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(i.e., as a Lerch-like sum or as a mock Eisenstein series), the first two values being

F2 = q + 2q2 + q3 + 2q4 − q5 + 3q6 − · · · ,

F4 = 7q + 26q2 + 7q3 + 26q4 − 91q5 + · · · .

Then the function

f(τ) =
F2(q) − 12E2(τ)

η(τ)
= q−1/24

(
1− 35q − 130q2 − 273q3 − 595q4 − · · ·

)
,

where E2(τ) = 1 − 24
∑∞

n=1 σ1(n)qn is the usual quasimodular Eisenstein series of

weight 2, is a mock modular form of weight 3
2

on the full modular group with shadow

η(τ), and for each integer n > 0 the sum of 12F2n+2(τ) and 24n (2n
n )−1 [f, η]n (where

[f, g]n denotes the n-th Rankin–Cohen bracket, here in weight (3
2
, 1

2
)), is a modular

form of weight 2n + 2 on SL(2, Z). In a different direction, the Eichler integral f̃ =∑∞
n=1 n−k+1a(n) qn of a classical cusp form f =

∑
a(n) qn of weight k is a mock modular

form of weight 2 − k, but of a somewhat generalized kind in which the “shadow” is

allowed to be a weakly holomorphic modular form. (This latter fact was observed

independently by K.-H. Fricke in Bonn.) Yet another example—actually the oldest—is

the generating function of class numbers of imaginary quadratic fields (more precisely,

of Hurwitz–Kronecker class numbers), which was shown in [23] to be a mock modular

form of weight 3
2

and level 4 with shadow
∑

qn2

, although the notion had not yet been

formulated at that time.

7. APPLICATIONS

Since the appearance of Zwegers’s thesis, Kathrin Bringmann and Ken Ono and

their collaborators have developed the theory further and given a number of beautiful

applications, a sampling of which we describe in this final section.

Define the rank of a partition to be its largest part minus the number of its parts,

and for n, t ∈ N and r ∈ Z/tZ let N(r, t; n) denote the number of partitions of n

with rank congruent to r modulo t. The rank was introduced by Dyson to explain in a

natural way the first two of Ramanujan’s famous congruences

p(5ℓ + 4) ≡ 0 (mod 5) , p(7ℓ + 5)≡ 0 (mod 7) , p(11ℓ + 6)≡ 0 (mod 11)

for the partition function p(n) : he conjectured (and Atkin and Swinnerton-Dyer later

proved) that the ranks of the partitions of an integer congruent to 4 (mod 5) or to

5 (mod 7) are equidistributed modulo 5 or 7, respectively, so that N(r, 5; 5ℓ + 4) =
1
5
p(5ℓ + 4), N(r, 7; 7ℓ + 5) = 1

7
p(7ℓ + 5). (He also conjectured the existence of a

further invariant, which he dubbed the “crank,” which would explain Ramanujan’s

third congruence in the same way; this invariant was constructed later by Garvan and
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Andrews.) The generating function that counts the number of partitions of given size

and rank is given by

R(w; q) :=
∑

λ

wrank(λ) q‖λ‖ =
∞∑

n=0

qn2

∏n
m=1(1− wqm)(1− w−1qm)

,

where the first sum is over all partitions and ‖λ‖ = n means that λ is a partition

of n. Clearly knowing the functions n 7→ N(r, t; n) for all r (mod t) is equivalent to

knowing the specializations ofR(w; q) to all t-th roots of unity w = e2πia/t. For w = −1,

the function R(w; q) specializes to f(q), the first of Ramanujan’s mock theta functions,

which is q1/24 times a mock modular form of weight 1
2
. Bringmann and Ono [6] generalize

this to other roots of unity:

Theorem 7.1. — If ξ 6= 1 is a root of unity, then q−1/24R(ξ; q) is a mock modular

form of weight 1
2

with shadow proportional to
(
ξ1/2 − ξ−1/2

)∑
n∈Z

(
12
n

)
n ξn/2 qn2/24.

Remarks. 1. Note that the choice of square root of ξ in the formula for the shadow

does not matter, since n in the non-vanishing terms of the sum is odd.

2. In fact Bringmann and Ono prove the theorem only if the order of ξ is odd. (If it is

even, they prove a weaker result showing the modularity only for a group of in general

infinite index in SL(2, Z).) Also, both the formulation and the proof of the theorem

in [6] are considerably more complicated than the ones given here.

