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For statistical applications, see 26.5.

Symmetry
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For binomial distribution, see 26.1.

Recurrence Formulas
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Relation to Hypergeometric Function

B.(a,b)=a'2°F(a,1—b; a+1; z)

6.6.7
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Numerical Methods

6.7. Use and Extension of the Tables

Example 1. Compute T'(6.38) to 85. Using
the recurrence relation 6.1.16 and Table 6.1 we
have,

['(6.38)=[(5.38)(4.38)(3.38)(2.38)(1.38)]I'(1.38)

=232.43671.

Example 2. Compute In I'(56.38), using Table
6.4 and lincar interpolation in ;. We have

In I'(56.38) = (56.38—4%) ln (56.38) — (56.38)
+72(56.38)

The error of linecar interpolation in the table of
the function f; is smaller than 1077 in this region.
Hence, 1,(56.38)=.92041 67 and In I'(56.38)=
169.85497 42.

Direet interpolation in Table 6.4 of log,, I'(n)
eliminates the necessity of employing logarithms.
However, the error of linear interpolation is .002 so
that log,, T'(n) is obtained with a relative error
of 107

*See page 1I.
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Abstract. In 1944, Freeman Dyson initiated the study of ranks of integer
partitions. Here we solve the classical problem of obtaining formulas for
N.(n) (resp. N,(n)), the number of partitions of n with even (resp. odd)
rank. Thanks to Rademacher’s celebrated formula for the partition function,
this problem is equivalent to that of obtaining a formula for the coefficients
of the mock theta function f(g), a problem with its own long history dating
to Ramanujan’s last letter to Hardy. Little was known about this problem
until Dragonette in 1952 obtained asymptotic results. In 1966, G.E. An-
drews refined Dragonette’s results, and conjectured an exact formula for the
coefficients of f(g). By constructing a weak Maass-Poincaré series whose
“holomorphic part” is ¢~ f(¢**), we prove the Andrews-Dragonette con-
jecture, and as a consequence obtain the desired formulas for N,(n) and
N,(n).

1. Introduction and statement of results

A partition of a positive integer n is any non-increasing sequence of positive
integers whose sum is n. As usual, let p(n) denote the number of partitions
of n. The partition function p(n) has the well known generating function

o0 o 1
gp(n)q =gl_qn,
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which is easily seen to coincide with g 2 /1(z), where
o
H(Z) e q1/24 1_[(] _ qn) (q = 827112)
n=1

is Dedekind’s eta-function, a weight 1/2 modular form. Rademacher fa-
mously employed this modularity to perfect the Hardy-Ramanujan asymp-
totic formula

1
1.1 n) ~ eV
(1.1) p(n) 3

to obtain his exact formula for p(n) (for example, see Chap. 14 of [22]).
To state his formula, let I;(x) be the usual /-Bessel function of order s,
and let e(x) := ¢*™*. Furthermore, if k > 1 and n are integers, then let

(1.2)  Agn) = ;\/1k2 > X12(x)'€(1)2€k),

x (mod 24k)
x2=—24n+1 (mod 24k)

where the sum runs over the residue classes modulo 24k, and where

12
(1.3) X12(x) = (x )

If n is a positive integer, then one version of Rademacher’s formula reads

(1.4) p(n) = 27(24n — 1)~ Z Aklin) 1 (n\/ZSZ _ 1) |

k=1

In an effort to provide a combinatorial explanation of Ramanujan’s
congruences

pdbn+4)=0 (mod 5),
p(In+5)=0 (mod 7),
p(lln+6)=0 (mod 11),

Dyson introduced [17] the so-called “rank™ of a partition, a delightfully
simple statistic. The rank of a partition is defined to be its largest part minus
the number of its parts. In this famous paper [17], Dyson conjectured that
ranks could be used to “explain” the congruences above with modulus 5
and 7. More precisely, he conjectured that the partitions of 5n + 4 (resp.
Tn + 5) form 5 (resp. 7) groups of equal size when sorted by their ranks

modulo 5 (resp. 7)'. He further postulated the existence of another statistic,

1" A short calculation reveals that this phenomenon cannot hold modulo 11.
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the so-called “crank”?, which allegedly would explain all three congruences.
In 1954, Atkin and Swinnerton-Dyer proved [9] Dyson’s rank conjectures,
consequently cementing the central role that ranks play in the theory of
partitions.

To study ranks, it is natural to investigate a generating function. If
N(m, n) denotes the number of partitions of n with rank m, then it is well
known that

o0 2

1+ 3 Nonmy"q" = Z

=] m——oo — (Zq Q)n(z q; Q)n

where

(@ @n =1 —a)(1 —ag)--- (1 —ag"™").
Therefore, if N,(n) (resp. N,(n)) denotes the number of partitions of n with
even (resp. odd) rank, then by letting z = —1 we obtain

(1.5)

o0 o0 q
L+ ) (Ne(n) = No(m)g" =1+ -
; ;(1+6])2(1+612)2~-(1+q)2

n?

We address the following classical problem: Determine exact formulas
for N,(n) and N,(n). In view of (1.4) and (1.5), since

p(n) = N.(n) + N,(n) ,

this question is equivalent to the problem of deriving exact formulas for the
coefficients «(n) of the series

o8} [ele} qn2
f@=1+) amq":=1+
(1.6) 2 ; 1+ +g*)* - (1 +4")°

n=1
=14+q—2¢*+3¢°-3¢"+3¢°—5¢°+ - - - .

The series f(g) is one of the third order mock theta functions Ramanujan
defined in his last letter to Hardy dated January 1920 (see pp. 127-131
of [23]). Surprisingly, very little is known about mock theta functions in
general. For example, Ramanujan’s claims about their analytic properties
remain open. There is even debate concerning the rigorous definition of
a mock theta function, which, of course, precedes the formulation of one’s
order. Despite these seemingly problematic issues, Ramanujan’s mock theta
functions possess many striking properties, and they have been the subject
of an astonishing number of important works, (for example, see [2-5,7,

2 In 1988, Andrews and Garvan [8] found the crank, and they indeed confirmed Dyson’s
speculation that it “explains” the three Ramanujan congruences above. Recent work of
Mahlburg [21] establishes that the Andrews-Dyson-Garvan crank plays an even more central
role in the theory partition congruences. His work concerns partition congruences modulo
arbitrary powers of all primes > 5.
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12-14,16,19,26,27] to name a few). This activity realizes G.N. Watson’s*
prophetic words:

“Ramanujan’s discovery of the mock theta functions makes it obvious that
his skill and ingenuity did not desert him at the oncoming of his untimely
end. As much as any of his earlier work, the mock theta functions are an
achievement sufficient to cause his name to be held in lasting remembrance.
To his students such discoveries will be a source of delight and wonder until
the time shall come when we too shall make our journey to that Garden of
Proserpine (a.k.a. Persephone)...”

Returning to f(g), the problem of estimating its coefficients «(n) has
a long history, one which even precedes Dyson’s definition of partition
ranks. Indeed, Ramanujan’s last letter to Hardy already includes the claim

that
n 1 1 n 1
exp <7T\/6 - 144) cXp <2”\/6 - 144)
+ 0
1 1
2\/ T4 \/ T 24

Typical of his writings, Ramanujan offered no proof of this claim. Drag-
onette finally proved this claim in her 1951 Ph.D. thesis [16] written under
the direction of Rademacher. In his 1964 Ph.D. thesis, also written under
Rademacher, Andrews improved upon Dragonette’s work, and he proved*
that

a(n) = (="

[vn] L&Y ) k(1+(=1)%)
o (=D Ay (n = D7)
a(n) = 7(24n — 1) 4 Z L
(1.7) k=1
m/24n — 1 .
1 ; ( 12k ) + O(I’l )

This result falls short of the problem of obtaining an exact formula for
a(n), and as a consequence represents the obstruction to obtaining formulas
for N.(n) and N,(n). In his plenary address “Partitions: At the interface
of g-series and modular forms”, delivered at the Millenial Number Theory
Conference at the University of Illinois in 2000, Andrews highlighted this
classical problem by promoting his conjecture® of 1966 (see p. 456 of [2],
and Sect. 5 of [4]) for the coefficients a(n).

3 This quote is taken from Watson’s 1936 Presidential Address to the London Mathemat-
ical Society entitled “The final problem: An account of the mock theta functions” (see p. 80
of [26]).

1
4 This is a reformulation of Theorem 5.1 of [2] using the identity /1 (z) = (nzz) 2 .sinh(z).
2

5 This conjecture is suggested as a speculation by Dragonette in [16].
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Conjecture (Andrews-Dragonette). If n is a positive integer, then

© (L AL, (n — KAHEDH
a(n):n(24n—1)*iz( ) 2"(k i)

k=1

'Il(n'\/24n— 1>.

(1.8)

2 12k

The following theorem gives the first exact formulas for the coefficients of
a mock theta function.

Theorem 1.1. The Andrews-Dragonette Conjecture is true.

Remark. Since N,(n) = (p(n) + a(n))/2 and N,(n) = (p(n) — a(n))/2,
Theorem 1.1, combined with (1.4), provides the desired formulas for N, (n)
and N,(n).

To prove Theorem 1.1, we use recent work of Zwegers [27] which nicely
packages Watson’s transformation properties of f(g) in terms of real ana-
Iytic vector valued modular forms. Loosely speaking, Zwegers “completes”
g~'/?* f(q) to obtain a three dimensional real analytic vector valued modular
form of weight 1/2. We recall his results in Sect. 2. To prove Theorem 1.1,
we realize the g-series, whose coefficients are given by the infinite series
expansions in (1.8), as the “holomorphic part” of a weak Maass form. This
form is defined in Sect. 3.1 as a specialization of a Poincaré series, and
in Sect. 3.2 we confirm that the coefficients of its holomorphic part are
indeed in agreement with the expansions in (1.8). To complete the proof
of Theorem 1.1, it then suffices to establish a suitable identity relating this
weak Maass form to Zwegers’ form. We achieve this in Sect. 5 by ana-
lyzing the image of these forms under the differential operator & ! (defined

in Sect. 5). This task requires the Serre-Stark Basis Theorem for weight
1/2 holomorphic modular forms, and estimates on sums of the Aj;-sums
derived in Sect. 4.

Acknowledgements. The authors thank George Andrews for helpful comments concerning
the historical background of the subject, and the authors thank John Friedlander, Sharon
Garthwaite and Karl Mahlburg for their helpful comments.

2. Modular transformation properties of q_214 §it))

Here we recall what is known about ¢~'/?* f(g) and its modular transform-
ation properties. An important first step was already achieved by G.N. Wat-
son in [26]. Although f(g) is not the Fourier expansion of a usual mero-
morphic modular form, in this classic paper Watson determined modular
transformation properties which strongly suggested that f(g) is a “piece”
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of a real analytic modular form, as opposed to a classical meromorphic
modular form.

Watson’s modular transformation formulas are very complicated, and are
difficult to grasp at first glance. In particular, the collection of these formulas
involve another third order mock theta function, as well as terms arising from
Mordell integrals. Recent work of Zwegers [27] nicely packages Watson’s
results in the modern language of real analytic vector valued modular forms.
We recall some of his results as they pertain to f(q).

We begin by fixing notation. Let w(g) be the third order mock theta
function

o0 2n%42n

w(g) = )

LR R

@2.1) Lo q'

T (1—g? " (1-g20 - g}
q12

+ 4
(1 =@*(1—gH* (1 —g°)?
If g := €*™, where z € H, then define the vector valued function F(z) by
F(z) = (Fo(2), Fi(2), Fa(2)"
1 1 1 1 1
= (g~ f(@), 2¢°w(q?), 2q>w(—q2))".

Similarly, let G(z) be the vector valued non-holomorphic function defined
by

(2.2)

G(2) = (Go(2), G1(2), Ga(2)"
(2.3) —2i/3 /""O 1D, 200, ~£(0)"
— V—i(t +2)
where the g;(7) are the cuspidal weight 3/2 theta functions

go(T) = Z (—])” (l’l + ;) e37ri(n+;)2t,

dr,

(2.4) g1(0) =~ ,,_Zoo <”‘ + é) i),
g(1) = n;oo (n + ;) )’

Using these vector valued functions, Zwegers defines H(z) by
(2.5) H(z) := F(z) — G(2).
The following description of H(z) is the main result of [27].
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Theorem 2.1 (Zwegers). The function H(z) is a vector valued real analytic
modular form of weight 1/2 satisfying

&' 0 0
Hz+1)=10 0 ¢&| H®,
0 530

01 0
H(—1/z) = V/—iz - ( 10 O) H(z),
0 0 -1

where ¢, 1= e*™/". Furthermore, H(z7) is an eigenfunction of the Casimir
. o

operator Q; = —4y? 8332 +lyadZ + 136 with eigenvalue > [ Where z = x+1y,

3 _ 1(9d 9 a _ (9 4 2D

z 2(ax la)) and ;. = 2(8x +18y)'

We give a consequence of Zwegers’ result in terms of weak Maass forms
of half-integral weight. To make this precise, suppose that k € é +7Z.Ifv
is odd, then define €, by

1 ifv=1 (mod4),
2.6 =
(2.6) €v {i ifv=3 (mod 4).

