidistributed modulo 5 or 7, respectively, so that N(r,5;5( + 4) =
tp(50 +4), N(r,7;7¢ + 5) = Lp(7¢ + 5). (He also conjectured the existence of a
further invariant, which he dubbed the “crank,” which would explain Ramanujan’s
third congruence in the same way; this invariant was constructed later by Garvan and
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Andrews.) The generating function that counts the number of partitions of given size
and rank is given by

n2

rank(\) I q
w )
Z ZHm (T —wgm™)(1 —wtg™)

where the first sum is over all partitions and ||[A|| = n means that \ is a partition

of n. Clearly knowing the functions n +— N(r,t;n) for all r (mod t) is equivalent to
knowing the specializations of R(w; q) to all t-th roots of unity w = e?™*/*, For w = —1,
the function R(w; q) specializes to f(gq), the first of Ramanujan’s mock theta functions,

1/24

which is ¢*/** times a mock modular form of weight % Bringmann and Ono [6] generalize

this to other roots of unity:

THEOREM 7.1. — If € # 1 is a root of unity, then ¢ V/**R(£;q) is a mock modular
form of weight % with shadow proportional to (51/2 — 5_1/2) ZneZ( ) g2 gn*/24,

Remarks. 1. Note that the choice of square root of ¢ in the formula for the shadow
does not matter, since n in the non-vanishing terms of the sum is odd.

2. In fact Bringmann and Ono prove the theorem only if the order of £ is odd. (If it is
even, they prove a weaker result showing the modularity only for a group of in general
infinite index in SL(2,Z).) Also, both the formulation and the proof of the theorem
in [6] are considerably more complicated than the ones given here.

Proof. The proof is based on the following identity of Gordon and McIntosh [8]:
& (_1)71 q(3n2+n)/2

1—
Ri&a) = Hn>1(1iq”) 2 1—q¢

Using the identity == 1J{x+“’ we can rewrite this as
CUEREE ) B o -
) _ —2mie (30, 08 2micy 3 -3
e~ T errza 9(3057 37_) te ILL( Q, —T; 7—) +e :u( a, T; 7_)

with 6(v; 7) and p(u, v;7) as in §2. The first term on the right is a weakly holomorphic
modular form of weight % and the other two terms are mock modular forms of weight %
with shadow proportional to Y >~ (%) nq”2/12 sin(mna) , by Theorem 2.1. [

As a corollary of Theorem 7.1 we see that for all t > 0 and all r € Z/tZ the function

1

> (N(r.t;n) — < p(n)) ¢" />

n>0 ¢
is a mock modular form of weight %, with shadow proportional to

(> ()
n
n=2r+1 (mod 2t) n=2r—1 (mod 2t)

Applying the general principle formulated at the end of §5, one deduces that the sum

> (N(rtin) — %p(n)) ¢

neA, n>0



98618

is a (weakly holomorphic) modular form for any arithmetic progression A C Z not
containing any number of the form (1 — h?)/24 with h = 2r +£1 (mod 2t). In particular,
this holds if A is the set of n with (%) = —1 for some prime p > 3, and using this
and methods from classical modular form theory the authors deduce the following nice
result (stated there only for ¢ odd and @ prime to t) about divisibility of the Dyson
counting function N(r,t;n):

THEOREM 7.2. — Let t > 0 and Q) a prime power prime to 6. Then there exist A > 0
and B € ZJAZ such that N(r,t;n) =0 (mod Q) for all n = B (mod A) and r € Z/tZ.

In a different direction, knowing the modularity properties of mock theta functions
permits one to obtain asymptotic results, as well as congruences, for their coefficients.
We give two examples. In §2 we described the weak Maass form 33(7) associated to
Ramanujan’s order 3 mock theta function f(g). In [5], Bringmann and Ono construct
a weak Maass—Poincaré series that they can identify (essentially by comparing the
modular transformation properties and the asymptotics at cusps) with Eg(T), and from
this they deduce a Rademacher-type closed formula for the coefficient a(n) of ¢™ in f(q)
of the form

a(n) =

Z smh V24n — 1)

\ /n —1/24 k

where cx(n) is an explicit finite exponentlal sum depending only on n modulo 2k, e.g.,
ci(n) = (=1)""1. This formula had been conjectured by Andrews and Dragonette in
1966 (after Ramanujan had stated, and Dragonette and Andrews had proven, weaker
asymptotic statements corresponding to keeping only the first term of this series), but
had resisted previous attempts at proof because the circle method, which is the natural
tool to use, requires having a very precise description of the behavior of f(q) as ¢
approaches roots of unity, and this in turn requires knowing the modular transformation
properties of hs(7) = ¢~/?*f(q). As a second example, Bringmann [4] was able to use
this type of explicit formulas for the coefficients of mock theta functions, combined with
Theorem 7.1, to prove an inequality that had been conjectured earlier by Andrews and
Lewis, saying that N (0, 3;n) is larger than N(1,3;n) for all n = 1 (mod 3) and smaller
for all other values of n (except n = 3, 9 or 21, where they are equal).