Proof. The proof is based on the following identity of Gordon and McIntosh [8]:

R(ξ; q) =
1− ξ∏

n≥1

(
1− qn

)
∞∑

n=−∞

(−1)n q(3n2+n)/2

1− qnξ
.

Using the identity 1
1−x

= 1+x+x2

1−x3 we can rewrite this as

q−1/24R(e2πiα; q)

e−πiα − eπiα
=

η(3τ)3/η(τ)

θ(3α; 3τ)
+ e−2πiαµ(3α,−τ ; 3τ) + e2πiα µ(3α, τ ; 3τ)

with θ(v; τ) and µ(u, v; τ) as in §2. The first term on the right is a weakly holomorphic

modular form of weight 1
2

and the other two terms are mock modular forms of weight 1
2
,

with shadow proportional to
∑∞

n=1

(
12
n

)
n qn2/12 sin(πnα) , by Theorem 2.1. �

As a corollary of Theorem 7.1 we see that for all t > 0 and all r ∈ Z/tZ the function
∑

n≥0

(
N(r, t; n) − 1

t
p(n)

)
qn−1/24

is a mock modular form of weight 1
2
, with shadow proportional to

( ∑

n≡2r+1 (mod 2t)

−
∑

n≡2r−1 (mod 2t)

) (
12

n

)
n qn2/24 .

Applying the general principle formulated at the end of §5, one deduces that the sum
∑

n∈A, n≥0

(
N(r, t; n) − 1

t
p(n)

)
qn−1/24
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is a (weakly holomorphic) modular form for any arithmetic progression A ⊂ Z not

containing any number of the form (1−h2)/24 with h ≡ 2r±1 (mod 2t). In particular,

this holds if A is the set of n with
(

1−24n
p

)
= −1 for some prime p > 3, and using this

and methods from classical modular form theory the authors deduce the following nice

result (stated there only for t odd and Q prime to t) about divisibility of the Dyson

counting function N(r, t; n) :

Theorem 7.2. — Let t > 0 and Q a prime power prime to 6. Then there exist A > 0

and B ∈ Z/AZ such that N(r, t; n) ≡ 0 (mod Q) for all n ≡ B (mod A) and r ∈ Z/tZ.

In a different direction, knowing the modularity properties of mock theta functions

permits one to obtain asymptotic results, as well as congruences, for their coefficients.

We give two examples. In §2 we described the weak Maass form ĥ3(τ) associated to

Ramanujan’s order 3 mock theta function f(q). In [5], Bringmann and Ono construct

a weak Maass–Poincaré series that they can identify (essentially by comparing the

modular transformation properties and the asymptotics at cusps) with ĥ3(τ), and from

this they deduce a Rademacher-type closed formula for the coefficient α(n) of qn in f(q)

of the form

α(n) =
1√

n− 1/24

∞∑

k=1

ck(n) sinh
( π

12k

√
24n− 1

)
,

where ck(n) is an explicit finite exponential sum depending only on n modulo 2k, e.g.,

c1(n) = (−1)n−1. This formula had been conjectured by Andrews and Dragonette in

1966 (after Ramanujan had stated, and Dragonette and Andrews had proven, weaker

asymptotic statements corresponding to keeping only the first term of this series), but

had resisted previous attempts at proof because the circle method, which is the natural

tool to use, requires having a very precise description of the behavior of f(q) as q

approaches roots of unity, and this in turn requires knowing the modular transformation

properties of h3(τ) = q−1/24f(q). As a second example, Bringmann [4] was able to use

this type of explicit formulas for the coefficients of mock theta functions, combined with

Theorem 7.1, to prove an inequality that had been conjectured earlier by Andrews and

Lewis, saying that N(0, 3; n) is larger than N(1, 3; n) for all n ≡ 1 (mod 3) and smaller

for all other values of n (except n = 3, 9 or 21, where they are equal).

We close by mentioning that mock theta functions (both in the guises of Appell–Lerch

sums and of indefinite theta series) also arise in connection with characters of infinite-

dimensional Lie superalgebras and conformal field theory [20], and that they also occur

in connection with certain quantum invariants of special 3-dimensional manifolds [13].