The weight k£ Casimir operator is defined by

92 d 2k —k?
(2.7) Q= —4y? 9205 —|—21ky .

Notice that the weight k hyperbolic Laplacian

(2.8) Ay = —y? 32+32 + ik 8—|—i8
’ LR P dy? Y ox dy

is related to the Casimir operator €2, by the simple identity

2k — k>
Q= A+ 4

where z = x + iy withx, y € R.
Following Bruinier and Funke, we now recall the notion [11] of a weak
Maass form of half-integral weight.

Definition 2.2. Suppose that k € ; + Z, N is a positive integer, and that
is a Dirichlet character with modulus 4N. A weak Maass form of weight k
on I'g(4N) with Nebentypus character  is any smooth function f : H — C
satisfying the following:
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(1) Forall A= (%) € Ty(4N) and all z € H, we have®

2k
faz) = v () ™ ez +af fo).

(2) We have that A, f = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps
of T'o(4N).

Before we state a useful corollary to Theorem 2.1, we recall certain facts
about Dedekind sums and their role in describing the modular transform-
ation properties of Dedekind’s eta-function. If x € R, then let

. x—|x] =} forx e R\ Z,
() '_{0 © ifrez

For coprime integers ¢ and d, let s(d, ¢) be the usual Dedekind sum
o 1 du
o= 3 (D)
n (mod ¢)

In terms of these sums, we define w, . by
(2.9) Wg,c 1= €O,
Using this notation, if (g 3) € SL,(Z), with ¢ > 0, then we have’

az—i—b) 1 (m’(a—l—a’)

=1 2 -W_g.*€X
cz+d d P 12¢

(2.10) n( )-(Cz-l—d); -1(2).

Remark. The exponential sums defined by (1.2) may also be described in
terms of Dedekind sums. In particular, if k¥ > 1 and n are integers, then
Aj(n) is also given by (see (120.5) on p. 272 of [22])

nx

@.11) A= Y wmuce().
x (mod k)*

where the sum runs over the primitive residue classes x modulo k.

Theorem 2.1 implies the following convenient corollary.

Corollary 2.3. The function M(z) := Fy(24z) — G¢(24z) is a weak Maass
form of weight 1/2 on I'y(144) with Nebentypus character x1,.

6 This transformation law agrees with Shimura’s notion of half-integral weight modular
forms [25].
7 This formula is easily derived from the formulas appearing in Chap. 9 of [22].
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Sketch of the proof. 1tis well known that n(24z) is a cusp form of weight 1/2
for the group I'y(576) with Nebentypus xi,. For integers n, we obviously
have

M(z+n) =e(—n/24) - M(2),

where M (z) = Fy(z) — Go(2). Therefore, to prove the claim it suffices
to compare the automorphy factors of M(z) with those appearing in (2.10)
when interpreted for 1(24z). By Theorem 2.1 (see also Theorem?® 2.2 of [2]),
if (%) € I'y(2), with ¢ > 0, then

i (az + b) _ i_% . a):zll’c ‘ (_1)c+12+ad

cz+d
a+d a 3dc 1~
-e(— " -4t g )(cz+d)2-M(z).

In view of these formulas, it is then straightforward to verify that the
automorphy factors above agree with those for 1(24z) when restricted to
['9(576). Consequently, it then follows that M(z) is also a weak Maass form
of weight 1/2 on I'y(576) with Nebentypus x».

In order to verify that M(z) satisfies the desired transformation law under
['p(144), it suffices to check that its images under the representatives for
the non-trivial classes in ['g(144)/I"¢(576) behave properly. For example,
if H(z) = (Hy(z), H,(z), H2(z))T, then Theorem 2.1 gives

(350 1) = (12000 +1)
M — H,
2887 + 1 12(247) + 1
( ,(12(24z)+1))i <12(24z)+1)
=\ —1 'Hl
—24z —24z
:<_l_(12(24z)+1>>2.H1 (_ 1 )
—247 247
— (2887 + 1)2 - Hy(24z) = (2887 + 1)2 - M(z2).

This is the desired transformation law under z — 288]z +1- The analogous
computation for the remaining representatives completes the proof. O

Remark. Lety (mod 6) be the Dirichlet character

. 1 ifn=1 (mod 6),
Y(n) = {_1 ifn=35 (mod 6).

The theta-function

I(Wi2) =Y Ymng"

n=1

8 There is a minor typo in the displayed formula which is easily found when reading the
proof.
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is well known to be a cusp form of weight 3/2 on I'y(144) with Nebentypus
x12 (for example, see [25]). One easily sees that

1
81(242) = — - 0¥ 2).

In fact, one could also use this fact to deduce Corollary 2.3.

3. The Poincaré series P,(s; z)

Here we construct a Poincaré series which has the property that the Fourier
coefficients of its “holomorphic part”, when s = 3/4 and k = 1/2, are given
by the infinite series expansions appearing in (1.8). In Sect. 3.1, we begin by
defining this series as a trace over Mobius transformations, and in Sect. 3.2
we compute its Fourier expansion. The main result of this calculation is the
reproduction of the infinite series formulas in (1.8) as coefficients of the
holomorphic part of a weak Maass form of weight 1/2 on I'g(144) with
Nebentypus character xi;.

3.1. The construction. Suppose that k € ; + Z. We now define an im-

portant class of Poincaré series Py (s; z). For matrices (f Z) e I'y(2), with

¢ > 0, define the character x(-) by

3.1 b
<<a b)) . e(_24) ifc=0,
X cd)) i7]/2(_1);(c+ad+l)e (_ atd __ Z + Sgc) L ife> 0.

24c¢ ’ w*d,C

Remark. The character y is defined to coincide with the automorphy factor
for the real analytic form Fy(z) — Go(z) when restricted to ['4(2).

Throughout, let z = x+iy,andfors € C, k € ;—i-Z, and y € R\ {0}, let

K
(3.2) M(3) = 19172 M oy o1 (19D,

where M, , (z) is the standard M-Whittaker function which is a solution to
the differential equation

Furthermore, let

@5k (2) = M <—7[6y) e (— 2x4> .
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Suppose that ¢ is a positive odd integer. For integers 0 <a <cand 0 <b <c,
define the functions

i ico a.
Tl (E;z) 2= __I.. (c—,r) dT,
C T

3J-z +f—-i(t+2)

¢y i [=Ciie(Ey
T> (C,Z) = 7 ‘/T—kz) drt,

T ayb,C;Z b— 2c AN e b
1 ) Al T

—5b pico (_; _%6 ,b,c;_L
Ty (a,b,c;z) = —225 (=it) 20 (a 1)

il T Jacio

If we let ¢, := lcm(c, 6), then define @ (a, b, c; ) by

dr,

dr.

N gy (T 2rim .
O(a,b,c;71):= Z( 1) sm(3(2m+1))e 9(2cm+6b+c,2crc,24c2).

m (mod i)

Recall that the theta functions 6(w, 8; t) are defined by (1.7). Using this notation,
define the following functions

(3.3) % (g;z) =N (%;z) -1 (g:z) ,

a
(34) 6 (5:2) ::J[/L(—;z)—Tz (5;2),
c c c
(3.5) %1 (a,b,c;z):=N(a,b,c;2)—T1 (a,b,c;2),
(3.6) %> (a,b,c;z):=M(a,b,c;z)— T2 (a.b,c;z).
These functions constitute a vector valued weak Maass form of weight 1/2.
Here we recall this notion more precisely. A vector valued weak Maass form of

weight k for SL2(Z) is any finite set of smooth functions, say v1(z)....,vm(z):
H — C, which satisfy the following:

(hHIfl<sny<mand A= (i 3) € SL2(Z), then there is a root of unity € (4, n1)

and an index 1 < no < m for which
Un, (A2) = €(4, n1)(cz + dYFvp, (2)

forall z € H.

(2) For each 1 <n <m we have that Apv, = 0.
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If ¢ is a positive odd integer, let V. be the “vector” of functions defined by

= {%1 (;;z) , G (-g-;z) twithO<a <c}

U{%i(a,b,c;z2),%2(a,b,c;2) : (a,b) withO<a<cand0<b <c}.

THEOREM 3.4. Assume the notation above. If ¢ is a positive odd integer, then
Ve is a vector valued weak Maass form of weight 1/2 for the full modular group
SL2(Z).

Sketch of the proof. The proof of Theorem 3.4 follows along the lines of the
proof of Theorem 1.1. Therefore, for brevity here we simply provide a sketch of
the proof and make key observations.

As in the proof of Lemma 3.2, one first shows that

243 a 2mi foo @ 4
" 'J ,_ f dr!
iz ¢ z f —z(r—i—z)

e 7 (e opin) = L 00 (—jr)~ z@(_ __)
243+/—iz J(C, 2mz)_ \/_f m

—gz—CSbﬁ-J (a b czﬂ) g_Sb e @(a b.c; T)
iz Y 6c Jo Joit+o)

—5b  pico w
8228 3vV—=iz  J (a.b,¢c;—2miz) = 535—-[ i) i(? (6.6, —5) dr.
6c Jo V=it +2)
Arguing as in the proof of Lemma 3.3, one then establishes that the functions
T; satisfy the same transformation laws under the generators of SL(Z) as the
corresponding functions N and Jt appearing in (3.3)—(3.6). That the functions %
and % satisfy suitable transformation laws under SL»(Z) follows easily from the
“closure” of the formulas in Theorem 2.3.

To complete the proof, it suffices to show that each component is annihilated
by the weight 1/2 hyperbolic Laplacian A 1 and satisfies the required growth
conditions at the cusps. These facts follow mutatis mutandis as in the proof of
Theorem 1.1. |

dr,

Sketch of the proof of Theorem 1.2. By Theorem 3.4, the transformation laws
of the components of the given vector valued weak Maass forms are completely
determined under all of SL2(Z). Observe that D (a z) is the image of %, ( )
by letting z — €. z. Therefore, the modular transformation properties of D ( )
are inherited by the modularity properties of ® (£ = Ecr) when applied to the def-
inition of § 1 (%; z). By Proposition 2.1 of [29], it is known that ® (-‘g—; £ 1') is on
['1(144£2¢.), and the result follows. |
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on . For a holomorphic modular form f of weight & we get

o (V2T (et int)

(—y23§ — yzaj -+ yaxag) eikayk/gf(:c +iy)

E B a (VI (et nty),

Thus we see that all modular forms considered up to now correspond to eigenfunc-
tions of w on G that are I'yog-invariant on the left, and transform on the right
according to a character of K.
1.3.6 Representations. If the function fy or fi is square integrable on yoa\G,
then it generates an irreducible subspace of L*(I'y0q\G) for the action of G by
right translation. If f is a holomorphic modular form, then this irreducible rep-
resentation belongs to the discrete series of representations of G. If f is a square
integrable real analytic modular form with positive eigenvalue, the function fy is
a weight zero vector in an irreducible representation of the principal series. For
more information on the representational point of view one may consult §2 of [15].
Hecke operators arc not discussed in thus book. But they reveal very interest-
ing properties of modular forms. See, e.g., Chapter II of [29] for the holomorphic
case, and Chapter V of [35] for Maass forms. The representational point of view
incorporates the Hecke operators by working with functions on the adele group of
GLg, see [15].

e

1.4 Fourier expansion of modular forms

Up till now we have motivated the study of modular forms from harmonic anal-
ysis: spectral decomposition of the Laplace operator, and irreducible subspaces
for the right representation of G in L?*(T04\G). Number theoretically interesting
formulas arise as soon as one writes down the Fourier expansion of modular forms.
1.4.1 Fourier expansion. For both types of modular forms discussed thus far, the
transformation behavior implies periodicity in = Re(z): take v = ((]} i) in con-
dition i) to conclude that f(z + 1) = f(z). Hence there is a Fourier expansion
oo

f(z)z Z an(y)e%rin:z_

n=-—oc
Condition ii) in the definitions above implies that the a,, satisfy ordinary differen-
tial equations. All Fourier terms a,,(y)e?™"* inherit the growth condition iii).
We see in the holomorphic case that a,(y) is a multiple of e ™, and has
to vanish for n < 0. Thus we get

f(Z) = Z Cn(f)e?m?nz_

n=0
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The c,(f) are called the Fourier coefficients of f.
In the real analytic case the differential equation is

_yza"( ) ={(A= 47.'27121.}2)@11 ().

We write A = 3+ — 5%, s € C. For n = 0 there is a two dimensional space of
solutions, with basis y*71/2, y=5+1/2 (if 5 £ 0). For n # 0 we get a variant of the
Whittaker differential equation. The growth condition restricts the possibilities
to a one dimensional space, spanned by Wy s (4w|n|y); see, e.g., [56], 1.7. (The
Whittaker function Wy ; decreases exponentially: Wy 4(¢) ~ e 2 (t — oc).) This
leads to

f(z) = bo(f)strl/Z F CD —s+1/2 + ch WO.s 471_4,”[9 2Trm.7:
n#0
To distinguish between the Fourier coefficients by and ¢, a choice of s such that
A= % — 5% is necessary.

Often one uses a modified Bessel function in the terms with n # 0; the
function y — /yK(2m|n|y) spans the space of possible a, (). I prefer Whittaker
functions, as they can be used in weights other than 0 as well. When comparing
the Fourier expansions below with those at other places, one should keep in mind
that Shere = Susual — é, and that Wy s(y) = /y/7Ks(y/2).