We close by mentioning that mock theta functions (both in the guises of Appell-Lerch
sums and of indefinite theta series) also arise in connection with characters of infinite-
dimensional Lie superalgebras and conformal field theory [20], and that they also occur
in connection with certain quantum invariants of special 3-dimensional manifolds [13].
This suggests that mock modular forms may have interesting applications even outside
the domain of pure combinatorics and number theory.
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tends to 0 as Im(z) — oo, so f = 0 by Liouville’s theorem.
(4) Replace = by —z in the integral.
(5) Let g(x) = —+—. We first compute the Fourier transform Fg of g: Using Cauchy’s

coshma®
formula we get

eQTrizm e27r7lz:c
— dx = 2mi Res =2e "%,
R R.i/) coshmx z=i/2 cosh mx

2mizw 2miz(x+1) 2mizw
/ < dr = / 67, dr = —672#2/ c dz,
R coshmx r cosh7(z + 1) r coshmz
eZTrizz 2e~TZ
3: = d = — .
(F9)(z) /R coshaz 0T 1 + e—2m2 9(2)

We see that g is its own Fourier transform! (Note the unusual plus sign in the definition
of the Fourier transform).

but

so we find

Let f-(x) = e™e” € H. The Fourier transform of f, is given by

T = 2 f ..

i T

We now see

eTriTch-i-Qﬂ'iZ-’E
/R S dr=TF(f - 9)(2) = (Ffr) * (Fg)(2)

cosh mx

m’%l(z—x)2

1 1 e
= 1 - d .
—z'q-ff? #9(2) V=it /R coshmz "

This identity holds for z € R. Since both sides are analytic functions of z, the identity
holds for all z € C. If we replace z by iz we get the desired result.
We may also prove the identity of part (5) by using (1) and (2) to show that
iiT e”z2/7h(§; —1) also satisfies the two equations (1) and (2). By uniqueness
we get the equation.
(6) Using (1) and (2) we can show that the right hand side, considered as a function

of z, also satisfies (1) and (2). The equation now follows from (3). O

Z

1.3 Lerch sums

In this section we will study the function

(_l)neﬁi(n2+n)7+2ﬂinv
Z | zminriani (reH,ve CueC\ (Zr+Z)).
neZ
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This function was also studied by Lerch. The original paper [15] is in Czech and is
not very easy to obtain. See [14] for an abstract in German. We will prove elliptic
and modular transformation properties of this function in Proposition 1.4 and 1.5
respectively. These results are equivalent to the results found by Lerch.

It is more convenient to normalize the above sum by dividing by the classical Jacobi
theta function 9. (Lerch did this too.) We will first give, without proof, some standard
properties of J. For the theory of ¥-functions see [19].

Proposition 1.3 For z € C and 7 € H define

Iz) =d(z;7) = Z i T2miv(s4+3)
vESHZ
Then ¥ satisfies:
(1) 9(z+1)=—-9(2).
(2) Iz +71) = —e TIT2TEY(2).,

(3) Up to a multiplicative constant, z +— (z) is the unique holomorphic function
satisfying (1) and (2).

(4) ¥(—2) = —9(2).
(5) The zeros of O are the points z = nt +m, with n,m € Z. These are simple zeros.
(6) (z7+1)=eT V(7).
(7) 9(2;—1) = —i/—ire™= T (2 7).
(8) ¥(z7) = —igs (3 ﬁ(l —q") (1= (" (1= (T, with ¢ = 277, ( = €27
This is the Jacobint?}ple product identity.
(9) V(037 +1) = e (0;7) and V' (0;—L) = (—ir)3/2 0'(0; 7).
(10) ¥'(0;7) = —27n(7)3, with n as in the introduction.
We now turn to the normalized version of Lerch’s function:
Proposition 1.4 For u,v € C\ (Z7 + Z) and 7 € H, define
Tiu (_1)ne7ri(n2+n)'r+2ﬂ'inv