This suggests that mock modular forms may have interesting applications even outside

the domain of pure combinatorics and number theory.
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tends to 0 as Im(z) →∞, so f ≡ 0 by Liouville’s theorem.
(4) Replace x by −x in the integral.
(5) Let g(x) = 1

cosh πx . We first compute the Fourier transform Fg of g: Using Cauchy’s
formula we get

(
∫

R

−
∫

R+i

)

e2πizx

cosh πx
dx = 2πi Res

x=i/2

e2πizx

cosh πx
= 2e−πz,

but
∫

R+i

e2πizx

cosh πx
dx =

∫

R

e2πiz(x+i)

cosh π(x + i)
dx = −e−2πz

∫

R

e2πizx

cosh πx
dx,

so we find

(Fg)(z) :=

∫

R

e2πizx

cosh πx
dx =

2e−πz

1 + e−2πz
= g(z).

We see that g is its own Fourier transform! (Note the unusual plus sign in the definition
of the Fourier transform).

Let fτ (x) = eπiτx2

, τ ∈ H. The Fourier transform of fτ is given by

Ffτ =
1√
−iτ

f− 1

τ

.

We now see

∫

R

eπiτx2+2πizx

cosh πx
dx = F(fτ · g)(z) = (Ffτ ) ∗ (Fg)(z)

=
1√
−iτ

f− 1

τ

∗ g(z) =
1√
−iτ

∫

R

eπi−1

τ
(z−x)2

cosh πx
dx.

This identity holds for z ∈ R. Since both sides are analytic functions of z, the identity
holds for all z ∈ C. If we replace z by iz we get the desired result.

We may also prove the identity of part (5) by using (1) and (2) to show that

z 7→ 1√
−iτ

eπiz2/τh( z
τ ;− 1

τ ) also satisfies the two equations (1) and (2). By uniqueness

we get the equation.
(6) Using (1) and (2) we can show that the right hand side, considered as a function
of z, also satisfies (1) and (2). The equation now follows from (3). 2

1.3 Lerch sums

In this section we will study the function

∑

n∈Z

(−1)neπi(n2+n)τ+2πinv

1− e2πinτ+2πiu
(τ ∈ H, v ∈ C, u ∈ C \ (Zτ + Z)).
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This function was also studied by Lerch. The original paper [15] is in Czech and is
not very easy to obtain. See [14] for an abstract in German. We will prove elliptic
and modular transformation properties of this function in Proposition 1.4 and 1.5
respectively. These results are equivalent to the results found by Lerch.

It is more convenient to normalize the above sum by dividing by the classical Jacobi
theta function ϑ. (Lerch did this too.) We will first give, without proof, some standard
properties of ϑ. For the theory of ϑ-functions see [19].

Proposition 1.3 For z ∈ C and τ ∈ H define

ϑ(z) = ϑ(z; τ) :=
∑

ν∈ 1

2
+Z

eπiν2τ+2πiν(z+ 1

2
).

Then ϑ satisfies:

(1) ϑ(z + 1) = −ϑ(z).

(2) ϑ(z + τ) = −e−πiτ−2πizϑ(z).

(3) Up to a multiplicative constant, z 7→ ϑ(z) is the unique holomorphic function
satisfying (1) and (2).

(4) ϑ(−z) = −ϑ(z).

(5) The zeros of ϑ are the points z = nτ + m, with n, m ∈ Z. These are simple zeros.

(6) ϑ(z; τ + 1) = e
πi

4 ϑ(z; τ).

(7) ϑ( z
τ ;− 1

τ ) = −i
√
−iτeπiz2/τϑ(z; τ).

(8) ϑ(z; τ) = −iq
1

8 ζ−
1

2

∞
∏

n=1

(1− qn)(1− ζqn−1)(1− ζ−1qn), with q = e2πiτ , ζ = e2πiz.

This is the Jacobi triple product identity.

(9) ϑ′(0; τ + 1) = e
πi

4 ϑ′(0; τ) and ϑ′(0;− 1
τ ) = (−iτ)3/2 ϑ′(0; τ).

(10) ϑ′(0; τ) = −2πη(τ)3, with η as in the introduction.

We now turn to the normalized version of Lerch’s function:

Proposition 1.4 For u, v ∈ C \ (Zτ + Z) and τ ∈ H, define

µ(u, v) = µ(u, v; τ) :=
eπiu

ϑ(v; τ)

∑

n∈Z

(−1)neπi(n2+n)τ+2πinv

1− e2πinτ+2πiu
.