1.4.2 Holomorphic modular forms. [53], (2.2.1), on p. 32, gives the Fourier expan-
sion of holomorphic Eisenstein series (k > 4 even):

Gr(z) = 2¢(k) + fiﬁl), ZJAA L
n>1
with the divisor function o, (n) = 3, d*.

All coefficients in the expansion of ’C PR0] 57 Gr(z) are rational numbers, even
integers if & = 4 or 6. This implies (after some computations) that A(z) =
Y st T(n)e*™ 2 with all 7(n) € Z, 7(1) = 1. In particular, co(A) = 0.

1.4.3 Definition. A cusp form is a modular form for which the Fourier term of order
zero vanishes. This means that ¢p = 0 in the holomorphic case, and by = ¢g = 0
in the real analytic case. The holomorphic modular form A is a cusp form.

1.4.4 Real analytic Eisenstein series. If the integers ¢ and d are relatively prime,

then there are a and b such that (CCL 3) € I'imod, and the coset 'S | ("' ) depends
only on *(c,d). In this way we get for Res > 5:

1
e(s;z) = = Z y 2|6y 4 |21
c,d€Z, (c,d)=1
_ y*t2 0 i —2s—1
= %@t Z |mz 4+ n| ‘

n,mez
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Hence e(s;2) = thI/2(:(2S+1) 1G(z, 2; 5+ 1/2,5+1/2), with Maass’s Eisenstein
series G-, a, ,6) as on p. 207 of [35]. The Fourier expansion is given on p. 210 of
loc. cit., and leads to

o2 (s)¢(2s) —st1/
TV +1/2) ESA

e(s;z) =

5+1/9

0—24

F(s+1/2} (2s + 1) Z |"nl3‘H/2

11/'055(47T|n|y)62m’““.

Again we see that the divisor function appears in the Fourier coefficients of Eisen-
stein series.

This Fourier expansion defines the function ¢(s) on § for all s € C that
satisfy s # 0, 1 and T'(s+ 1/2)¢{(25 4+ 1) # 0. The I';,oq-invariance is preserved, as
are the other conditions in Definition 1.2.2. In this way we get e as a meromorphic
family on C of real analytic modular forms. The singularities have order one, and
the residues are again modular forms. Moreover, the functional equation of the
zeta function of Riemann implies the functional equation of e:

e(—s;2) = cole(—s)) - e(s; z).

1.4.5 Cuspidal Maass forms. In 1.2.6 we mentioned that there is a countable set
g, Y1, ... of square integrable real analytic modular forms that constitute an
orthonormal basis of the part of L?(T0q\$) in which the selfadjoint extension Ay
of the Laplacian has a discrete spectrum. We may arrange the +; such that their

eigenvalues ,\ increase. Take ¢y = y/3/7. For j > 1 one knows that A; > 3, hence

Ay = ll - .S‘J w1th s; € iR. The square integrability is inherited by the Founel

coefficients: [ lan (y)|* y~2dy < co. Hence bo(e;) = co(;) = 0 for j > 1. So
i 1o, ... are cusp forms.

We can choose all ¢; to be real-valued. (Use that f — f preserves the space of
real analytic cusp forms for a real eigenvalue.) We may even arrange that each ;
is an eigenfunction of all Hecke operators. Much more information can be found
in §3.5 of [67]. We only mention the Ramanujan-Petersson conjecture for real
analytic modular forms (not proved up till now):

en(¥j) =0 (|n]_1/2+5) (Jn| — oc)  for each j > 1, for each £ > 0.

1.5 More modular forms

There are more general types of modular forms. First we consider real analytic
modular forms of even weight. Next we introduce a multiplier system to be able
to define modular forms of arbitrary complex weight. This opens the possibility to
consider families of modular forms for which the weight varies continuously.



10 CHAPTER 1 MODULAR INTRODUCTION

1.5.1 Real analytic modular forms of even weight. We have seen in 1.3.5 that the
modular forms considered up till now correspond to functions on I'y,,q\G that
are eigenfunctions of the Casimir operator. These forms transform according to
a character of K. Usually, one calls all such functions modular forms, provided a
growth condition at the cusp is satisfied.

All characters of K are of the form _cs?lfg ;‘ng — e with k € Z. But

as —Id € I'eq N K is central in G, only characters with even & admit non-zero
functions with the preseribed transformation properties.

The correspondence in 1.3.4 between holomorphic modular forms and func-
tions on G is not the most convenient one if one wants to study real analytic
modular forms. This is caused by the fact that the factor (cz + d)* in the trans-
formation behavior of holomorphic modular forms does not have absolute value 1.
We follow the convention to relate functions f on £ and functions F' on G by

ab P ai+b
F _ —ikarg(cit+d) .
((a)) = meros (G

As k € 2Z the choice of the argument does not matter. This leads to the following
definition.

1.5.2 Definition. A real analytic modular form of even weight k € 27 with eigen-
value \ € C is a function [ : § — C that satisfies the conditions

) fly-2) = ek asles+ad) £(2) for all y = (‘; 3) € Tonod.
il) Lpf = Af, with L, = —y29? — y28§ + tkyd,.

iii) There is a real number a such that f(z) = O(y*) (y — o), uniformly
inzeR.

1.5.3 Ezamples The real analytic modular forms defined in 1.2.2 have weight 0.
If h is a holomorphic modular form of weight k& € Z, then z — y*/ 2h(z) is a
real analytic modular form in the sense just defined, of weight &, with eigenvalue
31— 35).

For each k € 2Z there are Eisenstein series of weight k& with eigenvalue %732.
They have a meromorphic extension, and satisfy a functional equation. If &k > 4,
then the value at s = J(k — 1) corresponds to a multiple of Gy,

There are countably many cuspidal real analytic modular forms of weight &
with eigenvalues Ay, Az, ..., obtained from the ¢ by differential operators (see
Proposition 4.5.3). Those differential operators are multiples of the operators de-
scribed on p. 177 of [35], often called Maass operators.

1.5.4 The eta function of Dedekind. If k ¢ 2Z the definition above admits only the
zero function as a modular form. But there are modular forms with other weight,
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Theorem 6.3 shows that i(u,v;7) is essentially a weight 1/2 non-holomorphic Jacobi
form. In analogy with the classical theory of Jacobi forms, one may then obtain harmonic
Maass forms by making suitable specializations for v and v by elements in Q7 4+ Q, and
by multiplying by appropriate powers of g. Without this result, it would be very difficult
to explicitly construct examples of weight 1/2 harmonic Maass forms.

Harmonic Maass forms of weight & are mapped to classical modular forms (see Lemma 7.4),
their so-called shadows, by the differential operator

)
= 2y~ —.
&k W e

The following lemma makes it clear that the shadows of the real analytic forms arising
from [ can be described in terms of weight 3/2 theta functions.

Lemma 6.4. [Lemma 1.8 of [219]] The function R is real analytic and satisfies

where ¢ ;= Im(u)/Im(7). Moreover, we have that
g;RU””—@T)Zv—;%EéQW% E:(_ly_aV+%U€WWh;%”wiw.

I/EZ“F%

7. HARMONIC MAASS FORMS

For the remainder of the paper, we shall assume that the reader is familiar with the
classical theory of elliptic modular forms (for example, see [71, 84, 125, 134, 143, 155, 164,
177, 185, 193, 196]).

D. Niebur [160, 161] and D. Hejhal [117] constructed certain non-holomorphic Poincaré
series which turn out to be examples of harmonic Maass forms. Bruinier [61] made great
use of these Poincaré series in his early work on Borcherds lifts and Green’s functions.
He then realized the importance of developing a “theory of harmonic Maass forms” in
its own right. Later in joint work with Funke [63], he developed the fundamental results
of this theory, some of which we describe here. After making the necessary definitions,
we shall discuss Hecke operators and various differential operators. The interplay between
harmonic Maass forms and classical modular forms shall play an important role throughout
this paper.

7.1. Definitions. In 1949, H. Maass introduced the notion of a Maass form' (see [149,
150]). He constructed these non-holomorphic automorphic forms using Hecke characters of
real quadratic fields, in analogy with Hecke’s theory [115] of modular forms with complex
multiplication (see [180] for a modern treatment).

To define these functions, let A = A be the hyperbolic Laplacian

0? 0?
o 2
A=y (a_ * @) ’

By analogy with the eigenvalue problem for the vibrating membrane, Maass referred to these auto-
morphic forms as Wellenformen, or waveforms.
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where z = x 4+ 1y € H with z,y € R. It is a second-order differential operator which acts
on functions on H, and it is invariant under the action of SLy(R).
A Maass form for a subgroup I' C SLy(Z) is a smooth function f : H — C satisfying:

(1) For every (29) € T, we have

az+0b
(2) We have that f is an eigenfunction of A.
(3) There is some N > 0 such that

flz+iy) =0@")

as y — +o00.
Furthermore, we call f a Maass cusp form if

/1f(z+x)dx = 0.
0

There is now a vast literature on Maass forms thanks to the works of many authors such
as Hejhal, Iwaniec, Maass, Roelcke, Selberg, Terras, Venkov, among many others (for
example, see [116, 117, 124, 126, 149, 150, 181, 191, 199, 200, 203]).

This paper concerns a generalization of this notion of Maass form. Following Bruinier
and Funke [63], we define the notion of a harmonic Maass form of weight k € $Z as
follows. As before, we let z = x +iy € H with z,y € R. We define the weight k& hyperbolic
Laplacian A by

02 02 0 0
(7.1) Ay = —y (_8:172 + _6y2) +iky <_893 + Z—ay) :

For odd integers d, define ¢4 by

{1 ifd=1 (mod 4),
€q =

(7.2) i ifd=3 (mod 4).

Definition 7.1. If N is a positive integer (with 4 | N if k € 3Z\ Z), then a weight
k harmonic Maass form on I' € {I'1(N),['o(N)} is any smooth function M : H — C
satisfying the following:

(1) Forall A= (2%) €T and all z € H, we have

az+b (cz+ d)*M(2) it k € Z,
M ) (e\2F 2k k : 1
cz+d ()7 €% (cz+ d)F M(2) if k€ 57\ Z.

Here (g) denotes the extended Legendre symbol, and /z is the principal branch
of the holomorphic square root.
(2) We have that Ay M = 0.
(3) There is a polynomial Py = 37 ¢ (n)g" € Clg~'] such that
M(z) = Py(z) = O(e™®)

as y — +oo for some € > 0. Analogous conditions are required at all cusps.
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Remark 9. Maass forms and classical modular forms are required to satisfy moderate
growth conditions at cusps, and it is for this reason that harmonic Maass forms are often
referred to as “harmonic weak Maass forms”. The term “weak” refers to the relaxed
condition Definition 7.1 (3) which gives rise to a rich theory. For convenience, we use the
terminology “harmonic Maass form” instead of “harmonic weak Maass form”.

Remark 10. We refer to the polynomial Py, as the principal part of M(z) at co. Obviously,
if Pys is non-constant, then M (z) has exponential growth at co. Similar remarks apply at
all cusps.

Remark 11. Bruinier and Funke [63] define two types of harmonic Maass forms based on
varying the growth conditions at cusps. For a group I', they refer to these spaces as Hy(I)
and H," (T'). Definition 7.1 (3) corresponds to their H," (T') definition.

Remark 12. Since holomorphic functions on H are harmonic, it follows that weakly holo-
morphic modular forms are harmonic Maass forms.

Remark 13. Here we recall the congruence subgroups. If N is a positive integer, then
define the level N congruence subgroups I'o(N), I'1(N), and T'(N) by

To(N) := {(‘C‘ Z) €SLy(Z) : ¢c=0 mod N},

Fl(N)::{(a Z)GSLZ(Z) ra=d=1 mod N, and c=0 modN},

F(N)::{(CCL Z)GSLQ(Z) ca=d=1 mod N, andb=c=0 modN}.

Remark 14. For k € 37\ Z, the transformation law in Definition 7.1 (1) coincides with
those in Shimura’s theory of half-integral weight modular forms [192].

Remark 15. Later we shall require the classical “slash” operator. For convenience, we recall
its definition here. Suppose that k € 1Z. For A = (24) € SLy(Z) (To(4) if k € 3Z\ Z),
define j(A, z) by

7.3
(73) () VerFd ke lz\Z

where ¢4 is defined by (7.2), and where /z is the principal branch of the holomorphic
square root as before. For functions f : H — C, we define the action of the “slash”
operator by

(7.4) (f ‘k: A)(Z) = j(A, z)*Qkf(Az) _ j(A, Z)*Zkf (CLZ -+ b) .

, vez+d if k eZ,
J(A, 2) =

cz+d
Notice that Definition 7.1 (1) may be rephrased as
(M | A) () = M(z).

Remark 16. We shall also consider level N weight k € %Z forms with Nebentypus x. To
define such forms, suppose that N is a positive integer (with 4 | N if k € %Z \ Z), and
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let x be a Dirichlet character modulo N. To define these forms, one merely requires'®, for
every (2%) € Ty(N), that

(az + b) _ Jx(d)(ez + d)*M(z2) if k € Z,
cz+d (g)% e; 2 x(d)(cz + d)* M(z) if ke 3Z\ Z.