(&
:u(U; U) = ,LL(U,’U; T) = 19(1};7_) ze; 1 — e2minT+2miu
n

Then i satisfies:

(1) plu+1,0) = —p(u,v),
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(2) plu,v+1) = —p(u,v),
(3) u
(4)

(5) pi—u, 71}) - :LL(U7U)7

(
(U,U) + 6727ri(u7’u)*7ri7'lu(u + T,U) _ 72'677”'(7171;)77”'7'/4’

(u+T1,0+7) = p(u,v),

(

(6) ur— p(u,v) is a meromorphic function, with simple poles in the points u = nT+m

(n,m € Z), and residue 5= -1~ inu =0,

273 Y (v)

1 9(0)I(u v+ 2)0(2)

(7) plu 204 2) = plu,0) = 27 O(w) ()0 (u+ 2)0(v + z)
foru,v,u+z, v+ 2 Lt + 7,

(8) w(v,u) = p(u,v).

Proof: (1) is trivial and (2) follows from (1) of Proposition 1.3.
(3) The definition of ¥ gives the following:

ie_””/‘l"‘”i”ﬁ(v) _ Z (_1)7L€7ri(n2—n)7'+27ri’rw
nez

)ne'n'i(n2 —n)T427inv

(71 2minT+2m
= Z 1 — e27rin7'+27riu (1 —¢ e 7”“)

nezZ

_1)neﬂi(n2+n)7'+27rinv (_1)neﬂi(n2+n)7+2ﬂinv

— _627Tiv § ( _ 627riu §
1— 627Tin7+27ri(u+7) 1 — e2minT+2miu
nez nez

Dividing both sides by —e™“9(v), we get the desired result.
(4) Part (2) of Proposition 1.3 gives

eﬂi(qu‘r) (_1)n67ri(n2+n)r+27rin(v+7)

pwlu+7,0+7) = o) > 1 — ezmintt2mi(utr)
neZ

eﬂi(u+7—)+7ri‘r+27riv (_1)neﬂ'i(n2+3n)7—+2‘n’inv

19(’1)) = 1— 627ri(n+1)7'+277iu

Replace n by n — 1 in the last sum to get the desired result.
(5) If we replace n by —n in the definition of © we see

emiu (71)ne7ri(n2fn)7'727rinv

,u(u,v) = 19(1}) 1— e—27rin7'+27riu
neZ
e27ri7;7727r'iu

We multlply by m to find

—Tiu (_1)ne7ri(n2+n)r—27rinv

&
,LL(U,U) = 19(/0) Z 1 — e2minT—2miu
neZ
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Now using (4) of Proposition 1.3 we find

w(u, v) = p(—u, —v).

(6) From the definition we see that u +— p(u,v) has a simple pole if 1 —e?™n7+2miu — (),
for some n € Z. So u — u(u,v) has simple poles in the points u = —n7+m (n,m € Z).
The pole in u = 0 comes from the term n = 0. We see

b 2 r(u,v) = — 1 w o -1 1
iy I )= I (v) w0 T e2miu 2 d(v)’
(7) Consider f(z) = Y (u + 2)9 (v + z) (u(u + z,v + z) — p(u,v)). Using (1), (2) and
(5) of Proposition 1.3, and (1), (2), (4) and (6) of this proposition, we see that f has
no poles, a zero for z = 0, and satisfies

fz+1)=f(2)
f(Z =+ T) _ e—27ri'r—27ri(u+v+2z)f(z)_

It follows that the quotient f(z)/U(2)¥(u+ v + z) is a double periodic function with
at most one simple pole in each fundamental parallelogram, and hence constant:

f(z) = Cu,v)9(z)I(u + v+ z). (1.1)
To compute C' we consider z = —u. If we take z = —u in (1.1) we find
f(=u) = C(u,v)d(—u)d(v) = =C'(u, v)¥(u)d(v) (1.2)

by (4) of Proposition 1.3.
By definition we have

few) = Jim D+ 2000+ 2) (plut 2,0+ 2) — p(,v)
=Y (v—u)- ;IL% I(2)pu(z,v —u) (1.3)
. dz) 1
=9(v—u)-1 -1 —u) = ——1
(v —u) lim —~ - lim zp(z,v —u) 5 (0),
where we have used (6).
Combining (1.2) and (1.3) gives the desired result.
(8) Take z = —u — v in (7) and use (5) of Proposition 1.3 to find
/L(—’U, —U) = ,LL(U, ’U).
If we now use (5), we get the desired result. O

Proposition 1.5 Let pu be as in Proposition 1.4. Then p satisfies the following mod-
ular transformation properties:
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(1) plu,v;7+1) = e T plu,v;7),

—1T T
with h as in Definition 1.1.