Then µ satisfies:

(1) µ(u + 1, v) = −µ(u, v),
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(2) µ(u, v + 1) = −µ(u, v),

(3) µ(u, v) + e−2πi(u−v)−πiτµ(u + τ, v) = −ie−πi(u−v)−πiτ/4,

(4) µ(u + τ, v + τ) = µ(u, v),

(5) µ(−u,−v) = µ(u, v),

(6) u 7→ µ(u, v) is a meromorphic function, with simple poles in the points u = nτ +m
(n, m ∈ Z), and residue −1

2πi
1

ϑ(v) in u = 0,

(7) µ(u + z, v + z)− µ(u, v) =
1

2πi

ϑ′(0)ϑ(u + v + z)ϑ(z)

ϑ(u)ϑ(v)ϑ(u + z)ϑ(v + z)
,

for u, v, u + z, v + z 6∈ Zτ + Z,

(8) µ(v, u) = µ(u, v).

Proof: (1) is trivial and (2) follows from (1) of Proposition 1.3.
(3) The definition of ϑ gives the following:

ie−πiτ/4+πivϑ(v) =
∑

n∈Z

(−1)neπi(n2−n)τ+2πinv

=
∑

n∈Z

(−1)neπi(n2−n)τ+2πinv

1− e2πinτ+2πiu

(

1− e2πinτ+2πiu
)

= −e2πiv
∑

n∈Z

(−1)neπi(n2+n)τ+2πinv

1− e2πinτ+2πi(u+τ)
− e2πiu

∑

n∈Z

(−1)neπi(n2+n)τ+2πinv

1− e2πinτ+2πiu
.

Dividing both sides by −eπiuϑ(v), we get the desired result.
(4) Part (2) of Proposition 1.3 gives

µ(u + τ, v + τ) =
eπi(u+τ)

ϑ(v + τ)

∑

n∈Z

(−1)neπi(n2+n)τ+2πin(v+τ)

1− e2πinτ+2πi(u+τ)

= −eπi(u+τ)+πiτ+2πiv

ϑ(v)

∑

n∈Z

(−1)neπi(n2+3n)τ+2πinv

1− e2πi(n+1)τ+2πiu
.

Replace n by n− 1 in the last sum to get the desired result.
(5) If we replace n by −n in the definition of µ we see

µ(u, v) =
eπiu

ϑ(v)

∑

n∈Z

(−1)neπi(n2−n)τ−2πinv

1− e−2πinτ+2πiu
.

We multiply by −e2πinτ−2πiu

−e2πinτ−2πiu to find

µ(u, v) = −e−πiu

ϑ(v)

∑

n∈Z

(−1)neπi(n2+n)τ−2πinv

1− e2πinτ−2πiu
.
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Now using (4) of Proposition 1.3 we find

µ(u, v) = µ(−u,−v).

(6) From the definition we see that u 7→ µ(u, v) has a simple pole if 1−e2πinτ+2πiu = 0,
for some n ∈ Z. So u 7→ µ(u, v) has simple poles in the points u = −nτ +m (n, m ∈ Z).

The pole in u = 0 comes from the term n = 0. We see

lim
u→0

u µ(u, v) =
1

ϑ(v)
lim
u→0

u

1− e2πiu
=
−1

2πi

1

ϑ(v)
.

(7) Consider f(z) = ϑ(u + z)ϑ(v + z) (µ(u + z, v + z)− µ(u, v)). Using (1), (2) and
(5) of Proposition 1.3, and (1), (2), (4) and (6) of this proposition, we see that f has
no poles, a zero for z = 0, and satisfies

{

f(z + 1) = f(z)

f(z + τ) = e−2πiτ−2πi(u+v+2z)f(z).

It follows that the quotient f(z)/ϑ(z)ϑ(u + v + z) is a double periodic function with
at most one simple pole in each fundamental parallelogram, and hence constant:

f(z) = C(u, v)ϑ(z)ϑ(u + v + z). (1.1)

To compute C we consider z = −u. If we take z = −u in (1.1) we find

f(−u) = C(u, v)ϑ(−u)ϑ(v) = −C(u, v)ϑ(u)ϑ(v) (1.2)

by (4) of Proposition 1.3.
By definition we have

f(−u) = lim
z→−u

ϑ(u + z)ϑ(v + z) (µ(u + z, v + z)− µ(u, v))

= ϑ(v − u) · lim
z→0

ϑ(z)µ(z, v − u)

= ϑ(v − u) · lim
z→0

ϑ(z)

z
· lim

z→0
zµ(z, v − u) = − 1

2πi
ϑ′(0),

(1.3)

where we have used (6).
Combining (1.2) and (1.3) gives the desired result.