Throughout, we shall adopt the following notation. If I' C SLy(Z) is a congruence
subgroup, then we let

Sk(T") := weight k cusp forms on T,

M, (') := weight k& holomorphic modular forms on T,
M, (T) := weight k weakly holomorphic modular forms on T
Hy(T") := weight k harmonic Maass forms on T

Furthermore, if y is a Dirichlet character modulo N, then we let

Sk(N, x) :=level N weight k cusp forms with Nebentypus Yy,

(

Mk N7 X) :
M, (N, x) := level N weight k weakly holomorphic modular forms with Nebentypus Y,
Hk N? X) :

(

When the Nebentypus character is trivial, we shall suppress y from the notation.

The real analytic forms in Theorem 6.1 provide non-trivial examples of weight 1/2
harmonic Maass forms. More generally, the work of Zwegers [218, 219], shows how to
complete all of Ramanujan’s mock theta functions to obtain weight 1/2 harmonic Maass
forms. In Section 8, we shall present further examples of harmonic Maass forms.

= level N weight £ holomorphic modular forms with Nebentypus Yy,

= level N weight k& harmonic Maass forms with Nebentypus x.

7.2. Fourier expansions. In this paper we consider harmonic Maass forms with weight
2—ke€ %Z with k > 1. Therefore, throughout we assume that 1 < k € %Z.

Harmonic Maass forms have distinguished Fourier expansions which are described in
terms of the incomplete Gamma-function I'(«; x)

(7.5) [(o; z) ::/ e ‘7t dt,

and the usual parameter q := ¢*™*. The following characterization is straightforward (for
example, see Section 3 of [63]).

Lemma 7.2. Assume the notation and hypotheses above, and suppose that N is a positive
integer. If f(z) € Hy_p(I'1(N)), then its Fourier expansion is of the form

(7.6) f2)= > ¢f)g"+ Y c;mI(k - 1,4nlnly)q",

n>>>—0o0 n<0
where z = x + 1y € H, with z,y € R.

As Lemma 7.2 reveals, f(z) naturally decomposes into two summands. In view of this
fact, we make the following definition.

14 This replaces (1) in Definition 7.1.
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Definition 7.3. Assuming the notation and hypotheses in Lemma 7.2, we refer to
frz)= ) ef(n)g"

n>>>—oo

as the holomorphic part of f(z), and we refer to
F7(2) = c; (T (k = 1,4x[nly)q"
n<0

as the non-holomorphic part of f(z).
Remark 17. A harmonic Maass form with trivial non-holomorphic part is a weakly holo-

morphic modular form. We shall make use of this fact as follows. If fi, fo € Hy 1 (T") are
two harmonic Maass forms with equal non-holomorphic parts, then f; — fo € M, _,(T).

7.3. The (-operator and period integrals of cusp forms. Harmonic Maass forms are
related to classical modular forms thanks to the properties of differential operators. The
first nontrivial relationship depends on the differential operator

w0
(7.7) Ew 1= 21y" - P

The following lemma'®, which is a straightforward refinement of a proposition of Bruinier
and Funke (see Proposition 3.2 of [63]), shall play a central role throughout this paper.

Lemma 7.4. If f € Hy (N, ), then
52—k : HQ—k(Na X) - Sk(Nv X)

is a surjective map. Moreover, assuming the notation in Definition 7.3, we have that

Ew(f) = —(@m)* Y e (—n)n* g

n=1

Thanks to Lemma 7.4, we are in a position to relate the non-holomorphic parts of
harmonic Maass forms, the expansions

F(2) = 3 ()T (k — 1, 4xlnly)q™,
n<0
with “period integrals” of modular forms. This observation was critical in Zwegers’s work
on Ramanujan’s mock theta functions.
To make this connection, we must relate the Fourier expansion of the cusp form & (f)
with f~(z). This connection is made by applying the simple integral identity

—Zz

100 6271'1'717'
7.8 / dr =i(2mn)* % - T'(k — 1,4mny)qg ™.
(7.8) o e )
This identity follows by the direct calculation

100 e2minT 100 eZm’n(sz) . - .
/ it dr = /2 —(—iT>2_k dr = i(2mn) " - T'(k — 1,4mny) ¢ ".
-z \— 1y

15The formula for &a_(f) corrects a typographical error in [63].
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Hence the number of covariants of degree s and order g of the binary
quantic of order n is the coefficient of p?t128 in (1), or the coefficient of
Pt in (2). '

We may obtain by this method a proof of the formula for the canonical
form of an invariant matrix of a matrix with repeated characteristic roots*,
without the use of Aitken’s method of chainst.

Let A be the matrix [g ’ i:l Denote by [n], the matrix of order »? with

¢ in each position in the leading diagonal, unity in each position in the
diagonal next above, and zero elsewhere, so that 4 = [2],.
Clearly, confining our attention to the canonical form, we have

A = [n+41],=.
Then, if [An]E) =3, Epg Al al,
we have [n+ l]ff,.] =2k, [p—q+1]n,
and 24110 = Zkpo[p—q+ 1]

and the above generating function is applicable. The proof now follows
the lines of the preceding paper*.

University College,
Swansea.

THE FINAL PROBLEM : AN ACCOUNT OF THE
MOCK THETA FUNCTIONS

G. N. Warsoxi.

It is not unnatural in one who has held office in this Society for sixteen
years that his mode of approach to the preparation of his valedictory
Address should have taken the form of an investigation into the procedure
of his similarly situated predecessors.

Of the thirty-five previous Presidents, all but three have delivered
Addresses on resigning office. Two of the exceptions were the first two
Presidents, de Morgan and Sylvester; de Morgan, however, had had his

* D. E. Littlewood, Proc. London Math. Soc. (2), 40 (1936), 370-381.
t A. C. Aitken, Proc. London Math. Soc. (2), 38 (1935), 354—376.
! Presidential Address delivered at the meeting of 14 November, 19335.
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say in an inaugural speech at the first meeting of the Society. The third
exception was Henrici, who confined himself to thanking the members for
‘“‘the kind indulgence they had shown him ", a sentiment which I would
wish to echo to-day.

It had occurred to me that the survival of the Society for seventy years
might make an historical topic appropriate for my Address; and, in fact,
that a President at a loss for a subject might do far worse than give some
account of the Addresses of his remoter predecessors. I was, however,
deterred from this course by the examples of those two Presidents, Prof.
Love and Prof. Hardy, who, like me, had held the office of Secretary for a
lengthy period*; after making two statements on the progress of the
Society, I shall follow them by confining myself to a mathematical topic.

In 1928 Prof. Hardy was able to report that the membership had grown
to 410 and the annual output to 1,280 pages; the number of members is
now 440 and the annual output is 1,440 pages. Each increase in our rate
of publication in the last sixteen years has been followed by an increase in
the number of papers received, until at last the inelasticity of our financial
resources has led the Council reluctantly to announce the adoption of
measures tending to limit the amount which we accept for publication.

The topic which I have selected, though unfortunately not too well
adapted for oral exposition, will, I hope, be considered to be as character-
istic of its author as the choices of most of my predecessors have been.
I make no apologies for my subject being what is now regarded as old-
fashioned, because, as a friend remarked to me a few months ago, I am an
old-fashioned mathematician. Practically everything that I have to say
to-night would be immediately comprehensible to Gauss or Jacobi; on
the other hand, Euler, though he might enjoy listening, would probably
encounter difficulties both of form and substance.

Early in 1920, three months before his death, Ramanujan wrote his last
letter to Hardy. Inthe course ofithesaid: ‘I discovered very interesting
functions recently which I call ‘Mock’ #-functions. Unlike the ‘False’
d-functions (studied partially by Prof. Rogers in his interesting papert)
they enter into mathematics as beautifully as the ordinary &-functions.
I am sending you with this letter some examples .

The study of some of the five foolscap pages of notes which accompanied
the letter is the subject which I have chosen for my Address; I doubt

* With the exception of Prof. Burnside (Secretary 1902, 1903; President 1906, 1907)
no other person has held both. offices.

t L. J. Rogers, Proc. London Math. Soc. (2), 16 (1917), 315-336. A “‘ false 3-function ”
is a function such as 1—g-+4¢*—¢*+¢’—..., which differs from an ordinary theta function
in the signs of alternate terms.
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whether a more suitable title could be found for it than the title used by
John H. Watson, M.D., for what he imagined to be his final memoir on
Sherlock Holmes.

The first three pages in which Ramanujan explained what he meant by
a “mock 9-function’’ are very obscure. They will be made clearer if T
preface them by Hardy’s comment that a mock d-function is a function
defined by a g-series convergent when |¢| < 1, for which we can calculate
asymptotic formulae, when ¢ tends to a “rational point’’ e?"/s of the unit
circle, of the same degree of precision as those furnished for the ordinary
¥-functions by the theory of linear transformation.

The three pages of explanation (with a few modifications of the formulae
to simplify the type-setting) are as follows:

“If we consider a $-function in the transformed Eulerian form, e.g.

q q* q°
e e i = Ll e e B
q q" q9

and determine the nature of the singularities at the points
¢=1, ¢=1, ¢=1, ¢=1, ¢=1, ..,
we know how beautifully the asymptotic form of the function can be

-expressed in a very neat and closed exponential form. For instance, when
q=-¢* and {0,

W=/ (g)exp(F;— 55 ) +olL1,

m= /) ool i) o

and similar results at other singularities.

* It is not necessary that there should be only one term like this. There may be many
‘terms but the number of terms must be finite.
t Also o(l) may turn out to be O(1). That is all. For instance, when g—1, the
function {(1—g¢)(1—g¢*)}(1—¢%) ...} 1% is equivalent to the sum of five terms like (*) together
with O(1) instead of o(1).
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If we take a number of functions like (A) and (B), it is only in a limited
number of cases the terms close as above ; but in the majority of cases they
never close as above. For instance, when ¢ = ¢~ and {0,

q ' ¢t
© Mgt T T =g T

=/ (57 e[ +antthatt . +0@t |

where @, = 1/84/5, and so on. The function (C) is a simple example of a.
function behaving in an unclosed form at the singularities *.

At this point I interpose a few explanatory remarks.

The ¢ Eulerian form ” of a function apparently refers to the character
of the denominators of the terms in the series. The phrase is probably
suggested by Euler’s formulae

M (14¢"2)= 3 g i

Z2)= .
L e § gty 1 e ey g S
ﬁ 1—qg" -1 — % 2" .
N S e § i 1 ) g )

As regards the illustrative functions, (A) is immediately derivable from
Heine’s formula for basic hypergeometric series,

D, [a, b; ¢ ﬁ [(l—cq"/a)(l-—-cq"/b)

¢ ab]™ nio L0—=cg™){1—cq"/(ab)} [’

by making a >0, b—>00, and ¢->¢. Itis thusseen that (A)is the partition
function

@

I (1—grt)-1,

n=0

The function (B) is G(g), one of the two functions, G(¢) and H(q), which
occur in the Rogers-Ramanujan identities. These identities and the

* The coefficient 1/t (sic) in the index of e happens to be x%/5 in this particular case.
It may be some other transcendental numbers in other cases.

t The coefficients of ¢, #%, ... happen to be 1/8+v5, ... in this case. In other cases
they may turn out to be some other algebraic numbers.
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definitions of the functions are contained in the assertions that

_ L qﬂ'f
#a)= n§0 (Y—g)(1—g?) ... (1—gq")
=[(1-¢)(1—¢*)(1—¢%)(1—¢®)...],
H(q) _ % qn(n+1)

n=0 (1—¢)(1—¢%) ... (1—g™)
=[(1—¢*)(1—-¢*)(1—¢")(1—¢?)...]™~

The asymptotic formulae for the functions are derivable from known
properties of #-functions, the formula for H(q), which corresponds to the
formula already quoted for G(q), being

2
H(g) = \/<5+2v5> exp (1%*‘%) +o(b).

The function (C) is more remarkable. Itiseasy to obtain a first approxi-
mation to the value of the function when ¢ is small by the method of esti-
mating the sum of the terms in the neighbourhood of the greatest term of
the series*; but the term ¢/84/5, still more the following terms, cannot be
determined very satisfactorily in this manner. The only simple procedure

which I have devised depends upon making a preliminary transformation
of the function.

It is easy to see that

o T—FA—gF . (I

(1—gr+1)-1, af; ghmm+D
0 m=0 (1—@)(1—¢?) ... (1—q™)

et § ozo: q}m(m-!-l) . (__)n q}n(n+1)+mn
A=t 2 2 =g (=) . 1= (=) . =)
We sum this double series by diagonals. The sum of the terms for which
m--n has a given odd value, say 2p+1, is zero; the sum of the terms for
which m-+4-n has a given even value, say 2p, is

Il
=8

(I—=g™)(1—g™*?)...

r

T

ime

ql" 2p+1)

(1—¢*)(1—g¢*)... (1—g*®)’

* Perhaps this method played a larger part in Ramanujan’s work on mock d-functions
than my own studies of the subject would suggest.
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We thus find that the function (C) is equal to
i1 (1—¢") Gy(g?),
7=0

where (,(gq) denotes the function
© qn(n+n)

2 T —g . (=)

which occurs in Ramanujan’s proof of his identities. Now, for integral
values of u, it can easily be shown that

G“(Q) — {_}_5 <i52__1) vt exp l:ll;t_}_ (5l"2"—l")_ (/2“(2)_#) '\/5_'-%' t+0(t2):|,

from a consideration of the difference equation

Gu(9) = Guiy (9)+6* 1 G, 15(g),

combined with the asymptotic values of G,(q)= G(q) and G4(q)=H(q).
If we make the plausible assumption that the formula is valid fer any fixed
i, whether an integer or not, we can obtain Ramanujan’s asymptotic
formula for his function (C) by taking p = %.