1 : 2 U v 1 1
2) —— mi(u—v)*/T = v . _ .
( ) \/7 € H ( ) ) +/J,(U,,U,7') 22h(u ’U,T),

Proof: (1) Use (6) of Proposition 1.3.
(2) Replacing (u,v,z,7) by (%,%,2,—1) in (7) of Proposition 1.4 and using (7) and

(9) of Proposition 1.3 we see that the left hand side depends only on u — v, not on u

and v separately. Call it %ﬁ(u —wv;7). Using (1) and (3) of Proposition 1.4 we see that
h satisfies the two identities (1) and (2) of Proposition 1.2, so if we can prove that &
is a holomorphic function, then we may conclude that i = h, as desired.

The poles of both u +— p(u,v) and u — p(%,?; —%) are simple, and occur at
u € Z1 + 7Z, so the only poles of u — ﬁ(u —v) could be simple poles for u € Z7 + Z.
Since this is a function of v — v it has no poles at all, and hence is holomorphic.

Alternatively, we can check, using (6) of Proposition 1.4 and (7) of Proposition
1.3, that the residue at u = 0 vanishes. By (1) and (3) of Proposition 1.4 the residues

vanish for all u € Z7 + Z, hence h is holomorphic. O

1.4 A real-analytic Jacobi form?

Definition 1.6 For z € C we define

&0 (_ﬂ.)n Z2n+1

E(z)=2[ ¢ ™ du= :
(2) /06 du Z n!l n+1/2

n=0

This is an odd entire function of z.

Lemma 1.7 For z € R we have
E(z) =sgn(z) (1 — 6(22)) ,
where

B(z) = /00 u"re ™y (x € R>o).

Proof: Write [; e~ du, as sgn(z) fo‘z‘ e~ du and substitute u = /v. ]
We consider for u € C and 7 € H the series

Rur) = Y {senv) = B((v+a)y/2y) } (—1)demmiirozmi,
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Lemma 1.8 For all ¢,e > 0, this series converges absolutely and uniformly on the set
{ue C,TeH||a| <ec,y>ce€}. The function R it defines is real-analytic and satisfies

%(u; ) = \/iy—l/2e—27ra2y,ﬂ(ﬂ; —7) (1.4)

and
0 i Cae o
%R(G/T — b T) _ _\/%Tye—%ra?y ;Z(_l)y_z (Z/ + a)e—ﬂlyz‘r—QTrlD(aT—b). (15)
ves

Proof: We split sgn(v) — E((v + a)y/2y) into the sum of sgn(v) — sgn((v + a)v/2y)
and sgn((v + a)v/2y)B8(2(v + a)?y). We see that sgn(v) — sgn((v + a)/2y) is nonzero
for only a finite number of values v € % + Z (this number depends on a, but since a is
bounded, so is this number). Hence the series

> {Sgn(V) - Sgn((u + a)\/@) }(_1)v—%e—muzf—2myu
vEF+Z

converges absolutely and uniformly.
We can easily see that 0 < (x) < e ™ for all z € R>¢, hence

Hsgn((y + a)\/@)ﬁ(Q(,/ + a)2y> } (_1)11*%6*7”'1/27727”'1/11

_ 2 L2 g
<e 27 (v+a)y e 2mivu

_ e—w(u+a)2y—7ra2y < e—TI'(V—f—ll)zE.

We have the inequality

(v +a)® > Sv2,

N =

for |v] > vy, for some vy € R which depends only on ¢ (a is bounded by ¢). Hence we
see that the series

Z {Sgn<(u + a)\/@)ﬂ(%y + a)2y) } (_1)%%6%1'1/277%1-%
vEIHZ

converges absolutely and uniformly on the given set.

Since R is the (infinite) sum of real-analytic functions, and the series converges
absolutely and uniformly, it is real-analytic.