(8) Take z = −u− v in (7) and use (5) of Proposition 1.3 to find

µ(−v,−u) = µ(u, v).

If we now use (5), we get the desired result. 2

Proposition 1.5 Let µ be as in Proposition 1.4. Then µ satisfies the following mod-
ular transformation properties:
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(1) µ(u, v; τ + 1) = e−
πi

4 µ(u, v; τ),

(2)
1√
−iτ

eπi(u−v)2/τµ

(

u

τ
,
v

τ
;−1

τ

)

+ µ(u, v; τ) =
1

2i
h(u− v; τ),

with h as in Definition 1.1.

Proof: (1) Use (6) of Proposition 1.3.
(2) Replacing (u, v, z, τ) by (u

τ , v
τ , z

τ ,− 1
τ ) in (7) of Proposition 1.4 and using (7) and

(9) of Proposition 1.3 we see that the left hand side depends only on u− v, not on u
and v separately. Call it 1

2i h̃(u−v; τ). Using (1) and (3) of Proposition 1.4 we see that

h̃ satisfies the two identities (1) and (2) of Proposition 1.2, so if we can prove that h̃
is a holomorphic function, then we may conclude that h̃ = h, as desired.

The poles of both u 7→ µ(u, v) and u 7→ µ(u
τ , v

τ ;− 1
τ ) are simple, and occur at

u ∈ Zτ + Z, so the only poles of u 7→ h̃(u− v) could be simple poles for u ∈ Zτ + Z.
Since this is a function of u− v it has no poles at all, and hence is holomorphic.

Alternatively, we can check, using (6) of Proposition 1.4 and (7) of Proposition
1.3, that the residue at u = 0 vanishes. By (1) and (3) of Proposition 1.4 the residues
vanish for all u ∈ Zτ + Z, hence h̃ is holomorphic. 2

1.4 A real-analytic Jacobi form?

Definition 1.6 For z ∈ C we define

E(z) = 2

∫ z

0

e−πu2

du =
∞
∑

n=0

(−π)n

n!

z2n+1

n + 1/2
.

This is an odd entire function of z.

Lemma 1.7 For z ∈ R we have

E(z) = sgn(z)
(

1− β(z2)
)

,

where

β(x) =

∫ ∞

x

u−
1

2 e−πudu (x ∈ R≥0).

Proof: Write
∫ z

0
e−πu2

du as sgn(z)
∫ |z|
0

e−πu2

du and substitute u =
√

v. 2

We consider for u ∈ C and τ ∈ H the series

R(u; τ) =
∑

ν∈ 1

2
+Z

{

sgn(ν)− E
(

(ν + a)
√

2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiνu,

with y = Im(τ) and a = Im(u)
Im(τ) .
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Lemma 1.8 For all c, ǫ > 0, this series converges absolutely and uniformly on the set
{u ∈ C, τ ∈ H | |a| < c, y > ǫ}. The function R it defines is real-analytic and satisfies

∂R

∂u
(u; τ) =

√
2y−1/2e−2πa2yϑ(u;−τ) (1.4)

and

∂

∂τ
R(aτ − b; τ) = − i√

2y
e−2πa2y

∑

ν∈ 1

2
+Z

(−1)ν− 1

2 (ν + a)e−πiν2τ−2πiν(aτ−b). (1.5)

Proof: We split sgn(ν) − E((ν + a)
√

2y) into the sum of sgn(ν) − sgn((ν + a)
√

2y)
and sgn((ν + a)

√
2y)β(2(ν + a)2y). We see that sgn(ν)− sgn((ν + a)

√
2y) is nonzero

for only a finite number of values ν ∈ 1
2 + Z (this number depends on a, but since a is

bounded, so is this number). Hence the series

∑

ν∈ 1

2
+Z

{

sgn(ν)− sgn
(

(ν + a)
√

2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiνu

converges absolutely and uniformly.
We can easily see that 0 ≤ β(x) ≤ e−πx for all x ∈ R≥0, hence

∣

∣

∣

{

sgn
(

(ν + a)
√

2y
)

β
(

2(ν + a)2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiνu
∣

∣

∣

≤ e−2π(ν+a)2y
∣

∣

∣
e−πiν2τ−2πiνu

∣

∣

∣

= e−π(ν+a)2y−πa2y ≤ e−π(ν+a)2ǫ.