I now revert to Ramanujan’s notes; they continue thus:

“Now a very interesting question arises. Is the converse of the
statements concerning the forms (A) and (B)true? Thatistosay: Suppose
there is a function in the Eulerian form and suppose that all or an infinity
of points are exponential singularities, and also suppose that at these
points the asymptotic form of the function closes as neatly as in the cases
of (A) and (B). The question is: Is the function taken the sum of two
functions one of which is an ordinary #-function and the other a (trivial)
function which is O(1) at all the points ¢?*7/#? The answer is ¢ is not
necessartly so. When it is not so, I call the function a Mock &-function.
I have not proved rigorously that ¢t is not necessarily so. But I have con-
structed a number of examples in which it is inconceivable to construct a
&#-function to cut out the singularities of the original function. Also I have
shown that if it is necessarily so then it leads to the following assertion :—
viz. it is possible to construct two power series in z, namely X a, 2" and
%b,z" both of which have essenttal singularities on the unit circle, are
convergent when |z| < 1, and tend to finite limits at every point x = e* /¢, and
that at the same time the limit of Xa,, 2™ at the point = e*"/* is equal to the
limit of £b, 2™ at the point x = e~2"¥/2,
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This assertion seems to be untrue. Anyhow, we shall go to the examples
and see how far our assertions are true.
I have proved that, if

f@) =1+, gt

q4
1+q) (1+q)2(1+q
then

[+ (1—q)(1—¢3)(1—¢%) ... (1—2¢+2¢*—2¢°4-...) = O(1)

at all the points g = —1,¢>= —1,¢5= —1,¢" = —1, ...; and at the same
time

fl@)—(1—9)(1—¢®)(1—¢5) ... (1—2¢+2¢4—2¢°+...) = O(1)

at all the points ¢?= —1, ¢*=—1, ¢*=—1, .... Also, obviously,
f(g@)==0(1) at all the points ¢=1, ¢3=1, ¢°=1, .... And so f(q) is a.
Mock #-function.

When ¢= —e* and -0,

f(q+\/( >exP(24t ;4>_’4‘

The coefficient of ¢” in f(g) is

(—1)»1 exXpam {__\/_j(ln_j“gz (exp {3/ (rn 3 xz)") .
24/ (n—4%) Vv (n—

It is inconceivable that a single $-function could be found to cut out the
singularities of f(g)

This completes Ramanujan’s general description of mock $-functions.
His remarks about lack of rigorous proof indicate that he was not com-
pletely convinced that the functions which he had constructed actually

-cannot be expressed in terms of d-functions and “trivial”’ functions. It

would therefore seem that his work on the transformation theory of mock
#-functions did not lead him to the precise formulae (such as I shall
describe presently) for transformations of mock &-functions of the third
order. The precise forms of the transformation formulae make it clear
that the behaviour of mock #-functions near the unit circle is of a more
complex character than that of ordinary &-functions.

The subsequent results about f(¢) which I have quoted are all immediate
consequences of my transformation formulae, except for the approximation .
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for the general coefficient of the expansion of f(g) in power series. I have
not troubled to verify this approximation ; it is presumably derivable from
the transformation formulae in the manner in which Hardy and Rama-
nujan* obtained the corresponding formula for p(n), the number of
partitions of n.

The last two pages of Ramanujan’s notes consist of lists of definitions of
four sets of mock $-functions with statements of relations connecting
members of each of the first three sets; for fairly obvious reasons the func-
tions in the various sets are described as being of orders 3, 5, 5, and 7 respec-
‘tively. These lists and statements have already been published }.

On this occasion I propose to restrict myself to the consideration of
functions of order 3. In addition to the function f(g) defined above, Rama-
nujan has discovered three such functions. Rather strangely} he seems
to have overlooked the existence of the set of functions which I call w(g),
2(9), p(9)-

The definitions of the complete set of functions are as follows:

f(Q)z,'EO (l+q)2(l+q2)2 (l—|—g")2’

_ ® qn2
@) _—nEo (1+¢%)(14+¢Y) ... 1+¢*)’

-3 g
o)== (1—q)(1—g%) ... (1—¢* 1)’

. e qn?
XO= 2 0=t T
w(g)= 3 ginerty

n=0 (1—9)*(1—¢%)* (1—¢%)%... (1—g*+)¥

v(g) = 020‘. qrn+d

a0 (1+@)(1+¢3) ... (1+g**+1)’°

«© q2n (n+1)

p(9) =”§0 A+ g+ AFF+) ... ALt qE)"

* Proc. London Math. Soc. (2), 17 (1918); 75-115.
t Collected papers of S. Ramanujan (1927), 354-355.
1 Particularly in view of his having discovered both sets of functions of order 5.
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These several functions are connected by the following relations:

26(—)~/(0) = 1@ +44(—0) = 9,00, 0 Tl (1447,
x(@—flg) = 3920, ¢") 11 (1—g)™,
26(q)-+w(@) = 3L 95(0, P IT (1—g),
v(£9)+qw(9®) = 37 :(0, q)jl1 (1+¢>),

116°)2:200 (£0)20° w(—%) = 95(0, ) 82(0, ¢1) I (1—g*).

Whether Ramanujan’s proofs of the relations involving f(q), #(g), and
3/(g) are the same as mine must remain unknown.

The first stage in my discussion of the functions consists in obtaining
. new definitions of the functions by transforming the series by which they
are defined into series more amenable to manipulation. For this purpose
I use a limiting case of a general formula connecting basic hypergeometric
series which I discovered some years ago* in the course of the construction
of the seventh proof of the Rogers-Ramanujan identities.

If we write

a:B )’, e 5 (l—'"aqm - qu)(l_qu)
(DI: ] 1+ z T {(1 —gmt) (1—0¢™)(1—eq™) .. }x

where r is the number of the symbols a, B, y, ..., and s is the number of the
symbols 3, e, ..., the general formula is

n=1 m=0

D a, Q'\/a’." _Q\/a‘! c, d’ e, .f’ g, a2q2
8 va, —+/a, aglc, aq/d, agle, aqlf, aqlg; cdefg

[{1 —ag"} {1—ag"/(f9)} {1—aq"/(ge)} {1 —aq™/(ef)}
" nm1 L {1—agv/e} {1—aq"/f} {1—aq"/g} {1—aq"/(efg)}

Taq/(cd), e, [,
X ofola, agle, agld; 2

provided that e, f, or g is of the form ¢—¥, where N is a positive integer.

* G. N. Watson, Journal London Math. Soc., 4 (1929), 4-9.
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Make a1, e->o0, f>00, g—>co; and let

o find thats c=expif, d=exp(—ib);

1 E (—)"(14¢")(2—2 cos f) gin@n+D
+n=1 1—2¢" cos 0+¢2

qn'-’ -

=T (1—¢q) | 14+ % —
r=1 n=1 11 (1—2qmcosﬁ+q2m)J‘
m=1

This is the general relation which is fundamental in the construction of

the new definitions of the mock &-functions. In this relation take
successively

b=m, O=1in, 0=1m,
and we get immediately

® —\n 4in(3n+1)
1—gr) = 144 3 L)_Q___,
(I—g)=1+4  —1 =

=18

f(q)r

I

1

ﬁ 1—g") =142 E (—)n(1+q")q§fﬂ(3n+1)
p@) I (1—g)=1+2 T o ,

n o (__\n nY yin(3n+1)
O o e BV il
X(Q) 7=1( q ) +n=1 l_qn+q2n
These are the formulae which will henceforth be adopted as the defini-

tions of f(g), #(g), and x(q). They render obvious the connection between
x(¢) and f(q) ; for, by combining like terms of the series on the right, we have

_ L . b (_)nq%n(n+1)1
ax(@—f@) i 1—q) =3[ 144 5 =rL]

and the required relation follows from the formulaft

144 E (__)nqén(nH)

= $,%(0, q).
e s

* This formula may also be obtained by expressing the series on the right (qua
function of cos6) as & sum of partial fractions.

t This simple formula (well known to Ramanujan) apparently is not given explicitly
by Tannery and Molk; to obtain it, take z = 4r in the expression for 1/3,(z, +/g) as & sum
of partial fractions. Cf. J. Tannery et J. Molk, Théorie des fonctions elliptiques, 3 (1898), 136.
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The new definition of 4(¢) is not such a direct consequence of my formula.
To transform yi(g), take exp 10 = ¢t and then replace ¢ by ¢*; we thus have

14 3 &0+ @—g—g7) gD

L (=T (1—gfh)
_ © s q4n?
=1t -1+ & g =)

that is to say

1—g-1 1—
1+ 2 (—rgrer {72+ =)

n=1

. o r 4n2 ( 1— q4n+1) + q(2n+1)ﬂ

=na ¢D+%quqﬂuﬂmu
q/,nﬂ

= it 0-an 1+ 2 e =)

(m=2n or 2n+1)
— rl(i (1—g*) [L—g+ (1—q) $(9)].

Hence we have

4@ 1T (1—q*)

———:l > 1 q—l ©
- 1—¢q 11,2::1 (=) gintrt {1—q4'"'+1— 1—q4n—l} —r£I1 (1—g*)
= —1 2n(3n+1) 1 ot .
11— + 2 ( ) g2 Bnt {l——q‘m“ T—gnt (14+q n)}
> dn+1 gL
- l%q+n§1(—)nq2n(3n+1) {13q4n+1+ l—q—4n+1}
®  (—)gbrintDtl
”E_m W

We accordingly adopt the formula

w© (__ )n an (n+1)+1

$(q) ﬁ (1—g¥)= X 1— gt

r=1 n=—o

as the modified definition of (g).

JOUR. 41.
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We next take another limiting case of the formula connecting basic
hypergeometric series. Make e—>o0, f—+o, g—>o0, and let a=¢ and
cd = q, writing

c=qtexpif, d=qtexp(—1b).

On reduction we find that

9 (—)P(1—g2nH1) gintntD) w ® g+
s 1—2an cos g_|_q2n+1 n=0 II (l_zqu cos 0+q2m+1)
m=0

In this relation take successively
0=0, §=14n, 0=3%m;

and at the same time replace ¢ by ¢ in the first and third of the results
which are obtained.
We get immediately

] @ 1+q2n+1
1— 2ry — —Ypdnmn+r) - L
w(Q) 'LII ( q ) 'nEO ( ) q 1_q2n+1’
-] -] 1_q2n+1
II1(1—g"= X (—)rgintn+) _L____
U(Q) r=1( q ) ﬂ=0( ) q 1+q2n+l’
0 0 1_q4n+2
IMI (1—¢g¥)Y= X (—)rgdntn+l) £ _________
p(q) et ( q%) o (—)"q 1_|_q2n+1+q4n+2

These are the formulae which will be adopted as the definitions of
w(g), v(q), and p(g). They render obvious the connection between p(q)
and w(q); for, by combining like terms of the series on the right, we have

2p(@)—w(o] fl (1—g#)=3 £ (—prgmern ELT,

and the required relation follows from the formula*

E (=) grnth 14g2ntt — 192(0: 9)95(0, 9)
n=0 1_q2n+1 2q{

—_ 192 (O’ \/Q)]z
23 :

* This formula is immediately derivable from the expression for 1/3,(z) as a sum of
partial fractions. Cf. J. Tannery et J. Molk, Théorie des fonctions elliptiques, 3 (1898), 136.
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Now that the new definitions of the mock #-functions have been
constructed, it is a fairly easy matter to establish the relations which
connect the functions.

Apart from the relations connecting x(¢) with f(g) and p(g) with w(q)
which have been obtained already, these relations are special cases of an
expansion of the reciprocal of the product of three 9-functions. Easy
though this expansion is to establish, I do not remember having encountered
it previously. It may be stated as follows:

Let v be any integer (positive, zero, or negative) and let a, B, y be any
constants such that

3 (B—y)dy(y—a)di(a—PB) #0O.

Then the function
or-Diz

Ba(z—a) By(z—PB) Fo(z—7y)

i3 expressible as the sum of partial fractions

2 A ® B e C
I gaggmemt I mEyomemt X o gimemy

92 ( —_ )m+r qm (3m+1)+2mr e2mi(2a.—ﬂ—y)-H2r+1)i¢

m= 3y (0)9,(a—B) 1 (a—y) ’

with corresponding values for B, and C,,. The expansion is valid for all
values of z except the poles of the function under consideration.

where A

First observe that, if ¢ = ¢, it is easy enough to verify that

lim (6%} g2m g2ie) ol2r—iz
z—>at+imtmar 19'2 (z_ a) 192 (Z—ﬁ) 192 (z'— 7)

is equal to the value of 4, given above.