We fix 7 € H, and determine u = at — b by the coordinates a,b € R. We see

0 0
(3& + T@b) R(aT — b;7)

_ <§a +T<§b) Z {sgn(y) -~ E((z/+a)\/@>} (_1)1/7%e*TriV2‘rf27riV(a‘r7b)

ve+Z
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*\/@ Z E/<(I/+a)\/@)(71)1’7%e*ﬂ'il/27'72ﬂil/(a7'—b)

veEL+Z
oyay Y ey gy et
veES+Z
:72\/@67277(12?/ Z (71)1/7%efﬂ'iVQ?fQﬂ'iu(a?fb)
veEL+Z

= f2i\/2y672’m2y19(a? —b;—7),

with ¢ as in Proposition 1.3 and the term-by-term differentiation being easily justified.

Since % = ﬁ (% + T%), this gives the differential equation (1.4). Similarly
0
%R(ar —b;7)
= 1 i + ’Lﬁ Z {Sgn(v) _ E((V + a) /2:1/)} (_1)V—%e—7ri1/27—27ri1/(a7-—b)
2\0x Oy i
ves

;1 ) )
— ,37 E (1/+a) El((l/+a) /2y> (71)1/7%ef‘mu27'727mu(a77b)
2V2y €1+Z
vesy
1

V2

e—27ra2y Z (_1)1/—%(”_'_&) e—7'ril/2?—27'ri1/(a?—b)7
ueé-i-z

proving equation (1.5). O

Proposition 1.9 The function R has the following elliptic transformation properties:
(1) R(u+1) = —R(u),

(2) R(u) 4 e 2mu=TiT R(y 4 1) = 2~ T miT/4

(3) R(—u) = R(u).

Proof: Part (1) is trivial, and for (3) we replace v by —v in the sum and use the fact
that F is an odd function. To prove (2), we start with

6727Tiu77ri'rR(u + 7_)

— o 2miu—mit Z {sgn(v) _ E((V+a+ 1)\/@>} (_1)y7%€7wiu2r72mu(u+7)

ves+Z

=— Z {Sgn(l/ —-1) - E((I/ + a)\/@)} (_1)117%67#@‘1127727”‘”7

ve3+Z
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where we have replaced v by v — 1. We now find
R(u)+e 2™ =™ R(y 4 7)
_ Z {sgn(l/) - sgn(u - 1)}(71)u7%67wiu27'727riuu _ 2677riu77rir/4’
ve+Z

since sgn(v) — sgn(v — 1) is zero for all v € 3 + Z except for v = 3. O

Proposition 1.10 R has the following modular transformation properties:
(1) Rlu;7+1) = e*%R(u;T),
1 2
(2) — e /TR<
e

—T

g; —%) + R(u;7) = h(u; 7).

Proof: Part (1) is trivial. The left hand side of (2) we call h(u;7). Using (1) and (2)
of Proposition 1.9 we can see that h satisfies:

hlu) + Ru+ 1) = A et/
h(u) + e‘27TZu—7rzTh(u +7)= Qe—miu—TiT/4
Part (3) of Proposition 1.2 determines h as the unique holomorphic function with these

properties. This reduces the proof to showing that A is a holomorphic function of w.

We fix 7 € H, and determine u = a7 — b by the coordinates a,b € R (this implies

= %2%?? as in Lemma 1.8). Since g = ﬁ (£ +7Z), we have to show that

d 9\ ;>
(&1 +7‘8b> h(ar —b;7) = 0.

According to Lemma 1.8 we have

0 0 . 97 727Ta2y = __ b=
<8a + T@b) R(at — b;7) = —2i4/2ye I(aT — b; —T) (1.6)
We have
0 0 ar—b 1 o 10 b 1
(aa”ab)3< . "T) —T(az,ﬂa(z)R(“‘T"T)-

Up to a factor 7 this is the same as (
(b, —a,—2). Hence by (1.6) we find

A L B T a2 ] G
da b T T T T

= 2T 2y’e*2”b2y/19 <— il b; 1) )

Flo
+
\}
|
S—
=
Q
ﬁ
\
&
b
z
o+
5
—
£
v@‘
ﬁ
S~—
=
¢}
=5
o
o
@
A,
o
<

T T
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with 3’ = Im(—1) = . In the last step we have used (4) of Proposition 1.3.
If we now use (7) of Proposition 1.3, with z = a7 — b and 7 replaced by —7, we see
that this equals

2ir\/2ye 2 . _i/iFe T Ty (a7 — b; —7)

= 90 /Bgy/ e TV e 2 g by ), o
Using (1.6) and (1.7) we find
(8aa + Tgb) h(at — b;T)
= \/iTTe’”'(“T*b)Q/T (aaa + Taab> R <aTT ’ —i)
+ <88a + Taab) R(at — b;7) =0.
We have established the fact that h is holomorphic, and hence equals h. O

In the next theorem we combine the properties of u and R to find a function g
which is no longer meromorphic, but has better elliptic and modular transformation
properties than pu.