We have the inequality

(ν + a)2 ≥ 1

2
ν2,

for |ν| ≥ ν0, for some ν0 ∈ R which depends only on c (a is bounded by c). Hence we
see that the series

∑

ν∈ 1

2
+Z

{

sgn
(

(ν + a)
√

2y
)

β
(

2(ν + a)2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiνu

converges absolutely and uniformly on the given set.
Since R is the (infinite) sum of real-analytic functions, and the series converges

absolutely and uniformly, it is real-analytic.
We fix τ ∈ H, and determine u = aτ − b by the coordinates a, b ∈ R. We see
(

∂

∂a
+ τ

∂

∂b

)

R(aτ − b; τ)

=

(

∂

∂a
+ τ

∂

∂b

)

∑

ν∈ 1

2
+Z

{

sgn(ν)− E
(

(ν + a)
√

2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiν(aτ−b)
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= −
√

2y
∑

ν∈ 1

2
+Z

E′
(

(ν + a)
√

2y
)

(−1)ν− 1

2 e−πiν2τ−2πiν(aτ−b)

= −2
√

2y
∑

ν∈ 1

2
+Z

e−2π(ν+a)2y(−1)ν− 1

2 e−πiν2τ−2πiν(aτ−b)

= −2
√

2ye−2πa2y
∑

ν∈ 1

2
+Z

(−1)ν− 1

2 e−πiν2τ−2πiν(aτ−b)

= −2i
√

2ye−2πa2yϑ(aτ − b;−τ),

with ϑ as in Proposition 1.3 and the term-by-term differentiation being easily justified.
Since ∂

∂u = i
2y

(

∂
∂a + τ ∂

∂b

)

, this gives the differential equation (1.4). Similarly

∂

∂τ
R(aτ − b; τ)

=
1

2

(

∂

∂x
+ i

∂

∂y

)

∑

ν∈ 1

2
+Z

{

sgn(ν)− E
(

(ν + a)
√

2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiν(aτ−b)

= − i

2

1√
2y

∑

ν∈ 1

2
+Z

(ν + a) E′
(

(ν + a)
√

2y
)

(−1)ν− 1

2 e−πiν2τ−2πiν(aτ−b)

= − i√
2y

e−2πa2y
∑

ν∈ 1

2
+Z

(−1)ν− 1

2 (ν + a) e−πiν2τ−2πiν(aτ−b),

proving equation (1.5). 2

Proposition 1.9 The function R has the following elliptic transformation properties:

(1) R(u + 1) = −R(u),

(2) R(u) + e−2πiu−πiτR(u + τ) = 2e−πiu−πiτ/4,

(3) R(−u) = R(u).

Proof: Part (1) is trivial, and for (3) we replace ν by −ν in the sum and use the fact
that E is an odd function. To prove (2), we start with

e−2πiu−πiτR(u + τ)

= e−2πiu−πiτ
∑

ν∈ 1

2
+Z

{

sgn(ν)− E
(

(ν + a + 1)
√

2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiν(u+τ)

= −
∑

ν∈ 1

2
+Z

{

sgn(ν − 1)− E
(

(ν + a)
√

2y
)}

(−1)ν− 1

2 e−πiν2τ−2πiνu,
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where we have replaced ν by ν − 1. We now find

R(u)+e−2πiu−πiτR(u + τ)

=
∑

ν∈ 1

2
+Z

{

sgn(ν)− sgn(ν − 1)
}

(−1)ν− 1

2 e−πiν2τ−2πiνu = 2e−πiu−πiτ/4,

since sgn(ν)− sgn(ν − 1) is zero for all ν ∈ 1
2 + Z except for ν = 1

2 . 2

Proposition 1.10 R has the following modular transformation properties:

(1) R(u; τ + 1) = e−
πi

4 R(u; τ),

(2)
1√
−iτ

eπiu2/τR
(u

τ
;−1

τ

)

+ R(u; τ) = h(u; τ).