We now proceed to establish the expansion by obtaining it as a limiting
case of a similar expansion in which the functions concerned are algebraic.
Write

Il (142¢2" cos 2z+g**)

n=

«© N

By, n(2) = 2¢t cosz II (1—g%)
n=1 1

e2r-Yiz

so that Fy: 72— ) D, 5(2—PB) g, n(z—7)
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is the quotient of two polynomials in ¢%%. The elementary theory of partial
fractions then shows that, when 3N 4-#-+1 > 0, we have

e(Zr—l)iz

Jg; n(z—a) ‘92; ~(2—B) 02; n(z—y)

B N
m; N C’m N
+ —— e
e N ele+q2m e2ly

¥ 4
= X omd e L.
— eZzz+q2m 62“" me—N ezw+q2m e2rﬂ

where

Ayiy=A, T [(1—g")(1—gr e o) (1—g e )]
n=N-m+1

0

X I [(l—q“)(l—q% ezi(a—B))(l_an e?.i(u_y))l
a=N+m+1

with corresponding values for B,,. y and C,; y.
We now make N —->o. The observation that
Am ; N/ Am

is a bounded function of m and N which, for any fixed m, tends to unity as
N — o0, combined with the obvious remark that the series
® A

'm=2—no e2iz+qr2nm elia
is absolutely convergent, justifies an appeal to Tannery’s theorem; we
thus have

Y A, ® A
i m: N _ m
h}i[:o mEiN e gimetic | 7 . et gPme’
and the other details of the passage to the limit present no difficulties. We

have therefore established the expansion

o2r-1iz

Dy(2—a) By(z—B) Fy(z—y)

) 2 ( — )m+r q/m(3m+l)+2mr e2mi(2u—f3—y)+(2r+1)ia
= X % 7 205_I_g2m g2ia) *
a, By m=— 3,/(0) 31 (a—B) Py (a—y)(e*>-+g*™ %)

In this expansion take

r=0, 2=0, a=im B= —ir, y=0;
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we get

30, q9) 28,37, q) & (i gntams (efimibimi  g=Gm+mi )

3200, 9) ~ 95(0,9) mou TFig " T—igo™ |

L »n (_ )m qm[3m+1)

“ . 3100 1 +q2m *
Now it is easy to verify that
e(a‘m+i)ﬂi( 1 __iq2m) + e—@m+-3)mi ( 1 +iq2m)

= 2 cos (3m—})mr—2¢*" sin(dm—})m

— ( —_ )ém(3m+1) { 1+ (__q2)m} ,\/2’

and hence we have

79'1'(0: Q)=219‘2(i77: Q)'\/2 a2 ﬁ 1__ . r _ 2 ﬁ 1 2
3.00,0) ~ 50 g P L A—(=aY—fe) T (1—¢%).

Further,
&77, 9) \/2 y 1+q " n— n
(0 ) rl;[ {1 ( qz) } n=1 1+412” ] 1 [ 1+Q4 )(l q4 )]

_ &[4 (1—g*)
o nI;Il (l _{—'qu)z ]

= ﬁ (1_q2n)’

n=1

so that we have

2(—¢)—f1g") = 558 T gy

1 2n o
= 11 [ g =0 ) 1T (4g,

whence Ramanujan’s relation connecting ¢(—gq) with f(g) follows
immediately.
Again, in the partial fraction fmmula take

r=1, 2=0, a=0, B=inr, y=1inr;
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we get
%,'(0, 9) %237, q)
39(0, q) y(}mr, q) 95 (37, q)
_ 219'1 (i"’”’; Q) 2 (=) q3m(m+§) & (=) q3(m+})(m+l)]

191(%777.’ Q) M=~ l+q2’" M= —c0 ]_+q2m+1
9 % q3m(m+1)+!
+ m=—00 l+q2m+*
_ 2191( T, ) % ( _)}n(3n+l)qln(n+l)+2 : ) qam(m+1)+}
HhGE77, Q) e 1+¢* 1 e 1-g2mtt

(n=2m or 2m-+1)

%‘““W’,‘i (1= (—var)—20 ¥~ T (1—g").

Now evidently
q—}ﬂl(i'rr’z‘, 9 G II {l (— \/q T}_ ﬁ [(1 qzn-l :I 11 [(1+qn—§)(1 qn)]

79] (%’"T: Q) r=1
_ g [A=g*(1—¢")
- nr=11 l: (l_an—-l)‘Z ]

= ﬁ (1—gq%).

n=1

Hence we have

¥ T
H(—V+2(—v=—73 (%_ ,f’;ll,((()igﬂﬂ )(3{ @’m =) I 1(1 —g2n)m

_ ﬁ B (l_an)(l_q _) :l
=1 L(1+¢2)2(X4-gm 1) (14-g2-1)2

5 (=g Q—gH?
n=1L (1+qn)2(1+q"'*)
o [A=gy—g?
n=1L (149" (1+g"?)

- 1t () B 0o

= 8,00, va) T (14t

We have therefore obtained the two results

94(0, @) T (144 = 26(—0)—f(g) = $(— ) +2(—).
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and from them the formula

f@)+44(—9)=94(0, ) Il (144"
follows at once.
Next, in the partial fraction formula take

r=1, 2=0, a=}nrtinrr, B=}lnr, y=n+tinr;

we get
3,/(0,9) _ gty q) 2 (=)mgimemtd
2q*1?2(%1r‘r, q) 19‘2(17”', q) m=-c 1___q2m+1
@® q31n(m+}) o qa(m+iXm+1)
+m=-ao 1+q2m+§—'m=_w 1+q2m+i
_¢19,0,9) 3 (Z)mginimtd 2 (—)nginind
o 19‘2(%”7': Q) ‘m=2—eo 1_q2m+1 +n=z—co 1+qn+§

(n=2m or 2m+-1)

__q}ﬁ«;(o» Q)w 1 2 v “ —atr
= 5,0, ) @@ L A—g")+e(ve) T (1—g¥).

Now evidently

34(0’ q) @© l_qzr _ ﬁ I:(l__q2n—1)2:| ﬁ l__q2n ]
’92(17"3 Q) r£11 (1_q§r> o n=1 H—!Z"'* (l_qn—})(l_qn)

( 1— an—l (1 an)]

n= 1
Hence we have

v(v/q)+¢ w(Q)—w%fﬂU —gi")?

_ ) (1 qzn)2‘
= [(1+q"—*)(1—qﬂ)(1—q")]

i qzn)z
= [(1 —g ) (1—¢")

L[+ 1—g)

—302,0, v/) T (14",
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Since the expression on the right is a one-valued function of ¢, we
immediately deduce the pair of formulae

v(9)+9w(q?) = v(—g)—quw(q)* = 3¢~ 8,(0, q) I (1+¢*).

=1

Lastly, in the partial fraction formula take

» 2=0, a=indinr, B=1in, y=intnr;
we get

e-tm ]9, ' (O i"'[' %’m’ ‘n’T elni qg 01 (%77-{—171’) § (_ )m q3m(m+1)
28, (3n7) 19 (3m)d

4"+7T‘r) — Hy(mti)

0 1— q2m+1

3m? p—dmni 0 3(m+1)* pdmni
. gim” gmimm q e
+e s :

m=—o l+7’q2m m=—o _1_——7?"‘*'_2’
so that, replacing m by » or n—1, we have
284(0) 3,%(3m)

q*ﬁ» (0) © ( )1nq3m(m+1) . 2 e | B elnmi }
9 4(37) m-—z—ao 1—g?m+1 +@n=2_wq " |1+4eg2r  1—ig?
_@00) g (e g ()rginont
=50 2 =g T2 I Ty

{ e—%’“'i

s ® (___)m q12m(m+l)
+2q m=2‘—00 l+q8m+4

(n=2m or 2m-1)
_q*ﬁz(O)w a o 3 w(—qgt ﬁ — g%,
=35,0m ©@ 1 Q=@+ @)+ 2 (=g T 1—=¢)

When we reduce this in the usual manner, we find that
F(@*)+29w(g)+2¢° @(—g%) = (0, 9) 9°(0, ¢*) T (1—g*)7*
and hence, by changing the sign of ¢,

F(@)—290(—0)— 24 0(— ) = $:(0, @) 320, ¢9) 11 (1—g*)=.

Any other relations of this kind connecting mock J-functions of order 3
would appear to be derivable from the relations now obtained
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Tt is now feasible to construct the linear transformations of the mock
d-functions. Since any substitution of the modular group can be resolved
into a number of substitutions of the forms

=741, 7'=-1/,

it is sufficient to construct the transformations which express the fourteen
functions* f(+¢), ... in terms of similar functions of ¢, (or powers of ¢,),
where g and ¢, are connected by the relationst

g=e"*, af=n? ¢ ="

The general similarity between the series involved in the new definitions
of the mock &-functions and the series which are generating functions of
class-numbers of binary quadratic forms suggests that it may be possible
to construct the required transformations by means of functional equations
such as have been used by Mordell} in connection with class-numbers.
Since, however, I lacked the ingenuity necessary for the construction of the
functional equations (if indeed they exist), I decided to use the more prosaic
methods of contour integration by which a writer subsequent to Mordell
has treated the generating functions of class-numbers§.

It is unnecessary to work out all the fourteen transformation formulae
by contour integration; when the transformation formulae for f(¢g) and
¢(¢) have been constructed, the remainder can be deduced immediately
from the relations connecting the various mock #-functions.

First consider f(g). We have, by Cauchy’s theorem,

1@ 1 a-gy= g ([T 47T L ey,
r=1

2m | J—w—ic ' Jwtic ) Sinwz  coshtaz

where ¢'is a positive number so small that the zeros of sinnz are the only
poles of the integrand between the lines forming the contour. On the
higher of these two lines we write

l w0
_ = ___22 > e(2n+l)m'z
sin 7z =0 ’

* Actually I do not trouble to deal with the functions x(4¢) and p( +¢q) which are less
interesting than the rest.

t The numbers « and 8, which are positive when g is positive, are slightly easier to work
with than the complex 7.

1 L. J. Mordell, Quart. J. of Math., 48 (1920), 329-342.

§ G. N. Watson, Compositio Math., 1 (1934), 39-68.
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gso that

1 J’"‘”“c m  exp(—3az?)

= q dz
2m Josie Sinmz  coshlaz

1] © [ootic . . I e“z+e‘“zf~l
3 n2=10 5—00+1’c 4mi exp {(2n+ 1)miz— Jaz?} P dz

LS (™ Fd
=27?;”=0J n(z) 2,

—a-+ic

say. We calculate these integrals in the following manner. The poles of
F,(2) are (at most) simple poles at the points

zm:(%"l%l)‘l_-ﬂl (m:—w, ..-,—l, 0, l,..-, +w)?

and the residue at z,, is

47

32 (— )™ exp{(2n+1) mz, —3az,?}.(2 coshaz,—1) =2

n,m

séy. Now, by Cauchy’s theorem,

—o+ie

1 ([otic 0 +2n ]
'2;'7115 —P j_ N lFF ( )dz— n, 0+’\n 1+ +’\n n—l_{‘%An ny

'where P denotes the ¢ principal value ’ of the integral. Next, by
rearrangement of repeated series,

%’\o, 0+ §1 (Au, 0+)‘n, 1+ see +An, n—1+ %An, n.)

z (%Am,m_i_Am+l,m+’\m+2 m+ )

m=0

% 1+4exp 2miz,
=0 A, m 1—exp 2miz,,

1+ giem+D

3a Z ( )™{2 cos (2m+1) m—1} q\(2m+1)g T gt

o 2 14 gir+e
= -a—pz, ( )I’qu(21)+1) W?p—ﬁ’

where m = 3p-+1, the terms for which m 3 3p+1 vanishing.
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Further, we have

0 +2n
P 5 F, (2)dz

—C+42n
0
=P5 F, (2, +x)dx
S (_(2n+1)*n®  3a2?| cosh{ax+}(2n+1)m}—}
_Pj#wmexl’ 7 6a 2 (—ismhiaw  ©
— o\ o A(2n+1)? @ --Jaz? sinh ax
= 4mi(—)" sin 1(2n4-1) 7. g2+ Lwe Sinh Jaz

This simplification in the integral under consideration is due to the modified
contour having been chosen to pass through the stationary point of the
function
exp {(2n+1) mz— §az?},

which occurs in the integrand, in the manner of the “method of steepest
descents ”’

The integral along the lower line can be evaluated at once by changing
the sign of ¢ throughout the previous work. On combining the results we
get

.-sinhax |
sinh Jax

© 4 . ® ©°
fia) 1 (1-0) = T gl T (1—gt)+48,Gm, ¢ | e

By Jacobi’s imaginary transformation this reduces to

g f(q) _2\/( )9’1"”(91 +4\/ )J' "g"xtssii::l?;fxdx:

which is the transformation for f(g). We shall consider the integral on the
right presently.
Wenow turn to ¢(g). We have, by Cauchy’s theorem,