Theorem 1.11 We set
a(u,v;7) = p(u,v;7) + %R(u —v;T), (1.8)

then

(1) [L(u + kT4 Lv+mr+ n) _ (_1)k+l+m+newi(kfm)2r+2m‘(kfm)(ufv)ﬂ(u’ v)’
for k,l,m,n € Z,

@) j u v ar+b
H er+d er+d er+d

fory = (24) € SLy(Z), with v(y) = n(ZZIS)/((CT + d)%n(T))

) = 0(7) (7 + d) eI T iy, ),

(3) ﬂ(_u7 _U) = ﬂ(v>u) = /l(uav))

. . 1 9(0)(u v+ 2)0(2)
(4) filu 204 2) = filu,0) = 27 D(w)9(0)d(u+ 2)0(v + z)
foru,v,u+z, v+ 2z Lt +Z,

(5) u > fi(u,v) has singularities in the points w = nt +m (n,m € Z). Furthermore

: - 11
we have lim,, o ufi(u,v) = i (o)
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Remark 1.12 Parts (1) and (2) of the theorem say that the function fi transforms like
a two-variable Jacobi form of weight 3 and index (' ') (for the theory of Jacobi
forms, see [9], where, however, only Jacobi forms of one variable are considered).
Furthermore we can find several differential equations satisfied by . Therefore we
would like to call this function a real-analytic Jacobi form. However, in the literature
I haven’t been able to find a satisfying definition of a real-analytic Jacobi form. I
intend to return to this problem in the future.

Remark 1.13 All three function in (1.8) have a property that the other two do not
have: fi transforms well (like a Jacobi form), p is meromorphic and w,v +— R(u — v)
depends only on u — v.

Proof: (1) Using the first four parts of Proposition 1.4 and the first two of Proposition
1.9 we find

u+1,v)
u, v+ 1

= —[L(U, U)v
= _[j’(’uﬂ U)a
_ _627ri(u—v)+7ri7ﬁ(u’ 'U),

=

i

i )
(u+T,v)

i _2mi(v—u)+miT -

fi(u, v +7) = —e fi(u, v).

Combining these equations we get the desired result.
(2) Using Proposition 1.5 and Proposition 1.10 we find

Alu,v;7+1) = e % fiu, vy 7)
1 .
(2, i) = —V=ire 0T i v )

Set m(u,v; ) := Y(u — v;7)i(u,v; 7). Using (6) and (7) of Proposition 1.3 we see

and so

cr+d er+d er+d
for all (2%) € SLy(Z). Hence

( u v .a7+b>:(c7'+d) m(u, v;7),

. u v ar+b du—wv;T)
; = d)——m— 3T). 1.9
H(cr—&-d’m’—i—d’cr—i—d) (em + )79 uv.aT%)u(u,v,T) (1.9)
ct+d’ ct4d

From (6) and (7) of Proposition 1.3 we find

z at +b o,
9 (—2 THEY e T emie ety 11
<CT 7o d) X(Ver +de (27), (1.10)
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with x () some eighth root of unity. Applying d%| o on both sides gives

z=

at +b 3
v’ (0; c¢+d) = x(7)(er +d)209'(0;7).

Using (10) of Proposition 1.3 we find

If we combine this with (1.9) and (1.10) we get the desired result.
(3) Using (5) of Proposition 1.4 and (3) of Proposition 1.9 we find

[L(*U, 71”) - [j’(ua ’U)
Using (8) of Proposition 1.4 and (3) of Proposition 1.9 we find
fi(v,u) = fuu, v)

(4) This follows directly from (7) of Proposition 1.4.
(5) R has no singularities, so the singularities come from u. The location and nature
of these singularities is already given in (6) of Proposition 1.4. O

1.5 Period integrals of weight 3/2 unary theta func-
tions

In this section we will rewrite A in terms of the period integral of a unary theta function
of weight 3/2.
To state the main result we need the following definition:

Definition 1.14 Let a,b € R and 7 € H then

g b(T) — Z VeTriV27+27riub
a, = .

vea+Z

The function g, is a unary theta function.

Proposition 1.15 g, satisfies:
(1) ga+1,6(T) = gap(7)

(2) ap+1(7) = €™ gap(T)

(3) 9-a,—b(T) = —ga(7)

(4) Gualr+1) = 9 g, L (7)