Proof: Part (1) is trivial. The left hand side of (2) we call h̃(u; τ). Using (1) and (2)
of Proposition 1.9 we can see that h̃ satisfies:

{

h̃(u) + h̃(u + 1) = 2√
−iτ

eπi(u+ 1

2
)2/τ ,

h̃(u) + e−2πiu−πiτ h̃(u + τ) = 2e−πiu−πiτ/4.

Part (3) of Proposition 1.2 determines h as the unique holomorphic function with these
properties. This reduces the proof to showing that h̃ is a holomorphic function of u.

We fix τ ∈ H, and determine u = aτ − b by the coordinates a, b ∈ R (this implies

a = Im(u)
Im(τ) as in Lemma 1.8). Since ∂

∂u = i
2y

(

∂
∂a + τ ∂

∂b

)

, we have to show that

(

∂

∂a
+ τ

∂

∂b

)

h̃(aτ − b; τ) = 0.

According to Lemma 1.8 we have
(

∂

∂a
+ τ

∂

∂b

)

R(aτ − b; τ) = −2i
√

2ye−2πa2yϑ(aτ − b;−τ) (1.6)

We have
(

∂

∂a
+ τ

∂

∂b

)

R

(

aτ − b

τ
;−1

τ

)

= τ

(

∂

∂b
+

1

τ

∂

∂a

)

R

(

a− b

τ
;−1

τ

)

.

Up to a factor τ this is the same as
(

∂
∂a + τ ∂

∂b

)

R(aτ − b; τ), with (a, b, τ) replaced by
(b,−a,− 1

τ ). Hence by (1.6) we find

(

∂

∂a
+ τ

∂

∂b

)

R

(

aτ − b

τ
;−1

τ

)

= −2iτ
√

2y′e−2πb2y′ϑ

(

− b

τ
+ a;

1

τ

)

= 2iτ
√

2y′e−2πb2y′ϑ

(

−aτ − b

τ
;
1

τ

)

,
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with y′ = Im(− 1
τ ) = y

ττ . In the last step we have used (4) of Proposition 1.3.
If we now use (7) of Proposition 1.3, with z = aτ − b and τ replaced by −τ , we see
that this equals

2iτ
√

2y′e−2πb2y′ · −i
√

iτe−πi(aτ−b)2/τϑ(aτ − b;−τ)

= 2i
√

2y
√
−iτe−πi(aτ−b)2/τe−2πa2yϑ(aτ − b;−τ).

(1.7)

Using (1.6) and (1.7) we find

(

∂

∂a
+ τ

∂

∂b

)

h̃(aτ − b; τ)

=
1√
−iτ

eπi(aτ−b)2/τ

(

∂

∂a
+ τ

∂

∂b

)

R

(

aτ − b

τ
;−1

τ

)

+

(

∂

∂a
+ τ

∂

∂b

)

R(aτ − b; τ) = 0.

We have established the fact that h̃ is holomorphic, and hence equals h. 2

In the next theorem we combine the properties of µ and R to find a function µ̃
which is no longer meromorphic, but has better elliptic and modular transformation
properties than µ.

Theorem 1.11 We set

µ̃(u, v; τ) = µ(u, v; τ) +
i

2
R(u− v; τ), (1.8)

then

(1) µ̃(u + kτ + l, v + mτ + n) = (−1)k+l+m+neπi(k−m)2τ+2πi(k−m)(u−v)µ̃(u, v),
for k, l, m, n ∈ Z,

(2) µ̃

(

u

cτ + d
,

v

cτ + d
;
aτ + b

cτ + d

)

= v(γ)−3(cτ + d)
1

2 e−πic(u−v)2/(cτ+d)µ̃(u, v; τ),

for γ =
(

a b
c d

)

∈ SL2(Z), with v(γ) = η(aτ+b
cτ+d )/

(

(cτ + d)
1

2 η(τ)
)

(3) µ̃(−u,−v) = µ̃(v, u) = µ̃(u, v),

(4) µ̃(u + z, v + z)− µ̃(u, v) =
1

2πi

ϑ′(0)ϑ(u + v + z)ϑ(z)

ϑ(u)ϑ(v)ϑ(u + z)ϑ(v + z)
,

for u, v, u + z, v + z 6∈ Zτ + Z,

(5) u 7→ µ̃(u, v) has singularities in the points u = nτ + m (n, m ∈ Z). Furthermore
we have limu→0 uµ̃(u, v) = −1