1 fj’“"“‘ _l_j“””c] 7 coshiaz

9@ El(l——q’) = 2m | o-bic J sinmz coshaz

=1 exp (— Saz?)dz,

—o—ic
and, as before, we get

1 (et g cosh%az
2m

exp (—3a2?)dz = 5— §

+itc
w+tic Sinmz coshaz T 50 J—ootic

D, (2)dz

where

@, (2) = 2mi exp {(2n+ 1) miz— 3az?} cosh Jaz{2 cosh 2az— 1}

cosh 3az
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The poles of @, (z) are (at most) simple poles at the points

_Umilmi | (m— D

gm_ 60. H m 60. (m= — 00, ..., —l, 0, 1, ) 00),

and the residues at {, and 7, are

27 . 4 o
35 eXp {@n+1)m {,,—3al,2} . cosh tal, {2 cosh 2al,,— 1} = . 1n,

27 , o
— 3, @xp{(2n+1) min,—jan, %} . cosh far,, {2 cosh 2ar,,— L=, .

say. Now, by Cauchy’s theorem,
@ 74 0 +-2n
1 fj ’ —j' } D, (2)dz

* 3
2my s —00-1ic —00-+2n

= K, 0+V’n, 1+F'n,2+ e +:“’n,n+”'n, 1+V-n, ot +Vw.n:

and, as before, by rearrangeément of repeated series,

"§0 (l'l"n, 0+""n, 1+ e "Hh;, 'n) +n§1 (V'n, 1+ Vi, 2+ aes + Vn, n)

0 0
= Zo (f"-m, m+f"m+l,m+f"m.+2, m+ e ) + Zl (Vm, m+ Vin+1, m+ Vim+2, 1n+ .. )
m=

m=

@ -
"L M, m Vm m

z - z -
m=0 1— exp 2m£m m=1 1— exp 2777’1’7n

O @© q1(47n+1)(41n+3)/ 24 ( dm + l) - (
T 3@ ,mg 1 g@mris cos 3 ‘(2 cos 3

2r & g{m-Diam+oy2e (4m—1)m { dm—1)=w 1
TP B e i R R

- \/2 2 (__ )n q2n(3n+5)+1 © (__. )p q6p(p+1)
9 = 1 _Zi'n&a + % 1 _._q%lH-l

(4m+1)7r_1\_
)

a n=0 =0

(m=3n+42; m=3p+1).
Further, we have

r”" ®,(2)dz = jw o, (2, +2) do

—w+2n b
P (_(2n+1)*7* 3az?)
= 2m Lmexp1 6a 2]
5 Bym 1
% cosh $az4-cosh $az—cosh $az d

—cosh 3az

o 5
— 2migl@n+ s cog (2n—g 1)=m j g—ioa cosh Jax+-cosh {ax

—w cosh 3ax dz.
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The integral along the lower line can be evaluated by changing the sign
of 7 throughout the previous work. On combining the results we get.

$(@ 0 (1—g)

cosh $az+cosh ax
= dzx.
cosh 3ax

2 2 o 0 X
"‘/ 0:*(q1) 1}1(1—q1')+02(%w,qls) L -tz

This reduces to

\ 6a\ (® . ..coshZax+coshiax
fa —_— 13 _— —haL- 2z 2
s =24/ (Z) arpaa/ (3) | o I

which is the transformation for ¢(g)
We next consider the integrals on the right of the transformation
formulae. Let

0 . 5
5 g—foz? cosh 2ax-cosh fax

0 cosh 3ax dw=J(a);

then it is easy to see that

‘0 o0 5 1
J(a)= \/ (6;’8) L 5 e Y cos 3may cosh jax+cosh jaz dydx

0 cosh 3ax

68 T (cosh 4By cos %7 | cosh By cos {Jomr
~ 3a \/( w) S v l cosh By-+cos 2 + cosh By+-cos 2 fv'r } d

(B [ e e,

so that J@)=4/ (Z-i) J(B).

sinh azx
sinh Jax

Next let j gt dz = J,(a),
0

and it is found in a similar manner that

Jl(a)='\/<ﬁs> J ()8)’

cosh fx

where Jo(f) = 50 e cosh 3pz **

It is easy to obtain asymptotic expansions for J(a), J,(a), and J,(ap
proceeding in ascending powers of « and valid when |a| is small and the real.
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part of a is positive; the first. few terms of the expansions are

J(a)=\/( ") [1—$a+395a2—..],
7@ =/ (57) 0ot ritaet— ),

Jy(a) = \/(6a> [1—%0+42a?— ...].

It can be proved that these expansions possess the property that (for
.a complex) the error due to stopping at any term never exceeds in absolute
value the first term neglected ; in addition, for a positive, the error is of the
same sign as that term*.

I now revert to the construction of the set of transformation formulae;
there is no difficulty in verifying that

rf@-24/ (Z) sor =24/ (%) nw=2LL1,@),
st/ (2) mtscni=2./ () - 22 1
- 4@—2 4/ (Z) srda) = 4/ (2) 7@ =EL 0p)
g4/ (Z) sivi—a) = 4/ (Z) 1@ =EL 1p)
a0/ (£) el = -/ (5) Hw =—EL 70p),
do@—a/(5) o) =~ /(Z) Rt = - £L2 7,)

The transformation formula for w(—g) is a little more troublesome ; we
need the two relations

F(@®)+2g w(g)+2¢° w(—g*) = 95(0, g) $:%(0, qﬁ),.li (1—gtn-2)-2

1@ +q0(@—gu(—0) =80, ¢80, ) I (1—g-2).

* This property is established by the method given by G. N. Watson, C'omposit;'o
Math., 1 (1934), 39-68 (64-65). It is the fact that these expansions are asymptotic (and
not terminating series) which shows that mock 3-functions are of a more complex character
than ordinary 8-functions.
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From these relations we have

g (=) = da7 500, ) 920, 929) 1T (1—gt")*—ha7f ()~ (a)
=/ (F) o0, 0820, 10—y
INCI
L) et/ ]
=/ (B) dotrt o/ (E) .ap-47,680.

Hence, replacing ¢, by ¢}, we get, as the last of the required trans-
formations,

gt q)+\/( ) gyt ql)—2\/(3a) 2(@),

where
J3(a) = }J,(Fa)—J1(2a)
1 [ —payrcoshday o (4 . sinh 20
=1 jo e cosh Zay dy ,L € sinh 3oz ¥
_ we—a“”’ jcosh3ax  sinh 2ax) P
—Jo lcoshZax  sinh3az)
. _® _g.ge Sinhax
“ Ja(@) _j " Sinh 3az

It is easy to prove that
]
J5(8)=(2) Js(a),

and that J,(a) possesses the asymptotic expansion

Tow) =4 A/ (52) Lot 20— 1,

for small values of a, this expansion having the same general properties as
the asymptotic expansions previously obtained.

Now that I have no more to say about the functions of order 3, I conclude
with a brief mention of the functions of orders 5 and 7. The basic hyper-
geometric series which has been used hitherto is of no avail for these func-
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tions, and other means must be sought to establish Ramanujan’s relations
which connect functions of order 5. After spending a fortnight on fruitless
attempts, I proceeded to attack the problem by the most elementary
methods available, namely applications of Euler’s formulae mingled with
rearrangements of repeated series; and within the day I had proved not
only the five relations set out by Ramanujan but also five other relations
whose existence he had merely stated. My proofs- of these relations are
all so long that I took the trouble to analyse one of the longest in the hope
of being able to say that it involved ¢ thirty-nine steps’’; it was, however,
disappointing to a student of John Buchan to find that a moderately liberal
count revealed only twenty-four.

The functions of order 7 seem to possess fewer features of interest, though
a study of their behaviour near the unit circle by the process of estimating
the sum of those terms of the series by which they are defined which are in
the neighbourhood of the greatest terms has raised one question for which
it was fascinating to seek the answer.

The study of Ramanujan’s work and of the problems to which it gives
rise inevitably recalls to mind Lamé’s remark that, when reading Hermite’s
papers on modular functions, “on a la chair de poule””. I would express
my own attitude with more prolixity by saying that such a formula as

r g-dra? sinhmgg , 1 & g inintlr

0 sinh3mz € 4/3 2o (1+e )% (14e737)2... (14 e n+lm)2
gives me a thrill which is indistinguishable from the thrill which I feel when
I enter the Sagrestia Nuova of the Capelle Medicee and see before me the
austere beauty of the four statues representing ‘“Day”, ¢ Night”,
“Evening”’, and “Dawn” which Michelangelo has set over the tombs of
Giuliano de’ Medici and Lorenzo de’ Medici.

Ramanujan’s discovery of the mock theta functions makes it obvious
that his skill and ingenuity did not desert him at the oncoming of his
untimely end. As much as any of his earlier work, the mock theta func-
tions are an achievement sufficient to cause his name to be held in lasting
remembrance. To his students such discoveries will be a source of delight
and wonder until the time shall come when we too shall make our journey
to that Garden of Proserpine where

““Pale, beyond porch and portal,
Crowned with calm leaves, she stands

Who gathers all things mortal

With cold immortal hands ™.



MOCK ¢-FUNCTIONS AND REAL ANALYTIC MODULAR
FORMS

S.P. ZWEGERS

ABSTRACT. In this paper we examine three examples of Ramanujan’s third
order mock ¥-functions and relate them to Rogers’ false J-series and to a
real-analytic modular form of weight 1/2.

1. INTRODUCTION

Mock 9-functions were introduced by S. Ramanujan in the last letter he wrote to
G.H. Hardy, dated January, 1920. For a photocopy of the mathematical part of this
letter see [Ra, pp. 127-131] (also reproduced in [A2]). In this letter he provided a
list of 17 mock ¥-functions (4 of “order three”, 10 of “order five” and 3 of “order
seven”), together with identities they satisfy.

In [AH|] we find a definition of the concept of a mock ¥-function. Slightly
rephrased it reads: a mock ¥-function is a function f of the complex variable q,
defined by a g-series of a particular type (Ramanujan calls this the Eulerian form),
which converges for |g| < 1 and satisfies the following conditions:

(1) infinitely many roots of unity are exponential singularities,

(2) for every root of unity £ there is a ¥-function ¥¢(g) such that the difference
f(q) — Y¢(q) is bounded as ¢ — & radially,

(3) there is no Y-function that works for all £, i.e. f is not the sum of two
functions, one of which is a ¥-function and the other a function which is
bounded in all roots of unity.

(When Ramanujan refers to ¥-functions, he means sums, products, and quotients
of series of the form ) . G”q“"2+b" with a,0 € Q and e = —1,1).

The 17 functions given by Ramanujan indeed satisfy condition (1) and (2) (see
[W1], [W2] and [3]). However no proof has ever been given that they also satisfy
condition (3). Watson (see [W1]) proved a very weak form of condition (3) for the
“third order” mock YJ-functions, namely, that they are not equal to ¥-functions.

In section 3 we will see that condition (3) is not satisfied if we weaken it slightly.
Indeed, we shall discuss a vector-valued third order mock ¥-function F for which
there is a real analytic modular form H such that F'— H is bounded in all roots of
unity.

Before that, we discuss in the next section a connection between mock J-functions
and Rogers’ false ¥-series. Again we look at the behaviour of a mock theta function
when ¢ approaches a root of unity radially. But now we extend the function across
the unit circle.

2000 Mathematics Subject Classification. Primary 11F37; Secondary 11F27.
Key words and phrases. g-series, mock J-functions, modular forms.

1



2 S.P. ZWEGERS

2. FALSE 1YJ-SERIES

We will consider the mock ¥-function v, which is not mentioned in Ramanu-
jan’s letter, but which was found by Watson in [W1], and can also be found in
Ramanujan’s “lost” notebook [Ral:

o n 24n
=3
(2.1) = i )
1 q q

= + -~ + - +

I+q¢ (1+90+¢) (A+g0+¢)(1+q°)
We can easily see that the defining sum for v converges not only for |g| < 1, but
also for |g| > 1. We will now study the function that is defined by the sum outside
the unit disk. In order to do so, we replace ¢ by ¢~! in the sum, take |q| < 1 and
call this new function v_. We get

o n+1
N q
V_(Q) B Z (—Q§q2)n+1
(2.2) n=0 , ,
q q q

T4+ (+g0+@)  (+g0+@1+a)

In Ramanujan’s “lost” notebook [Ra] we find the following identity for |¢| < 1
(which was proved by Andrews in [Al]):

(23) v (q) _ i(_l)nq6n2+4n+l(1 4 q4n+2)
n=0
(24) _ (Z Z ) n 6n +4n+1 _ q% i(_l)n+1 <_n3> qgnz
n=-—oo n=0

From these identities we see that v_ has a very simple power series expansion. This
expansion looks very much like a ¥-function, only the signs are somewhat different.
Rogers uses the term false ¥-series for this type of functions (see [Rol pp. 328]).

The following proposition (see [LZ]) shows that for every root of unity ¢ the
function v_ is bounded as ¢ — £ radially. We can even compute the complete
asymptotic expansion.

Proposition 2.1. Let C: Z — C be a periodic function with mean value 0. Then
the associated L-series L(s,C) =>.>" C(n)n™* (Re(s) > 1) extends holomorphi-

n=1
cally to C. The two functions Y .o, C(n)e™™" and Y .2, C(n)e™ ™ t(t>0) have

the asymptotic expansions
[e9) oo (—t r
Z C(n)e ™ ~ Z L(-r, C’)T
n=

[e%S)
7nt )

=1

(2.5)

as t \, 0. The numbers ( C) are given e:rplzcztly by

(2.6) L(-r,C) = T+1ZC’ m() (r=0,1,...)
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where By(x) denotes the k'™ Bernoulli polynomial and M is any period of the
function C.