2πi
1

ϑ(v) .
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Remark 1.12 Parts (1) and (2) of the theorem say that the function µ̃ transforms like
a two-variable Jacobi form of weight 1

2 and index
(−1 1

1 −1

)

(for the theory of Jacobi
forms, see [9], where, however, only Jacobi forms of one variable are considered).
Furthermore we can find several differential equations satisfied by µ̃. Therefore we
would like to call this function a real-analytic Jacobi form. However, in the literature
I haven’t been able to find a satisfying definition of a real-analytic Jacobi form. I
intend to return to this problem in the future.

Remark 1.13 All three function in (1.8) have a property that the other two do not
have: µ̃ transforms well (like a Jacobi form), µ is meromorphic and u, v 7→ R(u − v)
depends only on u− v.

Proof: (1) Using the first four parts of Proposition 1.4 and the first two of Proposition
1.9 we find

µ̃(u + 1, v) = −µ̃(u, v),

µ̃(u, v + 1) = −µ̃(u, v),

µ̃(u + τ, v) = −e2πi(u−v)+πiτ µ̃(u, v),

µ̃(u, v + τ) = −e2πi(v−u)+πiτ µ̃(u, v).

Combining these equations we get the desired result.
(2) Using Proposition 1.5 and Proposition 1.10 we find

µ̃(u, v; τ + 1) = e−
πi

4 µ̃(u, v; τ)

µ̃
(u

τ
,
v

τ
;−1

τ

)

= −
√
−iτe−πi(u−v)2/τ µ̃(u, v; τ)

Set m(u, v; τ) := ϑ(u− v; τ)µ̃(u, v; τ). Using (6) and (7) of Proposition 1.3 we see

m(u, v; τ + 1) = m(u, v; τ)

m

(

u

τ
,
v

τ
;−1

τ

)

= τ m(u, v; τ)

and so

m

(

u

cτ + d
,

v

cτ + d
;
aτ + b

cτ + d

)

= (cτ + d) m(u, v; τ),

for all
(

a b
c d

)

∈ SL2(Z). Hence

µ̃

(

u

cτ + d
,

v

cτ + d
;
aτ + b

cτ + d

)

= (cτ + d)
ϑ(u− v; τ)

ϑ
(

u−v
cτ+d ; aτ+b

cτ+d

) µ̃(u, v; τ). (1.9)

From (6) and (7) of Proposition 1.3 we find

ϑ

(

z

cτ + d
;
aτ + b

cτ + d

)

= χ(γ)
√

cτ + d eπicz2/(cτ+d)ϑ(z; τ), (1.10)
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with χ(γ) some eighth root of unity. Applying d
dz

∣

∣

z=0
on both sides gives

ϑ′
(

0;
aτ + b

cτ + d

)

= χ(γ)(cτ + d)
3

2 ϑ′(0; τ).

Using (10) of Proposition 1.3 we find

χ(γ) = v(γ)3

If we combine this with (1.9) and (1.10) we get the desired result.
(3) Using (5) of Proposition 1.4 and (3) of Proposition 1.9 we find

µ̃(−u,−v) = µ̃(u, v)

Using (8) of Proposition 1.4 and (3) of Proposition 1.9 we find

µ̃(v, u) = µ̃(u, v)

(4) This follows directly from (7) of Proposition 1.4.
(5) R has no singularities, so the singularities come from µ. The location and nature
of these singularities is already given in (6) of Proposition 1.4. 2

1.5 Period integrals of weight 3/2 unary theta func-
tions

In this section we will rewrite h in terms of the period integral of a unary theta function
of weight 3/2.

To state the main result we need the following definition:

Definition 1.14 Let a, b ∈ R and τ ∈ H then

ga,b(τ) :=
∑

ν∈a+Z

νeπiν2τ+2πiνb.

The function ga,b is a unary theta function.

Proposition 1.15 ga,b satisfies:

(1) ga+1,b(τ) = ga,b(τ)

(2) ga,b+1(τ) = e2πiaga,b(τ)

(3) g−a,−b(τ) = −ga,b(τ)

(4) ga,b(τ + 1) = e−πia(a+1)ga,a+b+ 1

2

(τ)