In order to get the asymptotic expansion of v_ as ¢ — &£ radially, with £ a
root of unity, we write ¢ = £e~%. Thus we have to find the asymptotic expansion of
oo (1)t (%3) g%n%*%nﬂ as t \, 0. We can now use the proposition provided
we check that C(n) := (—1)"*1 (=2) €37 is a periodic function with mean value 0.
Indeed, if K is the order of £ then 6K is a period for C', while C(6K—n) = —C(n).
Hence the mean value of C' is zero.

The behaviour of v outside the unit circle is thus completely known. A question
that now arises is whether the behaviour of v outside the unit circle is related to the
behaviour of v inside the unit circle. Numerical computations in this and related

examples led me to the following:

Conjecture 2.2. If¢ is a root of unity where v is bounded (as ¢ — & radially inside
the unit circle), for example & = 1, then v is C* over the line radially through .
If &€ is a root of unity where v is not bounded, for example & = —1, then the
asymptotic expansion of the bounded term in condition (2) in the introduction is
the same as the asymptotic expansion of v as ¢ — £ radially outside the unit circle.

Let us proceed a bit, assuming this conjecture. Let 7 be a function which is
defined in- and outside the unit circle and also at all roots of unity, such that
(a) v is holomorphic in- and outside the unit circle, (b) 7 is C* over all radial lines
through roots of unity and (¢) 7 = v outside the unit circle. If we can find such a
function 7, then v — v is zero outside the unit circle, it has asymptotic expansion
zero for ¢ — & if € is a root of unity where v is bounded, and the bounded term in
condition (2) for mock - functions also has asymptotic expansion zero for ¢ — &.
Because of this one might expect v — U to be modular. If indeed this is the case we
have written v as the sum of two functions v — & and 7, one of which is a ¥-function
and the other a function which is bounded in all roots of unity. This contradicts
condition (3) in the definition of a mock ¥-function.

Ramanujan probably had this idea in mind when he wrote in his letter to Hardy:
“... I have constructed a number of examples in which it is inconceivable to con-
struct a ¥-function to cut out the singulartities of the original function. Also I have
shown that if it is necessarily so then it leads to the following assertion—viz. it is
possible to construct two power series in x, namely > a,z™ and Y b,z™, both of
which have essential singularities on the unit circle, are convergent when |z| < 1,
and tend to finite limits at every point x = €™/ and that at the same time the
limit of 3 a, 2™ at the point & = €2""/* is equal to the limit of 3" b, z" at the point
T = e—2i7r7“/s.77

Although it’s possible to construct two such power series (see [A2l pp. 284)), it
might not be possible to construct a function 7 that satisfies the conditions (a), (b)
and (c).
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3. Mock 9-FUNCTIONS AND REAL ANALYTIC MODULAR FORMS

In this section we will consider the following third order mock ¥-functions:

q q*

+ + +
(1+9)?  (1+¢)?2(1+q?)?
oo 2n2+2n
q
w@ =) 55—
,;0 (¢:4%)7 41
1 4 12

- + q + a + ...

(1-¢? (1-9?(1-¢)? (1-9°(1-¢)(1-¢)?
Ramanujan mentioned f in his letter, and w can be found in [W1] and [Ra].

Definition 3.1. Define F = (fo, f1, f2)T by:

fo(m) = ¢ %1 f(q)
(3.2) £1(1) = 205w (q?)
fa(r) = 2¢5w(—q?),

with ¢ = e>™7, 7 € H.

In [W1] Watson gave the modular transformation properties of f and w. If we
rewrite them in terms of F' we get

Lemma 3.2. For 7 € H we have

G 000
(3.3) F(r+1)= ( 0 0 ()| F(n)
0 ¢ 0
and
1 01 0
(3.4) _F(-1/7) = (1 0 0 | F(r)+ R(1),
- 00 -1

with ¢, = €*™/", R(1) = 4v/3V/=it(ja(7), —j1 (1), j3(7))T, where

oo :
. __28in 27T
J1(7) —/ STy
0

sin 3mTx
oo
) ;2 COSTTE
(3.5) Jo(T) = e3miTe 7 Ty
0 cos 3mTw
0o .
) .2 SINTTX
]3(7_) — e3m7—a: o dx
0 sin 3rTx

Proof. The transformation formula for 7 — 7 + 1 is trivial.

If we take the first formula from the set of transformation formulae on p. 78 in
[W1], with « = —2mi7, and multiply both sides by —1, we get
4V W3

fi(=1/7) = fo(7) = = J1(—2miT) = ———=71(7),

1
3.6
(36) =T —T —IiT
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which is the second component of equation (3.4)).
If we take the last formula from the set of transformation formulae on p. 78 in
[W1]), with o« = —mi7, and multiply both sides by —2, we get

1 2\/§ T 4\/§
—1/7)— fi(t) = ——=Jo(——) = j2(7),

mfo( /) = fa(7) T 2(—— ) = ==52(7)

where we have replaced x by 2z in the integral. This equation is the first component

of equation (3.4).

If we take the formula on the middle of p. 79 in [WI], with o« = —mi7, and
multiply both sides by 2, we get

(3.7)

4V3 43

1
3.8 —1/7)+ = J. = )
B3) S h(o1n) + folr) = S (rin) = ia(r)
which is the third component of equation (3.4). O

In a moment we will define a (nonholomorphic) function G that satisfies the
same modular transformation properties as F'. Before that, we rewrite R in terms
of period integrals of the following theta functions of weight 3/2:

go(2) = D (-1)"(n+ 1/3)ePmi )"

neZ
(3.9) g1(z) = — Z(n +1/6)eBmint )%
neZ
g2(2) = D (n +1/3)ePmin )2,
nez

These theta functions have the following modular transformation properties, which
can be verified using standard methods:

go(z+1) 0 0 ¢ go(2)
(3.10) gz+ )| =0 Ca 0] |a(2)
g2(2 +1) G 0 0 92(2)
and
go(—1/2) 01 0 go(2)
(3.11) g1(=1/z) | =—(=iz)*2 (1 0 0 91(2)

92(—1/2) 0 0 -1/ \g2(2)

From these transformation properties and the Fourier expansions, we see that the
g;’s are cusp forms.

Lemma 3.3. For 7 € H we have

(3.12) R(7) ——2z\f/m\/ﬁ

where g is the vector (go, g1,92)", and we have to integrate each component of the
vector.

Proof. (sketch)
If we replace 7 by —1/7 in equation ([3.4]), multiply both sides by

1 (010
— (100
V=it \00 -1
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and subtract equation (3.4]), then we see that

0
0 | R(=1/7).
-1

-1

it

(3.13) R(r) =

O = O
SO =

If we now take 7 =it with t € R, t > 0, we have

0 13 [ D)

0 1
-1
(3.14) R(it)y=—4|1 0 0 | R(i/t)= —j2(i/t)
vilo o -1 Ja(i/t)
We now consider the first component:
(3.15)
4\f nift) = 4[/ 3m2/tsmh27m‘/t —4\f/ 3rty? smh27ryd ,
t sinh 37z /t sinh 3wy

where we have substituted z = ty in the integral.
From the theory of partial fraction decompositions (see [WW), pp. 134-136]) we
get

sinh2ry V3 (1) iv3 (1"

(3.16) g = — : .
sinh 37y 6m nezy—z(n—l—%) 6m —i(n+ %)

neEZ -y

Using this we see

SRR

% [ iy (1) (1)
e ey
© Jo (,;yﬂ(nﬂl,) ,;—y—%(wr%)
3.17 . o n
Gy ( (1) ) "
. 1
w ) DB ey

2 n [T e=3mty?
s (_1)/ — - dy.

nez —00 y_l(n+§)

It’s not immediately clear that interchanging the order of integration and summa-
tion in the last equation is justified. However, it can be proven rigorously if we con-

. 3nty? .
sider [% e~3mty (Znez(—l)” (y_i(ll+%) + i(ni%))) dy (here we can interchange
the order of integration and summation because of absolute convergence).
We have for r € R, r # 0

0 e—ﬂ'tyz 0 e—Tr’rzu
3.18 dy = mir —du
315 = e

(both sides are solutions of (—% + ) f(t) = L\}g and have the same limit 0 if

t — oo, and hence are equal). If we use this with » = (n + 1/3) and ¢ replaced by
3t, we obtain
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4\[ 00 e—w(n+1/3)2u
— t)y=2 (n+1/3 ——du
]1 / z:z / ) 0 m
(3.19) ne

_ ez (—1)"(n+ 1/3)e i+ i)
2/ vu+ 3t

Again it’s not immediately clear that interchanging the order of integration and
summation in the last step is justified. It can be proven rigorously by first using
partial integration on the integral

du.

(3.20)
%) e—ﬂ(n+1/3)2u J 1 1 1 /oo e_ﬂ-(n+1/3)2u p
- Q= - u,
0 Vu+ 3t w(n+1/3)2 /3t 2m(n+1/3)? (u+ 3t)3/2

then interchanging the order of integration and summation, which is justified by
absolute convergence, and finally using partial integration again. By partial inte-
gration we introduce some “boundary terms”. To get rid of them we have to use
Abel’s theorem on continuity up to the circle of convergence, see [WWJ, pp. 57-58].

If we now substitute u = —3iz in the integral we get
(3.21) Mh( i/t) = fQZ\[/ __%o&) dz,

=iz +it)

so we have proven the first component of equation (3.12)) for 7 = it. Since both
sides are analytic on H, the identity holds for all 7 € fH.

The second and third component of equation can be proven along the
same lines. Here we have to use

cosh y __@Z* 1 _@ 1

o T i v ) g i)
' sinh 7y __@Z* 1 _@Z* 1

sinh 37y 6m = y—i(n—k%) 67 = —y—i(n+%)’

where Z* means lim Z . O
neZ meee n=-—m
Definition 3.4. For 7 € H U Q we define
100 _ T

(3.23) G(r) := 2iV3 (91(2), 9o(2), —92(2)) dz.

7 —i(z+71)
The integrals converge, even if 7 € Q, because the g;’s are cusp forms.
The function G satisfies the same modular transformation properties as F":

Lemma 3.5. For 7 € H we have

Gt 000
(3.24) Gr+1)=[(0 0 &G|GH
0 ¢ 0
and
) 01 0
(3.25) _G(-1/7)=1{1 0 0 | G(r)+ R(7)
- 00 -1
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Proof. The first equation follows from equation (3.10) if we replace z by z — 1 in
the integral.

We have
1 2iV3 [ (91(2), 90(2), —g2(2))T
—G(-1/7) = = : dz
(3.26) - T ey

=9 - (gl(_l/z)vg()(_l/z)v_92(_1/2))T dz
_2\/§/0 /s i

where we have replaced z by —1/z in the integral. If we now use equation (3.11))
we get

(3.27) \/iT (—1/7) = —2iV3 / \/W
hence we get
1 01 0
—G(-1/7)— |1 0 0 |G(1)
T 00 -1
(3.28) PV B ) BRIV ) L G
0 \/Tﬁ—T) -7 (z+71)
= -2iV3 - 9(2) dz = R(1),
0 —i(z+71) ™
by Lemma (I

Theorem 3.6. The function H definied by

(3.29) H(t)=F(r)— G(1),
is a (vector-valued) real-analytic modular form of weight 1/2, satisfying
Gl 000
H(r+1)=| 0 0 (| H(r),
0 0
(3.30) G
1 01 0
—H(-1/7)=(1 0 0 | H(7),
T 00 -1
and His an eigenfunction of the Casimir operator (/5 = —49? 8?{; + iy% + 1375
with eigenvalue 1—36, where T = T + 1y, % =1 (a‘i 18‘2/) and % = % (% —I—i(%).

Proof. The modular transformation properties of H are a direct consequence of the
transformation properties of F' and G given in Lemma and Lemma
Since F' is a holomorphic function of 7, we have %F (1) = 0; hence

2 pin=-Zaw = _zi@gl(—ﬂ,go(;),—Tg;2<—T>>T

= i\\;yé(gl(T)»gO(T)v —g2(=7)".

(3.31)
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We see that \/ﬂa%H (1) is anti-holomorphic, so

0 0
3.32 —/y—H(7) =0.
(3:32) N i H ()
We can write the operator €2/ = —4y2% + iya@? + % as
3 0 0
. O o = = — 432 2 g
(3.33) 2 =15~ W 87\/y6?
Hence
3
3.34 Qy/9H = —H.
(334 =

If we now write F' as H + G, we get the following:

Corollary 3.7. The vector-valued third order mock ¥-function F' can be written as
the sum of a real analytic modular form H and a function G that is bounded in all
rational points.

4. OTHER MOCK U-FUNCTIONS

In the previous section we have only dealt with the third order mock ¥-functions
f and w. However, I have found similar results for most other mock ¥-functions,
and I expect that it can be done for all known ones. I hope to present these results,
and the details omitted in the previous section, in my Ph.D.-thesis, which should
appear somewhere near the end of 2002.
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